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Abstract
The increasing amount of graph data places re-
quirements on the efficient training of graph neu-
ral networks (GNNs). The emerging graph dis-
tillation (GD) tackles this challenge by distilling
a small synthetic graph to replace the real large
graph, ensuring GNNs trained on real and syn-
thetic graphs exhibit comparable performance.
However, existing methods rely on GNN-related
information as supervision, including gradients,
representations, and trajectories, which have two
limitations. First, GNNs can affect the spectrum
(i.e., eigenvalues) of the real graph, causing spec-
trum bias in the synthetic graph. Second, the
variety of GNN architectures leads to the creation
of different synthetic graphs, requiring traversal
to obtain optimal performance. To tackle these is-
sues, we propose Graph Distillation with Eigenba-
sis Matching (GDEM), which aligns the eigenba-
sis and node features of real and synthetic graphs.
Meanwhile, it directly replicates the spectrum of
the real graph and thus prevents the influence of
GNNs. Moreover, we design a discrimination
constraint to balance the effectiveness and gener-
alization of GDEM. Theoretically, the synthetic
graphs distilled by GDEM are restricted spectral
approximations of the real graphs. Extensive ex-
periments demonstrate that GDEM outperforms
state-of-the-art GD methods with powerful cross-
architecture generalization ability and significant
distillation efficiency. Our code is available at
https://github.com/liuyang-tian/GDEM.

1. Introduction
Graph neural networks (GNNs) are proven effective in a
variety of graph-related tasks (Kipf & Welling, 2017; Velick-
ovic et al., 2018). However, the non-Euclidean nature of
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graph structure presents challenges to the efficiency and
scalability of GNNs (Hamilton et al., 2017). To acceler-
ate training, one data-centric approach is to summarize the
large-scale graph into a much smaller one. Traditional meth-
ods primarily involve sparsification (Spielman & Srivastava,
2011; Yu et al., 2022) and coarsening (Loukas, 2019; Ku-
mar et al., 2023). However, these methods are typically
designed to optimize some heuristic metrics, e.g., spectral
similarity (Loukas, 2019) and pair-wise distance (Ahmed
et al., 2020), which may be irrelevant to downstream tasks,
leading to sub-optimal performance.

Recently, graph distillation (GD), a.k.a., graph condensa-
tion, has attracted considerable attention in graph reduction
due to its remarkable compression ratio and lossless perfor-
mance (Gao et al., 2024). Generally, GD aims to synthesize
a small graph wherein GNNs trained on it exhibit compara-
ble performance to those trained on the real large graph. To
this end, existing methods are designed to optimize the syn-
thetic graphs by matching some GNN-related information,
such as gradients (Jin et al., 2022b;a), representations (Liu
et al., 2022a), and training trajectories (Zheng et al., 2023),
between the real and synthetic graphs. As a result, the syn-
thetic graph aligns its distribution with the real graph and
also incorporates information from downstream tasks.

Despite the considerable progress, existing GD methods re-
quire pre-selecting a specific GNN as the distillation model,
introducing two limitations: (1) GNNs used for distillation
affect the real spectrum, leading to spectrum bias in the syn-
thetic graph, i.e., a few eigenvalues dominate the data distri-
bution. Figure 1 illustrates the total variation (TV) (Gutman
& Zhou, 2006) of the real and synthetic graphs. Notably,
TV reflects the smoothness of the signal over a graph. A
small value of TV indicates a low-frequency distribution,
and vice versa. We can observe that the values of TV in
the synthetic graph distilled by a low-pass filter consistently
appear lower than those in the real graph, while the opposite
holds for the high-pass filter, thus verifying the existence
of spectrum bias (See Section 3 for a theoretical analy-
sis). (2) The optimal performance is obtained by traversing
various GNN architectures, resulting in non-negligible com-
putational costs. Table 1 presents the cross-architecture
results of GCOND (Jin et al., 2022b) across six well-known
GNNs, including GCN (Kipf & Welling, 2017), SGC (Wu
et al., 2019), PPNP (Klicpera et al., 2019), ChebyNet (Def-
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Figure 1. Data distribution of the real and synthetic graphs in
Pubmed dataset, where the average TV of the real graph is 0.87.
Left: Synthetic graph distilled by a low-pass filter has a lower
value of TV (0.75). Right: Synthetic graph distilled by a high-pass
filter has a higher value of TV (1.02). For clarity, only the first
100-dimensional features are visualized. Best viewed in color.

Table 1. Cross-architecture performance (%) of GCOND with var-
ious distillation (D) and evaluation (E) GNNs in Pubmed dataset.
Bold indicates the best in each column.
D⧹ E GCN SGC PPNP Cheb. Bern. GPR.

GCN 74.57 71.70 75.53 70.13 68.40 71.73
SGC 77.72 77.60 77.34 76.03 74.42 76.52
PPNP 72.70 70.40 77.46 73.38 70.56 74.02
Cheb. 73.60 70.62 75.10 77.30 77.62 78.10
Bern. 67.68 73.76 74.30 77.20 78.12 78.28
GPR. 76.04 72.20 77.94 75.92 77.12 77.96

ferrard et al., 2016), BernNet (He et al., 2021), and GPR-
GNN (Chien et al., 2021). It can be seen that the evaluation
performance of different GNNs varies greatly. As a result,
existing GD methods need to distill and traverse various
GNN architectures to obtain optimal performance, which
significantly improves the time overhead. See Appendix A.1
for the definition of TV and Appendix A.2 for more experi-
mental details.

Once the weaknesses of existing methods are identified, it
is natural to ask: How to distill graphs without being af-
fected by different GNNs? To answer this question, we pro-
pose Graph Distillation with Eigenbasis Matching (GDEM).
Specifically, GDEM decomposes the graph structure into
eigenvalues and eigenbasis. During distillation, GDEM
matches the eigenbasis and node features of real and syn-
thetic graphs, which equally preserves the information of
different frequencies, thus addressing the spectrum bias.
Additionally, a discrimination loss is jointly optimized to
improve the performance of GDEM and balance its effec-
tiveness and generalization. Upon completing the matching,
GDEM leverages the real graph spectrum and synthetic
eigenbasis to construct a complete synthetic graph, which
prevents the spectrum from being affected by GNNs and
ensures the uniqueness of the synthetic graph, thus avoid-
ing the traversal requirement and improving the distillation
efficiency.

The contributions of our paper are as follows. (1) We system-
atically analyze the limitations of existing distillation meth-
ods, including spectrum bias and traversal requirement. (2)
We propose GDEM, a novel graph distillation framework,
which mitigates the dependence on GNNs by matching the
eigenbasis instead of the entire graph structure. Addition-
ally, it is theoretically demonstrated that GDEM preserves
essential spectral similarity during distillation. (3) Extensive
experiments on seven graph datasets validate the superior-
ity of GDEM over state-of-the-art GD methods in terms of
effectiveness, generalization, and efficiency.

2. Preliminary
Before describing our framework in detail, we first introduce
some notations and concepts used in this paper. Specifically,
we focus on the node classification task, where the goal is
to predict the labels of the nodes in a graph. Assume that
there is a graph G = (V, E ,X), where V is the set of nodes
with |V| = N , E indicates the set of edges, and X ∈ RN×d

is the node feature matrix. The adjacency matrix of G is
defined as A ∈ {0, 1}N×N , where Aij = 1 if there is an
edge between nodes i and j, and Aij = 0 otherwise. The
corresponding normalized Laplacian matrix is defined as
L = IN −D− 1

2AD− 1
2 , where IN is an identity matrix and

D is the degree matrix with Dii =
∑

j Aij for i ∈ V and
Dij = 0 for i ̸= j. Without loss of generality, we assume
that G is undirected and all the nodes are connected.

Eigenbasis and Eigenvalue. The normalized graph Lapla-
cian can be decomposed as L = UΛU⊤ =

∑N
i=1 λiuiu

⊤
i ,

where Λ = diag({λi}Ni=1) are the eigenvalues and U =
[u1, · · · ,uN ] ∈ RN×N is the eigenbasis, consisting of a
set of eigenvectors. Each eigenvector ui ∈ RN has a cor-
responding eigenvalue λi, such that Lui = λiui. Without
loss of generality, we assume 0 ≤ λ1 ≤ · · · ≤ λN ≤ 2.

Graph Distillation. GD aims to distill a small synthetic
graph G′ = (V ′, E ′,X′), where |V ′| = N ′ ≪ N and
X′ ∈ RN ′×d, from the real large graph G. Meanwhile,
GNNs trained on G and G′ will have comparable perfor-
mance, thus accelerating the training of GNNs. Existing
frameworks can be divided into three categories: gradient
matching, distribution matching, and trajectory matching.
See Appendix C for more detailed descriptions.

3. Spectrum Bias in Gradient Matching
In this section, we give a detailed analysis of the objective
of gradient matching in graph data, which motivates the
design of our method. We start with a vanilla example,
which adopts a one-layer GCN as the distillation model and
simplifies the objective of GNNs into the MSE loss:

L =
1

2
∥AXW −Y∥2F , (1)
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where W is the model parameter. The gradients on the real
and synthetic graphs are calculated as follows:

∇W = (AX)
T
(AXW −Y) ,

∇′
W = (A′X′)

T
(A′X′W −Y′) .

(2)

Assume that the objective of gradient matching is the MSE
loss between two gradients, i.e., LGM = ∥∇W −∇′

W∥2F .
To further characterize its properties, we analyze the follow-
ing upper-bound of LGM :

LGM ≤∥W∥2F ∥X⊤A2X−X′⊤A′2X′∥2F
+ ∥X⊤AY −X′⊤A′Y′∥2F ,

(3)

where X⊤A2X and X⊤AY are two target distributions in
the real graph, which are used to supervise the update of the
synthetic graph. However, both of them will be dominated
by a few eigenvalues, resulting in spectrum bias.
Lemma 3.1. The target distribution of GCN is dominated
by the smallest eigenvalue after stacking multiple layers.
Proof. The target distribution can be reformulated as:

X⊤A2tX =

N∑
i=1

(1− λi)
2tX⊤uiu

⊤
i X, (4)

where t is the number of layers. When t goes to infinity,
only the smallest eigenvalue λ0 = 0 preserves its coefficient
(1− λ0)

2t = 1 and other coefficients tend to 0. Hence, the
target distribution X⊤A2tX is dominated by X⊤u0u

⊤
0 X.

The same analysis can be applied for X⊤AtY.

Lemma 3.2. Suppose the distillation GNN has an analytic
filtering function g(·). Then the target distributions will
be dominated by the eigenvalues whose filtered values are
greater than 1, i.e., g(λi) ≥ 1.
Proof. The objective function of distillation GNN is L =
1
2 ∥g(L)XW −Y∥2F . Then the target distributions become
X⊤g(L)2tX and X⊤g(L)tY as g is analytic. Therefore,
the filtered eigenvalues with values g(λi) ≥ 1 retain their
coefficients and dominate the target distributions.

Lemmas 3.1 and 3.2 state that leveraging the information
of GNNs in distillation will introduce a spectral bias in the
target distributions. As a result, the synthetic graph can only
match part of the data distribution of the real graph, leaving
its structural information incomplete.

4. The Proposed Method: GDEM
In this section, we introduce the proposed method GDEM.
Compared with previous methods, e.g., gradient match-
ing (Figure 2(a)) and distribution matching (Figure 2(b)),
GDEM, illustrated in 2(c), does not rely on specific GNNs,
whose distillation process can be divided into two steps: (1)
Matching the eigenbasis and node features between the real
and synthetic graphs. (2) Constructing the synthetic graph
by using the synthesized eigenbasis and real spectrum.
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Figure 2. Comparison between different graph distillation methods,
where the red characters represent the synthetic data, the solid
black lines, and red dotted lines indicate the forward and backward
passes, respectively.

4.1. Eigenbasis Matching

The eigenbasis of a graph represents its crucial structural
information. For example, eigenvectors corresponding to
smaller eigenvalues reflect the global community structure,
while eigenvectors corresponding to larger eigenvalues en-
code local details (Bo et al., 2021). Generally, the num-
ber of eigenvectors is the same as the number of nodes
in a graph, suggesting that we cannot preserve all the real
eigenbasis in the synthetic graph. Therefore, GDEM is
designed to match eigenvectors with the K1 smallest and
the K2 largest eigenvalues, where K1 and K2 are hyper-
parameters, and K1 + K2 = K ≤ N ′. This approach
has been proven effective in both graph coarsening (Jin
et al., 2020) and spectral GNNs (Bo et al., 2023). We
initialize a matrix U′

K = [u′
1, · · · ,u′

N ′ ] ∈ RN ′×K to
match the principal eigenbasis of the real graph, denoted as
UK = [u1, · · · ,uK1

,uN−K2
, · · · ,uN ] ∈ RN×K .

To eliminate the influence of GNNs, GDEM does not use
the spectrum information during distillation. Therefore, the
first term in Equation 3 becomes:

Le =

K∑
k=1

∥∥∥X⊤uku
⊤
k X−X′⊤u′

ku
′
k
⊤
X′
∥∥∥2
F
, (5)

where uku
⊤
k and u′

ku
′
k
⊤ are the subspaces induced by the

k-th eigenvector in the real and synthetic graphs.

Additionally, as the basis of graph Fourier transform, eigen-
vectors are naturally normalized and orthogonal to each
other. However, directly optimizing U′

K via gradient de-
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scent cannot preserve this property. Therefore, an additional
regularization is used to constrain the representation space:

Lo =
∥∥∥U′

K
⊤
U′

K − IK

∥∥∥2
F
. (6)

See Appendix A.3 for more implementation details.

4.2. Discrimination Constraint

In practice, we find that eigenbasis matching improves the
cross-architecture generalization of GDEM but contributes
less to the performance of node classification as it only
preserves the global distribution, i.e., X⊤uu⊤X, without
considering the information of downstream tasks. Therefore,
we need to approximate the second term in Equation 3.
Interestingly, we find that X⊤AY ∈ Rd×C indicates the
category-level representations, which assigns each category
a d-dimensional representation. However, the MSE loss
only emphasizes the intra-class similarity between the real
and synthetic graphs and ignores the inter-class dissimilarity.

Based on this discovery, we design a discrimination con-
straint to effectively preserve the category-level information,
which can also be treated as a class-aware regularization
technique (Zhao et al., 2023; Wang et al., 2022). Specifi-
cally, we first learn the category-level representations of the
real and synthetic graphs:

H = Y⊤AX, H′ = Y′⊤
K∑

k=1

(1− λk)u
′
ku

′
k
⊤
X′, (7)

where λk is the k-th eigenvalue of the real graph Laplacian.
We then constrain the cosine similarity between H and H′:

Ld =

C∑
i=1

(
1− H⊤

i ·H′
i

||Hi|| ||H′
i||

)
+

C∑
i,j=1
i ̸=j

H⊤
i ·H′

j

||Hi|| ||H′
j ||

. (8)

Note that the discrimination constraint introduces the spec-
trum information in the distillation process, which conflicts
with the eigenbasis matching. However, we find that adjust-
ing the weights of eigenbasis matching and the discrimina-
tion constraint can balance the performance and generaliza-
tion of GDEM. Ablation studies can be seen in Section 6.5.

4.3. Final Objective and Synthetic Graph Construction

In summary, the overall loss function of GDEM is formu-
lated as the weighted sum of three regularization terms:

Ltotal = αLe + βLd + γLo, (9)

where α, β, and γ are the hyperparameters. The pseudo-
code of GDEM is presented in Algorithm 1.

Upon minimizing the total loss function, the outputs of
GDEM are the eigenbasis and node features of the synthetic

Algorithm 1 GDEM for Graph Distillation
Input: Real graph G = (A,X,Y) with eigenvalues
{λi}Ki=1 and eigenbasis UK

Init: Synthetic graph G′ with eigenbasis U′
K , node fea-

tures X′, and labels Y′

for t = 1 to T do
Compute Le, Lo, and Ld via Eqs. 5, 6, and 8
Compute Ltotal = αLe + βLd + γLo

if t%(τ1 + τ2) < τ1 then
Update U′

K ← U′
K − η1∇U′

K
Ltotal

else
Update X′ ← X′ − η2∇X′Ltotal

end if
end for
Compute A′ =

∑K
k=1(1− λk)u

′
ku

′
k
⊤

Return: A′, X′

graph. However, the data remains incomplete due to the ab-
sence of the graph spectrum. Essentially, the graph spectrum
encodes the global shape of a graph (Martinkus et al., 2022).
Ideally, if the synthetic graph preserves the distribution of
the real graph, they should have similar spectrums. There-
fore, we directly replicate the real spectrum for the synthetic
graph to construct its Laplacian matrix or adjacency matrix:

L′ =

K∑
k=1

λku
′
ku

′
k
⊤
, A′ =

K∑
k=1

(1− λk)u
′
ku

′
k
⊤
. (10)

4.4. Discussion

Complexity. The complexity of decomposition is O(N3).
However, given that we only utilize the K smallest or largest
eigenvalues, the complexity reduces to O(KN2). Addi-
tionally, u⊤

k X in Equation 5 and H in Equation 8 cost
O(KNd) and O(Ed) in pre-processing. During distilla-
tion, the complexity of Le, Ld and Lo areO(KN ′d+Kd2),
O(KN ′d′ + Cd2), and O(KN ′2), respectively.

Relation to Message Passing. Message-passing (MP) is
the most popular paradigm for GNNs. Although GDEM
does not explicitly perform message-passing during distilla-
tion, eigenbasis matching already encodes the information
of neighbors as most MP operators rely on the combination
of the out product of eigenvectors, e.g., L =

∑N
i=1 λiuiu

⊤
i .

Therefore, GDEM not only inherits the expressive power
of MP but also addresses the weaknesses of the previous
distillation methods.

Limitations. Hereby we discuss the limitations of GDEM.
(1) The decomposition of the real graph introduces addi-
tional computational costs for distillation. (2) In scenarios
with extremely high compression rates, the synthetic graphs
can only match a limited number of real eigenbasis, result-
ing in performance degradation.
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5. Theoretical Analysis
In this section, we give a theoretical analysis of GDEM and
prove that it preserves the restricted spectral similarity.
Definition 5.1. (Spectral Similarity (Spielman & Srivastava,
2011)) Let A,B ∈ RN×N be two square matrices. Matrix
B is considered a spectral approximation of A if there exists
a positive constant ϵ, such that for any vector x ∈ RN , the
following inequality holds:

(1− ϵ)x⊤Ax < x⊤Bx < (1 + ϵ)x⊤Ax.

However, it is impossible to satisfy this condition for all
x ∈ RN (Loukas, 2019). Therefore, we only consider a
restricted version of spectral similarity in the feature space.
Definition 5.2. (Restricted Spectral Similarity, RSS 1) The
synthetic graph Laplacian L′ preserves RSS of the real graph
Laplacian L, if there exists an ϵ > 0 such that:

(1−ϵ)x⊤Lx < x′⊤L′x′ < (1+ϵ)x⊤Lx ∀x,x′ ∈ X,X′.

Proposition 5.3. The synthetic graph distilled by GDEM is
a restricted ϵ-spectral approximation of the real graph.
Proof. We first characterize the spectral similarity of node
features in the real and synthetic graphs, respectively. No-
tably, here we use the principal K eigenvalues and eigen-
vectors as a truncated representation of the real graph

x⊤Lx = x⊤
N∑

k=1

λkuku
⊤
k x ≈

K∑
k=1

λkx
⊤uku

⊤
k x, (11)

x′⊤L′x′ = x′⊤(

N ′∑
k=1

λku
′
ku

′
k
⊤
+ ŨΛŨ⊤)x′

≈
K∑

k=1

λkx
′⊤u′

ku
′
k
⊤
x′ +∆, (12)

where ∆ = x′⊤ŨΛŨ⊤x′ and Ũ represents the non-
orthogonal terms of the eigenbasis U′

K , which means that
U′

K + Ũ is strictly orthogonal.

Combining Equations 11 and 12, we have∣∣∣x⊤Lx− x′⊤L′x′
∣∣∣

≈

∣∣∣∣∣
K∑

k=1

λkx
⊤uku

⊤
k x−

K∑
k=1

λkx
′⊤u′

ku
′
k
⊤
x′ −∆

∣∣∣∣∣
≤

K∑
k=1

λk

∣∣∣x⊤uku
⊤
k x− x′⊤u′

ku
′
k
⊤
x′
∣∣∣︸ ︷︷ ︸

Le

+ |∆|︸︷︷︸
Lo

.

(13)

The above inequality shows that the objective of eigenba-
sis matching is the upper bound of the spectral discrep-
ancy between the real and synthetic graphs. Optimizing

1RSS defined in this paper is different from Loukas (2019),
which limits the signal x in the eigenvector space.

Le and Lo makes the bound tighter and preserves the spec-
tral similarity of the real graph. The synthetic graph is a
restricted ϵ-spectral approximation of the real graph with
ϵ =

∑K
k=1 λk

∣∣∣x⊤uku
⊤
k x− x′⊤u′

ku
′
k
⊤
x′
∣∣∣+ |∆|.

6. Experiments
In this section, we conduct experiments on a variety of
graph datasets to validate the effectiveness, generalization,
and efficiency of the proposed GDEM.

6.1. Experimental Setup

Datasets. To evaluate the effectiveness of our GDEM, we
select seven representative graph datasets, including five
homophilic graphs, i.e., Citeseer, Pubmed (Kipf & Welling,
2017), Ogbn-arxiv (Hu et al., 2020), Filckr (Zeng et al.,
2020), and Reddit (Hamilton et al., 2017), and two het-
erophilic graphs, i.e., Squirrel (Rozemberczki et al., 2021)
and Gamers (Lim et al., 2021).

Baselines. We benchmark our model against several com-
petitive baselines, which can be divided into two cate-
gories: (1) Traditional graph reduction methods, includ-
ing three coreset methods, i.e., Random, Herding, and K-
Center (Welling, 2009; Sener & Savarese, 2018), and one
coarsening method (Loukas, 2019). (2) Graph distillation
methods, including two gradient matching methods, i.e.,
GCOND (Jin et al., 2022b) and SGDD (Yang et al., 2023),
and one trajectory matching method, i.e., SFGC (Zheng
et al., 2023). See Appendix A.6 for more details.

Evaluation Protocol. To fairly evaluate the quality of syn-
thetic graphs, we perform the following two steps for all
methods: (1) Distillation step, where we apply the distil-
lation methods in the training set of the real graphs. (2)
Evaluation step, where we train GNNs on the synthetic
graph from scratch and then evaluate their performance on
the test set of real graphs. In the node classification exper-
iment (Section 6.2), we follow the settings of the original
papers (Jin et al., 2022b; Zheng et al., 2023; Yang et al.,
2023). In the generalization experiment (Section 6.3), we
use six representative GNNs, including three spatial GNNs,
i.e., GCN, SGC, and PPNP, and three spectral GNNs, i.e.,
ChebyNet, BernNet, and GPR-GNN. See Appendix A.7 for
more detailed description.

Settings and Hyperparameters. To eliminate randomness,
in the distillation step, we run the distillation methods 10
times and yield 10 synthetic graphs. Moreover, we set
K1 +K2 = N ′. To reduce the tuning complexity, we treat
rk = {0.8, 0.85, 0.9, 0.95, 1.0} as a hyperparameter and set
K1 = rkN

′, K2 = (1 − rk)N
′ for eigenbasis matching.

In the evaluation step, spatial GNNs have two aggregation
layers and the polynomial order of spectral GNNs is set to
10. For more details, see Appendix A.8.
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Table 2. Node classification performance of different distillation methods, mean accuracy (%) ± standard deviation. Bold indicates the
best performance and underline means the runner-up.

Dataset Ratio (r)
Traditional Methods Graph Distillation Methods Whole

DatasetRandom
(A′,X′)

Coarsening
(A′,X′)

Herding
(A′,X′)

K-Center
(A′,X′)

GCOND
(A′,X′)

SFGC
(X′)

SGDD
(A′,X′)

GDEM
(U′,X′)

Citeseer
0.90% 54.4±4.4 52.2±0.4 57.1±1.5 52.4±2.8 70.5±1.2 71.4±0.5 69.5±0.4 72.3±0.3

71.7±0.11.80% 64.2±1.7 59.0±0.5 66.7±1.0 64.3±1.0 70.6±0.9 72.4±0.4 70.2±0.8 72.6±0.6
3.60% 69.1±0.1 65.3±0.5 69.0±0.1 69.1±0.1 69.8±1.4 70.6±0.7 70.3±1.7 72.6±0.5

Pubmed
0.08% 69.4±0.2 18.1±0.1 76.7±0.7 64.5±2.7 76.5±0.2 76.4±1.2 77.1±0.5 77.7±0.7

79.3±0.20.15% 73.3±0.7 28.7±4.1 76.2±0.5 69.4±0.7 77.1±0.5 77.5±0.4 78.0±0.3 78.4±1.8
0.30% 77.8±0.3 42.8±4.1 78.0±0.5 78.2±0.4 77.9±0.4 77.9±0.3 77.5±0.5 78.2±0.8

Ogbn-arxiv
0.05% 47.1±3.9 35.4±0.3 52.4±1.8 47.2±3.0 59.2±1.1 65.5±0.7 60.8±1.3 63.7±0.8

71.4±0.10.25% 57.3±1.1 43.5±0.2 58.6±1.2 56.8±0.8 63.2±0.3 66.1±0.4 65.8±1.2 63.8±0.6
0.50% 60.0±0.9 50.4±0.1 60.4±0.8 60.3±0.4 64.0±0.4 66.8±0.4 66.3±0.7 64.1±0.3

Flickr
0.10% 41.8±2.0 41.9±0.2 42.5±1.8 42.0±0.7 46.5±0.4 46.6±0.2 46.9±0.1 49.9±0.8

47.2±0.10.50% 44.0±0.4 44.5±0.1 43.9±0.9 43.2±0.1 47.1±0.1 47.0±0.1 47.1±0.3 49.4±1.3
1.00% 44.6±0.2 44.6±0.1 44.4±0.6 44.1±0.4 47.1±0.1 47.1±0.1 47.1±0.1 49.9±0.6

Reddit
0.05% 46.1±4.4 40.9±0.5 53.1±2.5 46.6±2.3 88.0±1.8 89.7±0.2 91.8±1.9 92.9±0.3

93.9±0.00.10% 58.0±2.2 42.8±0.8 62.7±1.0 53.0±3.3 89.6±0.7 90.0±0.3 91.0±1.6 93.1±0.2
0.50% 66.3±1.9 47.4±0.9 71.0±1.6 58.5±2.1 90.1±0.5 89.9±0.4 91.6±1.8 93.2±0.4

Squirrel
0.60% 22.4±1.6 20.9±1.1 21.3±1.1 21.8±0.3 27.0±1.3 24.0±0.4 24.1±2.3 28.4±2.0

33.0±0.41.20% 25.0±0.2 21.1±0.4 21.4±2.1 22.8±0.9 25.7±2.3 26.9±2.5 24.7±2.5 28.2±2.4
2.50% 26.9±1.4 21.5±0.3 22.4±1.6 22.9±1.7 25.3±0.8 26.1±0.8 25.8±1.8 27.8±1.6

Gamers
0.05% 56.6±1.8 56.1±0.1 56.7±1.7 52.5±4.2 58.5±1.5 58.2±1.1 57.5±1.8 59.3±1.9

62.6±0.00.25% 60.5±1.0 56.9±3.0 57.5±2.0 57.2±2.3 58.9±1.8 58.8±0.5 57.7±1.0 60.8±0.4
0.50% 60.0±0.5 57.1±0.4 58.6±1.3 57.8±1.7 58.5±1.9 59.9±0.3 58.4±1.7 61.2±0.3

6.2. Node Classification

The node classification performance is reported in Table 2,
in which we have the following observations:

First, the GD methods consistently outperform the tradi-
tional methods, including coreset and coarsening. The rea-
sons are two-fold: On the one hand, GD methods can lever-
age the powerful representation learning ability of GNNs
to synthesize the graph data. On the other hand, the dis-
tillation process involves the downstream task information.
In contrast, the traditional methods can only leverage the
structural information.

Second, GDEM achieves state-of-the-art performance in
6 out of 7 graph datasets, demonstrating its effectiveness
in preserving the distribution of real graphs. Existing GD
methods heavily rely on the information of GNNs to distill
synthetic graphs. However, the results of GDEM reveal that
matching eigenbasis can also yield good synthetic graphs.
Furthermore, some results of GDEM are better than those
on the entire dataset, which may be due to the use of high-
frequency information.

Third, GDEM performs slightly worse on Ogbn-arxiv but
achieves promising results on other large-scale graphs. We
conjecture this is because, under the compression ratios of

0.05% - 0.50%, there are only hundreds of eigenvectors
for eigenbasis matching, which is not enough to cover all
the useful subspaces in Ogbn-arxiv. See Appendix A.9 for
further experimental verification.

6.3. Cross-architecture Generalization

We evaluate the generalization ability of the synthetic graphs
distilled by four different GD methods, including GCOND,
SFGC, SGDD, and GDEM. In particular, each synthetic
graph is evaluated by six GNNs, and the average accuracy
and variance of the evaluation results are shown in Table 3.

First, GDEM stands out by exhibiting the highest average
accuracy across datasets except for Ogbn-arxiv, indicating
that the synthetic graphs distilled by GDEM can consistently
benefit a variety of GNNs. Moreover, GDEM significantly
reduces the performance gap between different GNNs. For
example, the variance of GCOND is 2-6 times higher than
that of GDEM. On the other hand, SGDD broadcasts the
structural information to synthetic graphs and exhibits bet-
ter generalization ability than GCOND, implying that pre-
serving graph structures can improve the generalization of
synthetic graphs. SFGC proposes structure-free distillation.
However, this strategy may lead to restricted application
scenarios due to the lack of explicit graph structures.
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Table 3. Generalization of different distillation methods across GNNs. ↑ means higher the better and ↓ means lower the better. Avg., Std.,
and Impro. indicate average accuracy, standard deviation, and absolute performance improvement.

Dataset
(Ratio) Methods

Spatial GNNs Spectral GNNs
Avg. (↑) Std. (↓) Impro. (↑)GCN SGC PPNP ChebyNet BernNet GPR-GNN

Citeseer
(r = 1.80%)

GCOND 70.5 70.3 69.6 68.3 63.1 67.2 68.17 2.54 (+) 4.21
SFGC 71.6 71.8 70.5 71.8 71.1 71.7 71.42 0.47 (+) 0.96
SGDD 70.2 71.3 69.2 70.5 64.7 69.7 69.27 2.14 (+) 3.11
GDEM 72.6 72.1 72.6 71.4 72.6 73.0 72.38 0.51 -

Pubmed
(r = 0.15%)

GCOND 77.7 77.6 77.3 76.0 74.4 76.5 76.58 1.15 (+) 1.34
SFGC 77.5 77.4 77.6 77.3 76.4 78.6 77.47 0.64 (+) 0.45
SGDD 78.0 76.6 78.7 76.9 75.5 77.0 77.12 1.02 (+) 0.80
GDEM 78.4 76.1 78.1 78.1 78.2 78.6 77.92 0.83 -

Ogbn-arxiv
(r = 0.25%)

GCOND 63.2 63.7 63.4 54.9 55.0 60.5 60.12 3.80 (+) 2.90
SFGC 65.1 64.8 63.9 60.7 63.8 64.9 63.87 1.50 (-) 0.85
SGDD 65.8 64.0 63.6 56.4 62.0 64.0 62.63 3.00 (+) 0.39
GDEM 63.8 62.9 63.5 62.4 61.9 63.6 63.02 0.69 -

Flickr
(r = 0.50%)

GCOND 47.1 46.1 45.9 42.8 44.3 46.4 45.43 1.45 (+) 3.90
SFGC 47.1 42.5 40.7 45.4 45.7 46.4 44.63 2.27 (+) 4.70
SGDD 47.1 46.5 44.3 45.3 46.0 46.8 46.00 0.96 (+) 3.33
GDEM 49.4 50.3 49.4 48.3 49.6 49.0 49.33 0.60 -

Reddit
(r = 0.10%)

GCOND 89.4 89.6 87.8 75.5 67.1 78.8 81.37 8.35 (+) 10.10
SFGC 89.7 89.5 88.3 82.8 87.8 85.4 87.25 2.44 (+) 4.22
SGDD 91.0 89.4 89.2 78.4 72.4 81.4 83.63 6.80 (+) 7.84
GDEM 93.1 90.0 92.6 90.0 92.7 90.4 91.47 1.35 -

Squirrel
(r = 1.20%)

GCOND 25.7 27.2 23.2 23.3 26.0 26.6 25.33 1.55 (+) 1.89
SFGC 26.9 24.2 27.2 25.3 25.5 26.6 25.95 1.04 (+) 1.27
SGDD 24.7 27.2 22.4 24.5 24.7 27.3 25.13 1.69 (+) 2.09
GDEM 28.2 28.0 25.4 26.1 28.2 27.4 27.22 1.09 -

Gamers
(r = 0.25%)

GCOND 58.9 54.2 60.1 60.3 59.1 59.3 58.65 2.05 (+) 1.57
SFGC 58.8 55.0 56.3 57.2 57.5 59.8 57.43 1.57 (+) 2.79
SGDD 57.7 54.6 56.0 57.3 58.8 58.6 57.17 1.47 (+) 3.05
GDEM 60.8 59.5 61.0 59.9 59.8 60.3 60.22 0.54 -

Table 4. Optimal performance of different methods.

Evaluation GCN SGC PPNP Cheb. Bern. GPR.

GCOND 77.7 77.6 77.9 77.3 78.2 78.3
SGDD 78.0 76.6 78.7 77.5 78.0 78.3
GDEM 78.4 76.1 78.1 78.1 78.2 78.6

6.4. Optimal Performance and Time Overhead

We compare the optimal performance and time overhead
of different GD methods by traversing various GNN ar-
chitectures in the Pubmed dataset. Since GDEM does not
use GNNs during distillation, we remove the inner- and
outer-loop of GCOND and SGDD when calculating the
time overhead for a fair comparison. Therefore, the running
time is faster than the results in Yang et al. (2023).

In Table 4, we can find that both GCOND and SGDD im-
prove their performance by traversing different GNNs com-
pared to the results in Table 3. However, this strategy also
introduces additional computation costs in the distillation

Table 5. Time overhead (s) of different methods.
Distillation GCN SGC PPNP Cheb. Bern. GPR. Overall

GCOND 1.99 1.36 1.52 3.89 56.94 3.05 68.75
SGDD 2.95 2.18 2.33 4.95 58.07 4.28 74.76

GDEM - - - - - - 1.79

stage. As shown in Table 5, the complexity of GCOND
and SGDD is related to the complexity of distillation GNNs.
Notably, when choosing GNNs with high complexity, e.g.,
BernNet, their time overhead will increase significantly.
On the other hand, GDEM still exhibits remarkable perfor-
mance compared to the traversal results of GCOND and
SGDD. More importantly, the complexity of GDEM will
not be affected by GNNs, which eliminates the traversal re-
quirement of previous methods. As a result, the overall time
overhead of GDEM is significantly smaller than GCOND
and SGDD, which validates the efficiency of GDEM. See
Appendix A.2 for more generalization results of GCOND
and SGDD.
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Table 6. Ablation studies on Pubmed / Gamers.
Pubmed GCN (↑) GPR. (↑) Avg. (↑) Var. (↓)
GDEM 78.4 / 60.8 78.6 / 60.3 77.92 / 60.22 0.69 / 0.29
w/o Le 76.1 / 56.5 76.9 / 59.8 76.13 / 58.93 1.18 / 2.39
w/o Lo 77.9 / 59.0 76.4 / 58.9 77.07 / 58.85 2.15 / 2.34
w/o Ld 76.7 / 59.9 77.2 / 60.3 76.77 / 59.78 0.21 / 0.13
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Figure 3. Influence of Le and Ld in GDEM.

6.5. Ablation Study

We perform ablation studies in the Pubmed and Gamers
datasets to verify the effectiveness of different regularization
terms, i.e., Le, Lo, and Ld.

Model Analysis. Table 6 shows the roles of different reg-
ularization terms. First, all of them contribute to both the
effectiveness and generalization of GDEM. Specifically, Le

andLo primarily govern the generalization ability of GDEM,
as the variance of GNNs increases significantly when re-
moving either of them. Second, we observe that Ld hurts
the generalization of GDEM. The reason is that the discrimi-
nation constraint uses the information of the graph spectrum
and introduces the low-frequency preference. But it also
improves the performance of GDEM. Therefore, GDEM
needs to carefully balance these two loss functions.

Parameters Analysis. We conduct an additional parame-
ter analysis to further demonstrate the influence of Le and
Ld, as illustrated in Figure 3. Specifically, we observe that
with the increase in α, the variance of GDEM gradually
decreases. However, a higher value of α also leads to perfor-
mance degeneration. On the other hand, increasing the value
of β will continue to increase the variance of GDEM but the
accuracy decreases when β surpasses a specific threshold.

6.6. Visualization

We visualize the data distribution of synthetic graphs for a
better understanding of our model. Specifically, Figure 4
illustrates the synthetic graphs distilled by GCOND, SGDD,
and GDEM, from which we can observe that the value of TV
in GDEM is the closest to the real graph. SGDD is closer
to the distribution of the real graph than GCOND, implying
that SGDD can better preserve the structural information.
However, the performance is still not as good as GDEM,
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Figure 4. TVs of synthetic graphs distilled by different methods.
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Figure 5. TVs of synthetic graphs at different epochs (GDEM).

which validates the effectiveness of eigenbasis matching.

Besides, we also visualize the synthetic graphs distilled by
GDEM at different epochs in Figure 5. We can find that with
the optimization of GDEM, the value of TV in the synthetic
graphs is approaching the real graph (0.42→ 0.73→ 0.88),
which validates Proposition 5.3 that GDEM can preserve
the spectral similarity of the real graph.

7. Related Work
Graph Neural Networks aim to design effective convo-
lution operators to exploit the node features and topology
structure information adequately. GNNs have achieved great
success in graph learning and play a vital role in diverse real-
world applications (Quan et al., 2023; Yang et al., 2017). Ex-
isting methods are roughly divided into spatial and spectral
approaches. Spatial GNNs focus on neighbor aggregation
strategies in the vertical domain (Kipf & Welling, 2017;
Velickovic et al., 2018; Hamilton et al., 2017). Spectral
GNNs aim to design filters in the spectral domain to extract
certain frequencies for the downstream tasks (Chien et al.,
2021; Defferrard et al., 2016; Bo et al., 2023; He et al., 2022;
2021).

Dataset Distillation (DD) has shown great potential in
reducing data redundancy and accelerating model train-
ing (Sachdeva & McAuley, 2023; Lei & Tao, 2023; Geng
et al., 2023; Yu et al., 2023). DD aims to generate small yet
informative synthetic training data by matching the model
gradient (Zhao et al., 2021; Liu et al., 2022b), data distribu-
tion (Zhao & Bilen, 2023; Wang et al., 2022), and training
trajectory (Cazenavette et al., 2022; Guo et al., 2023) be-
tween the real and synthetic data. As a result, models trained
on the real and synthetic data will have comparable perfor-
mance.
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DD has been widely used for graph data, including node-
level tasks, e.g., GCond (Jin et al., 2022b), SFGC (Zheng
et al., 2023), GCDM (Liu et al., 2022a) and MCond (Gao
et al., 2023), and graph-level tasks, e.g., DosCond (Jin et al.,
2022a) and KIDD (Xu et al., 2023). GCond is the first
GD method based on gradient matching, which needs to
optimize GNNs during the distillation procedure, result-
ing in inefficient computation. DosCond further provides
one-step gradient matching to approximate gradient match-
ing, thereby avoiding the bi-level optimization. GCDM
proposes distribution matching for GD, which views the
receptive fields of a graph as its distribution. Additionally,
SFGC proposes structure-free GD to compress the structural
information into the node features. KIDD utilizes the kernel
ridge regression to further reduce the computational cost.
However, all these methods do not consider the influence of
GNNs, resulting in spectrum bias and traversal requirement.

8. Conclusion
In this paper, we propose eigenbasis matching for graph dis-
tillation, which only aligns the eigenbasis and node features
of the real and synthetic graphs, thereby alleviating the spec-
trum bias and traversal requirement of the previous methods.
Theoretically, GDEM preserves the restricted spectral sim-
ilarity of the real graphs. Extensive experiments on both
homophilic and heterophilic graphs validate the effective-
ness, generalization, and efficiency of the proposed method.
A promising future work is to explore eigenbasis matching
without the need for explicit eigenvalue decomposition.
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P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Wang, K., Zhao, B., Peng, X., Zhu, Z., Yang, S., Wang,
S., Huang, G., Bilen, H., Wang, X., and You, Y. CAFE:
learning to condense dataset by aligning features. In
CVPR, pp. 12186–12195. IEEE, 2022.

Welling, M. Herding dynamical weights to learn. In ICML,
volume 382, pp. 1121–1128. ACM, 2009.

Wu, F., Jr., A. H. S., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Q. Simplifying graph convolutional networks.
In ICML, volume 97, pp. 6861–6871. PMLR, 2019.

Xu, Z., Chen, Y., Pan, M., Chen, H., Das, M., Yang, H.,
and Tong, H. Kernel ridge regression-based graph dataset
distillation. In KDD, pp. 2850–2861, 2023.

Yang, B., Wang, K., Sun, Q., Ji, C., Fu, X., Tang, H., You, Y.,
and Li, J. Does graph distillation see like vision dataset
counterpart? In NeurIPS, 2023.

Yang, C., Sun, M., Zhao, W. X., Liu, Z., and Chang, E. Y.
A neural network approach to jointly modeling social
networks and mobile trajectories. ACM Transactions on
Information Systems (TOIS), 35(4):1–28, 2017.

Yu, R., Liu, S., and Wang, X. Dataset distillation: A com-
prehensive review. ArXiv, abs/2301.07014, 2023.

Yu, S., Alesiani, F., Yin, W., Jenssen, R., and Prı́ncipe, J. C.
Principle of relevant information for graph sparsification.
In UAI, volume 180 of Proceedings of Machine Learning
Research, pp. 2331–2341. PMLR, 2022.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. K. Graphsaint: Graph sampling based induc-
tive learning method. In ICLR. OpenReview.net, 2020.

Zhao, B. and Bilen, H. Dataset condensation with distribu-
tion matching. In WACV, pp. 6503–6512. IEEE, 2023.

Zhao, B., Mopuri, K. R., and Bilen, H. Dataset condensation
with gradient matching. In ICLR. OpenReview.net, 2021.

Zhao, G., Li, G., Qin, Y., and Yu, Y. Improved distribution
matching for dataset condensation. In CVPR, pp. 7856–
7865. IEEE, 2023.

Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu,
X., and Pan, S. Structure-free graph condensation: From
large-scale graphs to condensed graph-free data. ArXiv,
abs/2306.02664, 2023.

10



Graph Distillation with Eigenbasis Matching

A. Experimental Details
A.1. Visualization of Synthetic Graphs

Distillation Details with Low-pass and High-pass Filters. We use GCOND to distill two synthetic graphs on Pubmed by
replacing SGC with a low-pass filter FL = AXW and a high-pass filter FH = LXW, respectively.

Visualization Details Once we generate the synthetic graphs, we calculate the value of total variation (TV) for each
dimension. TV is a widely used metric to represent the distribution, i.e., smoothness, of a signal on the graph:

x⊤Lx =
∑

(i,j)∈E
(xi − xj)

2 =

n∑
i=1

λix
⊤uiu

⊤
i x. (14)

Note that the edge number of synthetic graphs and the original graph is different, so we normalize node features and
laplacian matrix first:

x̂i =
xi

∥xi∥
,

L̂ = IN −D− 1
2AD− 1

2 ,

(15)

where xi is the i-th dimension node feature. Then we substitute x̂i and L̂ into Equation 14 calculating the TV of the graph.
Additionally, we report the average TV of all dimensions as reported in the legend of the visualization figures.

A.2. Cross-architecture Performance of GCOND and SGDD

To verify the cross-architecture performance of the GCOND and SGDD, we generate six synthetic graphs on Pubmed under
a 0.15% compression ratio, using six GNNs for the distillation procedure. Then we train these GNNs on the six synthetic
graphs and evaluate their performance. Experimental settings are as follows.

Distillation Step. For spatial GNNs, i.e., GCN, SGC, and PPNP, we set the aggregation layers to 2. For GCN, we use
256 hidden units for each convolutional layer. For spectral GNNs, i.e., ChebyNet, BernNet, and GPR-GNN, we set the
polynomial order to 10. The linear feature transformation layers of all GNNs are set to 1. For hyper-parameters tuning, we
select training epochs from {400, 500, 600}, learning rates of node feature and topology structure from {0.0001, 0.0005,
0.001, 0.005, 0.05}, outer loop from {25, 20, 15, 10}, and inner loop from {15, 10, 5, 1}.

Evaluation Step. For spatial GNNs, we use two aggregation layers. For spectral GNNs, we set the polynomial order to 10.
The hidden units of convolutional layers and linear feature transformation layers are both set to 256. We train each GNN for
2000 epochs and select the model parameters with the best performance on validation sets for evaluation.

Table 7. GCOND with various distillation (D) and evaluation
(E) GNNs in Pubmed dataset.
D⧹ E GCN SGC PPNP Cheb. Bern. GPR.

GCN 74.57 71.70 75.53 70.13 68.40 71.73
SGC 77.72 77.60 77.34 76.03 74.42 76.52
PPNP 72.70 70.40 77.46 73.38 70.56 74.02
Cheb. 73.60 70.62 75.10 77.30 77.62 78.10
Bern. 67.68 73.76 74.30 77.20 78.12 78.28
GPR. 76.04 72.20 77.94 75.92 77.12 77.96

Optimal 77.72 77.60 77.94 77.30 78.12 78.28

Table 8. SGDD with various distillation (D) and evaluation (E)
GNNs in Pubmed dataset.
D⧹ E GCN SGC PPNP Cheb. Bern. GPR.

GCN 76.92 70.10 74.64 74.98 76.66 75.18
SGC 78.04 76.60 78.72 76.90 75.45 77.02
PPNP 76.44 74.34 76.28 73.70 74.94 75.98
Cheb. 77.42 73.66 75.40 77.50 77.96 77.12
Bern. 70.64 71.22 74.88 76.38 76.16 77.84
GPR. 63.76 61.24 76.32 71.40 71.70 78.30

Optimal 78.04 76.60 78.72 77.50 77.96 78.30

A.3. Implementation Details of GDEM

Predefined Labels Y′ of Synthetic Graphs. The labels Y′ are predefined one-hot vectors, indicating the category to
which the nodes belong. Specifically, given Nl labeled nodes in the real graph, we set the number of nodes of category c
in the synthetic graph as N ′

c = Nc × N ′

Nl
, where Nc is the number of nodes with label c. The setting will make the label

distribution of the synthetic graph consistent with the real graph.
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Initialization of Synthetic Graphs. Different from previous GD methods that directly learn the adjacency matrix of the
synthetic graph, GDEM aims to generate its eigenbasis. To ensure that the initialized eigenbasis is valid, we first use the
stochastic block model (SBM) to randomly generate the adjacency matrix of the synthetic graph A′ ∈ {0, 1}N ′×N ′

, and
then decompose it to produce the top-K eigenvectors as the initialized eigenbasis U′

K ∈ RN ′×K . Moreover, to initialize the
synthetic node features X′ ∈ RN ′×d, we first train an MLP ρ(·) in the real node features. Then we freeze the well-trained
MLP and feed the synthetic node features into it to minimize the classification objective. This process can be formulated as:

min
X′

n′∑
i=1

−y′i log ρ(x′
i, θ

∗), s.t. θ∗ = argmin
θ

n∑
i=1

−yi log ρ(xi, θ) (16)

where θ indicates the parameters of MLP.

A.4. Complexity of Different Methods

We analyze the complexity of different methods and give the final complexity in Table 9. We use E to present the number of
edges. For simplicity, we use d to denote both feature dimension and hidden units of GNNs. t is the number of GNN layers
and r is the number of sampled neighbors per node. θt denotes the model parameters of the GNNs. For SFGC, M is the
number of training trajectories and S is the length of each trajectory.

Complexity of GDEM.

(1) Pre-processing: The complexity of decomposition isO(KN2). It’s noteworthy that the decomposition is performed once
per graph and can be repeatedly used for subsequent training, inference, and hyperparameter tuning. Therefore, the time
overhead of decomposition should be amortized by the entire experiment rather than simply summarized them. Additionally,
we pre-process u⊤

k X in Equation 5 and H in Equation 8, which cost O(KNd) and O(Ed).
(1) Complexity of Le: O(KN ′d+Kd2).
(2) Complexity of Ld: The complexity of calculating H ′ is O(KN ′d′). The calculation of cosine similarity costs O(Cd2).
(3) Complexity of Lo: O(KN ′2).
The final complexity can be simplified as O(KN2 +KNd+ Ed) +O(KN ′2 +KN ′d+ (K + C)d2).

Complexity of GCOND.

(1) Pre-processing: GCOND doesn’t need special pre-processing.
(2) Inference for A′: O(N ′2d2).
(3) Forward process of SGC on the original graph: O(rtNd2). That on the synthetic graph: O(tN ′2d+ tN ′d).
(4) Calculation of second-order derivatives in backward propagation: O(|θt|+ |A′|+ |X ′|).
The final complexity can be simplified as O(rtNd2) +O(N ′2d2).

Complexity of SGDD.

(1) Pre-processing: SGDD doesn’t need special pre-processing.
(2) Inference for A′: O(N ′2d2).
(3) Forward process of SGC on the original graph: O(rtNd2). That on the synthetic graph: O(tN ′2d+ tN ′d).
(4) Calculation of second-order derivatives in backward propagation: O(|θt|+ |A′|+ |X ′|).
(5) Structure optimization term: O(N ′2k +NN ′2).
The final complexity can be simplified as O(rtNd2) +O(N ′2N).

Complexity of SFGC.

(1) Pre-processing: O(MS(tEd+ tNd2)). Note that MS is usually very large, so it cannot be omitted.
(2) Forward process of GCN on the synthetic graph: O(tN ′d2 + tN ′d). Note that SFGC pre-trains the trajectories on GCN,
so there is no need to calculate the forward process on the original graph.
(3) Backward propagation: SFGC uses a MTT(Cazenavette et al., 2022) method, which results in bi-level optimization(Yu
et al., 2023) for the backward.
The final complexity can be simplified as O(MS(tEd+ tNd2)) +O(tN ′d2).
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Table 9. Complexity of different distillation methods.

Method Pre-processing Training

GCOND - O(rLNd2) +O(N ′2d2)
SGDD - O(rLNd2) +O(N ′2N)
SFGC O(MS(LEd+ LNd2)) O(LN ′d2)
GDEM O(KN2 +KNd+ Ed) O(KN ′2 +KN ′d+ (K + C)d2)

A.5. Statistics of Datasets

In the experiments, we use seven graph datasets to validate the effectiveness of GDEM. For homophilic graphs, we
use the public data splits. For heterophilic graphs, we use the splitting with training/validation/test sets accounting for
2.5%/2.5/%95% on Squirrel, and 50%/25%25% on Gamers. The detailed statistical information of each dataset is shown in
Table 10.

Table 10. Statistics of datasets.
Dataset Nodes Edges Classes Features Training/Validation/Test Edge hom. LCC

Citeseer 3,327 4,732 6 3,703 120/500/1000 0.74 2,120
Pubmed 19,717 44,338 3 500 60/500/1,000 0.80 19,717
Ogbn-arxiv 169,343 1,166,243 40 128 90,941/29,799/48,603 0.66 169,343
Flickr 89,250 899,756 7 500 44,625/22,312/22,313 0.33 89,250
Reddit 232,965 57,307,946 41 602 153,932/23,699/55,334 0.78 231,371
Squirrel 5,201 396,846 5 2,089 130/130/4,941 0.22 5,201
Gamers 168,114 13,595,114 2 7 84,056/42,028/42,030 0.55 168,114

A.6. Baselines

For a fair comparison of performance, we adopt the results of baselines reported in their papers, which are evaluated through
meticulous experimental design and careful hyperparameter tuning. The experimental details are as follows: (1) GCOND
employs a 2-layer SGC for distillation and a 2-layer GCN with 256 hidden units for evaluation.
(2) SGDD employs a 2-layer SGC for distillation and a 2-layer GCN with 256 hidden units for evaluation.
(3) SFGC employs 2-layer GCNs with 256 hidden units both for distillation and evaluation.

A.7. Evaluation Details

Performance Evaluation. For comparison with baselines, we report the performance of GDEM evaluated with a 2-layer
GCN with 256 hidden units. Specifically, we generate 10 synthetic graphs with different seeds on the original graph. Then
we train the GCN using these 10 synthetic graphs and report the average results of the best performance evaluated on test
sets of the original graph.

Generalization Evaluation. For generalization evaluation, we train 6 GNNs using the synthetic graphs generated by
different distillation methods. For SGC, GCN, and APPNP, we use 2-layer aggregations. For ChebyNet, we set the
convolution layers to 2 with propagation steps from {2, 3, 5}. For BernNet and GPRGNN, we set the polynomial order to
10. The hidden units of both convolution layers and linear feature transformation are 256.

A.8. Hyperparamters

Hyperparameter details are listed in Table 11. τ1 and τ2 are steps for alternating updates of node features and eigenvectors.
α, β, and γ denote the weights in Equation 9. lr feat and lr eigenvecs are the learning rates of node features and eigenvectors,
respectively.
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Table 11. Hyper-parameters of GDEM.

Dataset Ratio epochs K1 K2 τ1 τ2 α β γ lr feat lr eigenvecs

Citeseer
0.90% 500 30 0 5 1 1.0 1e-05 1.0 0.0001 0.01
1.80% 1500 48 12 10 15 0.05 1e-05 0.5 0.0005 0.0005
3.60% 500 114 6 1 10 0.01 1e-06 0.1 0.001 0.0001

Pubmed
0.08% 1000 15 0 15 5 0.0001 1e-07 0.01 0.0001 0.0005
0.15% 1500 30 0 5 5 1.0 1e-05 0.01 0.0005 0.01
0.30% 1500 57 3 20 1 0.01 1e-07 0.5 0.001 0.0001

Ogbn-arxiv
0.05% 500 86 4 1 5 0.0001 1e-02 0.01 0.0005 0.0005
0.25% 2000 409 45 10 5 0.01 1e-04 0.01 0.0001 0.0001
0.50% 1000 773 136 1 5 0.001 1e-04 1.0 0.0001 0.005

Flickr
0.10% 2000 44 0 5 10 0.01 1e-07 0.05 0.0001 0.05
0.50% 2000 223 0 5 10 0.01 1e-07 0.05 0.0001 0.05
1.00% 2000 446 0 5 10 0.01 1e-07 0.05 0.0001 0.05

Reddit
0.05% 1000 76 0 20 5 1.0 1e-06 0.01 0.0001 0.0001
0.10% 500 153 0 15 10 0.5 1e-06 05 0.0005 0.005
0.50% 1000 693 76 5 5 1.0 1e-06 0.5 0.0005 0.0001

Squirrel
0.60% 1000 31 1 5 1 1.0 1e-07 0.01 0.0001 0.005
1.20% 500 62 3 10 5 1.0 1e-07 0.01 0.0001 0.0001
2.05% 2000 104 26 5 1 0.0001 1e-05 0.05 0.0001 0.01

Gamers
0.05% 2000 80 4 15 1 0.0001 1e-07 0.05 0.0001 0.01
0.25% 2000 420 0 20 20 0.0001 1e-07 0.05 0.0001 0.005
0.50% 500 756 84 15 1 0.0001 1e-07 0.05 0.0001 0.0001

Table 12. The node classification performance of Ogbn-arxiv and Reddit on various truncated graph structures.

Dataset K = 500 K = 1000 K = 3000 K = 5000 Full Graph

Reddit 92.41±0.49 93.45±0.48 93.94±0.41 94.07±0.37 94.51±0.24

Ogbn-arxiv 61.87±0.89 64.65±1.20 67.32±1.11 69.22±0.93 70.02±1.19

A.9. Analysis of the Worse Performance on Obgn-arxiv

To investigate the reason why GDEM performs slightly worse on Obgn-arxiv but achieves promising results on other
large-scale graphs, we evaluate the number of useful eigenbasis in both Ogbn-arxiv and Reddit. Specifically, we first truncate
the graph structures of Ogbn-arxiv and Reddit by:

A′ =

K1∑
k=1

λkuku
⊤
k +

N∑
k=N−K2+1

λkuku
⊤
k (17)

where K1 = rkK and K2 = (1 − rk)K. We then gradually increase the value of K and train a 2-layer SGC on each
truncated graph structure. The results are shown in Table 12.

We can observe that in Reddit, only 1,000 eigenvectors are enough to match the performance of the full graph (93.45 /
94.51 ≈ 98.9%), while in Ogbn-arxiv, a large number of eigenvectors (5,000) is required to approximate the full graph
(69.22 / 70.02 ≈ 98.9%). Thus, we speculate that the structure information of Ogbn-arxiv is more widely distributed in the
eigenbasis, making it challenging for GDEM to compress the entire distribution in synthetic data with an extremely small
compression rate.
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B. Theoretical Analysis of RSS for Gradient Matching
We further theoretically analyze whether the gradient matching method can preserve the restricted spectral similarity. Given
x′ and L′ learned by the gradient matching method, we have:

∣∣∣x⊤Lx− x′⊤L′x′
∣∣∣

=

∣∣∣∣∣
K∑

k=0

λkx
⊤uku

⊤
k x−

K∑
k=0

λ′
kx

′⊤u′
ku

′
k
⊤
x′

∣∣∣∣∣
=

∣∣∣∣∣
(

K∑
k=0

λkx
⊤uku

⊤
k x−

K∑
k=0

λkx
′⊤u′

ku
′
k
⊤
x′

)
+

(
K∑

k=0

λkx
′⊤u′

ku
′
k
⊤
x′ −

K∑
k=0

λ′
kx

′⊤u′
ku

′
k
⊤
x′

)∣∣∣∣∣
⩽

K∑
k=0

λk

∣∣∣x⊤uku
⊤
k x− x′⊤u′

ku
′
k
⊤
x′
∣∣∣+ K∑

k=0

|λk − λ′
k|
(
x′⊤u′

ku
′
k
⊤
x′
)

(18)

Combining with Lemma 3.1, when the number of GCN layers goes to infinity, the objective optimization based on
gradient matching is dominated by

∣∣∣x⊤u0u
⊤
0 x− x′⊤u′

0u
′
0
⊤
x′
∣∣∣, while paying less attention to the optimization of∣∣∣x⊤uku

⊤
k x− x′⊤u′

ku
′
k
⊤
x′
∣∣∣, when k ̸= 0. Thus, gradient matching fails to constrain the first term of the upper bound of

RSS. Moreover, gradient matching introduces spectrum bias causing λ′
k ̸= λk, thus failing to constrain the second term of

the upper bound. In summary, the gradient matching method is unable to preserve the restricted spectral similarity.

C. Graph Distiilation
Gradient Matching (Jin et al., 2022b;a) generates the synthetic graph and node features by minimizing the differences
between model gradients on G and G′, which can be formulated as:

min
A′,X′

E
θ∼Pθ

[D (∇θL (Φθ (A
′,X′) ,Y′) ,∇θL (Φθ (A,X) ,Y))] , (19)

where Φθ is the condensation GNNs with parameters θ, ∇θ indicates the model gradients, D is a metric to measure their
differences, and L is the loss function. For clarity, we omit the subscript that indicates the training data.

Distribution Matching (Liu et al., 2022a) aims to align the distributions of node representations in each GNN layer to
generate the synthetic graph, which can be expressed as:

min
A′,X′

E
θ∼Pθ

[
L∑

t=1

D
(
Φt

θ (A
′,X′) ,Φt

θ (A,X)
)]

, (20)

where Φt
θ is the t-th layer in GNNs.

Trajectory Matching (Zheng et al., 2023) aligns the long-term GNN learning behaviors between the original graph and
the synthetic graph:

min
A′,X′

E
θ∗,i
t ∼PΘT

[
Lmeta-tt

(
θ∗t |

p
t=t0 , θ̃t|

q
t=t0

)]
. (21)

where θ∗t |
p
t=t0 and θ̃t|qt=t0 is the parameters of GNNT and GNNS , Lmeta-tt calculates certain parameter training intervals

within
[
θ∗,it0 , θ∗,it0+p

]
and

[
θ̃t0 , θ̃t0+q

]
.

D. General Settings
Optimizer. We use the Adam optimizer for all experiments.
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Environment. The environment in which we run experiments is:

• Linux version: 5.15.0-91-generic

• Operating system: Ubuntu 22.04.3 LTS

• CPU information: Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz

• GPU information: NVIDIA A800 80GB PCIe

Resources. The address and licenses of all datasets are as follows:

• Citeseer: https://github.com/kimiyoung/planetoid (MIT License)

• Pubmed: https://github.com/kimiyoung/planetoid (MIT License)

• Ogbn-arxiv: https://github.com/snap-stanford/ogb (MIT License)

• Flickr: https://github.com/GraphSAINT/GraphSAINT (MIT License)

• Reddit: https://github.com/williamleif/GraphSAGE (MIT License)

• Squirrel: https://github.com/benedekrozemberczki/MUSAE (GPL-3.0 license)

• Gamers: https://github.com/benedekrozemberczki/datasets (MIT License)
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