
THE LLM SURGEON

Tycho F.A. van der Ouderaa1∗ , Markus Nagel2, Mart van Baalen2,
Yuki M. Asano3, Tijmen Blankevoort2
1Imperial College London , 2Qualcomm AI Research†, 3QUVA Lab, University of Amsterdam

ABSTRACT

State-of-the-art language models are becoming increasingly large in an effort to
achieve the highest performance on large corpora of available textual data. How-
ever, the sheer size of the Transformer architectures makes it difficult to deploy
models within computational, environmental or device-specific constraints. We
explore data-driven compression of existing pretrained models as an alternative
to training smaller models from scratch. To do so, we scale Kronecker-factored
curvature approximations of the target loss landscape to large language models.
In doing so, we can compute both the dynamic allocation of structures that can
be removed as well as updates of remaining weights that account for the removal.
We provide a general framework for unstructured, semi-structured and structured
pruning and improve upon weight updates to capture more correlations between
weights, while remaining computationally efficient. Experimentally, our method
can prune rows and columns from a range of OPT models and Llamav2-7B by
20%-30%, with a negligible loss in performance, and achieve state-of-the-art re-
sults in unstructured and semi-structured pruning of large language models.
Code is available at: https://github.com/Qualcomm-AI-research/llm-surgeon.

1 INTRODUCTION

Recent advancements in language modeling (Vaswani et al., 2017) allow fitting large language mod-
els (LLMs) with millions or even billions of parameters (such as OPT (Zhang et al., 2022) and
Llama 2 (Touvron et al., 2023)) on big text corpora achieving high performance. Unfortunately,
the size of these LLMs often makes it hard to deploy them within practical constraints. Cloud-
based deployment can get very expensive for larger models, and efficient devices such as phones are
frequently limited in the memory size to host a model.

A body of literature extending back to the late 1980s, e.g., Optimal Brain Damage (OBD, LeCun
et al. (1989)) and Optimal Brain Surgeon (OBS, Hassibi & Stork (1992)), phrases pruning as a
constraint optimization problem to reduce a model’s footprint and runtime requirements. The Hes-
sian required for this approach grows with the square of the number of parameters, and can only
be computed in practice for unrealistically small networks. To overcome this issue, Eigendamage
(Wang et al., 2019) introduces a Kronecker factorization of a blockwise-diagonal approximation of
the Hessian. Recent works, like Optimal Brain Compression (Frantar & Alistarh, 2022), SparseGPT
(Frantar & Alistarh, 2023), demonstrate practical post-training pruning of LLMs, but only consider
a loss curvature of a pruned layer’s squared output reconstruction error, ignoring gradients that relate
local removal costs to the target loss. As a result, their approximation to the target loss landscape
is inaccurate, leading to a significant performance degradation for pruned LLMs. Further, these
methods do not readily extend to structured pruning.

∗Work done while doing an internship at Qualcomm AI Research
†Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

Structured compression (rows and columns) Unstructured compression (matrix elements)

1.3b 2.7b 6.7bmodel sizes:

14.62
12.47
10.86

te
st

 se
t

pe
rp

le
xi

ty pretrained
K-OBD
LLM Surgeon

1.3b 2.7b 6.7bmodel sizes:

14.62
12.47
10.86

te
st

 se
t

pe
rp

le
xi

ty pretrained
SparseGPT
LLM Surgeon

Figure 1: LLM Surgeon allows interpolation of model size between existing pretrained models.

1

https://github.com/Qualcomm-AI-research/llm-surgeon

This work introduces LLM Surgeon, a general framework for unstructured, semi-structured and
structured pruning of LLMs. At paper submission, we deemed this the first method to successfully
perform structured pruning of LLMs. Concurrent work by Ashkboos et al. (2024) also considers
structured pruning of LLMs but ignores gradient information, resulting in lower final performance.
The superior performance of LLM Surgeon is achieved by scaling up the block-diagonal Kronecker-
factorized approximations to the empirical Fisher from Eigendamage to LLMs. We further expand
upon the work by deriving OBS-like weight pruning costs and updates for structured pruning of
multiple rows and columns, and provide a general framework that also incorporates semi-structured
and unstructured pruning. Instead of treating individual weight updates independently, we strive
to consider as many correlations between weights as practically possible and derive joint weight
updates for pruning multiple weights (or multiple sets of structured weights) at once. Unlike prior
work in LLM pruning, LLM Surgeon prunes in multiple shots, updating weights and curvature es-
timates between shots. We use global thresholding for unstructured, semi-structured and structured,
i.e., instead of pruning layers by a fixed amount, more sensitive layers are pruned less than those
that are more robust. Lastly, we propose to mitigate possible first-order gradients not being zero by
using optional low-rank first-order updates between shots. A key advantage of LLM Surgeon is that
it allows trading off additional compute during compression for better accuracy by increasing the
number of correlations and/or shots. Our method gives the first practically usable results for struc-
tured pruning of LLMs – they can be pruned by up to 30% with minor performance degradation.
Furthermore, we achieve state-of-the-art results in unstructured and semi-structured LLM pruning.

2 BACKGROUND AND RELATED WORK

Neural network pruning aims to remove parameters from a model while minimizing negative im-
pact on final performance. More formally, we denote the P model parameters as vector θ∗ =
vec(W ∗

1 ,W
∗
2 , . . .W

∗
L) ∈ RP , by flattening the L weight matrices of attention and fully-connected

blocks, with already fitted θ∗≈ argminθ L(θ) to data D to minimise a negative likelihood loss
L(θ)=− log p(θ|D). To compress the model, we are looking for a pruned vector θ̂:

θ̂ = argminθ L(θ) s.t. pruning constraints based on θ∗ (1)

where chosen constraints determine the structure of compressed weights θ̂. In unstructured prun-
ing, a fraction of total weight elements is set to zero. In semi-structured pruning of M:N we have
that M weights of every N consecutive weights are zero (Zhou et al., 2021; Hubara et al., 2021).
And in structured pruning (Louizos et al., 2017), entire rows and columns are set to zero. Struc-
tured pruning leads to the most immediate gains in memory and computing, as it directly reduces
the dimensions of matrices that need to be represented explicitly but is regarded as the most difficult
to compress. Maintaining high performance is often easier in the other schemes but requires spe-
cialised arithmetic exploiting the sparsity structure to benefit at deployment. We consider all pruning
types above, with a focus on structured pruning for LLMs.

Typically, eq. (1) can not be solved directly, as the space of possible pruning configurations exceeds
what can be evaluated in practice. To illustrate, a search over all possible unstructured pruning
masks of a 125 million parameter LLM would require 2P=2125m≈1037628749 evaluations. The
idea, therefore, is to find θ̂ using a surrogate of the loss landscape q that is easier to work with:

L(θ) = − log p(D | θ) ≈ − log q(θ) (2)

If one chooses a particular Gaussian form for our surrogate q, then solutions for unstructured, semi-
structured, and structured pruning constraints can be derived in closed-form (appendix A).

2.1 TAYLOR EXPANSION

How do we obtain a good surrogate of the loss q? One of the easiest approaches is to locally expand
the log loss through a second-order Taylor expansion around the pretrained weights θ∗, yielding:

− log q(θ) ≈ − log p(D|θ∗)− (θ − θ∗)T∇L(θ∗)− 1

2
(θ − θ∗)THθ∗(θ − θ∗) (3)

where [∇L(θ∗)]i =
∂

∂θi
L(θ∗

i) denotes the Jacobian and [Hθ]ij =
∂2

∂θiθj
L(θij) denotes the Hessian.

The first-order term vanishes [∇L(θ∗)]i = 0 at the optimum. Note that in practice the first order

2

Figure 2: Pruning as equality constrained optimization of quadratic approximation of the loss land-
scape (left), or equivalently, maximising the likelihood under a Laplace approximation (right).

term may not vanish. While we follow this assumption initially, we consider interleaved first-order
corrections to mitigate the issue in section 3.6. The quadratic expansion of eq. (3) forms the basis of
the optimal brain damage (LeCun et al., 1989) and optimal brain surgeon (Hassibi & Stork, 1992)
pruning methods. Note that from a probabilistic perspective, a quadratic approximation of the log
likelihood implies a Gaussian approximation of the likelihood, as also observed by (Wang et al.,
2019) and illustrated in fig. 2. This is well-known (Bishop & Nasrabadi, 2006), (MacKay, 2003)
as the Laplace approximation q(θ) = N (θ | θ∗ +∇L(θ∗),H−1

θ∗), with pretrained weights are the
mean and the local inverse Hessian is the covariance matrix capturing correlations between weights.

2.2 BLOCK FISHER INFORMATION MATRIX

For a network trained with negative log-likehood loss, the Hessian is identical to the Fisher matrix:

Hθ = Fθ =
∑N

n=1
Ey∼pθ(y|xn)

[
∇θ log pθ(y|xn)∇θ log pθ(y|xn)

T
]

(4)

which has the benefit of always being positive semi-definite, with the inverse thus forming a proper
covariance matrix for q, and can be approximated with Monte Carlo samples of pθ(y|xn). For
most LLMs, this would be treating the softmax output of the network as categorical distribution
pθ(y|xn), and sampling from that. In practice, we use the ‘empirical Fisher’ replacing the expec-
tation over y with target data yn (Kunstner et al., 2019). The full (empirical) Fisher Fθ ∈ RP×P

scales quadratically in the number of parameters P . To overcome this, the Fisher is often written in
terms of layer-wise blocks Flk =

∑N
n=1 E

[
vec(∇Wl

log pθ(y|xn))vec(∇Wk
log pθ(y|xn))

T
]
, and

approximated by only treating layers independently (Martens & Grosse, 2015; Botev et al., 2017):

Fθ = diag(F11,F22, . . . ,FLL), Fl =
∑N

n=1
E
[
(gl,ng

T
l,n)⊗ (al,na

T
l,n)︸ ︷︷ ︸

RC×RC

]
(5)

where ⊗ denotes the Kronecker product and vec(·) the matrix vectorisation operation. Because
we disregard cross-layer interactions we write Fl instead of Fll for Fisher blocks associated with
the weight matrix Wl∈RR×C producing outputs yl,n = Wlal,n∈RR from inputs al,n∈RC , for
each layer l and datapoint n. Consequently, we can compute Fisher blocks from input activations
al,n∈RC of forward-passed data xn and output gradients gl,n=∇yl,n

L∈RR from backpropagation.

2.3 PRUNING AS CONSTRAINED OPTIMIZATION

Optimal brain surgery relies on removing and adapting weights such that the loss is least negatively
affected, thus it behooves us to write the problem as a constrained optimization problem. From
the Gaussian approximation discussed in section 2.1 obtained by quadratically expanding the log
likelihood loss − log p≈ 1

2θ
TFθ, the optimal update ∆θ=θ̂−θ (and thus also θ̂=θ+∆θ) becomes

the following equality constrained quadratic optimization problem (Hassibi & Stork, 1992):

argmin
∆θ

1

2
∆θTF∆θ (6)

s.t. eTk∆θ + eTk θ = 0,∀k ∈ K

where F is positive semi-definite and K is the set of K indices that are pruned (i.e., set to zero).

3

Algorithm 1 LLM Surgeon (structured)
Input: initial weights θ0, target size α, and data D

For shot t in [1, 2, . . . , T]
Compute: approximate curvature G,A from data D ▷ section 3.1
Compute: costs per row/column Lr,Lc from G,A ▷ section 3.2
Compute: threshold τ using Lr and Lc given target size αt ▷ section 3.3
Select: rows and columns to remove ER, EC based on τ ▷ section 3.3
Compute: weight update ∆θt−1 based on ER,EC and G,A ▷ section 3.4
Update: remaining weights θt ← θt−1 +∆θt−1 ▷ section 3.5
Optionally: θt ← low-rank update(θt) ▷ section 3.6

Output: compressed weights θ̂ = θT

General solution We denote EK = [e1 e2 . . . eK]
T ∈ [0, 1]K×P as a matrix of which the

row vectors are canonical basis vectors ek ∈ RP that select the elements to be pruned. One of the
most standard approaches to solve eq. (6) is using Langrange multipliers, which results in a general
closed-form solution for the expected increase in loss L and optimal weight update ∆θ:

L =
1

2
(EKθ∗)T

(
EKF−1ET

K

)−1
EKθ (7)

∆θ = −F−1ET
K

(
EKF−1ET

K

)−1
EKθ (8)

which we use to derive unstructured, semi-structured, structured for modern Fisher approximations
(see appendices A.2 to A.4). The same general form of eqs. (7) and (8) appears in prior LLM pruning
work Kurtic et al. (2022), but only for much simpler layer-wise pruning and no structured pruning.

3 LLM SURGEON
This section describes the components of our method, LLM Surgeon, summarised in algorithm 1.
3.1 ESTIMATING LOSS LANDSCAPE CURVATURE

Accurate pruning relies on approximating the local curvature accurately while overcoming the mem-
ory cost associated with storing the true curvature. Specifically, even with the block-wise approxima-
tion of eq. (5), F ∈ RRC×RC requires summing N large RC×RC matrices, too large to practically
fit in memory. Instead, we adapt the KFAC approximation (Martens & Grosse, 2015) that assumes
independence of activations and derivatives, approximating an expectation of Kronecker products
as a Kronecker product of two expectations E[gl,ngT

l,n ⊗ al,na
T
l,n] ≈ E[gl,ngT

l,n] ⊗ E[al,na
T
l,n],

allowing layer-wise Fisher blocks to be approximated as Fl ≈ F̃l, where

F̃l = Gl ⊗Al , with Gl =
1√
N

∑N

n=1
gl,ng

T
l,n and Al =

1√
N

∑N

n=1
al,na

T
l,n (9)

constructed from activations al,n ∈ RC from forward passes and gradients gl,n ∈ RR from back-
ward passes (Eschenhagen et al., 2024). The approximation originates from optimization literature,
but has recently gained popularity for other problems that require curvature approximations (Immer
et al., 2022; van der Ouderaa et al., 2023), including structured pruning in Wang et al. (2019).

An additional advantage of approximating Fisher blocks as Kronecker products is that the inverse
becomes particularly easy to compute F̃−1 = G−1 ⊗A−1, thus only requires inverting the factors.
This fact allows us to never explicitly construct large RC×RC matrices in memory that make up F̃

and F̃−1, but rather directly work with the much smaller matrices G and A.

3.2 COMPUTING COSTS IN FINAL LOSS

The number of possible combinations in which weights can be removed grows (supra-)exponentially
in parameter count, making it infeasible to estimate a separate cost L for each such removal. A
common strategy, therefore, is to treat weights independently when computing removal costs L. We
also follow this strategy, but note that this does not necessarily imply that we have to make such same
strong independence assumption for the weight updates ∆θ after selecting weights to be removed.

4

Unlike most prior work, we present correlated weight updates by taking into account off-diagonal
elements of the Fisher approximation in section 3.4.

For semi-structured and unstructured we use independent costs for individual weight elements
k∈[1, RC], and for structured use independent costs for all rows r∈[1, R] and columns c∈[1, C].
We find that we can derive the appropriate costs from the general cost formula eq. (7) by letting
E=ek ∈ RRC where the single one-hot element at index k of canonical basis vector ek selects
the weight to remove. For structured pruning, we similarly select rows r and columns c, by setting
E=eTr ⊗I∈RC×RC or E=I⊗ec∈RR×RC with er∈RR, ec∈RC . Plugging into eq. (7), we find:

Lk =
1

2

(θk)
2

[G−1 ⊗A−1]kk
, Lr =

1

2

θT
r Aθr

[G−1]rr
, Lc =

1

2

θT
c Gθc

[A−1]cc
(10)

Full derivations can be found in appendices A.2 and A.3. The costs for single elements Lk are
equivalent to those found in optimal brain surgeon (Hassibi & Stork, 1992) and Lr and Lc closely
resemble structured brain surgeon of (Wang et al., 2019), but in our case derived for matrix rows
and columns (see appendix A.3). Given curvature estimates, costs for either removing all weights
or all rows and columns can be computed in parallel. In addition, we derive costs for the more
general sum of Kronecker factor approximation F̃ ≈ G1 ⊗A1 +G2 ⊗A2 in appendix I through
an eigendecomposition.

3.3 DYNAMIC WEIGHT ALLOCATION WITH GLOBAL THRESHOLD

original W

row cost r,
column cost c

structured
W + W

element costs k

semi-structured
W + W

element costs k

unstructured
W + W

Pruned weights Updated remaining weights

Figure 3: General framework for structured, semi-
structured and unstructured compression.

Unlike prior works that compress layer-by-
layer (Frantar & Alistarh, 2023), we use a
global threshold τ enabling a dynamic alloca-
tion of sparsity levels across layers, pruning
most where it hurts the least. Our method can
compress a model to a specifically chosen target
size α, defined as the fraction of weights that
should remain, i.e. stay non-zero after com-
pression. In all structured, semi-structured, and
unstructured pruning (fig. 3), we select as many
weights for removal so that the target size α is reached that inflict the least possible costs L, as com-
puted according to section 3.2. For unstructured pruning, this is as simple as sorting the costs for all
weights Lk in the network and setting a global threshold τ such that α fraction of weights fall within
the threshold Lk ≤ τ . For M:N semi-structured pruning, we sort the M costs of each N consecutive
weights and select the M weights with lowest cost. In case of a multi shot schedule (see section 3.5)
we also sum the M lowest costs in each block to find a cost per block, sort costs per block across the
entire network, and similar to the unstructured case set a global threshold τ such that an α fraction
of weights fall within threshold. Lastly for structured pruning, we perform a sorting appropriately
weighted by the number of elements that make up a row or column and set the global threshold τ
such that α fraction of all weights fall within the threshold. Then we remove all rows and columns
that fall within the threshold Lr,Lc ≤ τ .

3.4 CORRELATED WEIGHT UPDATES

Like most other pruning methods, we prune multiple weights at once (Frantar & Alistarh, 2023;
Wang et al., 2019). To arrive at pruning costs and weight updates for pruning multiple weights, it
is common to compute costs and updates for individual weights (or sets of weights) independently
and add them together to arrive at a joint pruning cost. In LLM Surgeon, we argue that it’s better
to consider weight updates jointly instead of independently. After selecting the set of weights for
pruning, we can often afford to compute a single correlated weight update associated to the joint
removal of multiple weights, instead of naively summing weight updates associated to individual
removals. We derive such correlated weight updates below. Note that, for the expected cost compu-
tation, we do assume that the row, column or weight costs are independent, as the number of possible
combinations of weights to prune grows too large to compute within reasonable time.

Fast unstructured / semi-structured correlated weight updates Mathematically, we represent
pruned weights as EK= [e1 e2 . . . eR′]

T ∈RK×RS , where er∈RR′
are one-hot canonical ba-

5

sis vectors selecting the weights for removal. As each element k has a unique associated row r
and column c index, we can consequently also use canonical basis vectors for these respective rows
ER∈RK×R and columns EC∈RK×C (i.e., we have [ER]i ⊗ [EC]i=[EK]i is satisfied for all i).

We derive unstructured weight updates in appendix A.2, by considering eigendecompositions G =
K1S1K

T
1 , A = K2S2K2 of the Fisher approximation F ≈ G⊗A, which from eq. (8) yields:

∆W = G−1
(
K1

(
K

T

1W
−1
K2 ⊘ S︸ ︷︷ ︸

K×K

)−1

K2

)
A−1 (11)

where ⊘ is element-wise division, and for brevity use bar notation K1=EKK1, K2=EKK2,
θ=EKθ, and S=diag(S1)diag(S2)

T∈RR×C , and diag(·) vectorises matrix diagonals.

Programmatically, we always avoid explicitly representing large matrices F̃ and F̃−1 in memory,
but rather compute relevant quantities from their factors. Likewise, we never represent sparse ma-
trices EK , ER or EC in memory, but instead work with a lists of indices of the one-hot elements
directly. For example, we can cheaply constructK1=ERK1 ∈ RK×R andK2=ECK2 ∈ RK×C ,
by copying row vectors, and the vectorθ=EKθ=ERWET

C ∈ RK by indexing all pruned weights.

Maximum number of correlated weights The main computational bottleneck is the K×K ma-
trix inverse in eq. (11). To control compression speed, we can split pruned weights into disjoint
subsets K=K1∪K2∪ . . ., such that each subset Ki does not exceed the set maximum number of
correlated weights Ki≤m, and sum associated independent updates. Using less correlation by set-
ting a lower m allows trading compression quality for speed.

Fast structured correlated weight updates Unlike the general case which requires inverting a
K ×K matrix for K correlated weights, we find that weight updates with the Kronecker factored
Fisher approximation F̃ = G⊗A only require inverting a R′ ×R′ matrix when removing R′ rows
or a C ′×C ′ matrix when removing C ′ columns. The updates are much cheaper than we would have
expected based on the effective number of weights in those rows and columns, which would imply
inverting R′C × R′C or RC ′ × RC ′ matrices. In practice, this leads to a significant speed-up for
structured pruning and weight updates that take into account correlations between rows or columns.
When removing R′ rows, r1, r2, . . . rR′ , or the C ′ columns c1, c2, . . . , cC′ , with 1<R′ < R and
1<C ′<C, we denote one-hot vectors selecting all rows and columns to be removed respectively
as ER′ = [e1 e2 . . . eR′]

T ∈ RR′×R and EC′ = [e1 e2 . . . eC′]
T ∈ RC′×C . We find

weight updates associated to removing the R′ rows by setting EK = ER′ ⊗ I or EK = I ⊗EC′ :

remove multiple R′ rows:

remove multiple C ′ columns:

∆W = −W(EC′A−1ET
C′)−1(A−1ET

C′)

∆W = −G−1ET
R′(ER′G−1ET

R′)−1W
(12)

From here, it is clear that the special case of removing a single row r or column c under Kronecker
approximation involves inverting a 1× 1 matrix, and thus only requires scalar division:

remove single row r:
∣∣∣∆θ = −G−1er ⊗ θr

[G−1]rr
, or single column c:

∣∣∣∆θ = −θc ⊗A−1ec
[A−1]cc

(13)

in accordance to independent structured updates in Wang et al. (2019), for convolutional filters. We
have thus extended existing structured weight updates to rows and columns, and derived update rules
that also consider correlation between structured groups (in our case the rows and columns).

3.5 MULTI SHOT PRUNING SCHEDULE

To improve the performance-to-sparsity ratio, we propose pruning in multiple shots. We theoreti-
cally justify this multi-shot approach by noting that the surrogate loss landscape q relies on a Taylor
expansion (eq. (3)) that only holds locally and thus becomes unreliable for larger jumps ∆θ in pa-
rameter space. We mitigate this by pruning in multiple T>1 shots, t ∈ [1, 2, . . . , T], each resulting
in a smaller weight update ∆θ after which the curvature of the loss surface can be re-estimated.
When pruning to target size α, ie. removing 1−α of total weights, we choose a schedule αt starting
at α0 = 1 and ends with αT=α, such that after T shots, exactly α fraction of the total weight remain.
Empirically, we find that a linear schedule for αt, as formulated in section 4, monotonically improves

6

Table 1: Structured compression of large language models on wikitext-2 data.
Test performance (PPL)

Method Target size OPT (125m) OPT (1.3b) OPT (2.7b) OPT (6.7b) Llama-v2 (7b)
Baseline 100% 27.65 14.62 12.47 10.86 5.12
Magnitude 90% 767.2 894.4 1229 3464 36746
I ⊗ I 80% 4685 (1278) 2788 16747 347960

70% 17970 (3098) 9255 17312 41373
L-OBD 90% 33.3 20.76 17.69 27.20 14259
diag(I ⊗A) 80% 94.14 1392 3236 7570 15630
multi shot 70% 545.6 2147 7233 7628 21386
K-OBD 90% 27.97 14.68 11.96 10.53 5.48
diag(G⊗A) 80% 29.89 15.63 12.47 11.28 9.14
multi shot 70% 36.54 18.29 14.53 13.03 15.43

60% 47.54 24.65 18.09 16.21 28.03
50% 75.95 37.68 26.68 25.54 46.64

LLM Surgeon (ours) 90% 28.29 14.73 12.00 10.82 5.43
G⊗A 80% 29.37 15.27 12.37 11.22 7.29
within row/col cor. ∆ 70% 32.46 16.60 13.16 11.83 10.85

60% 39.82 19.40 14.79 12.94 16.67
50% 51.48 23.81 18.01 15.38 25.62

LLM Surgeon (ours) 90% 28.01 14.70 12.02 10.77 5.25
G⊗A 80% 28.73 15.12 12.27 11.02 6.18
full cor. ∆ 70% 31.82 16.24 12.92 11.64 7.83

60% 38.47 18.45 14.23 12.58 10.39
50% 49.78 22.95 17.15 14.90 15.38

pruning performance with more shots, and that higher sparsity levels typically require more shots
(see appendix F.1). Multi-shot pruning allows one to spend (linearly in T) more computation to
improve the final compression performance.

3.6 INTERLEAVED LOW-RANK FIRST-ORDER CORRECTIONS

We propose optional interleaved low-rank first-order corrections to further improve compression
performance. So far, we assumed parameters are in a local optimum when finding a closed-form
solution to the quadratic constraint problem. In practice, however, this assumption likely does not
hold since (i) the neural network may not be optimised to the minimum, (ii) a different loss may
be used for compression than used for training, or (iii) we prune in multiple shots (section 3.5)
inevitably causing weights to diverge from the optimum. To mitigate this, we consider first-order
corrections by interleaving pruning shots with low-rank adaptations of weights Wl+UV (LoRA, by
(Hu et al., 2021)), commonly used in LLM finetuning. We always absorb updates after each shot, so
that the next loss estimate q is closer to the optimum and underlying assumptions are likely to hold
more closely. By absorbing LoRA updates between shots, the sum of low-rank updates can have
a higher rank than individual updates. That is, we have rank(U1V 1+U2V 2+ . . .+UTV T) ≥
rank(U tV t) for the updates U tV t at any shot t, with equality only arising if updates lie exactly in
the same subspace which is unlikely to ever occur in practice. This insight could also be used during
regular LoRA finetuning and may therefore be useful outside the context of model compression to
allow more expressive low-rank model adaptation, at negligible cost.

4 RESULTS

We compare compression performance of LLM Surgeon on language modeling tasks on OPT
(Zhang et al., 2022) and Llama-v2 (Touvron et al., 2023) model families, using data from wikitext-2
dataset (appendix B.2). For compression, we use 128 sequences with a sequence length of 2048
tokens from the training data set and evaluate test perplexity (PPL) on the standard test split. In our
experiments, we use a linear sparsity schedule αt=1−t(1−α

T) at each shot s before reaching the final
sparsity α. We use 40 shots at α=0.5 sparsity and report intermediate compression rates, effectively
using T=8 shots for α=0.9, T=16 for α=0.8, T=24 for α=0.7, and T=32 for α=0.6. We com-
pare against magnitude pruning, L-OBD, SparseGPT and K-OBD baselines. The K-OBD and LLM
Surgeon use the multi shot procedure of section 3.5 using T=40 shots for structured pruning and
T=5 shots for semistructured and unstructured pruning. Further details are found in appendix B.

7

4.1 STRUCTURED COMPRESSION

Structured compression of rows and columns enables direct savings in memory and compute through
a straight reduction of matrix dimensions in the model. For LLM surgeon, we consider in section 3.4
weight updates with different levels of correlations: limited to correlations within rows and columns,
and correlations both within and between rows and columns. We further compare against magnitude
pruning, which only uses weight magnitudes, L-OBD, which only uses activations, and K-OBD,
which also uses Kronecker-factored curvature but assumes full independence and thus only prunes
without updating remaining weights. We report results in table 1, and observe that more correlations
results in better performance, with the largest improvements for the Llama-v2 model family.

While a 50% structured compression is not better than a smaller model of similar size, LLM Surgeon
allows us to reduce model size by up to 30% with minimal loss, without training a smaller model
from scratch fig. 1. In our structured compression experiments our proposed LLM Surgeon method
outperforms all baselines and achieves the best performance for each compression target size.

4.2 INTERLEAVED LOW-RANK UPDATES

Table 2: Structured compression of OPT-125m
on wikitext-2 using interleaved LoRA updates

Target without with
Size LoRA LoRA

Pretrained 100% 27.65 23.35
LLM Surgeon 90% 28.01 24.16
(ours) 80% 28.73 25.25
G⊗A 70% 31.82 28.86
full cor. ∆ 60% 38.47 31.26

50% 49.78 36.50

Additionally, we assess compression performance
in conjunction with the proposed first-order cor-
rections using the interleaved low-rank adaptation
described in section 3.6. We find that LoRA im-
proves compression performance in the smallest
125m model, but not in larger models. We hypoth-
esise that larger models are more prone to overfit-
ting on the relatively few batches of wikitext-2 data
used to compress the model. Nevertheless, we con-
clude that interleaved LoRA can be useful in cases,
and recommend first using the proposed method without interleaved updates and, if enough data is
available for compression, optionally using it if it improves performance.

4.3 SEMI-STRUCTURED COMPRESSION

For 2:4 semi-structured pruning, we compare LLM Surgeon with magnitude pruning, which only
uses weight magnitudes, single-shot L-OBD, which only uses activations, and single-shot K-OBD,
which also uses Kronecker-factored curvature but assumes full independence and thus only prunes
without updating remaining weights as well as the recent state-of-the-art SparseGPT (Frantar & Alis-
tarh, 2023). We report test performance after 50 % (2:4) semi-structured compression on wikitext-2
data in table 3. We empirically find that considering more weight correlations results in improved
final performance after compression. Our proposed LLM Surgeon is competitive with prior work
outperforming all baselines in terms of test set perplexity (PPL).

Table 3: Semi-structured 2:4 compression for large language models on wikitext-2 data.
Target Test performance (PPL)

Method F ≈ size OPT (125m) OPT (1.3b) OPT (2.7b) OPT (6.7b)
Baseline 100% 27.65 14.62 12.47 10.86
Magnitude I ⊗ I 50% 342.04 379.57 1106.01 187.29
L-OBD diag(I ⊗A) 50% 87.26 44.92 41.40 27.36
K-OBD diag(G⊗A) 50% 68.74 27.22 20.23 15.55
SparseGPT I ⊗A 50% 45.51 29.44 14.92 13.01
LLM Surgeon (ours) G⊗A 50% 44.64 25.10 14.64 12.10

4.4 UNSTRUCTURED COMPRESSION

For unstructured pruning, we repeat the same experiments as structured pruning case described in
section 4.1. In table 4, we report final test performance in terms of perplexity (PPL) on wikitext-
2 after compressing LLMs of different sizes of OPT and Llama-v2 family. Overall, we find that
methods with more accurate approximations of the curvature landscape and that account for more
correlations perform better. The proposed LLM Surgeon outperforms all baselines, reaching the
highest test performance across target sizes.

8

Table 4: Unstructured compression of large language models on wikitext-2 data.
Target Test performance (PPL)

Method size OPT (125m) OPT (1.3b) OPT (2.7b) OPT (6.7b) Llama-v2 (7b)
Baseline 100% 27.65 14.62 12.47 10.86 5.12
Magnitude 90% 27.62 14.69 12.60 10.88 5.18
I ⊗ I 80% 28.53 15.68 13.18 11.26 5.37

70% 52.88 140.2 15.22 12.22 6.03
L-OBD 90% 29.70 16.24 14.44 13.43 6.09
diag(I ⊗A) 80% 32.18 21.92 23.35 39.85 116.2
single shot 70% 49.08 204.7 274.8 810.4 6549
K-OBD 90% 27.64 14.62 12.09 36.89 5.13
G⊗A 80% 27.62 14.37 130220 39928 5.19
single shot 70% 27.92 220.1 23097 19506 5.60

60% 29.24 13783 10331 33896 9.20
50% 34.43 7311 10495 91506 118.6

SparseGPT 90% 27.93 14.69 12.00 10.86 5.49
I ⊗A 80% 28.18 15.07 12.05 10.86 5.58

70% 28.93 22.77 12.17 10.89 5.71
60% 30.20 25.07 12.37 10.98 5.94
50% 33.17 26.77 12.88 11.92 6.51

LLM Surgeon (ours) 90% 27.69 14.62 12.01 10.86 5.13
G1 ⊗A1 80% 27.83 14.66 12.14 10.87 5.20
full cor. ∆ 70% 28.35 14.81 12.25 10.82 5.36
multi shot 60% 28.98 14.91 12.28 10.83 5.66

50% 30.30 15.47 12.68 10.97 6.08

4.5 LEARNED SPARSITY STRUCTURE

The proposed method can dynamically allocate sparsity across layers through global thresholds
described in section 3.3. In Fig. 4.5, we compare total allocated sparsity levels per layer depth and
per layer type after compressing a pretrained OPT-125m model. We find that the LLM Surgeon
prunes relatively more in the first layer and less in middle layers. Further, we observe that a larger
portions of weights are removed in fully-connected compared to attention blocks, but deviations are
less compared to other methods. Dynamic allocation allows for most pruning where it hurts least.

1 2 3 4 5 6 7 8 9 10 11 12
layer

0%

20%

40%

60%

80%

100%

re
m

ai
ni

ng
 w

ei
gh

ts

Sparsity per layer depth

Q K V O FC1 FC2
layer type

0%
20%
40%
60%
80%

100%
Sparsity per layer type

LLM Surgeon (full. cor)
LLM Surgeon (within row/col cor.)
Magnitude
L-OBD
K-OBD

Figure 4: Sparsity levels obtained with structured pruning on OPT-125m by layer depth and type.

5 CONCLUSION

In this work, we have introduced the LLM Surgeon algorithm for unstructured, semi-structured and
structured compression of neural networks. The work builds upon classic neural network compres-
sion approaches originating from the early 1990’s that aim to find optimal pruning by expanding
the curvature of the loss landscape. The method utilises modern Fisher approximations to scale
accurate pruning to the realm of large language models (LLMs) with billions of parameters, while
remaining practical in both memory and compute. Unlike most prior work on data-based LLM
compression, we not only use weight magnitude and activations from forward passes, but also use
gradient information from backward passes to relate weight removal costs to the true final objective.
We improve upon prior work through more accurate approximations to the loss landscape curvature
and considering more weight correlations to update remaining weights. Increasing the number of
correlations and using multiple shots allows us trading off additional compute for better accuracy.
Lastly, LLM Surgeon gives the first practically usable results for structured pruning of LLMs and
achieves state-of-the-art results in unstructured and semi-structured large language model pruning.

9

REFERENCES

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, vol-
ume 4. Springer, 2006.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation for deep
learning. In International Conference on Machine Learning, pp. 557–565. PMLR, 2017.

Runa Eschenhagen, Alexander Immer, Richard Turner, Frank Schneider, and Philipp Hennig.
Kronecker-factored approximate curvature for modern neural network architectures. Advances
in Neural Information Processing Systems, 36, 2024.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. 2023.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Advances in neural information processing systems, 5, 1992.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training
quantization with small calibration sets. In International Conference on Machine Learning, pp.
4466–4475. PMLR, 2021.

Alexander Immer, Tycho van der Ouderaa, Gunnar Rätsch, Vincent Fortuin, and Mark van der Wilk.
Invariance learning in deep neural networks with differentiable laplace approximations. Advances
in Neural Information Processing Systems, 35:12449–12463, 2022.

Abdoulaye Koroko, Ani Anciaux-Sedrakian, Ibtihel Ben Gharbia, Valérie Garès, Mounir Haddou,
and Quang Huy Tran. Efficient approximations of the fisher matrix in neural networks using
kronecker product singular value decomposition. arXiv preprint arXiv:2201.10285, 2022.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approx-
imation for natural gradient descent. Advances in neural information processing systems, 32,
2019.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning
for large language models. arXiv preprint arXiv:2203.07259, 2022.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l 0 regularization. arXiv preprint arXiv:1712.01312, 2017.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

10

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Tycho van der Ouderaa, Alexander Immer, and Mark van der Wilk. Learning layer-wise equivari-
ances automatically using gradients. Advances in Neural Information Processing Systems, 36,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning
in the kronecker-factored eigenbasis. In International conference on machine learning, pp. 6566–
6575. PMLR, 2019.

Wikipedia. Wikipedia. PediaPress, 2004.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hong-
sheng Li. Learning n: m fine-grained structured sparse neural networks from scratch. arXiv
preprint arXiv:2102.04010, 2021.

11

