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ABSTRACT

Foundation models have significantly advanced machine learning applications
across various modalities, including images. Recently numerous attempts have
been made on developing foundation models specifically tailored for remote sensing
applications, predominantly through masked image modeling techniques. This
work explores the essential characteristics and performance expectations for a
foundation model in aerial imagery. We introduce a benchmark designed to evaluate
the model’s performance as well as robustness to changes in scale and spectral
bands of the input. Our benchmarks encompass tasks unique to aerial imagery,
such as change detection and scene classification, and utilize publicly available
datasets RESISC45, BigEarthNet, LEVIR-CD and OSCD. We evaluate recently
proposed foundation models on the benchmark. Furthermore, we explore the
impact of various design choices in pretraining and fine-tuning on the performance
of the models on our benchmark. Specifically, we pretrain several variations of a
self-distillation based self-supervised model on aerial imagery datasets, including
one without scale-augmentations and another one with a pretrained mask decoder
module.

1 INTRODUCTION

The rapid advancements in remote sensing technologies have led to an increased reliance on foun-
dation models for interpreting vast amounts of imagery data captured by satellites (e.g., Sentinel-1,
Sentinel-2) (Akiva et al., 2022; Mall et al., 2023; Mañas et al., 2021; Wanyan et al., 2023; Cong et al.,
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2022; Reed et al., 2023; Sun et al., 2023; Hong et al., 2024; Muhtar et al., 2023; Mendieta et al., 2023;
Tang et al., 2023; Fuller et al., 2023; Bao et al., 2023; Guo et al., 2023; Wang et al., 2023c; Bastani
et al., 2023). Usually, this data is raw and unlabeled, whereas creating labels is time-consuming and
expensive. For many critical downstream tasks, including change detection, image classification, and
semantic segmentation (utilized for tasks such as land cover mapping, flood or disaster monitoring,
urban growth analysis, vegetation health monitoring, and terrain analysis), having a large amount of
labeled data is crucial to train effective models. In line with recent advancements in self-supervised
and semi-supervised learning for vision tasks, the current trend is to train a self-supervised model
(either contrastive or based on masked image modeling) which later serves as a backbone for subse-
quent downstream tasks. Subsequently, a small amount of labeled data can be used to fine-tune this
self-supervised learning-based backbone, resulting in a competitive model for specific downstream
tasks.

In this work, we focus on evaluating the performance of established foundation models, specifically
designed for remote sensing imagery, in the context of scene classification (Cheng et al., 2017; Yang
& Newsam, 2010; Sumbul et al., 2019) and change detection (Chen & Shi, 2020; Lebedev et al., 2018;
Caye Daudt et al., 2018), by focusing on their generalization capabilities across image resolutions
and bands. To analyze the impact of the design choices made in those foundation models, we develop
another model using a self-distillation approach.

Our contributions are as follows. (a) We develop a benchmark for remote sensing (RS) foundation
models that evaluate them with respect to generalization capabilities of the derived models across
scale and input bands. (b) We pretrain several versions of iBOT (Zhou et al., 2022), a self-distillation
based ViT (Dosovitskiy et al., 2021), on MillionAID (Long et al., 2021), an aerial imagery dataset, to
analyze the impact of design choices on our benchmark. One of the versions includes a pretrained
UperNet-like (Xiao et al., 2018) head for segmentation and change detection downstream tasks. (c)
We show that the publicly available foundation models we have tested (Bao et al., 2023; Bastani
et al., 2023; Mendieta et al., 2023; Zhou et al., 2022) have a lot of room for improvement in obtaining
generalization capabilities and transferring those capabilities to downstream models.

1.1 RELATED WORK

Some recent developments in the field include various approaches using either supervised or self-
supervised learning algorithms. Surprisingly, for some transformer-based models, performance on
ImageNet (Deng et al., 2009) in certain instances outperforms those pre-trained on remote sensing
imagery (Vanyan et al., 2023a). The effect of pre-training on ImageNet vs a large remote sensing
scene recognition dataset is studied in Remote Sensing Pretraining (RSP) (Wang et al., 2023a).
To serve as a pre-training dataset, some existing techniques involve gathering data from available
open-source large remote sensing datasets and employing it to train the self-supervised algorithm.
The two main methods to train self-supervised foundation models are contrastive learning-based
methods and generative-based methods (masked image modeling).

The contrastive learning-based approaches include: SECO (Mañas et al., 2021) employs a gener-
alization of contrastive learning, defining various types of augmentations (seasonal, artificial, and
mixed). They also created a dataset from Sentinel-2, by first picking locations closer to urban areas
and later generating several images for these locations for various seasons. CACo (Mall et al., 2023)
introduces a new contrastive loss called Change Aware Contrastive Loss which considers long-term
temporal information in satellite imagery to encourage invariance to seasonal variations while main-
taining sensitivity to permanent changes. MATTER (Akiva et al., 2022) presents a material and
texture-based approach for self-supervised pretraining to generate good representations for remote
sensing downstream tasks. Dino-MC (Wanyan et al., 2023) utilizes the DINO pre-training framework
for self-supervised learning by using multiple crops of the same image with different sizes. Finally,
(Tolan et al., 2024) pretrained DINOv2 on MAXAR imagery with a 0.59m Ground Sample Distance
(GSD) and collected a new high-resolution dataset to further enhance performance.

Another stream of works, SatMAE (Cong et al., 2022) Scale-MAE (Reed et al., 2023), RingMO (Sun
et al., 2023), SpectralGPT (Hong et al., 2024) extend on Masked Autoencoders (MAE) (He et al.,
2022), which is a successful foundation model, based on masked image modeling, where the pretext
task is to recover the image, based on its masked version. Scale-MAE (Reed et al., 2023) makes two
significant contributions to the MAE (He et al., 2022) framework. First, it introduces the GSD-based
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positional encoding. Second, it introduces the Laplacian-pyramid decoder to the MAE framework,
encouraging the network to learn multiscale representations. SatMAE (Cong et al., 2022) utilizes
temporal and spectral metadata in a positional encoding to encode spatiotemporal relationships in
data. RingMo (Sun et al., 2023) modified the masking strategy of MAE (He et al., 2022) to adapt to
dense and small objects in complex RS images and trained a self-supervised representation learning
model on a dataset of two million unlabeled RS images. SpectralGPT (Hong et al., 2024) is an
MAE-based RS foundation model that utilizes a 3D masking for processing spectral data, an encoder
to learn spectrally visual representations, and a decoder for multi-target reconstruction. SpectralGPT
is pretrained on 1 million multispectral images from the Sentinel-2 satellite (containing 12 spectral
bands) from fMoW (Christie et al., 2018) and BigEarthNet (Sumbul et al., 2019).

A more recent direction of works aimed to combine reconstruction-based and contrastive learning-
based approaches: CMID (Muhtar et al., 2023) learns representations with both global semantic
separability and local spatial perceptibility by combining contrastive learning with masked image
modeling in a self-distillation way. GFM (Mendieta et al., 2023) also utilizes a masked image
modeling framework. They first gather a pretraining dataset of 1.3 million Sentinel-2 images using
the sampling technique from SECO (Mañas et al., 2021). They utilize the dataset to pre-train a Swin-B
Transformer model with the MIM objective from SimMIM (Xie et al., 2022). GFM (Mendieta et al.,
2023) observed that some of the state-of-the-art methods for aerial imagery often do not perform
better than ImageNet-22k pretrained ViTs. Cross-Scale-MAE (Tang et al., 2023) enhances MAE
framework by incorporating several additions, including scale augmentations and enforcing cross-
scale information consistency to improve its performance across different scales. CROMA (Fuller
et al., 2023) encodes masked-out multispectral optical and SAR samples, aligned in space and time
to perform cross-modal contrastive learning.

Some other works aim to utilize various channels simultaneously, considering that many satellites
can capture multiple bands simultaneously. For example, Sentinel-2 is capable of capturing images
with 13 different bands. ChannelViT (Bao et al., 2023) constructs patch tokens independently for
each input channel and then uses learnable channel embeddings added to the patch tokens, similar to
positional embeddings. ChannelViT generalizes well even when there is limited access to all channels
during training. SkySense (Guo et al., 2023) is pretrained on a curated multi-modal RS dataset of
21.5 million multimodal RS image triplets involving RGB high-resolution images and multitemporal,
multispectral and SAR sequences. It incorporates a factorized multi-modal spatiotemporal encoder
taking temporal sequences of optical and SAR data as input. CROMA (Fuller et al., 2023) and
DeCur (Wang et al., 2023c) explored multi-modal pre-training.

Another direction of works focused on multi-task pertaining: Satlas (Bastani et al., 2023) introduced a
large dataset for RS supervised pertaining as well as proposed a multi-task model, facilitating training
on the multitask annotated Satlas dataset. A more recent, Multi-Task Pretraining (MTP) (Wang et al.,
2024) proposes to use a shared encoder and a task specific decoder for pertaining stages to address the
issue of transferring the pretrained model into specific downstream tasks. MTP uses the the SAMRS
dataset (Wang et al., 2023b), for pre-trained. The SAMRS dataset leverages the segment anything
model (SAM) and the well known RS datasets to develop an efficient pipeline for generating a large
scale RS segmentation dataset.

Recently, for the change detection task, an end-to-end super-resolution-based network for high-
resolution image change detection SRCDNet (Liu et al., 2022), was developed to address the change
detection problem, for various resolution images. We extend this idea to more classification and
change detection datasets.

2 EXPECTATIONS FROM FOUNDATION MODELS

Most of the evaluation strategies for remote sensing foundation models are based on fine-tuning on
downstream classification, segmenetation or other datasets, and measuring the performance on the
corresponding test sets. While this is an important aspect, it does not capture the potential benefits of
large-scale pretraining.

We argue that the foundation models should bring features and capabilities to the fine-tuned models
that would not be possible by leveraging solely the labeled data. These capabilities include general-
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ization across various kinds of shifts. In this paper we focus on two axis of generalization: image
resolution (i.e. ground sampling distance) and the set of bands of the capturing device.

A notable example from natural language processing is described in (Garcia et al., 2023). A large
language model is trained on a mixture of non-parallel English and Chinese texts, and then it is
prompted to translate with only five pairs of translated sentences. With such prompts the language
model almost matches the performance of Google Translate production model. Hence, its translation
capabilities generalize to vocabularies and topics way beyond the five examples can cover.

There are many axes of variation in aerial imagery: resolution, weather conditions, time of the year,
time of the day, geographical location etc. We expect strong foundation models for remote sensing to
enable models derived from them to generalize across all possible variations. New benchmarks are
required to measure this kind of generalization.

Note that in natural language processing, large language models pretrained on web-scale data,
allow few-shot learning, where the downstream task is described by a few samples written in the
prompt, or even zero-shot learning, where the task is described in human languages without explicit
examples. This aspect is not measured for pure image-based methods as they do not have an interface
for describing the task at the input. Vision-language models like CLIP (Radford et al., 2021) or
Chameleon (Team, 2024) allow evaluations of similar capabilities, but their analysis is beyond the
scope of this work.

This implies that pure image-based models require fine-tuning of some form to be adapted for a
downstream task. We are interested in measuring the generalization of the adapted models. Hence,
the way the models are adapted can be critical in retaining generalization capabilities. Developers
of the foundation models should ideally provide recipes for adaptation on downstream tasks that
preserve the generalization properties.

Compute constraints. Foundation models should target specific compute requirements. Many
downstream applications require the models to run on low power devices or need to support large
volumes of data in deployment, and hence require limited number of FLOPs per image. It is important
to note that this requirement refers to the fine-tuning stage and the deployment of the final model,
and not to the pretraining process. For example, DINOv2 (Oquab et al., 2023) has a ViT-B version
which is distilled from a larger ViT-g model. While the large model was trained using hundreds of
GPUs, the distilled version can be easily fine-tuned on a single consumer-grade GPU.

In summary, a typical foundation model for remote sensing can use unlimited compute and data for
pretraining, but should be able to run on limited compute during inference, should support a simple
recipe for fine-tuning for any downstream task, and, most importantly, should inherit remote-sensing
specific generalization capabilities. We attempt to formalize these expectations by designing a
benchmark in the next section.

3 BENCHMARK DESCRIPTION

In this section, we propose a benchmark suite for evaluating foundation models for remote sensing in
the spirit of the expectations defined in Section 2.

3.1 CHOOSING AXES OF GENERALIZATION

In this subsection we analyze possible axes of generalization for foundation models.

Generalization to lower spatial resolutions. This is an important direction with many practical
applications. Low resolution satellites like Landsat and Sentinel constantly provide publicly available
imagery, while higher resolution imagery is usually harder to find. In many scenarios image labeling
is being done on higher quality imagery, but in test time the images might come from satellites with
lower resolution. We expect the models to perform on such distribution shifts as good as on the
images with the original resolution.

Generalization to higher spatial resolutions. This scenario might also happen in practical applica-
tions, but retaining the original performance on higher resolution is trivial by downsizing the images
to the original resolution. One can expect that the additional details visible in higher resolution
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might allow to exceed the performance on the original images, but this is beyond the scope of a
generalization benchmark.

Generalization to other bands. This is very practical and is covered by our proposed benchmark.
In remote sensing, different satellites capture imagery across various spectral bands. Often, models
are trained on imagery from a limited number of bands (e.g., RGB or a specific multispectral range),
but in real-world applications, they may encounter images with additional or fewer bands. The
ability to generalize across different spectral compositions is crucial as additional bands may provide
complementary information as well as for some applications some bands may be missing.

Generalization to other seasons. In important applications, such as change detection or segmentation,
a good foundation model should generalize well across seasons. For example, when identifying areas
with new construction, whether the landscape is snowy, sunlit or foggy should not affect the model’s
performance. This is important, but is challenging to collect data because the seasons are not coherent
in different geographical regions. This is left for future work.

Generalization to other times of the day. Similar to season generalization, a good foundation model
should generalize well across different times of the day. Variations such as changes in shadows,
lighting conditions, and overall brightness should not impact the model’s performance. However, this
is not a practical problem, as even the same satellite will visit the same location at different times of
the day, so every practical dataset will have internal variability across this dimension.

Generalization to other geographical locations. A strong foundation model should be able to
generalize accross different geographical regions, as terrain types, nature and human-made struc-
ture/architecture change significantly based on location. Evaluating this kind of generalization is
notoriously hard because of significant label shift that exists between geographic locations which
strongly affects the performance of the models. FMoW-WILDS (Koh et al., 2021) dataset contains
geographical split, but due to severe shifts in label distributions it is hard to isolate and properly
measure the generalization abilities with respect to pure domain shift.

Hence, in this work we focus on two shifts: generalization to unseen resolutions and bands. We will
measure generalization on two types of tasks: scene classification and change detection.

3.2 GENERALIZATION TO SMALLER IMAGE RESOLUTION

3.2.1 SCENE CLASSIFICATION

We take two commonly used benchmark datasets in the literature: RESISC45 (Cheng et al., 2017)
and UC Merced (Yang & Newsam, 2010) see Appendix A.

We measure the performance not only on the original resolutions of the images, but also on the
images with 1/2, 1/4 and 1/8 resolutions. The images are resized by 1/x factor and the scaled back by
x which produces an image with the same number of pixels but with lower quality. This mimics how
the image could have been captured if the satellite had a lower resolution. As an evaluation metric,
we draw a curve where x-axis is the scaling parameter (1/8, 1/4, 1/2, 1) and y-axis is the accuracy
score for each version. We report the area under this curve as our final metric, and call it AUC-Acc.

In this benchmark we restrict the models to use 50 GFLOPs on a single image. This threshold is
independent from the neural architecture, and ViT-B/16 on an image of size 256x256px is within the
limits.

3.2.2 CHANGE DETECTION

For change detection we use another two commonly used datasets: CDD (Lebedev et al., 2018) and
LEVIR-CD (Chen & Shi, 2020) see Appendix A.

We create partially scaled versions of the test sets of these datasets. We maintain the scale of the first
image unchanged, while for the second image, we distort it by reducing its quality by a factor of
2, 4, and 8. Note that a similar setup has been first proposed in (Liu et al., 2022). We evaluate on
the original resolution, as well as on the scaled versions. We compute micro-averaged F1 score for
each of the versions. Finally we draw a curve where x-axis is the scaling parameter and y-axis is the
micro-averaged F1 score for each version. We report the area under this curve as our final metric, and
call it AUC-F1.
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For this benchmark, we restrict the models to use 100 GFLOPs on a pair of images.

3.3 GENERALIZATION TO UNSEEN BANDS

Most of the publicly available multi-band remote sensing datasets originate from European Sentinel
satellites. Sentinel-1 uses C-band synthetic aperture radar (SAR) and captures VH and VV bands
that store complex numbers. Different papers use various preprocessing schemes for those values. In
order to be able to merge images from various sources, we use the absolute values of the complex
numbers, and do not perform any additional preprocessing. Hence, for SAR data we have two bands,
denoted by VV and VH. Sentinel-2 has 12 bands of varying resolution. Following (Bao et al., 2023)
and many other papers, we drop 60m resolution bands (e.g. “coastal”), and use the bands with 10m
and 20m resolution (resizing all of them to 10m). Details are in Table 4 in Appendix.

3.3.1 SCENE CLASSIFICATION

To create a benchmark for evaluating the generalization on unseen bands for a classification task,
using the BigEarthNet (Sumbul et al., 2019) dataset, we utilize BigEarthNet-medium, which contains
approximately 10% of the images from the original BigEarthNet dataset. This dataset is created
for multi-label classification. First, we remove the images tagged as clouds and snow using the
lists available at http://bigearth.net. We use the BigEarthNet-medium dataset as follows: for each
experiment, we train on the RGB channels and evaluate on four tri-channel triplets and one bi-channel
pair: RGB, RGE1, RE1E2, N’S1S2, and VV VH (bi-channel). We compute the micro average
precision (mAP) for each experiment and report the average over these five values. The goal is to
determine if a model trained on RGB channels can generalize to other channel combinations.

3.3.2 CHANGE DETECTION

To create a benchmark for evaluating the generalization on unseen bands for a change detection task,
we use the Onera Satellite Change Detection (OSCD) dataset see Appendix A.

4 FACTORS CONTRIBUTING TO THE PERFORMANCE

4.1 IBOT PRETRAINING

To perform analysis of various factors on the generalization capabilities of the fine-tuned models, we
pre-trained several iBOT models using satellite imagery. As demonstrated in (Vanyan et al., 2023a),
self-distillation-based models, such as iBOT, outperform MIM-based models in obtaining robust
image representations, even in satellite imagery. Drawing on the findings of (Vanyan et al., 2023a),
we selected iBOT for pre-training with the MillionAID dataset (Long et al., 2021). To accommodate
the varying image sizes, we divided the original images into smaller square tiles, with each side
limited to a maximum of 550 pixels, resulting in a total of 2106700 images. Note that even the
original iBOT pretrained on ImageNet is quite strong, so we also included it in our comparative
analyses.

We trained iBOT for 200 epochs with peak learning rate 5× 10−4 that linearly decreases to 2× 10−6

over 5 warmup epochs. All RandomResizeCrops were converted to RandomCrops in the transforms.
The training was conducted using PyTorch Distributed Data Parallel to utilize multiple GPUs and
used 100 batch size per GPU. The experiments were performed on NVIDIA DGX A100 at the local
university and an instance with 8 NVIDIA H100s kindly provided by Nebius.ai. The loss curve
followed the typical pattern of similar networks (Fig. 4 in Appendix). The resulting model is labeled
as iBOT-MillionAID.

4.2 AUGMENTATION

Here we analyze the impact of scale augmentation on the robustness to scale changes. The original
iBOT algorithm has an augmentation module that randomly resizes the pictures and then crops to a
fixed size. For this experiment we have pretrained two versions, one without resizing, i.e. the scale
augmentation, and another one with resizing. The hypothesis is that the pretrained model will be
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more robust to scale changes, and this robustness will be transfered to the fine-tuned models, which
will cause higher AUC scores on our benchmarks.

Furthermore, we perform experiments with scale augmentation during fine-tuning. In this setting, we
randomly shrink the image (or the second image in case of change detection) by 2, 4 and 8 times,
and then resize it to get to the original resolution. This is the same transformation as we did when
transforming the test sets for our benchmark. While this kind of augmentations during fine-tuning are
beyond the scope of our benchmarks, the results of these experiments can act as an upper bound for
the scale robustness of the models.

Table 7 in Appendix shows the full results. When augmentations are not applied during fine-tuning,
augmentations during pretraining at 1:1 and 1:2 resolutions consistently give better results across all
datasets. However, this trend does not hold for smaller resolutions.

On the other hand, augmentations during fine-tuning have a significantly higher impact on the
generalization. In case of classification, we leverage 2×, 4×, and 8× versions of the original dataset.
Although we obtain 4× more data, this does not add new information, and we keep the total number
of optimization steps constant by decreasing the number of epochs by 4×. In case of change detection,
we randomly choose one of the augmented versions of the second image at each epoch, and train for
the same number of epochs as in the experiment without augmentations.

These experiments indicate that scale augmentation during pretraining still does not produce general-
ization capabilities at a level comparable to what one can obtain by augmenting during fine-tuning.

4.3 PRETRAINED MASK DECODER

Many downstream tasks in the remote sensing domain require an additional module on top of the
backbone to produce a binary mask. These include segmentation tasks that work on a single input
image and change detection tasks that require two input images. Here we develop an extension of
iBOT-MillionAID to have an additional mask decoder module that is already pretrained on large
amounts of data. As MillionAID does not contain any segmentation or change masks, we leverage
the teacher-student structure of iBOT and artificially generate masks the following way. The original
iBOT implementation passes two global crops of the input image to the teacher and the student,
and additional ten local crops to the student. We draw the mask of the second global crop in the
coordinate space of the first global crop and store it as a target mask. The patch representations of
the first global crop from the teacher and the second global crop by the student are concatenated and
passed to an UperNet decoder (Xiao et al., 2018) which produces a binary mask. This module adds
an additional pixel-wise cross-entropy loss term. Note that UperNet’s inputs come from four ViT
layers (3rd, 5th, 8th and 12th), not only the last one.

We explored the joint training of UperNet and the regular iBOT. We investigated two methods to
integrate mask loss into the iBOT training: either by obtaining the patch representations of both
global crops using only the student model or by using the teacher model to obtain one of them.
The training loss of the first approach was unstable, with some of the layer activations increasing
significantly during the training. The teacher-student approach didn’t encounter these issues, resulting
in successful joint training. The final architecture is shown in Fig. 1.

Table 1: The effect of a pretrained mask decoder on change detection tasks. All models are iBOTs
pretrained on MillionAID with scale augmentation.

LEVIR-CD 1:1 1:2 1:4 1:8 AUC-F1

Without Mask Decoder 90.6± 0.2 87.6± 0.9 50.4± 15.1 2.0± 1.0 65.2± 3.2
With Mask Decoder 90.6± 0.1 89.2± 0.1 66.6± 5.0 4.3± 1.1 69.1± 1.0

CDD
Without Mask Decoder 97.4± 0.0 96.8± 0.0 91.4± 0.6 79.2± 0.9 87.7± 0.2
With Mask Decoder 97.1± 0.0 96.7± 0.0 91.5± 0.5 80.1± 0.9 87.7± 0.2

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

… … …

Representations

Masking

G2

G1

Ĝ2

L1

L8

T

S

T (G1)

S (G2)

S (Ĝ2)
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Figure 1: iBOT pretraining architecture with an additional UperNet mask decoder that is trained
using the “overlap loss”. There are two global and eight local crops of the original image that pass
through Teacher (T) and Student (S) networks. The loss terms are calculated on top of various parts
of the extracted representations. Dotted lines imply that only the representations of the last layers are
used. Solid lines imply that representations of four layers are used (as an input to UperNet). Red
lines correspond to patch representations, while the blue lines correspond to CLS vectors.

We used 2.5 × 10−4 peak learning rate and cosine decay with 5 warmup epochs. We trained the
model for approximately 800 H100 GPU hours on an instance with 8 NVIDIA H100s provided by
Nebius.ai.

As shown in Table 1, there is a slight improvement in performance and significantly lower variance
across all scales with the pretrained mask decoder on LEVIR-CD. There is no visible change on CDD.
This can be explained by the large size of the CDD dataset. Similar to the discussion in Section 2, it
is likely that the additional power of the pretrained models is not critical when the fine-tuning dataset
is large enough. Another potential way to enhance the impact of pretrained decoders is to pretrain it
with denser supervision signal. While we used a binary mask calculated during pretraining, (Wang
et al., 2024) uses segmentation pseudo-labels generated by a strong domain-agnostic segmentation
model. The impact of that kind of supervision signal during pretraining is left for future work.

4.4 CATASTROPHIC FORGETTING DURING FINE-TUNING

While the pretrained models can have inherent generalization capabilities, it is possible that the
models “forget” those during fine-tuning. One way to measure this phenomenon is to repeat the
fine-tuning experiments with frozen backbones. In this setting the only part of the model that has
never seen inputs of diverse scales is the final linear layer (in case of classification) or the decoder.

Table 2 shows that the effect strongly depends on the downstream dataset. Particularly for RESISC45,
the approach with frozen backbone is significantly more robust to lower resolutions than the one
with full fine-tuning. On LEVIR-CD the same trend can be observed on 1:4 and 1:8 resolutions,
but the performance of the model with frozen backbone is slightly worse on 1:1 and 1:2 resolutions
compared to full fine-tuning. On UC Merced we see the oposite behaviour, when freezing the
backbone enhances performance on higher resolutions, but on lower resolutions full fine-tuning
outperforms the frozen model.

5 BASELINES

For the benchmarks on generalization to lower resolutions, we used SatlasPretrain (Bastani et al.,
2023) trained on high-resolution imagery (Aerial) and on the RGB subset of Sentinel-2 imagery
(Sentinel2), GFM (Mendieta et al., 2023), and general-purpose iBOT pretrained on ImageNet as
baseline. For the benchmarks on generalization to unseen bands, we used ChannelViT (Bao et al.,
2023) and SatlasPretrain’s multispectral version. Each of these models has a different training
paradigm and pretraining dataset. iBot is a self-supervised method pretrained on ImageNet. GFM
combines two concepts: self-supervised pretraining on a custom-collected dataset, GeoPile, and
continual pretraining to retain knowledge obtained from pretraining on ImageNet. SatlasPretrain is
pretrained on a custom-collected dataset, Satlas, in a supervised manner. ChannelViT is a supervised
method that considers the presence of a varying number of bands in the input data. Clay v1 (cla,
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Table 2: The impact of full fine-tuning on the loss of generalization capabilities. All models are
iBOTs pretrained on MillionAID with scale augmentation. No scale-augmentation was performed
during fine-tuning (or linear probing).

RESISC45 AUC-ACC

Full fine-tuning 93.4± 0.2 84.3± 1.2 47.4± 5.6 18.7± 2.0 66.2± 1.8
Frozen backbone 94.6± 0.1 92.2± 0.2 66.5± 1.5 25.1± 1.3 73.8± 0.5

LEVIR-CD 1:1 1:2 1:4 1:8 AUC-F1

Full fine-tuning 90.6± 0.2 87.6± 0.9 50.4± 15.1 2.0± 1.0 65.2± 3.2
Frozen backbone 84.4± 0.0 84.4± 0.2 61.6± 7.8 3.4± 4.0 64.7± 2.0

UC Merced AUC-ACC

Full fine-tuning 98.7± 0.8 97.9± 1.3 84.3± 4.3 46.0± 8.3 82.9± 1.0
Frozen backbone 99.5± 0.1 99.2± 0.3 75.7± 2.9 31.3± 3.9 80.2± 0.7
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Figure 2: The results of the baselines on our benchmark tasks for generalization across image
resolution. The top row shows classification on RESISC and UC Merced, while the bottom row
shows change detection on CDD and LEVIR-CD. X-axis: Scale of Distortions, Y-axis: Micro-F1
Scores.

2024) is a self-supervised method that utilizes a hybrid loss combining distillation and reconstruction
components. This model also accepts a varying number of input channels. Prithvi (Jakubik et al.,
2023) is a modification of a MAE model to support 3D inputs with 6 channels.
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Figure 3: The results of the baselines on our benchmark tasks for generalization across bands. X-axis
shows the performance on the RGB bands (the ones used in fine-tuning), while Y-axis shows the
average performance as defined in the benchmark. For more details see Table 3 in Appendix.

5.1 EXPERIMENTAL SETUP

To adapt the models for classification, we add a linear layer on top of the [CLS] token representation,
if available, or on top of the global average pooled vector of all patch representations.
To test the models for change detection, we take the backbone, which is either a Swin Transformer,
or a ViT, and integrate the UperNet head (Xiao et al., 2018). The two source images go through
identical backbones, and the resulting representations are substracted from each other and passed to
the head. In the case of ViTs, we use an additional neck module between the backbone and UperNet.
The backbone is initialized with the pre-trained weights and further fine-tuned using the change
detection datasets. In case of our iBOT trained on MillionAID, the neck and the head modules are
also initialized, and we take the concatenation of features instead of the difference. In the experiments
involving the ChannelViT backbone we sum up representations along the channel axis before passing
it to UperNet decoder. For more details see Appendix B.

5.2 RESULTS AND CONCLUSIONS

The results are shown in Figures 2 and 3, and Tables 3 and 5 in Appendix. The general conclusion is
that all tested models struggle with generalizability both across scales and bands.

There are cases where the same model with a frozen backbone performs slightly better than its fine-
tuned counterpart (e.g. SatlasPretrain and DINOv2). For generalization across bands, the fine-tuned
models are always better for the RGB, but may fall behind frozen models on unseen bands. The
performance gap between frozen models and full fine-tuning is relatively large for ChannelViT-S,
Prithvi and especially Clay v1. This performance drop is also noticeable in classification tasks during
scale evaluation with the SatlasPretrain model, which could be due to its supervised pretraining.
However, we can observe that, when fine-tuning on larger datasets, the weakness of supervised
pretraining becomes less significant, as seen with SatlasPretrain on BigEarthNet.

ChannelViT performs quite poor on BigEarthNet, which can be explained by the relatively small size
of the model. We hypothesize that models pretrained in a self-supervised manner require less data
for the downstream tasks compared to those pretrained in a supervised manner. Since Prithvi is an
extension of the MAE model, this may explain why its performance drops during linear probing. As
mentioned in some studies (He et al., 2022; Vanyan et al., 2023b), models trained with masked image
modeling exhibit their advantages when fully fine-tuning them; their representations are not designed
for linear probing. Finally, we note that the models that were pretrained on multiple bands are not
able to leverage the knowledge on the extra bands they learned during pretraining. When the unseen
bands are given in the place of RGB bands (¹), the results are not worse compared to the case when
the unseen bands are given in their original input locations. This opens a wide avenue for future work.
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A DATASETS

RESISC45 (Cheng et al., 2017) and UC Merced (Yang & Newsam, 2010) datasets contain 256x256px
images. Image resolution is 30cm/px for UC Merced and varies 20-600cm/px for RESISC45. Both
datasets use RGB bands only. We take the splits defined in (Neumann et al., 2019).
The LEVIR-CD dataset (Chen & Shi, 2020) comprises a substantial collection of bitemporal Google
Earth images. It includes 637 image pairs, each sized 1024× 1024px, with 400 images designated
for training. The images in the training set have a resolution of 50cm/px. Originating from 20 distinct
regions within cities in Texas, USA, these images showcase the construction-induced changes. The
fully annotated LEVIR-CD dataset encompasses a total of 31, 333 individual changed buildings.
The changes in the LEVIR-CD dataset primarily come from the construction of new buildings. The
average size of each changed area is approximately 987 pixels.
The CDD (Lebedev et al., 2018) dataset contains season-varying remote sensing images of the same
region, obtained from Google Earth (DigitalGlobe). The dataset comprises 16, 000 image sets (two
images of the same location and the annotated change), each with an image size of 256× 256 pixels
and 0.03-1m/px ground sample distance.
Onera Satellite Change Detection (OSCD) dataset contains pairs of aerial images of the same location
captured at different times, with changes manually annotated at the pixel level (Caye Daudt et al.,
2018). The dataset contains images from a total of 24 cities, divided into smaller chunks (192 ×
192) of images. Similar to the classification benchmark, we train on the RGB channels and evaluate
on four tri-channel triplets and one bi-channel pair: RGB, RGE1, RE1E2, N’S1S2, and VV VH
(bi-channel). We note that for the evaluation, we always keep the first picture as RGB and the second
figure with the corresponding band channels. We compute the micro F1 score for each experiment
and report the average over these five values.

B IMPLEMENTATION DETAILS

All the codes for pretraining, as well as the benchmarks proposed by us with all the hyperpa-
rameters, can be found at: https://anonymous.4open.science/r/rs_foundation_
models-42DC/README.md.

B.1 CLASSIFICATION

We perform two kinds of fine-tuning: full fine-tuning and linear probing. For both setups, we train
for 100 epochs. For all experiments in the full fine-tuning setup or linear probing, we evaluate
using the last checkpoint. However, for full fine-tuning on the BigEarthNet dataset, we select
the best checkpoint based on performance on the validation set. In all experiments within the
full fine-tuning setup, we use the AdamW optimizer with a learning rate of 10−4 employing
WarmupCosineAnnealing scheduling and an estimated minimum value of 10−5. In experiments
within the linear probing setup, we use the AdamW optimizer with a learning rate of 10−3 employing
MultiStep scheduling and an estimated minimum value of 10−5.

In the linear probing setup for the Prithvi model, we conducted a grid search to optimize
the hyperparameters. The optimization process involved testing three different optimizers:
{Adam,AdamW,SGD}. For the learning rate, we evaluated three values: {10−3, 10−4, 10−6}
setting one of the following schedulers: {MultiStep,WarmupCosineAnnealing}. We selected
the AdamW optimizer with a learning rate of 10−3 and the WarmupCosineAnnealing scheduler
for our final configuration based on the performance on the validation set. For linear probing with the
ChannelVit model, we use the initial hyperparameters for linear probing provided by the authors and
perform the same grid search. Ultimately, we choose the Adam optimizer with an initial learning
rate of 10−3 and MultiStep scheduling.

B.2 CHANGE DETECTION

For change detection experiments, we train our models for 200 epochs. We use the AdamW
optimizer with a learning rate of 6× 10−5 along with WarmupCosineAnnealing which includes
warmup steps of 10 and batch size of 32. For experiments on OSCD dataset we choose learning rate
3× 10−5 decrease the training epochs to 100 and use warmup steps of 5 with a batch size of 4.
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Figure 4: Overall loss and loss components of the iBOT trained on MillionAID dataset for 200 epochs
with scale augmentation and without a mask decoder on the left and with mask decoder on the right.

C DETAILED RESULTS

In Table 5 we present the benchmark results for proposed and existing models in change detection
(LEVIR-CD and CDD) and classification (RESISC45 and UC Merced). For classification, we
demonstrate results for both full fine-tuning and linear probing. All experiments are conducted with
scale distortions of 1:1, 1:2, 1:4, and 1:8. The AUC-F1 score is reported for change detection, and
the AUC-ACC score is reported for classification. For change detection, we compare iBOT trained
on ImageNet, our trained iBOT for MillionAID, Satlas, and GFM. For the LEVIR-CD dataset, the
results are generally comparable across methods. However, GFM shows a clear advantage over the
other methods for the 1:2 and 1:4 scale distortions. Specifically, while all four methods produce
comparable results at 1:2, GFM demonstrates a clear advantage at 1:4. However, we remark that the
pretraining dataset for GFM GeoPile contains RESISC45, which could possibly cause its superior
performance over the other methods. For CDD dataset, we observe that all the results are comparable,
however, we observe that GFM does not have superior performance over the other methods. The
little AUC-F1 score difference between various scale distortions could be explained by the fact that
the CDD dataset contains samples from different GSD (0.03m-1m). For classification, we compare
iBOT trained on ImageNet, our trained iBOT for MillionAID, the two versions of Satlas and GFM.
We observe that for iBOT (both trained on ImageNET and MillionAID) linear probing has a clear
advantage over full-finetuning for lower resolutions.

In Table 6, we report the performance of our trained iBOT on the MillionAID dataset, comparing
results with and without augmentations, as well as between a frozen backbone or linear probing and
full fine-tuning. For change detection on the LEVIR-CD dataset, we observe that full fine-tuning has
a clear advantage over a frozen backbone. Additionally, we note that augmentations do not improve
performance for this task. For the classification task (RESISC45 and UC Merced), we observe that for
both full fine-tuning and linear probing the model trained with augmentations has a clear advantage
over the one trained without augmentation.

Experiments with augmentations and the results of the default setup for RESISC45 and CDD datasets
show that the diversity of the dataset in terms of real resolutions (GSD) improves the generalization
capabilities of the finetuned model, even if the backbone weights are frozen.

Table 4 lists the band names with descriptions, their corresponding names in Sentinel, and the names
used in this paper to avoid confusion.

In Figure 4 the left subfigure shows the iBOT loss (total training loss and its components) trained
on the MillionAID dataset. The right subfigure displays the iBOT loss (total training loss and its
components: train cls, train patch, and train overlap) for the model trained on the MillionAID dataset
with the additional mask decoder proposed by us.
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Table 3: Generalization to unseen bands of several baselines on two datasets. ¹ indicates that the
input channels are treated as RGB channels.

Dataset RGB RGE1 RE1E2 N’S1S2 VV VH
BigEarthNet Average mAP
SatlasPretrain 84.7± 0.1 30.9± 1.8 32.8± 1.1 28.7± 1.7 18.7± 1.1 43.2± 0.7
SatlasPretrain ❄ 70.4± 0.0 37.6± 0.1 42.5± 0.2 34.3± 0.2 24.0± 0.1 45.3± 0.1
Prithvi 80.0± 0.2 31.7± 2.6 34.0± 3.4 28.1± 1.8 25.4± 3.2 39.8± 0.5
Prithvi ❄ 63.7± 0.0 24.4± 0.0 24.9± 0.0 27.4± 0.0 16.2± 0.0 31.3± 0.0
Clay v1 79.3± 0.1 72.2± 0.5 57.1± 1.1 52.2± 1.0 44.3± 2.7 61.0± 0.8
Clay v1 ❄ 44.3± 0.2 44.3± 0.2 44.3± 0.2 44.3± 0.2 43.2± 0.2 44.1± 0.2
Clay v1 ¹ 79.3± 0.1 72.1± 0.4 57.1± 1.1 51.9± 1.1 44.3± 2.7 60.9± 0.8
Clay v1 ¹❄ 44.3± 0.2 44.3± 0.2 44.3± 0.2 44.3± 0.2 43.2± 0.2 44.1± 0.2
ChannelViT-S 79.5± 0.4 30.6± 2.6 26.1± 3.3 27.1± 5.4 24.8± 2.5 37.6± 1.1
ChannelViT-S ❄ 55.6± 0.0 27.7± 0.0 11.3± 0.1 21.5± 0.2 25.3± 0.2 28.3± 0.1
ChannelViT-S ¹ 79.5± 0.4 31.1± 2.7 29.7± 2.3 33.5± 1.8 23.3± 1.9 39.4± 1.4
ChannelViT-S ¹❄ 55.6± 0.0 27.6± 0.0 22.7± 0.1 26.9± 0.0 15.9± 0.0 29.7± 0.0
iBOT-MillionAID ¹ 83.7± 0.1 62.0± 2.3 65.8± 2.4 45.5± 1.8 22.6± 2.6 62.9± 1.4
iBOT-MillionAID ¹❄ 80.2± 0.0 60.8± 0.1 61.6± 0.1 41.1± 0.1 25.6± 0.3 60.0± 0.0
DINOv2 ¹ 84.5± 0.1 66.9± 2.1 52.9± 2.2 43.9± 2.1 25.0± 0.7 59.2± 1.3
DINOv2 ¹❄ 72.6± 0.0 67.2± 0.0 61.3± 0.1 55.8± 0.1 32.6± 0.1 61.0± 0.0

OSCD Average F1
Prithvi 25.4± 3.9 2.7± 1.3 2.0± 1.4 3.7± 2.0 10.9± 2.4 8.9± 1.0
Prithvi ❄ 8.3± 1.4 4.0± 2.5 3.6± 2.9 4.9± 3.3 5.0± 3.9 5.2± 1.4
SatlasPretrain 15.1± 3.0 14.2± 3.3 14.0± 3.4 11.0± 1.9 9.1± 2.8 13.3± 2.5
SatlasPretrain ❄ 10.2± 1.5 10.4± 1.2 10.4± 0.7 9.7± 0.3 6.9± 0.5 9.7± 0.5
ChannelViT-S 43.1± 1.4 7.9± 0.5 7.9± 0.7 11.0± 1.2 8.0± 0.1 15.6± 0.7
ChannelViT-S ❄ 25.0± 2.8 7.1± 1.2 8.2± 1.1 9.0± 1.9 8.0± 0.1 11.4± 1.0
ChannelViT-S ¹ 43.1± 1.4 7.9± 0.5 7.9± 0.7 11.0± 1.2 8.1± 0.0 15.6± 0.7
ChannelViT-S ¹❄ 25.0± 2.8 7.1± 1.2 8.2± 1.1 9.0± 1.9 8.0± 0.1 11.5± 1.0
iBOT-MillionAID 29.8± 3.3 5.3± 0.5 4.4± 2.1 10.0± 1.9 8.5± 0.4 11.7± 0.95
iBOT-MillionAID ❄ 10.3± 1.6 2.6± 3.3 2.7± 3.2 6.0± 2.4 7.8± 0.4 5.1± 1.7

Table 4: Description of Sentinel-1 and Sentinel-2 bands.
Band name Blue Green Red Red Edge 1
Name in Sentinel B2 B3 B4 B5
Codename used in this paper B G R E1

Band name Red Edge 2 Red Edge 3 Near Infrared Narrow Near Infrared
Name in Sentinel B6 B7 B8 B8a
Codename used in this paper E2 E3 N N’

Band name Shortwave Infrared 1 Shortwave Infrared 2 C-Band VV C-Band VH
Name in Sentinel B11 B12 VV VH
Codename used in this paper S1 S2 VV VH
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Table 5: Benchmark Results for Change Detection (LEVIR-CD, CDD) and Classification (RESISC45,
UC Merced) tasks with Different Scale Distortions.

LEVIR-CD 1:1 1:2 1:4 1:8 AUC-F1
iBOT-ImageNet 90.7± 0.1 87.6± 0.5 40.2± 12.0 2.0± 1.4 63.3± 2.5
iBOT-MillionAID 90.6± 0.2 87.6± 0.9 50.4± 15.1 2.0± 1.0 65.2± 3.2
SatlasPretrain (S2_SwinB_SI_RGB) 87.1± 3.2 84.4± 3.5 51.5± 12.4 12.6± 1.8 64.6± 2.9
GFM 90.3± 1.1 88.6± 1.0 72.3± 1.5 6.2± 1.1 70.1± 0.5
Prithvi 85.2± 0.1 84.4± 0.1 76.4± 1.1 14.5± 1.2 69.1± 0.4

CDD AUC-F1
iBOT-ImageNet 97.3± 0.0 96.6± 0.0 89.7± 0.2 76.9± 0.4 87.0± 0.0
iBOT-MillionAID 97.4± 0.0 96.8± 0.0 91.4± 0.6 79.2± 0.9 87.7± 0.2
SatlasPretrain (S2_SwinB_SI_RGB) 96.0± 0.0 95.1± 0.0 90.4± 0.3 82.7± 0.4 86.9± 0.1
GFM 96.8± 0.0 96.0± 0.1 88.9± 0.3 78.0± 0.6 86.6± 0.2
Prithvi 90.9± 0.2 90.5± 0.2 88.5± 0.3 82.9± 0.8 83.6± 0.3

RESISC45: full fine-tuning AUC-ACC
iBOT-ImageNet 93.8± 0.2 84.9± 0.8 46.8± 3.3 18.1± 0.7 66.3± 0.9
iBOT-MillionAID 93.4± 0.2 84.3± 1.2 47.4± 5.6 18.7± 2.0 66.2± 1.8
DINOv2 94.1± 0.4 84.3± 1.7 46.7± 5.2 19.3± 2.6 66.3± 1.6
SatlasPretrain (S2_SwinB_SI_RGB) 96.1± 0.1 89.2± 1.2 61.4± 3.3 23.7± 2.6 71.9± 1.4
SatlasPretrain (Aerial_SwinB_SI) 96.1± 0.1 89.2± 0.6 52.1± 2.3 14.9± 1.5 69.1± 0.7
GFM 95.7± 0.1 87.1± 0.9 57.4± 3.4 19.1± 3.0 69.7± 1.0

RESISC45: linear probing AUC-ACC
iBOT-ImageNet 91.7± 0.1 89.3± 0.2 74.3± 0.6 40.2± 0.9 75.4± 0.2
iBOT-MillionAID 94.6± 0.1 92.2± 0.2 66.5± 1.5 25.1± 1.3 73.8± 0.5
DINOv2 91.1± 0.7 87.2± 1.0 72.9± 1.4 40.3± 1.0 74.2± 0.9
SatlasPretrain (S2_SwinB_SI_RGB) 72.8± 0.1 58.0± 0.2 25.4± 0.4 15.0± 0.3 46.6± 0.1
SatlasPretrain (Aerial_SwinB_SI) 81.7± 0.1 65.7± 0.1 31.1± 0.3 15.1± 0.1 52.8± 0.1
GFM 91.1± 0.0 83.6± 0.1 64.9± 0.4 35.6± 0.6 70.8± 0.2

UC Merced: full fine-tuning AUC-ACC
iBOT-ImageNet 98.6± 0.7 98.2± 1.0 91.0± 2.7 61.3± 7.7 86.2± 1.9
iBOT-MillionAID 98.7± 0.8 97.9± 1.3 84.3± 4.3 46.0± 8.3 82.9± 1.0
DINOv2 98.1± 0.5 97.9± 0.3 98.1± 0.4 97.3± 0.3 91.8± 0.1
SatlasPretrain (S2_SwinB_SI_RGB) 98.7± 0.2 98.0± 0.3 87.3± 2.6 61.9± 5.9 85.5± 1.3
SatlasPretrain (Aerial_SwinB_SI) 99.1± 0.2 98.1± 0.3 86.1± 3.1 57.7± 3.9 84.9± 0.9
GFM 99.2± 0.2 98.3± 0.6 93.3± 1.6 69.9± 3.8 87.9± 0.9

UC Merced: linear probing AUC-ACC
iBOT-ImageNet 98.0± 0.3 97.9± 0.3 91.8± 0.7 61.4± 3.6 86.1± 0.5
iBOT-MillionAID 99.5± 0.1 99.2± 0.32 75.7± 2.9 31.3± 3.9 80.2± 0.7
DINOv2 97.4± 0.2 97.0± 0.1 96.8± 0.1 91.8± 0.4 90.3± 0.1
SatlasPretrain (S2_SwinB_SI_RGB) 85.7± 0.8 79.6± 0.4 55.6± 1.6 27.2± 0.5 65.1± 0.3
SatlasPretrain (Aerial_SwinB_SI) 95.0± 0.3 87.0± 0.4 67.0± 0.8 36.8± 0.3 73.5± 0.3
GFM 95.8± 0.1 93.9± 0.2 84.7± 0.4 47.7± 0.4 81.0± 0.1

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 6: The impact of full fine-tuning on the loss of generalization capabilities. All models are
iBOTs pretrained on MillionAID.

LEVIR-CD: full fine-tuning 1:1 1:2 1:4 1:8 AUC-F1

iBOT-MillionAID 88.7± 0.1 86.5± 0.2 63.6± 3.3 7.5± 0.5 67.5± 0.7
iBOT-MillionAID-augm 90.6± 0.2 87.6± 0.9 50.4± 15.1 2.0± 1.0 65.2± 3.2

LEVIR-CD: frozen backbone
iBOT-MillionAID 81.5± 0.1 81.0± 0.4 69.3± 3.1 17.0± 7.9 65.9± 1.6
iBOT-MillionAID-augm 84.4± 0.0 84.4± 0.2 61.6± 7.8 3.4± 4.0 64.7± 2.0

RESISC45: full fine-tuning AUC-ACC

iBOT-MillionAID 94.6± 0.2 92.8± 0.3 70.4± 4.0 16.6± 4.0 73.7± 1.3
iBOT-MillionAID-augm 93.4± 0.2 84.3± 1.2 47.4± 5.6 18.7± 2.0 66.2± 1.8

RESISC45: linear probing
iBOT-MillionAID 91.0± 0.1 87.5± 0.1 60.8± 0.2 9.3± 0.2 68.1± 0.1
iBOT-MillionAID-augm 94.6± 0.1 92.2± 0.2 66.5± 1.5 25.1± 1.3 73.8± 0.5

UC Merced: full fine-tuning
iBOT-MillionAID 98.0± 0.3 97.2± 0.6 87.2± 1.9 38.7± 3.0 82.2± 0.7
iBOT-MillionAID-augm 98.7± 0.8 97.9± 1.3 84.3± 4.3 46.0± 8.3 82.9± 1.0

UC Merced: linear probing
iBOT-MillionAID 96.9± 0.0 97.1± 0.2 93.6± 0.2 34.0± 1.3 82.5± 0.2
iBOT-MillionAID-augm 99.5± 0.1 99.2± 0.32 75.7± 2.9 31.3± 3.9 80.2± 0.7

Table 7: Dependence of the performance of fine-tuned models on sclae augmentation performed
during pretraining and fine-tuning. All models are iBOTs trained on MillionAID.

Augmentation Phase 1:1 1:2 1:4 1:8

LEVIR-CD AUC-F1

Pretraining / Fine-tuning 88.7± 0.1 86.5± 0.2 63.6± 3.3 7.5± 0.5 67.5± 0.7
Pretraining / Fine-tuning 90.6± 0.2 87.6± 0.9 50.4± 15.1 2.0± 1.0 65.2± 3.2
Pretraining / Fine-tuning 88.2± 0.1 88.4± 0.1 87.9± 0.1 86.1± 0.1 82.4± 0.1
Pretraining / Fine-tuning 89.9± 0.1 89.9± 0.1 89.4± 0.1 87.7± 0.1 83.9± 0.1

CDD AUC-F1

Pretraining / Fine-tuning 95.8± 0.0 95.3± 0.0 92.3± 0.1 80.1± 0.5 87.0± 0.1
Pretraining / Fine-tuning 97.4± 0.0 96.8± 0.0 91.4± 0.6 79.2± 0.9 87.7± 0.2

UC Merced AUC-ACC

Pretraining / Fine-tuning 98.0± 0.3 97.2± 0.6 87.2± 1.9 38.7± 3.0 82.2± 0.7
Pretraining / Fine-tuning 98.7± 0.8 97.9± 1.3 84.3± 4.3 46.0± 8.3 82.9± 1.0
Pretraining / Fine-tuning 98.2± 0.6 98.3± 0.6 98.0± 0.6 95.7± 1.2 91.8± 0.6
Pretraining / Fine-tuning 95.3± 1.8 94.7± 2.0 94.0± 2.4 91.8± 3.6 88.4± 2.1
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