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Abstract

Principal-agent problems model scenarios where
a principal incentivizes an agent to take costly, un-
observable actions through the provision of pay-
ments. Such problems are ubiquitous in several
real-world applications, ranging from blockchain
to the delegation of machine learning tasks. In
this paper, we initiate the study of hidden-action
principal-agent problems under approximate best
responses, in which the agent may select any ac-
tion that is not too much suboptimal given the
principal’s payment scheme (a.k.a. contract). Our
main result is a polynomial-time algorithm to
compute an optimal contract under approximate
best responses. This positive result is perhaps
surprising, since, in Stackelberg games, comput-
ing an optimal commitment under approximate
best responses is computationally intractable. We
also investigate the learnability of contracts un-
der approximate best responses, by providing a
no-regret learning algorithm for a natural appli-
cation scenario where the principal has no prior
knowledge about the environment.

1. Introduction
In hidden-action principal-agent problems, a principal tries
to steer the behavior of a self-interested agent toward favor-
able outcomes. The agent has to take a costly action that
stochastically determines an outcome resulting in a reward
for the principal. The main challenge is that the agent’s
action is hidden to the principal, who can only observe the
realized outcome. Thus, the principal influences the agent’s
behavior by committing to a contract, which is an outcome-
dependent payment scheme whose aim is to induce the agent
to take a high-cost action leading to high principal’s rewards.
The principal’s goal is to design an optimal contract, namely
one maximizing their utility, i.e., rewards minus payments.
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Nowadays, principal-agent problems find application in a
terrific number of real-world settings, such as, e.g., crowd-
sourcing (Ho et al., 2014), online labor platforms (Kaynar
& Siddiq, 2023), blockchain (Cong & He, 2019), delegation
of machine learning tasks (Cai et al., 2015), and pay-for-
performance healthcare (Bastani et al., 2016; 2019). More-
over, algorithmic contract design is playing a crucial role
in today’s world, which increasingly relies on AI agents
to perform complex tasks (see, e.g., (Hadfield-Menell &
Hadfield, 2019; Saig et al., 2024)).

Previous works on algorithmic contract design assume that
the agent always plays a best-response action to the princi-
pal’s contract. However, if the agent actually responds (even
slightly) suboptimally to the principal, then the principal’s
utility may substantially deteriorate. This may be the case
in most of the real-world applications of interest, for several
different reasons. For instance, the principal may not per-
fectly know agent’s features and account for the wrong best
response, the agent may not be powerful enough to compute
an (exact) best-response action, or they may inaccurately
interpret the principal’s contract.

In this paper, we initiate the study of hidden-action principal-
agent problems under approximate agent’s best responses.
Specifically, we consider settings in which the agent may
take actions that are up to δ ∈ (0, 1) suboptimal under the
principal’s contract. We do not make any assumption on the
specific δ-best response selected by the agent, but we allow
them to take any of such actions. Thus, we take a worst-case
approach and consider the problem of designing contracts
under the assumption that the agent selects the worst δ-best
response for the principal. Contracts designed in such a way
are said to be robust, as they guard the principal against any
possible (conceivable) suboptimal behavior of the agent.

1.1. Results and Techniques

In this paper, we provide an extensive treatment of the com-
putational and learnability aspects of the design of robust
contracts. The results presented in the paper are organized
into three main parts as summarized below.

The Price of Robustness In the first part of the paper, as
a preliminary analysis, we provide a characterization of the
maximum utility that the principal can achieve by means of

1



Contract Design Under Approximate Best Responses

robust contracts. Specifically, we provide upper and lower
bounds on this utility, as a function of a parameter δ ∈ (0, 1)
quantifying the agent’s best response suboptimality. These
bounds give insights on the price (in terms of utility) that
the principal incurs for being robust, as the parameter δ
can be seen as a measure of the robustness level of the
principal’s contracts. Interestingly, our results show that,
differently from what happens in general Stackelberg games
(see, e.g., (Gan et al., 2023)), upper/lower bounds do not
depend on the inducibility gap ∆ > 0 characterizing the
problem instance. In order to derive the bounds, we prove
that it is possible to convert any non-robust contract into a
robust one by properly moving its payments in the direction
of principal’s rewards, and that, in an optimal robust con-
tract, which provides the principal with a utility greater than
zero, the agent’s utility should be at least δ.

Computing Robust Contracts The second part of the
paper addresses the problem of computing a robust contract
that is optimal for the principal. Our main contribution is a
polynomial-time algorithm for this problem. This is perhaps
surprising, since analogous problems in Stackelberg and
Bayesian persuasion settings are known to be computation-
ally intractable (Gan et al., 2023; Yang & Zhang, 2024),
despite having more amenable solution spaces (∆m in these
problems vs. Rm

+ in contract design). At a high level, our
algorithm cleverly exploits a particular structure that we
discover in the robustness constraints (which ensure that
the agent plays the worst approximate best response for
the principal). Intuitively, we show that, when the agent’s
best response and their (worst) approximate best response
are fixed to two arbitrarily-selected actions, the problem
of computing a utility-maximizing robust contract can be
formulated by means of a union of n + 1 different linear
programs (LPs). Therefore, by taking the maximum over
all these LPs, one can compute a utility-maximizing robust
contract once the agent’s best response and their (worst)
approximate best response are fixed. By further iterating
this procedure for all the possible choices of the action pair,
we then determine an optimal robust contract.

Learning Robust Contracts In the third and last part of
the paper, we investigate the learnability of robust contracts.
Specifically, we study an online learning framework simi-
lar to the one analyzed by Zhu et al. (2023), in which the
features of agent’s actions, i.e., costs and probabilities over
outcomes, depend on an agent’s type that is sampled at each
round from some (fixed) unknown probability distribution.
At each round, after committing to some contract, the prin-
cipal only observes the outcome (and its associated reward)
realized as an effect of the approximate best response played
by the agent. Our main result within this online learning
framework is the design of an algorithm that achieves sublin-
ear regret with respect to always playing an optimal robust

contract. Additionally, we show that when the parameter
δ ∈ (0, 1) measuring the suboptimality of agent’s actions
is sufficiently small with respect to the time horizon, our
algorithm also achieves sublinear regret with respect to al-
ways playing an optimal non-robust contract. Our approach
presents some advantages compared to the state-of-the-art
proposed by Zhu et al. (2023) for the non-robust version
of the problem, while achieving similar regret guarantees.
Indeed, our algorithm employs a simpler discretization of
the set of contracts employed by the principal, which does
not require that the principal knows its rewards beforehand.
This is made possible by the fact that we rely on a novel
“continuity” argument for the principal’s expected utility
(see Lemma 3), which is different from the one originally
proposed by Zhu et al. (2023).

1.2. Related Works

Robustness to Approximate Best Responses Two works
that are closely related to ours are (Gan et al., 2023; Yang &
Zhang, 2024), which consider robustness notions analogous
to ours, though in different settings. Specifically, Gan et al.
(2023) initiate this research line, by studying th problem
of computing robust leader’s commitments in Stackelberg
games where the follower plays an approximate best re-
sponse. They show that it is NP-hard to approximate an
optimal robust commitment of the leader and, in accordance
to this hardness result, they provide a quasi-polynomial-time
approximation scheme (QPTAS). Yang & Zhang (2024) ex-
tend the study initiated by Gan et al. (2023) to Bayesian
persuasion, with the goal of computing robust signaling
schemes under approximate best responses of the receiver.
Similarly to Gan et al. (2023), they show that computing an
approximately-optimal robust signaling scheme is NP-hard
and provide a QPTAS. In sharp contrast with these works,
we show that, in hidden-action principal-agent problems, an
optimal robust contract can be computed efficiently.

Contract Design Contract theory has been extensively
studied in economics (Holmstrom & Milgrom, 1991). How-
ever, the interest in its computational aspects is more re-
cent. Dütting et al. (2019) analyze linear contracts, prov-
ing approximation bounds. Guruganesh et al. (2021); Cas-
tiglioni et al. (2022a;b) study the computational aspects of
contract design in Bayesian settings. Alon et al. (2023)
study Bayesian linear contracts, proving near-optimality
under sufficient uncertainty. Other works explore combina-
torial principal-agent problems (Babaioff et al., 2006; 2009)
and multi-agent extensions of hidden-action problems (Cas-
tiglioni et al., 2023; Duetting et al., 2024).

Other Forms of Robustness in Contract Design Our
work is also related to other research lines addressing differ-
ent concepts of robustness in contract design. For instance,
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Carroll (2015) studies settings where the principal only
knows a superset of agents’ actions, while Dütting et al.
(2019) introduce a different notion of uncertainty in which
the principal has partial knowledge of the distributions over
outcomes associated with agent’s actions. Both these works
show that linear contracts are a sufficient class of contracts to
determine the min-max robust optimal contract. Notice that
these two frameworks differ from ours, as within our frame-
work, when the robustness parameter δ ∈ (0, 1) is arbitrarily
small, the problem becomes very close to the classical ver-
sion of the hidden-action principal-agent problem, in which
it is known that linear contracts are not generally optimal
(see, e.g., (Dütting et al., 2019)). Recently, Bernasconi et al.
(2024) study settings where uncertainty lies in the costs of
agent’s actions. In this framework, the principal only knows
a set containing the true cost vectors, and computing an
optimal min-max robust contract is APX-hard.

Learning in Principal-Agent Problems Our work is
also related to online learning problems in hidden-action
principal-agent problems. Zhu et al. (2023) study general
hidden-action principal-agent problem instances in which
the principal faces multiple agent’s types. They show that
it is possible to design an algorithm that achieves a regret
bound of the order of Õ(

√
m ·T 1−1/(2m+1)) when the prin-

cipal selects contracts from the hypercube [0, 1]m, where
m is the number of outcomes. In our work, we show that
it is possible to design an algorithm achieving similar re-
gret guarantees even when the different agent’s types select
approximate best responses. Our algorithm presents some
advantages compared to the one proposed by Zhu et al.
(2023). Specifically, our approach employs a simpler dis-
cretization of the hypercube—used during the execution of
the algorithm—compared to (Zhu et al., 2023), and it does
not require prior knowledge of the principal’s rewards. Fur-
thermore, Zhu et al. (2023) provide an (almost-matching)
lower bound of Ω(T 1−1/(m+2)), which holds even with a
single agent’s type. Some recent works have introduced
additional hypothesis to overcome this negative result (see,
e.g., (Bacchiocchi et al., 2024; Chen et al., 2024)).

2. Preliminaries
In this section, we first introduce the classical hidden-action
principal-agent problems (Section 2.1), and then the vari-
ation studied in this paper, in which the agent plays an
approximate best response (Section 2.2).

2.1. Hidden-Action Principal-Agent Problems

An instance of hidden-action principal-agent problem is
characterized by a tuple (A,Ω, F, r, c), where A is a finite
set of n := |A| actions available to the agent, Ω is a finite set
of m := |Ω| possible outcomes, F ∈ [0, 1]m×n is a matrix

representing the effects of agent’s action, r ∈ [0, 1]m is a
reward vector for the principal, and c ∈ [0, 1]n is a vector
of agent’s costs. Each agent’s action a ∈ A determines a
probability distribution over outcomes, encoded by a column
Fa ∈ ∆Ω of the matrix F , and it results in a cost for the
agent, encoded by a component ca ∈ [0, 1] of vector c.1 We
denote by Fa,ω ∈ [0, 1] the probability with which action
a results in outcome ω ∈ Ω, as prescribed by Fa. Thus, it
must be the case that

∑
ω∈Ω Fa,ω = 1 for all a ∈ A. Each

outcome ω ∈ Ω is associated with a reward for the principal,
encoded by a component rω ∈ [0, 1] of the vector r. Thus,
whenever the agent selects an action a ∈ A, the principal’s
expected reward can be computed as Ra := Fa · r.2

The principal commits to an outcome-dependent payment
scheme called contract, which is a vector p ∈ Rm

+ defining
a payment pω ≥ 0 from the principal to the agent for every
outcome ω ∈ Ω.3 Given a contract p ∈ Rm

+ , the agent plays
a best-response action that is: (i) incentive compatible (IC),
which means that it maximizes their expected utility; and (ii)
individually rational (IR), meaning that it has non-negative
expected utility. We assume w.l.o.g. that there always exists
at least one opt-out action a ∈ A with null cost, i.e., ca = 0,
and for which the principal’s expected reward is equal to
zero, i.e., Fa · r = 0. Since the agent’s utility is at least zero
when playing the opt-out action, any IC action is also IR,
allowing us to focus on incentive compatibility only.

Whenever the principal commits to a contract p ∈ Rm
+ and

the agent responds by playing an action a ∈ A, the agent’s
and the principal’s expected utilities are, respectively,

uA(p, a) := Fa · p− ca, and uP(p, a) := Fa · (r − p).

The set A(p) ⊆ A of agent’s best responses in a contract
p ∈ Rm

+ is defined as follows:

A(p) := argmax
a∈A
{Fa · p− ca} .

In classical (non-robust) hidden-action principal-agent prob-
lems, the agent breaks ties in favor of the principal when
having multiple best responses available (see, e.g., (Dütting
et al., 2019)). We denote by a(p) ∈ A(p) the action played
by the agent in a given contract p ∈ Rm

+ . This is an action
a ∈ A(p) that maximizes the principal’s utility Fa · (r − p).
Formally, a(p) ∈ argmaxa∈A(p) Fa · (r − p). Then, the
goal of the principal is to design a contract p ∈ Rm

+ that max-
imizes their expected utility uP(p, a(p)). We say that a con-
tract p⋆ ∈ Rm

+ is a (non-robust) optimal contract if it holds
p⋆ ∈ argmaxp∈Rm

+
uP(p, a(p)). In the following, we define

1We denote by ∆X the set of all probability distributions over
the set X . Given n ∈ N>0, we write [n] := {1, . . . , n}.

2We denote by x · y the dot product of two vectors x, y ∈ Rd.
3As customary in contract theory (Carroll, 2015), we assume

that the agent has limited liability, meaning that the payments can
only be from the principal to the agent, and not viceversa.
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the principal’s utility in an optimal (non-robust) contract
as OPT := maxp∈Rm

+
uP(p, a(p)), while we let the value of

the social welfare be SW := maxa∈A {Fa · r − ca}.

2.2. Robust Contracts and Approximate Best Responses

In this paper, we study a variation of the classical hidden-
action principal-agent problem, where the agent plays an ac-
tion that is an approximate best response. Given δ ∈ (0, 1),
we define the set Aδ(p) ⊆ A of agent’s δ-best responses in
a given contract p ∈ Rm

+ as follows:

Aδ(p) :=

{
a ∈ A | Fa ·p− ca>max

a′∈A
{Fa′ ·p− ca′}−δ

}
.

We adopt an adversarial robust approach, in the sense that,
whenever the principal commits to a contract p ∈ Rm

+ , the
agent selects a δ-best response that minimizes principal’s
expected utility, namely an action aδ(p) ∈ Aδ(p) such that
aδ(p) ∈ argmina∈Aδ(p) Fa · (r− p). We refer to the utility
of a δ-robust contract p as uP(p, aδ(p)).

Given δ ∈ (0, 1), the principal’s goal is to design an optimal
δ-robust contract p⋆ ∈ Rm

+ , which is formally defined as:

p⋆ ∈ argmax
p∈Rm

+

min
a∈Aδ(p)

uP(p, a) = argmax
p∈Rm

+

Ψ(p), (1)

where Ψ(p) := mina∈Aδ(p) u
P(p, a) denotes the principal’s

expected utility in a δ-robust contract p ∈ Rm
+ . Notice

that analogous “δ-robust solution concepts” have been al-
ready introduced in similar settings, namely Stackelberg
games (Gan et al., 2023) and Bayesian persuasion (Yang &
Zhang, 2024). Our δ-robust contracts are their analogous in
the context of hidden-action principal-agent problems.

In the following, given δ ∈ (0, 1), we denote the expected
utility of the principal in an optimal δ-robust contract p⋆

as OPT(δ) := uP(p⋆, aδ(p⋆)). We remark that OPT(δ) is
always well defined, as an optimal δ-robust contract, accord-
ing to the definition in Eq. (1), always exists. Intuitively,
this is due to the strict inequality in the definition of the
set Aδ(p), as observed by Gan et al. (2023) for Stackelberg
games. Thus, in order to prove the existence of an optimal
δ-robust contract, it is possible to employ the same argument
used to prove Proposition 1 in (Gan et al., 2023).

3. The Price of Robustness
We start by providing a characterization of how the value
OPT(δ) of an optimal δ-robust contract varies as a function
of the parameter δ ∈ (0, 1), which controls the suboptimal-
ity of the agent’s best response. The goal of our analysis is
to quantify how much is the price (in terms of utility) that
the principal incurs for being robust to agent’s approximate
best responses. Indeed, the parameter δ can be interpreted as

a measure of the robustness level of the principal’s contract,
with higher δ values indicating higher levels of robustness.

We first establish upper and lower bounds that identify a
suitable region in which the values of OPT(δ) are contained.
Such bounds only depend on the parameter δ ∈ (0, 1), the
value of an optimal non-robust contract OPT, and the social
welfare SW achievable with non-robust contracts.
Proposition 1 (Upper and lower bounds). Given an instance
of hidden-action principal-agent problem:

1. For every δ ∈ (0, 1), it holds:

OPT(δ) ≥ OPTLB(δ) := OPT− 2
√
δ + δ.

2. For every δ ∈ (0, 1), it holds:

OPT(δ) ≤ OPTUB(δ) := max {0, SW− δ} .

In order to prove the first point in Proposition 1, we show
that it is always possible to convert a non-robust contract into
a robust one by suitably moving it towards the direction of
the principal’s reward vector. In order to prove the second
point of Proposition 1, we observe that, if an optimal δ-
robust contract p⋆ provides the principal with an expected
utility strictly larger than zero, then the opt-out action does
not belong to the set of δ-best responses for such a contract.
Therefore, in an optimal δ-robust contract that provides the
principal with an expected utility strictly larger than zero,
the agent’s utility is at least δ > 0, and thus the principal’s
expected utility is at most SW− δ.

The following proposition shows that the upper and lower
bounds in Proposition 1 are tight. Formally:
Proposition 2. Given δ ∈ (0, 1), for every integer n >
n(δ), there is an instance of hidden-action principal-agent
problem (parametrized by δ) with 2n+ 1 actions, where:

OPT(δ)− OPTLB(δ) ≤ O
(
1

n

)
.

Furthermore, for any δ ∈ (0, 1), there exists an instance of
hidden-action principal-agent problem in which it holds:

OPT(δ) = OPTUB(δ).

Proposition 2 shows that our upper bound OPTUB(δ) is
(strictly) tight, while our lower bound OPTLB(δ) is tight up
to an additive term that linearly goes to zero as the number
of agent’s actions n increases.

Finally, thanks to the previous propositions, we can show the
following property about the value of an optimal δ-robust
contracts as a function of δ ∈ (0, 1).
Proposition 3. The function (0, 1) ∋ δ 7→ OPT(δ)
is continuous and non-increasing in δ. Moreover,
limδ→0+ OPT(δ) = OPT and limδ→1− OPT(δ) = 0.
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1

OPT = 0.7

SW = 0.9

δ

OPT(δ)

Figure 1. The blue area corresponds to the region in which OPT(δ)
is bounded as a function of δ ∈ (0, 1) in an instance of hidden-
action principal-agent problem with SW = 0.9 and OPT = 0.7.

Figure 1 shows an example of the region in which the value
of OPT(δ) is bounded, as defined by the lower and upper
bounds in Propositions 1 and 3 as functions of δ.

Comparison With Stackelberg Games The characteri-
zation results derived in this section exhibit some crucial
differences compared to analogous results derived for Stack-
elberg games by Gan et al. (2023). Indeed, in such settings,
Gan et al. (2023) show that the value of an optimal δ-robust
commitment crucially depends on a parameter ∆ > 0 that
represents the inducibility gap of the problem instance. In-
tuitively, the inducibility gap encodes how easy it is for the
leader to induce the follower to play any action; see (Gan
et al., 2023) for a formal definition. Specifically, in Stack-
elberg games, the leader’s expected utility OPT(δ) in an
optimal δ-robust commitment is a Lipschitz function lower
bounded by OPT − δ/∆ if δ < ∆, whereas OPT(δ) may
not be even a continuous function if δ > ∆. In contrast,
in hidden-action principal-agent problems, the value of an
optimal δ-robust contract is a continuous function with re-
spect to δ ∈ (0, 1), regardless of the inducibility gap of the
instance. Furthermore, the value of OPT(δ) is either zero or
it is upper bounded by SW− δ, showing that for large val-
ues of δ, the maximum utility that the principal can achieve
may be particularly small. Intuitively, this is because the
principal must provide the agent with a large expected pay-
ment to induce them to take desirable actions rather than
the opt-out one. This upper bound does not generally hold
in Stackelberg games in which the principal may achieve a
large utility even for large values of δ.

4. Computing Optimal Robust Contracts
Now, we present our main result: a polynomial-time algo-
rithm to compute an optimal δ-robust contract.

4.1. Characterizing an Optimal Contract

We begin by presenting an optimization problem that char-
acterizes an optimal δ-robust contract. Consider an arbitrary

optimal δ-robust contract p⋆, as well as two arbitrary ac-
tions a⋆ ∈ A(p⋆) and aδ ∈ argmina∈Aδ(p⋆) u

P(p⋆, a). By
fixing a⋆ and aδ, we show that the following optimization
problem, over the variable p ∈ Rm

+ , characterizes an optimal
δ-robust contract p⋆.

max
p∈Rm

+

uP(p, aδ) (2)

subject to the following disjunctive constraints, which must
hold for every agent’s action a ∈ A:(
uA(p, a)≤uA(p, a⋆)−δ

)
∨
(
uP(p, a)≥uP(p, aδ)

)
. (2a)

Intuitively, Eq. (2a) requires that each action a is either
not a δ-best response (first inequality) or no worse than aδ

for the principal (second inequality). This ensures that the
objective function uP(p, aδ) captures the principal’s utility
in a δ-robust contract p. More formally, we establish the
following lemma (recall that Ψ(p) = mina∈Aδ(p) u

P(p, a)
denotes the principal’s utility in a δ-robust contract p).

Lemma 1. Every optimal solution p ∈ Rm
+ to Problem (2)

is an optimal δ-robust contract, i.e., Ψ(p) = Ψ(p⋆).

Proof. First, observe that p⋆ is a feasible solution to Prob-
lem (2). Indeed, if an action a is not a δ-best response to p⋆,
then by definition this means uA(p⋆, a) ≤ uA(p⋆, a⋆)− δ;
otherwise, it must be that uP(p⋆, a) ≥ uP(p⋆, aδ) as aδ is
by definition the worst δ-best response in p⋆. As a result,
Eq. (2a) holds for p⋆ for every a ∈ A.

Furthermore, notice that, according to the definition of aδ:

Ψ(p⋆) = min
a∈Aδ(p⋆)

uP(p⋆, a) = uP(p⋆, aδ).

In order to complete the proof, it is sufficient to show that
uP(p, aδ) ≤ Ψ(p) for every feasible solution p ∈ Rm

+ to
Problem (2). Indeed, if the condition above holds, for any
arbitrary optimal solution p′ ∈ Rm

+ to Problem (2), we have:

Ψ(p⋆) = uP(p⋆, aδ) ≤ uP(p′, aδ) ≤ Ψ(p′) ≤ Ψ(p⋆),

where uP(p⋆, aδ) ≤ uP(p′, aδ) since p⋆ is a feasible solu-
tion to Problem (2) and p′ is optimal, while Ψ(p′) ≤ Ψ(p⋆)
since p⋆ is an optimal δ-robust contract by definition. Then,
it must be the case that Ψ(p′) = Ψ(p⋆).

Now, to complete the proof, consider any feasible solution
p ∈ Rm

+ to Problem (2). We show that uP(p, aδ) ≤ Ψ(p).
Pick an arbitrary best-response action a′ ∈ A(p) and con-
sider any a ∈ Aδ(p). By definition,

uA(p, a) > uA(p, a′)− δ
= max

a∈A
uA(p, a)− δ ≥ uA(p, a⋆)− δ.
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Hence, for Eq. (2a) to hold for action a, it must be that
uP(p, a) ≥ uP(p, aδ). Since the choice of a is arbitrary, this
holds for every a ∈ Aδ(p). Consequently,

Ψ(p) = min
a∈Aδ(p)

uP(p, a) ≥ uP(p, aδ).

The above lemma implies that we can effectively “guess” a⋆

and aδ, fixing these actions in Problem (2) and solving the
optimization problem to obtain p⋆ (or possibly a different,
but still optimal, δ-robust contract). Since there are only
O(n2) possible combinations of the values of a⋆ and aδ,
the approach is efficient as long as Problem (2) can be
solved efficiently. A correct guess yields a contract p such
that Ψ(p) = Ψ(p⋆), whereas Ψ(p) ≤ Ψ(p⋆) for incorrect
guesses. Thus, by comparing the Ψ values, we can identify a
correct guess and a corresponding optimal δ-robust contract.

It remains to show how to efficiently solve Problem (2).

4.2. Solving Problem (2)

Problem (2) does not directly admit any efficient solution
algorithm due to the non-convex constraint in Eq. (2a). To
deal with this issue, we rewrite Eq. (2a) as follows:(

Fa · p ≤ ca + uA(p, a⋆)− δ
)
∨(

Fa · p ≤ Fa · r − uP(p, aδ)
)
, (3)

by expanding the utilities as uA(p, a) = Fa · p − ca and
uP(p, a) = Fa · (r − p) and rearranging the terms.

Hence, Eq. (2a) is satisfied for action a ∈ A if and only if
Fa · p is smaller than the maximum of the right-hand sides
of the two inequalities in Eq. (3). The constraint effectively
reduces to the second inequality for all p ∈ Rm

+ such that

ca + uA(p, a⋆)− δ ≤ Fa · r − uP(p, aδ), (4)

while for the other p ∈ Rm
+ , it reduces to the first inequality.

Consequently, we can partition the contract space based on
the satisfiability of Eq. (4), considering all a ∈ A. Within
each subspace in the partition, only one inequality in Eq. (3)
is active for every a ∈ A. So, effectively, Eq. (3) reduces
to a linear constraint for each action a, and the optimiza-
tion problem to an LP. It then suffices to solve an LP for
every subspace, each generating an optimal contract within
its corresponding subspace. Among these contracts, the
one providing the highest utility is an optimal solution to
Problem (2).

Now, if the linear inequalities in Eq. (4) (one for each action
a ∈ A) were n arbitrary inequalities, the above partition
may consist of exponentially many subspaces, making the
approach inefficient. Fortunately, the partition is much more

well-structured, since the hyperplanes corresponding to the
inequalities are parallel, as the coefficients of p in Eq. (4)
are invariant with respect to a. As a result, they partition the
space into only O(n) subspaces.

Next, we show how to exploit the above observation to solve
Problem (2), by solving O(n) suitable subproblems instead.

4.3. Formulating the Subproblems

Let us first rearrange Eq. (4) as follows:

uA(p, a⋆) + uP(p, aδ)− δ ≤ νa := Fa · r − ca, (5)

where νa is exactly the social welfare generated by action a
(which is independent of the specific contract adopted).

Then, we can re-order agent’s actions a1, . . . , an in such a
way that νa1 ≤ νa2 ≤ · · · ≤ νan . For simplicity, we write
νj = νaj

, and we let ν0 = −∞ and νn+1 = +∞. Then,
the following lemma is straightforward.

Lemma 2. For every contract p ∈ Rm
+ , if it holds that

νj−1 ≤ uA(p, a⋆) + uP(p, aδ)− δ ≤ νj , then:

• Fa · p ≤ Fa · r − uP(p, aδ)⇐⇒ Eq. (3) holds for all
actions a ∈ {aℓ | ℓ ≤ j − 1}; and

• Fa · p ≤ ca + uA(p, a⋆)− δ ⇐⇒ Eq. (3) holds for all
actions a ∈ {aℓ | j ≤ ℓ}.

In other words, the condition in the lemma defines a suitable
subspace of contracts Pj for each j ∈ {1, . . . , n+ 1}. The
following LP solves for a p ∈ Rm

+ that is optimal within Pj .

max
p∈Rm

+

uP(p, aδ) (6)

subject to the following constraints:

νj−1 ≤ uA(p, a⋆) + uP(p, aδ)− δ ≤ νj (6a)

Fa· p ≤ Fa · r − uP(p, aδ) ∀a ∈ {aℓ | ℓ ≤ j−1} (6b)

Fa· p ≤ ca + uA(p, a⋆)− δ ∀a ∈ {aℓ | j ≤ ℓ}. (6c)

Since
⋃n+1

j=1 Pj = Rm
+ , solving the LP in Problem (6) for all

j ∈ {1, . . . , n+1} and picking the best among the obtained
solutions gives an optimal solution to Problem (2).
Remark 1. The left-hand side of Eq. (5) is roughly (up to
a δ difference) the social welfare of an optimal contract.
Thus, Lemma 2 can be interpreted as follows. For low-
social-welfare actions a1, . . . , aj−1, yielding a sufficiently
high utility for the principal automatically provides a low
utility for the agent. This fulfills the first inequality in
Eq. (3) (and Eq. (2a)). Conversely, for high-social-welfare
actions aj , . . . , an, a sufficiently low utility for the agent
automatically gives a high utility for the principal. This
fulfills the second inequality in Eq. (3) (and Eq. (2a)).
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Algorithm 1 Compute an optimal δ-robust contract
1: p⋆ ← null, ψ⋆ ← −∞
2: for all (a⋆, aδ) ∈ A×A do
3: for all j = 1, . . . , n+ 1 do
4: Solve Problem (6) instantiated with (a⋆, aδ) s.t.

Eqs. (6a) to (6c), and let an optimal solution be p′

5: if Ψ(p′) > ψ⋆ then
6: p⋆ ← p′

7: ψ⋆ ← Ψ(p′)
8: return p⋆

4.4. Putting All Together

We summarize our results in this section into Algorithm 1
and the following main theorem.

Theorem 1. Algorithm 1 computes an optimal δ-robust
contract in polynomial time.

Proof Sketch. The polynomial runtime of Algorithm 1 is
obvious as it enumerates O(n3) value combinations and
solves an LP for each of them. To see the correctness of the
algorithm, note that the inner for-loop of Algorithm 1 effec-
tively solves Problem (2), for the pair (a⋆, aδ) enumerated
in the outer for-loop. Now, if a⋆ and aδ happen to be the
agent’s exact and δ-best responses, respectively, under some
optimal contract, then according to Lemma 1, the outer loop
produces an optimal contract p′, with Ψ(p′) ≥ Ψ(p) for
all p ∈ Rm

+ . By comparing the Ψ values, the algorithm
identifies and outputs such an optimal contract.

5. Learning Robust Contracts
The algorithm in Section 4 works under the assumption that
the principal has full knowledge of all the payoff-relevant
information about the agent and, thus, they can compute
an optimal δ-robust contract. In this section, we address
the case in which the principal has no such knowledge, and,
thus, they have to learn an optimal δ-robust contract in an
online fashion, by repeatedly interacting with the agent.

5.1. Learning Interaction

We consider an online learning framework similar to the one
studied by Zhu et al. (2023), in which the features of agent’s
actions, i.e., costs and probabilities over outcomes, depend
on an agent’s type that is sampled at each round from some
(fixed) unknown probability distribution. Before formally
defining the online learning framework, we introduce some
notation that is needed to deal with hidden-action principal-
agent problems in which the agent can be of different types.

Hidden-Action Principal-Agent Problems With Types
We let Θ be the finite set of possible agent’s types, while

Fθ,a and cθ,a denote the probability distribution over out-
comes and the cost, respectively, of action a ∈ A, when the
agent has type θ ∈ Θ. The agent’s type is drawn from an
unknown probability distribution λ ∈ ∆Θ, with λθ ∈ [0, 1]
being the probability of type θ ∈ Θ. We extend all the
notation introduced in Section 2 to account for agent’s
types. Specifically, given δ ∈ (0, 1), we let Aθ,δ(p) ⊆ A
be the set of δ-best responses to a contract p ∈ Rm

+ for
type θ ∈ Θ. Moreover, we denote by aθ,δ(p) the δ-best
response that is played by the agent under a δ-robust con-
tract, namely the worst one for the principal. Formally,
aθ,δ(p) ∈ argmina∈Aδ(p) Fθ,a · (r − p). Similarly, we use
Aθ(p) and aθ(p) for (exact) best responses. Finally, the
principal’s expected utility when committing to a contract
p ∈ Rm

+ against an agent of type θ ∈ Θ playing an action
a ∈ A is uP(p, a, θ) := Fθ,a · (r − p).

We study an online learning framework in which the prin-
cipal and the agent repeatedly interact over T > 0 rounds.
Each round involves a repetition of the same instance of
hidden-action principal-agent problem, with only the agent’s
type changing from round to round. Specifically, at each
round t ∈ [T ], the principal-agent interaction is as follows:

1. The agent’s type θt ∈ Θ is sampled from the distribu-
tion λ. Notice that θt is not observed by the principal.

2. The principal commits to a contract pt ∈ C := [0, 1]m.

3. After observing the contract pt, the agent plays a δ-best
response at := aθ

t,δ(pt). Notice that the action at is
not observed by the principal.

4. The principal observes the outcome ωt ∼ Fat that is
realized as an effect of the agent’s action at.

We remark that, in the interaction described above, the prin-
cipal’s contract design space is assumed to be limited to the
hypercube C := [0, 1]m. Restricting the contract space to a
bounded set is standard in the literature on online learning
in contract design (see, e.g., (Ho et al., 2014; Zhu et al.,
2023; Chen et al., 2024)) and it is motivated by the negative
result proved in Theorem 1 in (Bacchiocchi et al., 2024).
Therefore, we need to introduce a formal definition of the
principal’s expected utility when committing to an optimal
δ-robust contract restricted to such a space. Formally:

OPT(C, δ) := max
p∈C

∑
θ∈Θ

λθu
P(p, aθ,δ(p), θ).

The goal of the principal is to minimize the (cumulative)
pseudo-regret, or simply regret, which can be defined as:

RT (C, δ):=T OPT(C, δ)−E

 ∑
t∈[T ],θ∈Θ

λθu
P(pt, aθ,δ(pt), θ)

,
7
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where the expectation is over the randomness of the al-
gorithm and the environment that generates the feedback
received by the learner at each round. Our goal is to design a
no-regret algorithm for the principal, namely one achieving
RT (C, δ) = o(T ).

5.2. A No-Regret Algorithm

Before introducing our no-regret learning algorithm (Algo-
rithm 2), we need to prove a key lemma about the “continu-
ity” of the principal’s expected utility over the hypercube.
In particular, given a δ-robust contract p ∈ Rm

+ , we show
that it is possible to build another contract p′ ∈ Rm

+ that is
(δ+ ϵ)-robust and provides the principal with utility at most
2
√
ϵ worse than the one of contract p. Formally:

Lemma 3. Given any δ, ϵ ∈ (0, 1) and a contract p ∈ Rm
+ ,

the following holds for every θ ∈ Θ:

uP(p′, aθ,δ+ϵ(p′), θ) ≥ uP(p, aθ,δ(p), θ)− 2
√
ϵ,

where p′ := (1−
√
ϵ)p+

√
ϵr.

We observe that the idea of shifting payments towards the
principal’s reward vector, as in Lemma 3, was first adopted
by Dutting et al. (2021) in non-robust settings, in order to
deal with approximately incentive-compatible contracts.

Thanks to Lemma 3, it is possible to show that there always
exists a contract p ∈ Bϵ that satisfies the following condition,
where Bϵ ⊆ C is a uniform grid of the hypercube C, built
with step size ϵ > 0 (see also Algorithm 2).∑

θ∈Θ

λθu
P(p, aθ,δ(p), θ) ≥ OPT(C, δ)−O(

√
ϵ).

Consequently, by suitably choosing ϵ > 0 as a function of
the time horizon T , and by instantiating a no-regret algo-
rithm with set of arms Bϵ, we can upper bound the regret
suffered by Algorithm 2 as follows.

Theorem 2. The regret suffered by Algorithm 2 can be
upper bounded as follows:

RT (C, δ) ≤ Õ
(
T 1− 1

2(m+1)

)
.

We remark that the regret lower bound introduced by Zhu
et al. (2023) also holds in our setting. This is because, when
the parameter δ is arbitrarily small, if we consider the same
instances used by Zhu et al. (2023) in their lower bound,
the principal is still required to enumerate an exponential
number of regions, thus suffering Ω(T 1−1/(m+2)) regret.
This confirms that an exponential dependence on the number
of outcomes is unavoidable in the regret suffered by any
algorithm. Furthermore, Theorem 2 shows regret guarantees

Algorithm 2 Regret minimizer for δ-robust contracts
Require: T > 0

1: Set ϵ← T− 1
m+1

2: Bϵ←{p ∈ [0, 1]m | pω ∈ {0, ϵ, 2ϵ, ..., 1} ∀ω ∈ Ω}
3: Run UCB1 with Bϵ as set of arms

similar to those obtained by Zhu et al. (2023) in the non-
robust version of the problem. Indeed, they achieve an upper
bound of the order of Õ(

√
m ·T 1−1/(2m+1)) on the regret.

Finally, we also show that, when the parameter δ ∈ (0, 1) is
sufficiently small (with respect to the time horizon T > 0),
Algorithm 2 achieves sublinear regret with respect to an
optimal non-robust contract within C. Formally, we define
the value of such a contract as follows:

OPT(C) := max
p∈C

∑
θ∈Θ

λθu
P(p, aθ(p), θ).

Furthermore, when OPT(C) is chosen as baseline, the regret
definition becomes the following:

RT (C) :=T OPT(C)−E

 ∑
t∈[T ],θ∈Θ

λθu
P(pt, aθ,δ(pt), θ)

,
where the expectation is over the randomness of the al-
gorithm and the environment that generates the feedback
received by the learner at each round. We observe that the
baseline in the regret definition above coincides with the
one introduced by Zhu et al. (2023). Then, we can prove
that the following corollary of Theorem 2 holds.

Corollary 1. The regret suffered by Algorithm 2 can be
upper bounded as follows:

RT (C) ≤ Õ
(
T 1− 1

2(m+1)

)
+ 2
√
δT.

We remark that, if we set δ = 1/Tα with α > 0 in Corol-
lary 1, then the regret with respect to an optimal non-robust
contract within the hypercube C is sublinear.
Remark 2. Our algorithm can be extended to deal with
settings in which the agent can play any δ-best response
within the set Aθt,δ(pt). In such a setting, the principal’s
utility is not fully stochastic. However, our Algorithm 2 can
be easily extended by instantiating an adversarial no-regret
algorithm instead of UCB1 (Auer et al., 2002).

Comparison With (Zhu et al., 2023) We observe that our
algorithm provides some advantages compared to the state-
of-the-art algorithm proposed by Zhu et al. (2023). First, our
approach employs as set of contracts a simple discretization
of the hypercube, while the approach by Zhu et al. (2023)
requires determining the minimum set of contracts Vϵ(C)—
for some suitable ϵ > 0—such that, for every p ∈ C, there

8
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exists a p′ ∈ Vϵ(C) that satisfies (r− p) · p′ ≥ cos(ϵ). How-
ever, the need of designing such a set of contracts makes the
approach by Zhu et al. (2023) challenging to be employed in
practice compared to ours. Second, our algorithm does not
require apriori knowledge of the principal’s reward, which
is instead required by the algorithm of Zhu et al. (2023).
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Appendix
Proposition 1 (Upper and lower bounds). Given an instance of hidden-action principal-agent problem:

1. For every δ ∈ (0, 1), it holds:
OPT(δ) ≥ OPTLB(δ) := OPT− 2

√
δ + δ.

2. For every δ ∈ (0, 1), it holds:
OPT(δ) ≤ OPTUB(δ) := max {0, SW− δ} .

Proof. We prove the two points separately.

1. Let p′ = (1−
√
δ)p+

√
δr for any contract p ∈ Rm

+ . We start by observing that the following inequality holds:∑
ω∈Ω

Fa(p),ωpω − ca(p) ≥
∑
ω∈Ω

Faδ(p′),ωpω − caδ(p′),

because a(p) ∈ A(p). Furthermore, we have:∑
ω∈Ω

Faδ(p′),ωp
′
ω − caδ(p′) > max

a′∈A

∑
ω∈Ω

Fa′,ωpω − ca′ − δ ≥
∑
ω∈Ω

Fa(p),ωp
′
ω − ca(p) − δ,

thanks to the definition of Aδ(p′). Then, by employing the two above inequalities and the definition of p′, we have:

δ ≥
∑
ω∈Ω

Fa(p),ωp
′
ω − ca(p) −

(∑
ω∈Ω

Faδ(p′),ωp
′
ω − caδ(p′)

)

=
∑
ω∈Ω

Fa(p),ωpω − ca(p) −

(∑
ω∈Ω

Faδ(p′),ωpω − caδ(p′)

)
+
√
δ

(∑
ω∈Ω

(
Fa(p),ω − Faδ(p),ω

)
(rω − pω)

)

≥
√
δ

(∑
ω∈Ω

(
Fa(p),ω − Faδ(p),ω

)
(rω − pω)

)
.

Thus, by rearranging the latter inequality we get:

√
δ ≥

(∑
ω∈Ω

(
Fa(p),ω − Faδ(p),ω

)
(rω − pω)

)
. (7)

Finally, we can show that:

uP(p, a(p))− uP(p′, aδ(p′)) =
∑
ω∈Ω

Fa(p),ω(rω − pω)−

(∑
ω∈Ω

Faδ(p′),ω(rω − p′ω)

)

=
∑
ω∈Ω

Fa(p),ω(rω − pω)−
(
1−
√
δ
)(∑

ω∈Ω

Faδ(p′),ω(rω − pω)

)

≤
(
1−
√
δ
)(∑

ω∈Ω

(Fa(p),ω − Faδ(p′),ω)(rω − pω)

)
+
√
δ

≤ 2
√
δ − δ,

where the second equality holds thanks to the definition of p′, the first inequality because uP(p, a(p)) ≤ 1 for each
p ∈ Rm

+ and the second inequality because of Eq. (7). Finally, let p ∈ R be an optimal (non-robust) contract, then we
have:

OPT− 2
√
δ + δ ≤ uP(p′, aδ(p′)) ≤ OPT(δ),

concluding the first part of the proof.
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2. We split the proof into two parts.

(a) if OPT(δ) = 0. Then, we trivially have :

0 = OPT(δ) ≤ max

(
0, max

a∈A

∑
ω∈Ω

Fa,ωrω − ca − δ

)
= max (0, SW− δ)

(b) if OPT(δ) > 0. We define p⋆ ∈ Rm
+ as an optimal δ-robust contract. Then, we notice that a1 ̸∈ Aδ(p⋆), where a1

is the opt-out action. Indeed, if a1 ∈ Aδ(p⋆), then the agent may select the action a1 as a δ-robust best-response,
which provides zero or negative utility to the principal and contradicts the fact that OPT(δ) > 0. Therefore, in an
optimal robust contract p⋆, we must have:∑

ω∈Ω

Fa′,ωp
⋆
ω − ca′ ≥

∑
ω∈Ω

Fa1,ωp
⋆
ω − ca1 + δ ≥

∑
ω∈Ω

Fa1,ωp
⋆
ω + δ ≥ δ,

for some a′ ∈ Aδ(p⋆). Thus, we have:

OPT(δ) =
∑
ω∈Ω

Faδ(p),ω(rω − p⋆ω)

≤
∑
ω∈Ω

Fa′,ω(rω − p⋆ω)

≤
∑
ω∈Ω

Fa′,ωrω − ca′ − δ

≤ max
a∈A

∑
ω∈Ω

Fa,ωrω − ca − δ

≤ max

(
0, max

a∈A

∑
ω∈Ω

Fa,ωrω − ca − δ

)
= max (0, SW− δ) .

The first inequality above follows from the fact that a′ ∈ Aδ(p⋆), while the second inequality holds due to the
previous observation.

The two above points conclude the proof.

Proposition 2. Given δ ∈ (0, 1), for every integer n > n(δ), there is an instance of hidden-action principal-agent problem
(parametrized by δ) with 2n+ 1 actions, where:

OPT(δ)− OPTLB(δ) ≤ O
(
1

n

)
.

Furthermore, for any δ ∈ (0, 1), there exists an instance of hidden-action principal-agent problem in which it holds:

OPT(δ) = OPTUB(δ).

Proof. We prove the two points separately.

1. We consider an instance parametrized by δ > 0, with |Ω| = 2 and |A| = 2n+ 1 for some n ∈ N, to be defined below.
We let:

κ = min

{
i ∈ N>0 |

√
δ <

i− 1

i

}
.

Furthermore, we introduce the following decreasing sequence:

γi =

{
i

i−1 i = κ, . . . , n

2n+1−i
2n+2−i i = n+ 2, . . . , 2n,
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with γn+1 = 1 and γ2n+1 = 0, where n ∈ N is such that n > κ. The distributions over the set of outcomes for the
different actions and their corresponding costs are given by:

Fai,ω1
= 0 cai

= 0, i = 1, . . . , κ− 1.

Fai,ω1 = 1− γi
√
δ cai = 0, i = κ, . . . , n.

Fa2n+1,ω1
= 1 ca2n+1 = 0.

and the principal’s reward is r = (1, 0). Notice that the distribution over outcomes of the different actions are always
well defined because of the definition of κ > 0. Furthermore, since all the agent’s actions ai with i < k are coincident,
we assume for the sake of presentation that the agent always selects a1. It is easy to verify that the value of an optimal
(non-robust) contract is OPT = 1 since the agent breaks ties optimistically and c2n+1 = 0.

With a similar argument to the one proposed by (Dütting et al., 2024) in Proposition 3.9, an optimal δ-robust contract is
such that p⋆ = (0, α) for some α ∈ R+. Consequently, in the rest of the proof, we focus on determining the maximum
utility achievable in a linear, δ-robust contract.

For every ai ∈ A, with κ < i ≤ 2n+ 1, if α ∈ R+ is such that aδ(αr) = ai, then the two following conditions hold.

• All the actions aj ̸∈ Aδ(αr) for each j < i. This is because uP(α, aj) ≤ uP(α, ai) for each α ∈ R+ since
{γi}i∈[2n+1] is a decreasing sequence. Thus, the latter observation implies that:

uA(α, aj) ≤ uA(α, ai−1) = αRai−1
− cai−1

≤ max
i∈[2n+1]

uA(α, ai)− δ

= uA(α, a2n+1)− δ
= αRa2n+1 − ca2n+1 − δ
= α− δ.

Therefore, we have that:

αRi−1 ≤ α− δ,

and, thus, α ≥
√
δ/γi−1.

• The action ai ∈ Aδ(αr). Thus,

αRai
− cai

> max
i∈[2n+1]

uA(α, ai)− δ = α− δ,

which implies that α <
√
δ/γi.

The two observation above shows that ai, with i > κ, is a δ-best response for all the values of α such that:
√
δ/γi−1 ≤ α <

√
δ/γi.

Thus, the smallest value of α ∈ R+ such that aδ(αr) = ai is αi :=
√
δ/γi−1, when i > κ. With the same argument

above, it is possible to show that a1 = aδ(αr) for all α ∈ [α1, ακ) and aκ = aδ(αr) for all α ∈ [ακ, ακ+1), with
α1 = 0 and ακ = δ.

We also observe that the principal’s utility in each αi, with i ∈ {κ+ 1, . . . , 2n+ 1}, is such that:

uP(αi, ai) = (1− αi)Rai
=

(
1−

√
δ

γi−1

)(
1− γi

√
δ
)

=

(
1−

√
δ

γi−1

)(
1− γi

√
δ
)

=

(
1−

(
γi +

1

γi−1

))√
δ +

γi
γi−1

δ.

Therefore, using the latter formula, we have that the following holds.

13
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• If i = κ+ 1, . . . , n, we have:

u(αi) ≤ 1− 2
√
δ +

γi
γi−1

δ ≤ 1− 2
√
δ + δ,

since {γi}i≥κ is a decreasing sequence.
• If i = n+ 1, n+ 2, we have:

u(αi) ≤ 1−
(
1 +

n− 1

n

)√
δ +

n− 1

n
δ ≤ 1− 2

√
δ + δ +

√
δ

n
.

• If i = n+ 3, . . . , 2n+ 1, we have:

u(αi) ≤ 1− 2
√
δ +

γi
γi−1

δ ≤ 1− 2
√
δ + δ,

since {γi}i≥κ is a decreasing sequence.

We also observe that the principal’s utility in ακ is such that:

u(ακ) = (1− δ)(1− γκ
√
δ).

since γk > 1 and δ > 0. Thanks to the definition of κ, with a simple calculation, it possible to show that:

κ =


⌈

1
1−

√
δ

⌉
if 1

1−
√
δ
̸∈ N

1
1−

√
δ
+ 1 if 1

1−
√
δ
∈ N.

Thus, when 1/(1−
√
δ) ̸∈ N, we have:

u(ακ) = (1− δ)(1− γκ
√
δ)

= (1− δ)

1−

⌈
1

1−
√
δ

⌉
⌈

1
1−

√
δ

⌉
− 1

√
δ


≤ (1− δ)

(
1− 2

√
δ + δ

)
.

Similarly, it is possible to show that the same relation holds even when 1/(1−
√
δ) ∈ N. Finally, by putting all

together, we have that:

OPT(δ)− OPTLB(δ) ≤ max
i∈[2n+1]

u(αi)− (1− 2
√
δ + δ)

= u(αn+1)− (1− 2
√
δ + δ) ≤

√
δ

n
,

concluding the first part of the proof.

2. We consider an instance with |Ω| = |A| = 2 and r = (0, 1). The distributions over the set of outcomes for the different
actions and their corresponding costs are given by:{

Fa1 = (1, 0) ca1 = 0

Fa2 = (0, 1) ca2 = 0.

It is easy to verify that SW = Ra2 − ca2 = 1. Furthermore, with a similar argument to the one proposed by (Dütting
et al., 2024) in Proposition 3.9, an optimal δ-robust contract is such that p⋆ = (0, α) for some α ∈ R+.

We show that OPT(δ) = 1− δ. Let a1 ∈ A be the opt-out action. We observe that a1 ̸∈ Aδ(αr) for all the α ∈ R+

that satisfy:
αRa2 − ca2 = α ≥ αRa1 − ca1 + δ = δ.

Thus, a1 ̸∈ Aδ(αr) for all α ≥ δ. Therefore, the smallest α ∈ R+ such that the agent selects the action a2 coincides
with δ > 0. Thus, the largest utility the principal can achieve satisfies OPT(δ) = 1− δ = SW− δ.

14
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The two points above conclude the proof.

Proposition 3. The function (0, 1) ∋ δ 7→ OPT(δ) is continuous and non-increasing in δ. Moreover, limδ→0+ OPT(δ) =
OPT and limδ→1− OPT(δ) = 0.

Proof. We prove the claims separately.

• We first show that OPT(δ) is a continuous function. Let p⋆ ∈ Rm
+ be a δ-robust and p′ = (1−

√
ϵ)p⋆ +

√
ϵr. Then, by

Lemma 3, we have:

OPT(δ + ϵ) ≥ uP(p′, aδ+ϵ(p′)) ≥ uP(p⋆, aδ(p⋆))− 2
√
ϵ+ ϵ = OPT(δ)− 2

√
ϵ+ ϵ.

Thus, rewriting the latter inequality and taking the limit, we have that:

0 = lim
ϵ→0

(2
√
ϵ− ϵ) ≥ lim

ϵ→0
OPT(δ)− OPT(δ + ϵ).

Let p⋆ ∈ Rm
+ be a δ′-robust and p′ = (1−

√
ϵ)p⋆ +

√
ϵr with δ′ = δ − ϵ. Then, by Lemma 3, we have:

OPT(δ) = OPT(δ′ + ϵ) ≥ uP(p′, aδ
′+ϵ(p′)) ≥ uP(p⋆, aδ

′
(p⋆))− 2

√
ϵ+ ϵ = OPT(δ − ϵ)− 2

√
ϵ+ ϵ.

Thus, by taking the limit, we have that:

0 = lim
ϵ→0

(2
√
ϵ− ϵ) ≥ lim

ϵ→0
OPT(δ − ϵ)− OPT(δ).

Since the latter considerations hold for every δ ∈ (0, 1), we can easily show that OPT(δ) is continuous in δ ∈ (0, 1).

• We now prove that OPT(δ) is non-increasing. Let δ, δ′ ∈ (0, 1) such that δ′ < δ. Furthermore, let p⋆ ∈ Rm
+ be an

optimal δ-robust contract. Therefore, we have:

OPT(δ) = u(aδ(p⋆), p⋆) ≤ u(aδ
′
(p⋆), p⋆) ≤ OPT(δ′),

since, for each p ∈ Rm
+ , we have Aδ′(p) ⊆ Aδ(p).

• By Proposition 1, we have:
lim

δ→0+
OPT(δ) ≥ lim

δ→0+
OPT− 2

√
δ + δ = OPT,

and,
lim

δ→1−
OPT(δ) ≤ lim

δ→1−
1− δ = 0.

The two points above conclude the proof.

Lemma 3. Given any δ, ϵ ∈ (0, 1) and a contract p ∈ Rm
+ , the following holds for every θ ∈ Θ:

uP(p′, aθ,δ+ϵ(p′), θ) ≥ uP(p, aθ,δ(p), θ)− 2
√
ϵ,

where p′ := (1−
√
ϵ)p+

√
ϵr.

Proof. For the sake of the presentation, we avoid the dependence on the type θ ∈ Θ. We split the proof in two cases:

1. If aδ+ϵ(p′) ̸∈ Aδ(p), then aδ+ϵ(p′) is not a δ-best-response in p. Therefore, we have that:∑
ω∈Ω

Faδ(p),ωpω − caδ(p) ≥
∑
ω∈Ω

Faδ+ϵ(p′),ωpω − caδ+ϵ(p′) + δ,

and, ∑
ω∈Ω

Faδ+ϵ(p′),ωp
′
ω − caδ+ϵ(p′) ≥

∑
ω∈Ω

Faδ(p),ωp
′
ω − caδ(p) − δ − ϵ.

15
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Then, by taking the summation of the above quantities and employing the definition of p′ we get:
√
ϵ ≥

∑
ω∈Ω

(Faδ(p),ω − Faδ+ϵ(p′),ω)(rω − pω).

Therefore, we can prove that the following holds:

uP(p, aδ(p))− uP(p′, aδ+ϵ(p′)) =
∑
ω∈Ω

Faδ(p),ω(rω − pω)−

(∑
ω∈Ω

Faδ+ϵ(p′),ω(rω − p′ω)

)

=
∑
ω∈Ω

Faδ(p),ω(rω − pω)−
(
1−
√
ϵ
)(∑

ω∈Ω

Faδ+ϵ(p′),ω(rω − pω)

)

≤
(
1−
√
ϵ
)(∑

ω∈Ω

(Faδ(p),ω − Faδ+ϵ(p′),ω)(rω − pω)

)
+
√
ϵ

≤ 2
√
ϵ− ϵ.

2. if aδ+ϵ(p′) ∈ Aδ(p), then one of the following hold.

(a) if aδ(p) ∈ Aδ+ϵ(p′), then either aδ(p) ≡ aδ+ϵ(p′) or aδ(p) provides the same principal’s utility as aδ+ϵ(p′) in p′.
Indeed, suppose by contradiction that the following holds:∑

ω∈Ω

Faδ+ϵ(p′),ω(rω − p′ω) <
∑
ω∈Ω

Faδ(p),ω(rω − p′ω).

Then, we have: ∑
ω∈Ω

Faδ+ϵ(p′),ω(rω − p′ω) = (1−
√
ϵ)
∑
ω∈Ω

Faδ+ϵ(p′),ω(rω − pω)

≥ (1−
√
ϵ)
∑
ω∈Ω

Faδ(p),ω(rω − pω)

=
∑
ω∈Ω

Faδ(p),ω(rω − p′ω).

where the inequality is a consequence of the fact that both aδ(p) and aδ+ϵ(p′) belongs to Aδ(p). This, reaches a
contradiction with the initial assumption. Thus, we have that:

uP(p′, aδ+ϵ(p′)) =
∑
ω∈Ω

Faδ+ϵ(p′),ω(rω − p′ω)

=
∑
ω∈Ω

Faδ(p),ω(rω − p′ω)

= (1−
√
ϵ)
∑
ω∈Ω

Faδ(p),ω(rω − pω)

≥
∑
ω∈Ω

Faδ(p),ω(rω − pω)−
√
ϵ

≥ uP(p, aδ(p))−
√
ϵ.

(b) if aδ(p) ̸∈ Aδ+ϵ(p′), then the following holds:∑
ω∈Ω

Faδ(p′),ωpω − caδ(p) ≥
∑
ω∈Ω

Faδ+ϵ(p′),ωpω − caδ+ϵ(p′) − δ,

and, ∑
ω∈Ω

Faδ+ϵ(p′),ωp
′
ω − caδ+ϵ(p′) ≥

∑
ω∈Ω

Faδ(p),ωp
′
ω − caδ(p) + δ + ϵ.
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Then, by taking the summation of the above quantities and employing the definition of p′ we get:

0 ≥
∑
ω∈Ω

(Faδ(p),ω − Faδ+ϵ(p′),ω)(rω − pω).

Then, using the same argument employed at point (a) we can show that:

uP(p, aδ(p))− uP(p′, aδ+ϵ(p′)) ≤
√
ϵ,

concluding the proof.

Theorem 2. The regret suffered by Algorithm 2 can be upper bounded as follows:

RT (C, δ) ≤ Õ
(
T 1− 1

2(m+1)

)
.

Proof. In the following, we let:

1. p⋆ be such that
∑

θ∈Θ λθu
P(p⋆, aθ,δ(p⋆), θ) = OPT(C, δ).

2. p′ := (1−
√
2ϵ)p⋆ +

√
2ϵr. Notice that p′ ∈ [0, 1]m since both p, r ∈ C and C is convex.

3. p ∈ Bϵ be such that ∥p − p′∥∞ ≤ ϵ. Notice that there always exists at least once contract p̄ satisfying the latter
condition because of the definition of Bϵ and the fact that p′ ∈ [0, 1]m.

We start by observing that, for each θ ∈ Θ, it holds aθ,δ(p) ∈ Aθ,δ+2ϵ(p′). Indeed, we have:∑
ω∈Ω

Fθ,aθ,δ(p),ωp
′
ω − cθ,aθ,δ(p) ≥

∑
ω∈Ω

Fθ,aθ,δ(p),ωpω − cθ,aθ,δ(p) − ϵ

>
∑
ω∈Ω

Fθ,a,ωpω − cθ,a − ϵ− δ

≥
∑
ω∈Ω

Fθ,a,ωp
′
ω − cθ,a − 2ϵ− δ,

for every actions a ∈ A. The above inequalities follows since:∑
ω∈Ω

Fθ,a,ω(pω − p′ω) ≤ ∥Fθ,a∥1∥p− p′∥∞ ≤ ϵ,

for every actions a ∈ A and θ ∈ Θ.

Therefore, we can prove that the following holds:∑
θ∈Θ

λθu
P(p, aθ,δ(p), θ) ≥

∑
θ∈Θ

λθu
P(p′, aθ,δ(p), θ)− ϵ

≥
∑
θ∈Θ

λθu
P(p′, aθ,δ+2ϵ(p′), θ)− ϵ

≥
∑
θ∈Θ

λθu
P(p⋆, aθ,δ(p⋆), θ)− 2

√
2ϵ

= OPT(C, δ)− 2
√
2ϵ, (8)

where the first inequality above holds because
∑

ω∈Ω Fθ,a,ω(pω − p′ω) ≤ ∥Fθ,a∥1∥p− p′∥∞ ≤ ϵ for every actions a ∈ A
and type θ ∈ Θ. The second inequality holds because of the definition of δ-best response, while the third inequality follows
from Lemma 3.

At this point, we can decompose the cumulative regret as follows:

RT (C, δ) = T · OPT(C, δ)− E
[ T∑

t=1

∑
θ∈Θ

λθu
P(pt, aθ,δ(pt), θ)

]
17
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≤ T · OPT(C, δ)− T ·max
p∈Bϵ

∑
θ∈Θ

λθu
P(p, aθ,δ(p), θ)︸ ︷︷ ︸

(a)

+ T ·max
p∈Bϵ

∑
θ∈Θ

λθu
P(p, aθ,δ(p), θ)− E

[ ∑
t∈[T ],θ∈Θ

λθu
P(pt, aθ,δ(pt), θ)

]
︸ ︷︷ ︸

(b)

. (9)

We focus on bounding term (a) in Eq. (9). Let p̄ ∈ [0, 1]m be the contract defined at point 3. Then, we have:

T · OPT(C, δ)− T max
p∈Bϵ

∑
θ∈Θ

λθu
P(pt, aθ,δ(pt), θ) ≤ T · OPT(C, δ)− T

∑
θ∈Θ

λθu
P(p̄, aθ,δ(p̄), θ)

≤ 2
√
2ϵ T,

where the last inequality holds because of Eq. (8). We focus on bounding term (b) in Eq. (9). By employing the same
analysis to prove the regret bound in UCB1 (see, e.g., (Lattimore & Szepesvári, 2020)), we obtain:

T ·max
p∈Bϵ

∑
θ∈Θ

λθu
P(p, aθ,δ(p), θ)− E

[ ∑
t∈[T ]

∑
θ∈Θ

λθu
P(pt, aθ,δ(pt), θ)

]
≤ O

(√
T |Bϵ| log(T )

)
. (10)

Finally, observing that |Bϵ| ≤ O((1/ϵ)m), by putting (a) and (b) in Eq. (9) together and setting ϵ = T− 1
m+1 , we have:

RT (C, δ) ≤ Õ
(
T 1− 1

2(m+1)

)
,

concluding the proof.

Corollary 1. The regret suffered by Algorithm 2 can be upper bounded as follows:

RT (C) ≤ Õ
(
T 1− 1

2(m+1)

)
+ 2
√
δT.

Proof. Let p⋆ be an optimal non-robust contract inside C. Then we have:

RT (C) = T · OPT(C)− E
[ T∑

t=1

∑
θ∈Θ

λθu
P(pt, aθ,δ(pt), θ)

]

= T · (OPT(C)− OPT(C, δ)) + T · OPT(C, δ)− E
[ T∑

t=1

∑
θ∈Θ

λθu
P(pt, aθ,δ(pt), θ)

]

≤ 2
√
δT + T · OPT(C, δ)− E

[ T∑
t=1

∑
θ∈Θ

λθu
P(pt, aθ,δ(pt), θ)

]
≤ 2
√
δT + Õ

(
T 1− 1

2(m+1)

)
,

where the first inequality holds by employing the same argument needed to prove Proposition 1, and the second inequality
holds thanks to Theorem 2, concluding the proof.
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