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Abstract
Entity alignment (EA) aims to identify entities001
in different knowledge graphs (KGs) that rep-002
resent the same real-world objects. Traditional003
EA methods typically embed entity informa-004
tion into vector space under the guidance of005
seed entity pairs, and align entities by calcu-006
lating and comparing the similarity between007
entity embeddings. With the advent of large lan-008
guage models (LLMs), emerging methods are009
increasingly integrating LLMs with traditional010
methods to leverage external knowledge and011
improve EA accuracy. However, this integra-012
tion also introduces additional computational013
complexity and operational overhead, and still014
requires seed pairs that are scarce and expen-015
sive to obtain. To address these challenges,016
we propose EasyEA, the first end-to-end EA017
framework based on LLMs that requires no018
training. EasyEA consists of three main stages:019
(1) Information Summarization, (2) Embedding020
and Feature Fusion, and (3) Candidate Selec-021
tion. By automating the EA process, EasyEA022
significantly reduces the reliance on seed en-023
tity pairs while demonstrating superior perfor-024
mance across various datasets, covering cross-025
lingual, sparse, large-scale, and heterogeneous026
scenarios. Extensive experimental results show027
that EasyEA not only simplifies the EA pro-028
cess but also achieves state-of-the-art (SOTA)029
performance on diverse datasets, providing a030
promising solution for advancing EA tasks 1.031

1 Introduction032

Knowledge graphs (KGs) are structured knowledge033

bases widely used in tasks such as semantic search,034

recommendation systems, and question answering.035

These graphs typically represent real-world objects036

and their relation in the form of triples (entity-037

relation-entity or entity-attribute-value) (Sun et al.,038

2020). The goal of entity alignment (EA) is to iden-039

tify equivalent entity pairs across different KGs040

1Our code: https://anonymous.4open.science/r/EasyEA-
framework-EBF6

that refer to the same real-world object (Fanourakis 041

et al., 2023). As KGs differ in language, structure, 042

and schema, EA has become a challenging task 043

(Zhao et al., 2020; Fanourakis et al., 2023). 044

Traditional EA methods, such as translation- 045

based methods, machine learning-based methods, 046

and graph neural network (GNN)-based methods 047

(Jiang et al., 2024a), rely on symbolic and struc- 048

tural features to align entities across KGs. These 049

methods perform well in scenarios with consis- 050

tent naming conventions or rich relation structures 051

(Zhao et al., 2020). However, when applied to 052

large or diverse KGs, they face significant chal- 053

lenges, particularly due to linguistic and structural 054

heterogeneity. Furthermore, these methods require 055

large amounts of labeled data for training and fail 056

to incorporate external knowledge, both of which 057

are crucial for accurate EA (Sun et al., 2020; Zhao 058

et al., 2020; Fanourakis et al., 2023). Additionally, 059

the black-box nature of embedding similarity cal- 060

culations limits their interpretability and reduces 061

adaptability to complex EA scenarios (Jiang et al., 062

2024a). 063

LLMs have significantly advanced various fields 064

with their exceptional semantic understanding, con- 065

textual reasoning, and cross-lingual capabilities. 066

These strengths make them particularly valuable 067

for tackling challenges in EA, such as bridging the 068

semantic gap between KGs and enriching limited 069

entity knowledge. Recent EA methods combining 070

LLMs with traditional methods have led to notable 071

improvements in performance. Some methods fo- 072

cus on turning entity information into a common 073

semantic form and using the search abilities of 074

LLMs to align them efficiently, such as DERA 075

(Wang and Chen, 2024) and Seg-Align (Yang et al., 076

2024a). Others leverage the reasoning power of 077

LLMs to improve alignment accuracy and robust- 078

ness through methods like multi-step reasoning 079

and active learning, such as ChatEA (Jiang et al., 080

2024a) and LLMEA (Yang et al., 2024b). While 081
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this combination enhances overall effectiveness, it082

also introduces complexities, such as the need for083

fine-tuning and high computational demands, in084

order to achieve an optimal balance between effi-085

ciency and accuracy (Jiang et al., 2024a).086

To cope with the complexity of the current EA087

task, we propose EasyEA, an efficient EA frame-088

work driven entirely by LLMs, aimed at overcom-089

ing the limitations of traditional models and hy-090

brid models. EasyEA consists of three key stages:091

(1) Information Summarization. At this stage, we092

focus on using LLMs to extract semantic infor-093

mation from the KG data. The LLM summarizes094

the key attributes and relations of entities to cap-095

ture their core semantic meanings. (2) Embedding096

and Feature Fusion. In this stage, we embed the097

summaries using LLMs and integrate the diverse098

feature embeddings obtained to construct a holistic099

and enriched representation of entities. (3) Candi-100

date Selection. We propose a hierarchical strategy,101

which leverages multiple views of information, en-102

abling the LLM to more accurately select the most103

appropriate target entities, thereby enhancing the104

accuracy and reliability of EA.105

Through extensive experiments on multiple106

datasets, EasyEA demonstrates excellent perfor-107

mance, surpassing existing state-of-the-art (SOTA)108

models. Unlike traditional methods, EasyEA elimi-109

nates the need for manual seed entity pair construc-110

tion and additional model training, significantly111

improving efficiency while ensuring high-quality112

EA results. The main contributions of our frame-113

work are:114

• We introduce the first fully LLM-based EA115

framework EasyEA, eliminating the reliance116

on traditional methods and enabling an end-117

to-end EA process driven entirely by LLMs.118

• By relying solely on LLMs, EasyEA removes119

the need for seed entity pair construction and120

eliminates the need for additional training, sig-121

nificantly reducing the manual effort required122

in traditional EA methods.123

• EasyEA framework achieves SOTA perfor-124

mance on widely-used datasets, including125

DBP15K, ICEWS, SRPRS, and DWY, demon-126

strating its effectiveness and robustness in127

challenging scenarios such as cross-lingual128

alignment, large-scale KGs, heterogeneous129

KGs, and sparse datasets.130

2 Related Works 131

EA methods can generally be classified into four 132

categories: translation-based methods, machine 133

learning-based methods, GNN-based methods, and 134

LLM-enhanced methods. 135

Translation-Based Methods. Translation- 136

based methods, such as MTransE (Chen et al., 137

2017), BootEA (Sun et al., 2018), and Transedge 138

(Sun et al., 2019), represent entities and relations 139

in a low-dimensional vector space. In these mod- 140

els, a relation in KGs is treated as a translation 141

mapping the head entity vector to the tail entity 142

vector (Zhang et al., 2022). These methods align 143

entities by minimizing the distance between the 144

vectors of aligned entities. While effective in ho- 145

mogeneous KGs, these methods face challenges in 146

more complex or heterogeneous graph structures, 147

where relations can be more complicated (Zhang 148

et al., 2022). Furthermore, translation-based mod- 149

els often struggle with cross-lingual or sparse data 150

settings, where the embeddings may fail to fully 151

capture the diversity and complexity of the data. 152

Machine Learning-Based Methods. Machine 153

learning-based methods introduce supervised or 154

semi-supervised learning techniques, using seed en- 155

tity pairs from KGs to train classifiers or regression 156

models. Notable machine learning-based methods 157

include BERT-INT (Tang et al., 2020), and Simple- 158

HHEA (Jiang et al., 2024b), which leverage dif- 159

ferent machine learning techniques to enhance EA 160

performance. However, these methods are heav- 161

ily dependent on the quality and quantity of seed 162

entity pairs, leading to high labeling costs. More- 163

over, their performance can be constrained in cross- 164

lingual or sparse data scenarios, where labeled data 165

is often scarce (Fanourakis et al., 2023). 166

Graph neural network (GNN)-Based Meth- 167

ods. GNN-based methods, such as GCN-Align 168

(Wang et al., 2018), MuGNN (Cao et al., 2019) 169

and RDGCN (Wu et al., 2019), explicitly model 170

the graph structure of KGs, learning high-order fea- 171

tures of nodes and their neighbors. These methods 172

show certain advantages in capturing both local 173

and global structural information, making them 174

effective for EA in complex graph environments. 175

However, their dependence on labeled data and 176

high computational complexity limits their scala- 177

bility, especially in large-scale or heterogeneous 178

datasets. 179

LLM-Enhanced Methods. With the advent 180

of LLMs, EA methods have evolved into hybrid 181
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Figure 1: The framework of EasyEA we proposed is mainly divided into three stages: (1) Information Summariza-
tion; (2) Embedding and Feature fusion; (3) Candidate selection.

frameworks that combine the strengths of tradi-182

tional models with the semantic capabilities of183

LLMs. ChatEA (Jiang et al., 2024a) enhances can-184

didate selection through iterative reasoning, while185

Seg-Align (Yang et al., 2024a) integrates small186

language models for feature extraction and LLMs187

for cross-lingual alignment. LLMEA (Yang et al.,188

2024b) combines LLM insights with structural em-189

beddings to improve consistency in alignment. Ad-190

ditionally, DERA (Wang and Chen, 2024) encodes191

entity information into text representations, improv-192

ing retrieval and reducing structural-semantic in-193

consistencies, and LLM4EA (Chen et al., 2024) in-194

tegrates LLM-encoded knowledge with traditional195

embeddings to enhance entity quality. These ap-196

proaches highlight the potential of LLMs but also197

introduce challenges, such as the need for compu-198

tational resources (Jiang et al., 2024a).199

To address the limitations of traditional methods200

and hybrid methods, we propose EasyEA, a fully201

LLM-based EA framework. By removing reliance202

on traditional techniques, EasyEA significantly re-203

duces complexity while achieving competitive per-204

formance across a variety of challenging datasets.205

3 Problem Definition206

A Knowledge Graph (KG) is represented as207

KG = (V,R,A,V, T ), where V , R, A, V, and208

T represent entities, relations, attribute types, at-209

tribute values, and triples, respectively. Each entity 210

v ∈ V represents a real-world object or concept, 211

and each relation r ∈ R represents a relation be- 212

tween two entities. The set of attribute types is 213

denoted as A, and the set of attribute values is de- 214

noted as V. The set of triples T can be further 215

divided into two categories: relation triples and 216

attribute triples. Relation triples are represented as 217

TR = {tr = (vi, rij , vj) | vi, vj ∈ V, rij ∈ R}, 218

where rij represents a specific relation between en- 219

tities vi and vj . Attribute triples are represented 220

as TA = {ta = (vi, ak, av) | vi ∈ V, ak ∈ 221

A, av ∈ V}, where ak ∈ A represents the at- 222

tribute type (e.g., "name", "age"), and av ∈ V 223

represents the corresponding attribute value. Con- 224

sequently, the set of triples T in KG can be ex- 225

pressed as the union of relation and attribute triples, 226

i.e., T = TR ∪ TA. 227

Entity Alignment (EA) involves identifying 228

equivalent entities across different KGs. Given 229

two KGs, KG1 = (V1, R1, A1,V1, T1) and 230

KG2 = (V2, R2, A2,V2, T2), the task is to find 231

a set of aligned entity pairs EA(KG1,KG2) = 232

{(v1, v2) | v1 ∈ V1, v2 ∈ V2, v1 ≈ v2}, where 233

≈ denotes semantic equivalence. In EA, entities 234

v1 and v2 are considered aligned when they repre- 235

sent the same real-world concept or object, despite 236

potentially different identifiers, attributes, or struc- 237

tures in the respective KGs. 238
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4 Method239

In this section, we describe the core process of the240

EasyEA framework, which is divided into three241

main stages: (1) Information Summarization, (2)242

Embedding and Feature Fusion, and (3) Candidate243

Selection. The framework diagram, shown in Fig-244

ure 1, illustrates the overall process of these stages.245

Stage 1. Information Summarization246

In KGs, each entity is associated with various247

types of information, such as its name, relations,248

attributes, and temporal data. While datasets may249

vary in the types of entity information they contain,250

LLMs excel at extracting semantic representations251

and summarizing them concisely. In the EasyEA252

framework, we focus on three key types of entity253

information: entity name, attributes, and relations254

(or structural information).255

First, entity names, attribute triples, and rela-256

tion triples are extracted from the KGs. The en-257

tity names are translated into English using LLMs,258

while attribute and relation triples are consolidated259

into separate texts to represent entity attributes and260

relations. The LLMs then summarize these texts,261

compressing the information into no more than 100262

words.263

This method leverages a key advantage of264

LLMs—summarization—to facilitate efficient ex-265

traction of information from KGs while potentially266

reducing hallucinations. By focusing on existing,267

verifiable information rather than generating new268

content, we ensure that the summaries capture the269

core data, leading to more accurate and representa-270

tive entity features.271

Stage 2. Embedding and Feature Fusion272

This Stage aims to enhance EA performance by273

integrating multiple views of information to create274

a more comprehensive entity representation. EA275

datasets, such as DBP15K and ICEWS, exhibit276

distinct characteristics. For instance, in the ZH-277

EN subset of DBP15K, strong performance can be278

achieved using only attribute information, while279

the ICEWS-WIKI dataset performs well with name280

information alone (Jiang et al., 2024b). These ob-281

servations highlight the need to combine diverse282

information sources for a more complete entity rep-283

resentation.284

To address this, we first encode the translated en-285

tity names, attribute summaries, and relation sum-286

maries in Stage 1 into embeddings EN , EA, and287

ER. Once the embeddings are generated, we pro-288

pose a feature fusion strategy where these embed-289

dings are concatenated to form the holistic entity 290

embedding E, as shown in equation 1. 291

E = EN ∥ EA ∥ ER (1) 292

This approach effectively leverages the comple- 293

mentary strengths of each feature type, ensuring a 294

more comprehensive and accurate entity represen- 295

tation. 296

Stage 3. Candidate Selection 297

In this stage, we first compute the cosine similar- 298

ity between entity embedding vectors from Stage 2. 299

Based on these ranked similarities, the top 10 most 300

similar candidate entities are selected to form a can- 301

didate set. This refined set is processed by LLMs 302

to select the most likely target entity, with the final 303

selection corresponding to Hits@1. For each candi- 304

date, its name, along with three randomly selected 305

attribute triples and three randomly selected rela- 306

tion triples from the KGs, are provided as input to 307

the LLM. 308

The entity selection follows a hierarchical strat- 309

egy we propose: the LLM first uses name informa- 310

tion to identify the target. If name data is insuffi- 311

cient, attribute triples are used to refine the selec- 312

tion. If further refinement is needed, relation triples 313

are used as a final step. The LLM autonomously 314

determines the "insufficiency" at each stage based 315

on the completeness and relevance of the available 316

data, without relying on predefined thresholds. 317

This strategy prioritizes the most informative 318

features. By focusing on name information first, 319

we maximize its potential for accurate entity iden- 320

tification. When name information is insufficient, 321

attribute and relation triples offer additional con- 322

text, improving the accuracy of entity selection. 323

The decision to select 10 candidate entities is 324

based on two factors: first, Hits@10 is a standard 325

metric in evaluation, ensuring consistency with 326

common practices; second, the reasoning capa- 327

bility of LLMs declines with input size, and too 328

many candidates can reduce accuracy (Wang et al., 329

2024). The algorithmic flow of EasyEA is outlined 330

in Algorithm 1, with specific prompts provided in 331

Appendix A.7. 332

5 Experiments 333

5.1 Research Questions 334

RQ1: Can LLMs effectively act as summarizers 335

to enhance the alignment process in EA? 336

RQ1 explores whether LLMs can serve as sum- 337

marizers to enhance the EA process by refining 338

4



Algorithm 1 EasyEA Algorithm

1: Input: Entity names: n1, n2, attribute triples:
TA
1 , TA

2 of entities v1 and v2, relation triples:
TR
1 , TR

2 of entities v1 and v2
2: Output: The ID of the most likely target entity

v2 for each source entity v1
3: Stage 1: Translation and Summarization
4: N1, N2 ← Translate(n1, n2)
5: SA

1 , S
A
2 ← Summarize(TA

1 , TA
2 )

6: SR
1 , S

R
2 ← Summarize(TR

1 , TR
2 )

7: Stage 2: Embedding and Fusion
8: EN

1 , EN
2 ← EmbedNames(N1, N2)

9: EA
1 , E

A
2 ← EmbedAttributes(SA

1 , S
A
2 )

10: ER
1 , E

R
2 ← EmbedRelations(SR

1 , S
R
2 )

11: E1 ← Concat(EN
1 , EA

1 , E
R
1 )

12: E2 ← Concat(EN
2 , EA

2 , E
R
2 )

13: Stage 3: Candidate Selection
14: Cand← Top-10 by Cosine Similarity(E1, E2)
15: I ← Concat(id, name, 3 ∗ ta, 3 ∗ tr)
16: v2 ← Select with LLMs(I)
17: if Name is sufficient then
18: return v2.ID
19: else if Attributes are sufficient then
20: return v2.ID
21: else
22: Use relations to finalize match and

return v2.ID
23: end if

entity information. We evaluate their ability to sum-339

marize key entity attributes and relations, improv-340

ing the overall alignment across diverse datasets.341

RQ2: Can LLMs effectively serve as a good342

encoder for generating high-quality entity em-343

beddings in EA?344

This question investigates whether LLMs can345

be used as encoders to generate high-quality entity346

embeddings for EA, comparing their performance347

with traditional methods. We focus on the qual-348

ity, consistency, and generalization of embeddings349

generated by LLMs.350

RQ3: How can LLMs function as selectors351

to improve candidate entity selection during the352

EA process?353

RQ3 investigates how LLMs can function as se-354

lectors to enhance the selection of the most relevant355

candidate entities in the EA process. We explore356

how LLMs, through techniques like hierarchical357

filtering or ranking, can improve the precision and358

efficiency of candidate selection.359

5.2 Experimental Setup 360

5.2.1 Datasets 361

DBP15K (ZH-EN, JA-EN, FR-EN) (Tang et al., 362

2020) is a widely used cross-lingual dataset for test- 363

ing EA across KGs in different languages, focusing 364

on overcoming linguistic barriers. SRPRS (EN- 365

DE, EN-FR, DBP-WIKI15K, DBP-YAGO15K) 366

(Zeng et al., 2020) consists of datasets designed to 367

evaluate EA in sparse, heterogeneous graph struc- 368

tures, addressing challenges in low-resource set- 369

tings. ICEWS (ICEWS-WIKI, ICEWS-YAGO) 370

(Jiang et al., 2024b) includes datasets characterized 371

by high heterogeneity in graph structures and in- 372

formation density, testing the adaptability of the 373

framework to heterogeneous KG. DWY (DBP- 374

WIKI100K, DBP-YAGO100K) (Liu et al., 2022) 375

presents the main challenge of large scale, which 376

imposes significant computational demands for pro- 377

cessing and alignment, requiring substantial mem- 378

ory and processing power. More details about these 379

datasets are shown in Appendix A.1. 380

5.2.2 Baselines 381

To comprehensively evaluate the performance of 382

the proposed EasyEA method, we compare it with 383

a diverse set of existing EA methods. These base- 384

lines include both well-established techniques and 385

recent innovations, reflecting a broad spectrum 386

of methods in the field. The selected baselines 387

are grouped into four categories: (1) Translation- 388

Based Methods: MTransE (Chen et al., 2017), 389

BootEA (Sun et al., 2018), TransEdge (Sun et al., 390

2019). (2) GNN-Based Methods: GCN-Align 391

(Wang et al., 2018), RDGCN (Wu et al., 2019), 392

MuGNN (Cao et al., 2019), KECG (Li et al., 2019), 393

Dual-AMN (Mao et al., 2021), CEA (Zeng et al., 394

2020), EPEA (Wang et al., 2020), Selfkg (Liu 395

et al., 2022). (3) Machine Learning-Based Meth- 396

ods: BERT-INT (Tang et al., 2020), MRAEA (Mao 397

et al., 2020), MultiKE (Zhang et al., 2019), FuAlign 398

(Wang et al., 2023), JAPE (Sun et al., 2017), NAEA 399

(Zhu et al., 2019), RSN4EA (Guo et al., 2019), 400

Simple-HHEA (Jiang et al., 2024b). (4) LLM- 401

Enhanced methods: LLM4EA (Chen et al., 2024), 402

DERA (Wang and Chen, 2024), LLMEA (Yang 403

et al., 2024b), ChatEA (Jiang et al., 2024a), Seg- 404

Align (Yang et al., 2024a). These baselines span 405

a wide range of methodologies, from traditional 406

methods to LLM-enhanced methods, providing a 407

robust basis for evaluating EasyEA’s performance 408

against SOTA methods. 409
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Models DBP15KZH-EN DBP15KJA-EN DBP15KFR-EN
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 0.308 0.614 0.364 0.279 0.575 0.349 0.247 0.577 0.360
GCN-Align 0.413 0.744 0.549 0.399 0.745 0.546 0.411 0.772 0.530

BootEA 0.629 0.848 0.703 0.622 0.854 0.701 0.653 0.874 0.731
RDGCN 0.708 0.846 0.746 0.767 0.895 0.812 0.873 0.950 0.901

Dual-AMN 0.861 0.964 0.901 0.892 0.978 0.925 0.954 0.994 0.970
LLMEA 0.898 0.923 - 0.911 0.946 - 0.957 0.977 -

Seg-Align 0.953 - - 0.907 - - 0.987 - -
BERT-INT 0.968 0.990 0.977 0.964 0.991 0.975 0.990 0.997 0.993

ChatEA - - - - - - 0.990 1.000 0.995
DERA 0.985 0.997 0.990 0.994 0.999 0.996 0.996 0.999 0.997

EasyEA 0.997 1.000 0.996 0.995 1.000 0.997 0.998 1.000 0.999

Table 1: Main experimental results of EasyEA on DBP15k datasets.

Models ICEWS-WIKI ICEWS-YAGO
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 0.021 0.158 0.068 0.012 0.084 0.040
GCN-Align 0.046 0.184 0.093 0.017 0.085 0.038

RDGCN 0.064 0.202 0.096 0.029 0.097 0.042
BootEA 0.072 0.275 0.139 0.020 0.120 0.056

Dual-AMN 0.083 0.281 0.145 0.031 0.144 0.068
FuAlign 0.257 0.570 0.361 0.326 0.604 0.423

BERT-INT 0.561 0.700 0.607 0.756 0.859 0.793
Simple-HHEA 0.720 0.872 0.754 0.847 0.915 0.870

ChatEA 0.880 0.945 0.912 0.935 0.955 0.944

EasyEA 0.995 0.999 0.996 0.994 0.998 0.996

Table 2: Main experimental results of EasyEA on ICEWS datasets.

5.3 Main Experimental Results410

The experimental results of EasyEA on the411

DBP15K, ICEWS, SRPRS, and DWY datasets412

are summarized in Tables 1, 2, 3, and 4. On the413

DBP15K dataset, EasyEA achieves Hits@1 scores414

of 0.997, 0.995, and 0.998 for ZH-EN, JA-EN, and415

FR-EN, respectively, with perfect Hits@10 (1.000).416

On the ICEWS dataset, EasyEA achieves Hits@1417

of 0.995 (WIKI) and 0.994 (YAGO), outperforming418

models like ChatEA and BERT-INT. The SRPRS419

results show Hits@1 of 0.998 (EN-DE), 0.996 (EN-420

FR), 1.000 (DBP-YAGO), and 1.000 (DBP-WIKI).421

Similarly, EasyEA achieves perfect scores across422

all metrics on the DWY datasets, with Hits@1,423

Hits@10, and MRR of 1.000 on both DBP-WIKI424

and DBP-YAGO, outperforming all other models.425

These results highlight the strong performance of426

EasyEA, confirming that LLM-based methods can427

serve as a superior alternative to traditional models428

and hybrid models for EA tasks. This suggests that429

LLMs, with their ability to process unstructured430

data and provide richer semantic understanding,431

outperform conventional models. EasyEA demon-432

strates excellent adaptability across different lan- 433

guages and structures, showcasing its effectiveness 434

in various scenarios. The main experimental re- 435

sults are obtained using GPT-3.5-Turbo for summa- 436

rization, Llama3-8B-Instruct for embedding, and 437

GPT-4-Turbo for further optimization. 438

5.4 Ablation Experiment 439

5.4.1 Comparative Experiments of 440

Summarization with Different LLMs 441

In this experiment, we replaced GPT-3.5-Turbo 442

with Llama3-8B-Instruct in the summarization part 443

of EasyEA to observe the effects of different sum- 444

marizers. 445

The results of the experiment in Table 5 show 446

that using Llama3-8B-Instruct for summarization 447

resulted in a slight decrease in alignment perfor- 448

mance compared to EasyEA. Specifically, Llama3- 449

8B-Instruct achieved a Hits@1 score of 0.991, 450

Hits@10 of 1.000, and an MRR of 0.991. In con- 451

trast, EasyEA achieved better results with a Hits@1 452

of 0.997, Hits@10 of 1.000, and an MRR of 0.996. 453
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Models SRPRSEN-DE SRPRSEN-FR SRPRSDBP-YAGO SRPRSDBP-WIKI
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 0.107 0.248 0.160 0.213 0.447 0.290 0.196 0.401 0.270 0.188 0.382 0.260
MuGNN 0.245 0.431 0.310 0.131 0.342 0.208 0.175 0.381 0.240 0.151 0.366 0.220
NAEA 0.307 0.535 0.390 0.177 0.416 0.260 0.195 0.451 0.280 0.182 0.429 0.260

GCN-Align 0.385 0.600 0.460 0.243 0.522 0.340 0.319 0.586 0.410 0.291 0.556 0.380
KECG 0.444 0.707 0.540 0.298 0.616 0.403 0.350 0.651 0.450 0.323 0.646 0.430

RSN4EA 0.484 0.729 0.570 0.350 0.636 0.440 0.393 0.665 0.490 0.391 0.663 0.480
BootEA 0.503 0.732 0.580 0.365 0.649 0.460 0.381 0.651 0.470 0.384 0.667 0.480

TransEdge 0.556 0.753 0.630 0.400 0.675 0.490 0.443 0.699 0.530 0.461 0.738 0.560
MRAEA 0.594 0.818 0.666 0.460 0.768 0.559 0.485 0.768 0.574 0.509 0.795 0.597
RDGCN 0.779 0.886 0.820 0.672 0.767 0.710 0.990 0.997 0.990 0.974 0.994 0.980

Dual-AMN 0.891 0.972 0.923 0.802 0.932 0.851 0.518 0.795 0.613 0.546 0.813 0.635
BERT-INT 0.986 0.988 0.990 0.971 0.975 0.970 1.000 1.000 1.000 0.996 0.997 1.000

EasyEA 0.998 1.000 0.999 0.996 0.998 0.992 1.000 1.000 1.000 1.000 1.000 1.000

Table 3: Main experimental results of EasyEA on SRPRS datasets.

Models DWYDBP-WIKI DWYDBP-YAGO
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 0.281 0.520 0.363 0.252 0.493 0.334
JAPE 0.318 0.589 0.411 0.236 0.484 0.320

GCN-Align 0.506 0.772 0.600 0.597 0.838 0.682
MuGNN 0.616 0.897 0.714 0.741 0.937 0.810
RDGCN 0.623 0.805 0.684 0.936 0.973 0.950
BootEA 0.748 0.898 0.801 0.761 0.894 0.808
NAEA 0.767 0.917 0.817 0.778 0.912 0.821

Dual-AMN 0.869 0.969 0.908 0.907 0.981 0.935
LLM4EA 0.898 0.979 0.929 0.979 0.996 0.985
MultiKE 0.914 0.951 0.928 0.880 0.953 0.906

EPEA 0.975 0.981 0.977 1.000 1.000 1.000
SelfKG 0.983 0.998 - 1.000 1.000 -
ChatEA 0.995 1.000 0.998 - - -

EasyEA 1.000 1.000 1.000 1.000 1.000 1.000

Table 4: Main experimental results of EasyEA on DWY datasets.

Models Hits@1 Hits@10 MRR

Llama3-8B-Instruct 0.991 1.000 0.991
EasyEA 0.997 1.000 0.996

Table 5: Comparison of alignment results using different
LLMs for summarization

The results show that both GPT-3.5-Turbo and454

Llama3-8B-Instruct perform well as summarizers,455

delivering strong results across tasks. Despite some456

differences between the models, both exhibit im-457

pressive performance, suggesting that our summa-458

rization method is effective across various LLMs459

(RQ1).460

5.4.2 Ablation Experiments of Features461

Fusion462

To evaluate the contribution of different types of463

entity information to embedding quality, we con-464

ducted an ablation experiment where one type of465

information was excluded while retaining the other 466

two. The results, in Table 6, show that the fusion 467

of all three types yields the best performance, with 468

Hits@1 of 0.997, Hits@10 of 1.000, and MRR of 469

0.996. 470

Settings DBP15KZH-EN
Hits@1 Hits@10 MRR

EasyEA 0.997 1.000 0.996
wo/name 0.994 1.000 0.995
wo/attribute 0.977 0.989 0.963
wo/relation 0.990 0.999 0.991

Table 6: Results of using different information for em-
bedding

Removing name information (wo/name) caused 471

a slight decrease, with Hits@1 dropping to 0.994. 472

The absence of relation information (wo/relation) 473

led to a similar performance drop, with Hits@1 474
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dropping to 0.990. However, removing attribute in-475

formation (wo/attribute) resulted in the most signif-476

icant performance degradation, with Hits@1 falling477

to 0.977.478

This result strongly demonstrate the superiority479

of feature fusion strategy of EasyEA and empha-480

size the importance of combining multiple types of481

information for optimal EA.482

5.4.3 Comparative Experiments of483

Embedding with Different LLMs484

We evaluated EasyEA’s ability to generalize in the485

embedding stage by testing it with different LLMs.486

As presented in Table 7, EasyEA demon-487

strates exceptional performance even with medium-488

sized LLMs (7B–8B parameters). Notably, with489

LLama3-8B-Instruct, EasyEA achieves SOTA re-490

sults, with Hits@1 reaching 0.997, Hits@10491

achieving a perfect 1.000, and MRR scoring 0.996.492

Llama2-7B-Chat and Mistral-7B-Instruct also de-493

liver strong results, with Hits@1 and Hits@10 sur-494

passing 0.99.495

The results demonstrate that LLMs are effec-496

tive encoders for EA, ensuring strong performance497

across a range of models (RQ2). This highlights498

EasyEA’s adaptability and potential for real-world499

applications, where it maintains robust perfor-500

mance even when using smaller LLMs in resource-501

constrained settings.502

Models DBP15KZH-EN
Hits@1 Hits@10 MRR

EasyEA 0.997 1.000 0.996
Llama2-7B-Chat 0.992 0.998 0.991
Mistral-7B-Instruct 0.991 0.997 0.991

Table 7: Results of using various LLMs for embedding

5.4.4 Ablation Experiments for Candidate503

Selection504

We conducted ablation experiments to assess the505

impact of using LLMs to select the best matching506

entities in Stage 3 of EasyEA.507

The experimental results in Table 8 show a con-508

sistent improvement in the Hits@1 scores when509

LLMs are used as a selector. For example, with510

GPT-3.5-Turbo + LLama3-8B, the Hits@1 score511

improves from 0.994 to 0.997. Similarly, the512

Hits@1 score for LLama3-8B + LLama3-8B in-513

creases from 0.986 to 0.991, for Llama2-7B +514

Llama2-7B from 0.948 to 0.983, and for Mistral-515

7B + Mistral-7B from 0.931 to 0.981.516

These results demonstrate that LLM-based rea- 517

soning significantly improves EA performance, 518

particularly when initial Hits@1 scores are lower. 519

However, when the initial score is already high, the 520

performance gain is less pronounced. This is due 521

to our focus on a simplified setup that avoids com- 522

plex Prompt Engineering, aiming to validate the 523

method’s feasibility. Overall, the findings highlight 524

the effectiveness of using LLMs as selectors in the 525

EA process(RQ3). 526

Models DBP15KZH-EN
Hits@1/w/llm Hits@1/wo/llm

EasyEA 0.997 0.994
LLama3-8B + LLama3-8B 0.991 0.986
Llama2-7B + Llama2-7B 0.983 0.948
Mistral-7B + Mistral-7B 0.981 0.931

Table 8: Results of whether to use LLMs reasoning

5.5 Efficiency Analysis 527

Compared to traditional methods, the EasyEA 528

framework significantly simplifies the EA pro- 529

cess and improves efficiency. Traditional meth- 530

ods often require constructing seed entity pairs, 531

which involves considerable manual effort and 532

complex model training. Moreover, the variety 533

of models and complex code structures increase 534

learning costs. In contrast, EasyEA leverages the 535

widespread use of LLMs and can be implemented 536

with simple, easy-to-understand code. There is 537

no need to construct seed entity pairs or perform 538

model training. By simply extracting dataset infor- 539

mation and passing it to the LLM, EasyEA delivers 540

excellent alignment results. 541

6 Conclusion 542

This work primarily explores the feasibility of us- 543

ing LLMs for EA without relying on traditional 544

models. We propose the EasyEA framework, 545

which relies solely on LLMs for EA, and validate 546

its feasibility through extensive experiments and 547

ablation analysis, achieving excellent alignment re- 548

sults. This method eliminates the training require- 549

ments of traditional models and the need for seed 550

entity pair construction, making EA simpler and 551

more efficient. Additionally, we evaluate EasyEA’s 552

performance on multiple common datasets, achiev- 553

ing strong results, and introduce a simple and effi- 554

cient candidate selection method to further enhance 555

EA efficiency. 556
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Limitations557

Although EasyEA is simple, efficient, and achieves558

excellent EA results, it has some limitations. For559

example: (1) Limitations of structural information560

in text embedding. As LLMs are generative models,561

they struggle to accurately understand and utilize562

the structural information of entities, leading to563

an incomplete exploration of this aspect. There is564

significant research potential here; (2) Hardware565

resource requirements. While LLM-based methods566

are faster and more efficient than traditional mod-567

els, they still require certain hardware resources.568

We believe this limitation will gradually be over-569

come with ongoing advancements in hardware and570

LLMs; (3) When Hits@1 is already very high,571

further refinement with LLMs provides minimal572

improvements. This indicates that in such cases,573

LLMs have limited impact. Exploring how LLMs574

can still offer significant gains despite high initial575

performance is an area worth further research.576

Ethics Statement577

To the best of our knowledge, this work does not578

involve any discrimination, social bias, or private579

data. All the datasets are constructed from open-580

source KGs such as Wikidata, YAGO, ICEWS, and581

DBpedia. Therefore, we believe that our work com-582

plies with the ACL Ethics Policy.583
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A Appendix 750

A.1 Statistical Data of DBP15K, SRPRS, 751

ICEWS and DWY 752

All datasets are selected due to their broad range 753

of EA challenges, including cross-lingual, spar- 754

sity, heterogeneity, and large scale. Together, they 755

provide a comprehensive benchmark to assess the 756

effectiveness of EasyEA. 757

The information of DBP15K, SRPRS and DWY 758

are shown in Table 9. The DWY dataset utilized in 759

this work is divided into two major subsets: DBP- 760

WIKI and DBP-YAGO, with each subset contain- 761

ing 100,000 pairs of aligned entities. In the DBP- 762

WIKI subset, entities from the Wikidata portion are 763

identified by indices (e.g., Q123) instead of URLs 764

containing entity names. To obtain the actual entity 765

names, we use the Wikidata API for Python (Liu 766

et al., 2022). 767

The information of ICEWS is shown in Table 10, 768

following is an introduction to the dataset. 769

Facts represents the total number of facts in the 770

dataset. Facts are the basic units of a knowledge 771

graph, expressed as triples comprising a head entity, 772

a relation, and a tail entity. 773
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Dataset Language Entities Relations Attributes Rel. Triples Attr. Triples

DBP15KZH-EN
ZH 19,388 1,701 8,113 70,414 379,684
EN 19,572 1,323 7,173 95,142 567,755

DBP15KJA-EN
JA 19,814 1,299 5,882 77,214 354,619
EN 19,780 1,153 6,066 93,484 497,230

DBP15KFR-EN
FR 19,661 903 4,547 105,998 354,619
EN 19,993 1,208 6,422 115,722 497,230

SRPRSEN-FR
EN 15,000 221 296 36,508 70,750
FR 15,000 177 415 33,532 56,344

SRPRSEN-DE
EN 15,000 222 296 38,363 62,715
DE 15,000 120 193 37,377 142,506

SRPRSDBP-WIKI
DBpedia 15,000 253 363 38,421 71,957

Wikipedia 15,000 144 652 40,159 136,315

SRPRSDBP-YAGO
DBpedia 15,000 223 320 33,748 69,355
YAGO3 15,000 30 22 36,569 22,519

DBP-WD DBpedia 100,000 330 351 463,294 381,166
Wikipedia 100,000 220 729 448,736 789,815

DBP-YG DBpedia 100,000 302 334 428,952 451,646
YAGO 100,000 31 23 502,563 118,376

Table 9: Statistical data of DBP15K, SRPRS and DWY.

Dataset Entities Relations Facts Density Anchors Overlapping Struc. Sim. Temporal

ICEWS-WIKI 11,047 272 3,527,881 319.352
5,058

45.79%
15.4%

Yes
15,896 226 198,257 12.472 31.82% Yes

ICEWS-YAGO 26,863 272 4,192,555 156.072
18,824

70.07%
14.0%

Yes
22,734 41 107,118 4.712 82.80% Yes

Table 10: Statistical data of ICEWS.

Density measures the concentration of edges (re-774

lations) in the graph. It reflects the complexity and775

connectivity of the knowledge graph, with higher776

values indicating denser structures.777

Anchors specifies the number of anchor links,778

which are aligned entity pairs. These are crucial779

for training and evaluating EA models.780

Overlapping Ratio describes the proportion of781

alignable entities between the two graphs. A lower782

overlapping ratio signifies higher heterogeneity and783

greater alignment challenges.784

Structure Similarity quantifies the similarity785

of the neighborhood structures of aligned entities786

across the graphs. Lower values indicate more787

significant structural differences.788

Temporal indicates whether the dataset includes789

temporal information, capturing timestamps for790

facts and enabling temporal-aware EA research. 791

A.2 Model Selection and Parameters 792

In this experiment, we selected the Llama, Mistral, 793

and GPT series as backbone models. These mod- 794

els are open-source or widely adopted and have 795

demonstrated remarkable performance in related 796

fields. Specifically, the Llama and Mistral mod- 797

els are employed in the embedding stage, as prior 798

studies have shown their effectiveness and suitabil- 799

ity for such tasks (BehnamGhader et al., 2024). 800

These models have been extensively used in the 801

literature, with their performance validated through 802

numerous experiments. The GPT family is em- 803

ployed for summarization, reasoning, and selecting 804

target entities, primarily due to its autoregressive 805

architecture, which excels at handling complex de- 806
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pendencies and generating coherent, contextually807

relevant predictions. Additionally, the GPT models808

leverage their extensive knowledge base, acquired809

through large-scale pre-training, enabling them to810

achieve high accuracy in summarization, reasoning,811

and entity selection tasks. See Table 11 for details.812

Usage Models

Summarization GPT-3.5-Turbo, Llama3-8B-Instruct, Llama2-7B-Chat, Mistral-7B-Instruct

Embedding Llama3-8B-Instruct, Llama2-7B-Chat, Mistral-7B-Instruct

Reasoning GPT-3.5-turbo, GPT-4o, GPT-4-trubo, Llama3-70B

Table 11: Model selection of EasyEA

For the experimental setup, we adhered strictly813

to the hyperparameter configurations recom-814

mended in the original publications for the base-815

line models, with only minor adjustments made816

to parameters such as max_tokens = 4096 and817

temperature = 0.3. All experiments are conducted818

in the PyTorch development environment, using an819

Ubuntu machine equipped with an 80GB NVIDIA820

A100 GPU. This hardware and software configura-821

tion ensured both the efficiency and stability of the822

experiments.823

A.3 Evaluation Metrics824

We use Hits@K and MRR as evaluation metrics825

because they are the most classic and commonly826

used in EA. Hits@K measures the proportion of827

correct entities within the top K predicted results,828

reflecting the model’s ranking accuracy. MRR eval-829

uates the average of the reciprocals of the ranks of830

the first correct entity, reflecting the model’s ability831

to prioritize relevant entities. Together, these met-832

rics provide a comprehensive assessment of model833

performance in EA tasks.834

A.4 Ablation Experiments of Features Fusion835

we conducted ablation by removing two types836

of information and retaining only one type for837

evaluation. As shown in Table 12, when only838

name information (w/name) is retained, the perfor-839

mance dropped significantly, with Hits@1 falling840

to 0.842. Similarly, when only relation informa-841

tion (w/relation) is used, the performance is also842

significantly lower, with Hits@1 dropping to 0.973.843

In contrast, retaining only attribute information844

(w/attribute) resulted in relatively higher perfor-845

mance, with Hits@1 of 0.991, close to the perfor-846

mance of the full model.847

These results strongly demonstrate the superior-848

ity of EasyEA’s feature fusion strategy and empha-849

size the importance of combining multiple types of 850

information for optimal EA. 851

Settings DBP15KZH-EN
Hits@1 Hits@10 MRR

EasyEA 0.997 1.000 0.996
w/name 0.842 0.879 0.832
w/attribute 0.991 0.998 0.992
w/relation 0.973 0.990 0.956

Table 12: Results of using one information for embed-
ding

A.5 Comparative Experiments of Different 852

Feature Fusion Methods 853

Table 13 shows the performance of different fu- 854

sion methods on the DBP15KZH-EN dataset. The 855

Concatenation Fusion method outperformed others, 856

achieving the highest Hits@1 (0.997) and MRR 857

(0.996), indicating its effectiveness in preserving 858

the full information from multiple embeddings. In 859

comparison, Max Pooling Fusion and Mean Fusion 860

showed slightly lower performance, with Hits@1 861

scores of 0.996, respectively. 862

The differences in performance can be attributed 863

to the characteristics of each fusion method. Max 864

Pooling selects the maximum value from each em- 865

bedding, which may overlook finer details, while 866

Mean Fusion averages the embeddings, potentially 867

losing important features. Given its superior per- 868

formance, Concatenation Fusion is chosen as the 869

preferred method for candidate selection, as it pro- 870

vides the most detailed and comprehensive rep- 871

resentation of embeddings, which is critical for 872

high-precision EA. 873

This ablation experiment focuses on the feature 874

fusion methods applied to the embeddings gener- 875

ated in Stage 1, and therefore does not include the 876

Candidate Selection process from Stage 3. The 877

primary aim is to evaluate the impact of differ- 878

ent fusion strategies on the quality of embeddings, 879

without considering the influence of subsequent 880

candidate selection. 881

Settings DBP15KZH-EN
Hits@1 Hits@10 MRR

EasyEA (Concatenation) 0.997 1.000 0.996
Max Pooling Fusion 0.996 1.000 0.995
Mean Fusion 0.996 0.999 0.995

Table 13: Performance results for different fusion meth-
ods on DBP15KZH-EN
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A.6 Comparative Experiments of Candidate882

Selection with Different LLMs883

In this experiment, we evaluated the performance884

of different LLMs (GPT-4o, GPT-4-Turbo, GPT-885

3.5-Turbo, and Llama3-70B) on reasoning tasks886

using a hierarchical strategy. The results in Ta-887

ble 14 show that all models achieved high perfor-888

mance, with GPT-4-turbo reaching the best result889

at 0.997, while the others (GPT-3.5-turbo, GPT-4o,890

and Llama3-70B) are similarly strong (0.996).891

The results highlight the robustness of the hi-892

erarchical strategy across different LLMs. There893

are minor performance differences, and all models894

handle the reasoning tasks effectively. The consis-895

tency of results across various model architectures896

suggests that the strategy is highly generalizable897

and adaptable, making it a reliable approach for898

EA tasks with different LLMs.899

Settings Hits@1 of DBP15K (ZH-EN)
GPT-4o GPT-4-Turbo GPT-3.5-Turbo Llama3-70B

GPT-3.5+LLama3-8B 0.996 0.997 0.996 0.996

Table 14: Comparative results of LLMs reasoning on
DBP15KZH-EN

A.7 Prompts900

The prompts for translation, summary, and reason-901

ing are shown in Tables 15, 16, and 17, respectively.902

903
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Translating Prompt
prompt = """
Translate the following entity names into English.
You must remember that you can only give me the English entity name
and cannot return any additional information.
"""

Table 15: Translating the name of entity into English

Summary Prompt
prompt = """
You are an expert who can provide concise explanations based on entity information.
I will give you the properties of an entity in the form of triples (subject, predicate, object).
Using this information along with your general knowledge,
please provide a short description of the entity.

- The explanation should be no longer than 100 words.
- Focus on summarizing the entity based on the given information and your general knowledge.
- Do not include unnecessary details or explanations beyond the entity description.

Example:
Entity Information: (Albert Einstein, profession, Physicist),
(Albert Einstein, known for, Theory of Relativity)
Explanation: Albert Einstein was a renowned physicist best known for developing
the Theory of Relativity, a fundamental theory in modern physics.

Now, please summarize the following entity information
and return a description in English:
"""

Table 16: Summarize entity information

Reasoning Prompt
prompt = """
I will provide you with a source entity and 10 target entities.
Your task is to select the target entity that most closely matches the source entity.

Each entity has three types of information:
1. Name information
2. Attribute triples
3. Relation triples

Follow this selection process:
1. Prioritize Name information as the primary criterion.
2. If Name information is ambiguous, use Attribute triples as a secondary criterion.
3. Finally, use Relation triples as the tertiary criterion.

Once you are confident, return only the ID of the target entity you believe is the best match.
Do not include any explanations, names, or other content in your response—ONLY the ID.
"""

Table 17: LLM selects the most likely matching entity
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