
BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

Toby Boyne 1 Jose Pablo Folch 1 Robert Matthew Lee 2 Behrang Shafei 2 Ruth Misener 1

Abstract
We perform Bayesian optimization using a Gaus-
sian process perspective on Bayesian Additive
Regression Trees (BART). Our BART Kernel
(BARK) uses tree agreement to define a poste-
rior over piecewise-constant functions, and we
explore the space of tree kernels using a Markov
chain Monte Carlo approach. Where BART only
samples functions, the resulting BARK model
obtains samples of Gaussian processes defining
distributions over functions, which allow us to
build acquisition functions for Bayesian optimiza-
tion. Our tree-based approach enables global
optimization over the surrogate, even for mixed-
feature spaces. Moreover, where many previous
tree-based kernels provide uncertainty quantifica-
tion over function values, our sampling scheme
captures uncertainty over the tree structure itself.
Our experiments show the strong performance of
BARK on both synthetic and applied benchmarks,
due to the combination of our fully Bayesian sur-
rogate and the optimization procedure.

1. Introduction
Bayesian optimization (BO), which finds the optimal condi-
tions of expensive-to-evaluate black-box functions (Frazier,
2018; Shahriari et al., 2015; Wang et al., 2023c), is a lead-
ing approach for data-driven design of experiments. BO
applications range from molecule design (Griffiths et al.,
2024) to battery and chemical reaction optimization (Folch
et al., 2023). BO relies on a probabilistic surrogate model-
ing our belief and uncertainty about the black-box function.
One class of surrogates are Gaussian processes (GPs), flex-
ible models giving well-calibrated uncertainty estimates
(Rasmussen & Williams, 2005). The most important hyper-
parameter choice when using a GP is the kernel, which fully
defines the model’s covariance structure. Popular kernels

1Imperial College London (London, UK) 2BASF SE (Lud-
wigshafen, Germany). Correspondence to: Toby Boyne
<t.boyne23@imperial.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

such as the squared exponential and Matérn kernels are lim-
ited to continuous inputs and assume function stationarity.

Tree regression provides a flexible model which is popular
due to strong empirical performance, natural regularization
and interpretability (Hill et al., 2020; Loh, 2011). Trees
allow for mixed inputs and can model non-stationary func-
tions, with hierarchical dependencies. A tree model defines
a sequence of domain splits. A single input will go through
all the splits until a leaf node is reached which assigns a
value to the predictive model. A forest is an ensemble of
trees, where each tree is regularized to be a weak learner to
avoid overfitting. Despite their performance in regression
tasks, tree models have limited application to BO since they
lack explicit uncertainty quantification in their predictions,
instead relying on empirical variance.

Given an ensemble of m trees, and two inputs x and x′, we
can define a function representing how often the trees agree
on the inputs belonging to the same leaf. This notion of tree
agreement can be used to construct a valid kernel for use
in a GP (Balog et al., 2016; Davies & Ghahramani, 2014;
Thebelt et al., 2022a). This allows us to use tree models in
applications which require well-calibrated estimates such
as Bayesian optimization. Tree kernels for model fitting
and BO have previously been explored (Balog et al., 2016;
Thebelt et al., 2022a), but they have always used a two-
step fitting process: first, a tree model is fitted on the data,
and then the GP is trained using the tree kernel defined
by the tree model. While this heuristic gives good results
in a variety of benchmarks, it is not principled and hence
potentially sub-optimal.

Since the tree structure has an infinite number of parameters,
it is at risk of overfitting when optimizing the log-marginal
likelihood (Rasmussen & Williams, 2005). To overcome this
challenge, we take inspiration from Bayesian tree methods
which impose a prior on the tree structure. We obtain a
posterior over the tree structure, from which we sample
using Markov chain Monte Carlo (MCMC).

We motivate using tree-kernels by exploiting the strong
modeling power of tree-based approaches, which can be
used for mixed input spaces. Moreover, we can formulate
acquisition functions with these tree models as optimization
problems that can be solved globally, where gradient-based
methods often struggle with discrete inputs.

1

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

M
CM

C

≈
∫
α(x|T)p(T)dT

Figure 1: BARK uses MCMC to create samples of forests, each of which define a Gaussian process. We can then use all the
GPs to obtain posterior samples of the process, to marginalize over the tree model uncertainty for the acquisition function.

Contributions. Our work achieves tree-based GP BO
through improved Bayesian modeling. Our main contri-
butions can be summarized as:

• We propose a fully Bayesian method for training
tree Gaussian processes through Markov chain Monte
Carlo, by exploiting connections between Bayesian
tree models and Gaussian processes with tree kernels.
We provide a brief summary of our approach in Fig. 1.

• We provide a computationally efficient training algo-
rithm allowing for scalability and accelerating up the
Markov chain sampling procedure.

• We provide an empirical analysis of the benefits of our
approach, showing its regression ability and achieving
state-of-the-art results in a variety of Bayesian opti-
mization benchmarks.

2. Related Work
The relationship between Bayesian tree models and GPs
has a long history. Chipman et al. (1998; 2010) develop a
Bayesian approach for fitting classification and regression
trees (BART), which samples a tree structure, and leaf values
with a Gaussian prior. Further work by several authors
explores using GPs as tree leaf nodes (Gramacy & Lee,
2008; Maia et al., 2024; Wang et al., 2023a), or within other
partitions (Luo et al., 2021; 2023). These trees, or other
spatial partitioning strategies, allow non-stationary models
that may be effective for Bayesian optimization (Eriksson
& Jankowiak, 2021; Eriksson et al., 2019; Papenmeier et al.,
2022; Wang et al., 2020; Ziomek & Bou Ammar, 2023).

The use of tree models as kernels has been investigated
empirically (Thebelt et al., 2022a) and theoretically (Scor-
net, 2016). Balog et al. (2016) consider tree kernels in the
context of Mondrian processes and show that the Mondrian
kernel approximates the Laplace kernel while providing a
connection to random forests.

Linero (2017) shows that, under certain priors, BART con-
verges to a GP with a Laplace kernel as the number of trees
increases. Linero (2017) also mentions that the Laplace
kernel GP is sub-optimal in practice compared to the tree
model which has a lower computational cost, and better
generalization.

Bayesian optimization over mixed feature spaces has been
extensively researched in recent years. Techniques include
using RKHS embeddings (Buathong et al., 2020), diffusion
kernels (Deshwal et al., 2021), multi-armed bandit style op-
timization (Ru et al., 2020), and a plethora of other methods
(Garrido-Merchán & Hernández-Lobato, 2020; Häse et al.,
2021; Daxberger et al., 2021; Daulton et al., 2022; Deshwal
et al., 2023; Wan et al., 2021) and benchmarks (Dreczkowski
et al., 2023). This surge in interest also includes the pro-
vision of software packages for mixed feature BO such as
SMAC (Lindauer et al., 2022) and scikit-optimize (Head
et al., 2018). More specifically, there are also several ap-
proaches using tree-based models for black-box optimiza-
tion (Ammari et al., 2023; Mistry et al., 2021; Thebelt et al.,
2021; 2022b). Jenatton et al. (2017) exploit a known tree
structure for more efficient BO. Lei et al. (2021) use BART
for BO, however, they do not fully exploit the implicit GP
structure in the model as we do. Finally, Thebelt et al.
(2022a) show how to use GPs with tree kernels for BO with
optimal acquisition function optimization, however, they fit
the trees using a two-step procedure.

The rest of the paper will continue as follows: Section 3
provides background on tree kernels and Bayesian opti-
mization. Section 4 provides an overview of the BART
procedure, laying the groundwork for BARK. Sections 5
and 6 describe our method, highlighting the developments
compared to prior work and detailing the motivation behind
these improvements, specifically in the context of BO. Sec-
tion 7 provides empirical results on a suite of synthetic and
applied BO benchmarks with mixed feature spaces. Sec-
tion 8 summarizes our work, addressing the strengths and
weaknesses of the method.

2

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

3. Background
3.1. Gaussian process Bayesian optimization

Bayesian optimization (BO) maximizes a black-box func-
tion, x∗ = argmaxx∈X f(x), through the sequential and
possible noisy querying of the function. BO balances the
exploration-exploitation trade-off via an acquisition func-
tion, α. The next query is xi+1 = argmaxx∈X α(x; θ,Di),
where Di represents all the data gathered up to iteration i,
and θ are surrogate model parameters. The feature space X
contains all possible experiments, and may contain continu-
ous, integer, or categorical features.

The unknown function f is typically modeled with a Gaus-
sian process (GP) prior. A GP is a probabilistic, nonpara-
metric model over functions, defined by a mean and covari-
ance function (Rasmussen & Williams, 2005). This prior,
combined with a likelihood of data observations, induces a
posterior over functions. The kernel parameters are often
chosen by optimizing the marginal likelihood, however, it
also possible to be fully Bayesian and perform inference
over the kernel parameters. This cannot be done analyti-
cally, and requires posterior samples of kernel parameters
to estimate corresponding integrals. For example, we can
marginalize over the kernel parameters when optimizing the
acquisition function by taking S posterior samples of the
parameters, {θ(s)}Ss=1 (Snoek et al., 2012):

xi+1 = argmax
x∈X

∫
θ

α(x; θ,Di)p(θ|Di) dθ

≈ argmax
x∈X

1

S

S∑
s=1

α(x; θ(s),Di)

(1)

3.2. Forest kernels

The forest kernel uses binary decision trees to define a dis-
tribution over piecewise-constant functions. This kernel
counts the proportion of its m trees that agree on the leaf
node in which a pair of data falls into to define a covariance
function. We denote the tth tree by Tt, which contains Lt

leaf nodes. We define the one-hot vector ϕ(x;Tt) where
the non-zero entry corresponds to the leaf that contains the
datapoint x. This enables the definition of the kernel:

k(x,x′) =
σ2
0

m

m∑
t=1

ϕ(x;Tt)
Tϕ(x′;Tt), (2)

where σ0 is a scale hyperparameter. Eq. (2) produces posi-
tive semi-definite matrices, so is a valid PSD kernel (Davies
& Ghahramani, 2014). The data x and x′ can belong to
continuous, categorical, or mixed feature spaces, and the
kernel is non-stationary. The forest used in the kernel can
be trained independently of the GP (as in Davies & Ghahra-
mani (2014), giving a supervised kernel), or fit jointly with
the GP, which we propose in our method.

3.3. Bayesian Additive Regression Trees

Bayesian Additive Regression Trees (BART) is a fully
Bayesian tree model that has seen a lot of empirical success
(Chipman et al., 2010). It is formulated as a sum of trees:

y(x) =

m∑
t=1

MT
t ϕ(x;Tt) + ϵ, ϵ ∼ N (0, σ2

y) (3)

where Mt = [µt1, · · · , µtLt
] ∼ N (0, Iσ2

µ/m) for some
fixed parameter σ2

µ. Tt represents the tree structure and Mt

the leaf values. Chipman et al. (2010) show how priors
on the tree structure enable Bayesian inference using Gibbs
sampling (Gelfand, 2000). The model shares a close implicit
relationship with the tree kernel. As noted by Linero (2017),
the expectation of the BART posterior over the leaf values
M (conditioned on a set of trees T) is:

EM [f(x)f(x′)] =

m∑
t=1

EM
[
MT

t ϕ(x;Tt) ·MT
t ϕ(x

′;Tt)
]

=
σ2
µ

m

m∑
t=1

ϕ(x;Tt)
Tϕ(x′;Tt)

(4)

Eq. (4) is equivalent to the kernel in Eq. (2), conditioned on
σ2
0 = σ2

µ. However, even with the same covariance structure
as the tree kernel, all MCMC draws from BART result in
deterministic functions, and require many more samples to
approximate the distribution that the tree kernel explicitly de-
fines. The effectiveness of BART in BO is therefore limited,
since we do not have access to the uncertainty quantification
required for building standard acquisition functions.

4. The BART model
The BART procedure provides a basis for the BARK sam-
pling mechanism. Here, we present an overview of the
method for generating MCMC samples of tree functions -
see Chipman et al. (2010) for a comprehensive description.

The BART model consists of three key ingredients: the pri-
ors placed on tree functions, the likelihood of observations
given a tree function, and the proposals used in sampling
the posterior. The priors multiplied by the likelihood of
observations induce a posterior p(T ,M, σ2

y|D) over the
sum-of-tree model. This posterior is intractable, but MCMC
sampling can obtain posterior samples.

This MCMC algorithm is largely defined by the Metropolis-
Hastings step (Hastings, 1970). Steps are taken in the hyper-
parameter space according to a transition kernel, q(θ → θ∗),
which are rejected/accepted according to the acceptance
probability a of the new state. By taking many steps, the
samples converges to the posterior over θ. The acceptance

3

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

probability is decomposed into three terms,

a(θ, θ∗) = min

q(θ∗ → θ)

q(θ → θ∗)︸ ︷︷ ︸
transition

· p(y|X, θ∗)

p(y|X, θ)︸ ︷︷ ︸
likelihood

· p(θ
∗)

p(θ)︸ ︷︷ ︸
prior

, 1

 .

BART prior. The regularization prior defined in the BART
model is a prior on the depth of the nodes of a tree. The
probability of any given node being a decision node is:

α(1 + d)−β , α ∈ (0, 1), β ∈ [0,∞) (5)

The number of trees m in the forest is fixed, e.g., m = 50
(Kapelner & Bleich, 2016). To assign a decision rule to
the node η in the tree, a sample is drawn from the decision
rule prior. The feature on which a node is split is drawn uni-
formly, and the split value is drawn uniformly from the set of
unique values in the data that reaches node η. The prior on
the observation noise, parameterized by (ν, q), is given by
σ2
y ∼ InverseGamma(ν/2, νt/2). For a set of observations

with variance σ̂2, t is chosen such that Pr
(
σ2
y < σ̂2

)
= q.

BART likelihood. The distribution of a set of observations
y, under the assumption of Gaussian noise, is

y|X, T ,M, σy ∼ N

(
m∑
t=1

MT
t ϕ(X;Tt), σ

2
yI

)
The likelihood is conditioned on the sampled leaf values
M. Since all other leaf values are fixed when sampling
the jth tree, the authors compute the likelihood in terms of
Rj := y −

∑
t∈[m]\j M

T
t ϕ(x;Tt).

BART proposals. To explore the posterior of trees, Chip-
man et al. (2010) define a set of proposals. Each proposal
makes a small change to a tree’s structure: growing a leaf
node by assigning a decision rule from the rule prior; prun-
ing a pair of leaf nodes; changing the rule of a singly internal
node (a decision node where both children are leaves). We
omit the swap rule in line with other BART implementations
(Kapelner & Bleich, 2016; Linero & Yang, 2018).

5. The BARK model
5.1. Motivating the Bayesian treatment of the kernel

Despite existing work on tree kernels for Gaussian pro-
cesses, there is still limited literature on tree kernels in a
Bayesian optimization setting. We consider two key areas
for improvement.

Two-step fitting. Tree kernels such as those studied by
Davies & Ghahramani (2014) and Thebelt et al. (2022a) fit
the GP model in two steps. First, they fit a tree indepen-
dently, using gradient boosting (Friedman, 2001) or random

Figure 2: Allowing the tree kernel to vary between samples
produces a richer posterior distribution, whilst samples are
still piecewise-constant: (top) samples from a GP with a
fixed tree kernel, and (bottom) samples from BARK.

forests (Breiman, 2001). Second, they maximize the model
likelihood (ML-II) to obtain the noise and scale GP hyper-
parameters. The tree model is fit using a different objective
than the GP, meaning the resulting tree structure may not
necessarily maximize the likelihood of the data. Rather than
fitting the tree and the GP in two steps, BARK jointly fits
the tree kernel and the GP.

Point estimates of tree posterior. Some existing tree kernel
methods use a one-step algorithm to fit the kernel and treat
the noise hyperparameter as fixed, for example (Cohen et al.,
2022). However, existing methods only fit a single tree
model which is a maximum a posteriori estimate. Since the
tree kernel is nonparametric, the GP effectively has infinite
hyperparameters. The ML-II estimate tends to overfit with
many parameters (Rasmussen & Williams, 2005), which
can be mitigated by a fully-Bayesian treatment of the kernel
(Ober et al., 2021). Moreover, the posterior distribution
over functions defined by the model is less rich than the full
posterior over tree models, as the tree structure is fixed for
all functions sampled from the model, see Fig. 2.

BARK therefore defines a probabilistic model of the tree
kernel, and performs MCMC to explore the posterior of
trees. We consider the tree model as a nonparametric kernel.
The BARK hyperparameters are the parameters defining
the forest generating process, i.e. the parameters of the tree
priors. These parameters are interpretable, and can be used
with default values.

5.2. Differences from the BART model

While we take inspiration from BART, relying upon its well
established predictive performance, BARK has some key
differences from the BART model. We explore these by

4

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

considering the three terms of the acceptance probability.

BARK prior. In Chipman et al. (2010), the authors nor-
malize observations then place a prior on the variance of
the leaves as 1

2k , where k is to be tuned. We remove the k
parameter, instead opting to standardize the outputs and fix
the scale σ2

0 = 1, which has been shown to work well in
Bayesian optimization (Hvarfner et al., 2024).

BARK adopts the same inverse gamma distribution for the
noise, σ2

y , as BART. Since the data is standardized, the noise
prior will be the same for any dataset.

BARK likelihood The marginal likelihood of the Gaussian
process is computed from y distributed as

y|X, T , σy ∼ N

(
0,

1

m

m∑
t=1

ϕ(X;Tt)
Tϕ(X;Tt) + σ2

yI

)
Crucially, our kernel perspective means that we never sam-
ple leaf values - the marginal likelihood integrates over
all the values of the leaves. In this way, BARK samples
distributions, which can then be used to build acquisition
functions, motivating our use of the GP likelihood. In con-
trast, BART samples the leaf values sequentially, hence uses
the likelihood conditional on leaf values. In order to ap-
proximate the posterior leaf distribution, BART requires a
large number of function samples, which in turn means that
it is infeasible to formulate an optimization problem over
the BART acquisition function. Both BART and BARK
have the same probabilistic model: marginalizing the BART
likelihood over leaf values yields the BARK likelihood, as
in Eq. (4).

BARK proposals. In BART, splitting points are typically
uniformly sampled from the data seen by a given node (Chip-
man et al., 2010; Kapelner & Bleich, 2016). This choice
is made such that any leaf node will contain a nonempty
subset of the domain (no ‘logically empty’ leaves). How-
ever, this approach performs poorly in the BO setting, since
finding potential future queries requires good uncertainty
estimation far from data (see Section 6). Instead, we sample
the splitting rule uniformly from the domain. To avoid cre-
ating logically empty nodes, each splitting rule is sampled
from the subspace of the domain that reaches that node. For
example, if x ∈ [0, 1], and the root splitting rule is x > 0.5,
then the splitting value of the left child is be sampled from
[0, 0.5]. For categorical features with S categories that reach
node a node, the splitting rule is sampled uniformly from
P (S) \ {S, {}}, i.e., the power set of S excluding trivial
splits. This enables greater sample efficiency than a one-hot
encoding of categories. We investigate the impact of this
modeling choice in Appendix B for toy regression examples.

BARK cannot sample directly from the posterior over σ2
y ,

and so must sample the noise using MCMC. To enforce
non-negativity, a proposal is generated by taking a Gaussian

walk in an unconstrained space, using the softplus transform.
Details for the BARK proposals are given in Appendix H.

5.3. Computational consideration

When we have sampled N data points, the matrix inversion
required in the fitting procedure for BARK has O(N3) com-
plexity. This cubic order is unavoidable due to inverting the
covariance matrix when computing the log likelihood in the
MCMC steps. However, we can reduce the cost in comput-
ing this term for tree proposals by leveraging the low-rank
nature of the contributions of individual trees. This is sim-
ilar to other methods used for fast inverses of tree kernels
(Balog et al., 2016; Lee et al., 2015), applied to sequential
updates to trees in a forest.

For a dataset X = [x(1), · · · ,x(N)]T, we define Φ ∈
{0, 1}(m×N×L), where Φjnl = [ϕ(x(n);Tt)]l and L =
maxt Lt. This gives the following expression for the kernel:

Kθ =
σ0

m

m∑
j=1

ΦjΦ
T
j + σ2

yI

During the MCMC procedure, for a proposal where the tth
tree is updated, the difference in log-likelihood between the
previous GP and the proposed GP can be computed:

log

(
p(y|X, θ∗)

p(y|X, θ)

)
= −yT(Kθ∗

−1 −Kθ
−1)y

−(log|K∗
θ| − log|Kθ|)

This requires computing Kθ∗
−1 and log|Kθ∗ |, both of

which are O(N3) operations. However, Kθ
−1 and log|Kθ|

will have already been computed in the previous iteration,
and so we can rewrite this as a matrix update,

Kθ∗ =
σ2
0

m

∑
j∈[m]\{t}

ΦjΦ
T
j +

σ2
0

m
Φ∗

tΦ
∗
t
T + σ2

yI

= Kθ −
σ2
0

m
ΦtΦt

T +
σ2
0

m
Φ∗

tΦ
∗
t
T

Since each Φt matrix has rank Lt, and Lt ≪ N by the
depth prior, an update to a tree structure gives two low-rank
updates. This can be exploited using the Sherman-Morrison
formula (Woodbury, 1950), and the matrix determinant
lemma (Harville, 1997), to compute the matrix inverse of
the updated kernel matrix in O(N2Lt) complexity:

(A± UUT)
−1

= A−1(I − U(UTA−1U ± I)
−1

UTA−1)

log|A± UUT| = log|A|+ log|I ± UTA−1U |

6. BARK for Bayesian optimization
While BARK can be used for regression, its strength lies in
its performance in Bayesian optimization. In this section,
we outline how the model has been designed for BO.

5

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

6.1. Optimizing the acquisition function

Typical BO approaches use gradient-based methods to opti-
mize the acquisition function (AF), such as L-BFGS (Zhu
et al., 1997). However, our piecewise constant prior has
zero gradient almost everywhere. We turn to mixed integer
linear programming to define the optimization problem. We
use the framework provided by Thebelt et al. (2022a); Mišić
(2020) to encode the tree structure using constraints on bi-
nary variables. The full formulation is given in Appendix J.
This has the additional benefit of global optimization, where
gradient-based methods can be stuck in local optima.

Integrated acquisition function. Each sample from the
MCMC gives the parameters (T , σy), defining a GP kernel
and likelihood. A function drawn from BARK is drawn
from one of these GPs with equal probability; a BARK
predictive distribution is a mixture of Gaussians (Lalchand
& Rasmussen, 2020). We can therefore approximate the
integrated acquisition function from Eq. (1).

We use the Upper Confidence Bound (UCB), which is a
function of the mean, µ, and standard deviation, σ, of the
GP, αUCB(x) = µ(x) + κσ(x). The integrated UCB is a
convex function of µ and σ, which leads to significant speed
increase in solving the global optimization problem. After
the optimization is solved and a new datapoint is queried,
we sample new tree kernels from the MCMC, using the final
sample from each parallel chain of the previous BO iteration
as an initialization.

6.2. Uniform splitting rule

In Section 5, we describe the new prior over the splitting
rules at nodes, where we sample the split values uniformly
across the domain. While the original prior worked well in
the high data regression setting, we show the importance of
this change in the BO setting to encourage exploration.

A key benefit of the change is the better uncertainty quantifi-
cation. When sampling splits only at datapoints, the uncer-
tainty is constant in the region between datapoints. This no
longer has the property that uncertainty increases as the dis-
tance from observation increases, an essential ingredient in
a well-performing BO surrogate. Moreover, the predictive
uncertainty outside the range of observations is constant,
leading to poor extrapolation ability. This is demonstrated
in Fig. 3; due to the poor uncertainty quantification when
splits are sampled at datapoints, the UCB maximizer fails
to properly explore the domain.

A further issue with sampling splits from the data is the ten-
dency to cluster queries. Since BO aims to find the optimum
value of a function, any exploitative function queries will
cluster around known good values. This leads to clusters
of observations near the optima. If the splitting rule prior
assigns equal splitting probability to each datapoint, then

−2

−1

0

1

2

G
P

 p
re

d
ic

ti
on

0.0 0.5 1.0
x

−1

1

α
U

C
B
(x

)

Uniform split Data split AF Maximizer

Figure 3: GP predictions and UCB for two BARK GPs on
a minimization task: (blue) splits sampled uniformly, and
(orange) splits sampled at datapoints. By sampling splits
uniformly, the acquisition function (AF) maximizer exhibits
better exploration.

the tree structure prior will concentrate on regions that are
dense with observations, which leads to over-exploitation.

6.3. The Laplace approximation for regret bounds

The functions in the BARK prior are discontinuous and non-
stationary. This violates the typical assumptions required
for regret bounds in the Bayesian optimization literature
(Srinivas et al., 2012). Previous work shows that, under
some strong assumptions, the tree kernel can be approxi-
mated as a Matern- 12 kernel (Linero, 2017), which in turn

admits sub-linear regret bounds of Õ(T
1+2D
2+2D), where D

is the dimension of the domain (Wang et al., 2023b). Ap-
pendix I provides further discussion on the quality of this
approximation.

7. Experiments
This section describes experiments comparing the regression
capabilities of BARK and BART, and evaluates the BARK
model against a selection of baselines on a set of synthetic
and applied Bayesian optimization benchmarks1.

Baselines. We compare BARK to several baselines. For
each baseline, we use the upper confidence bound (UCB) AF.
BART uses the Chipman et al. (2010) surrogate, evaluated
on a grid, and uses function samples to estimate the UCB
(Wilson et al., 2018). GP-RBF uses the squared-exponential

1The code to run these experiments is available at https:
//github.com/TobyBoyne/bark.

6

https://github.com/TobyBoyne/bark
https://github.com/TobyBoyne/bark

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

kernel, with the default priors from Hvarfner et al. (2024).
For enumerable mixed feature spaces, we use a linear combi-
nation of sum and product kernels, as in Ru et al. (2020). To
optimize over mixed feature spaces, we use an alternating
approach to perform optimization, similar to (Wan et al.,
2021), where we alternate between optimizing the continu-
ous parameters with gradient-based methods, and exploring
local perturbations in the discrete parameters. For domains
where the number of combinations of categories is low, we
also include an enumeration approach, where each unique
combination of discrete values is fixed and many parallel
continuous optimizations are performed. LeafGP uses a
two-step forest kernel, where the forest is fit using gradient
boosted trees, then used as a kernel in a GP (Thebelt et al.,
2022a). This model can be used in a global optimization
of the UCB acquisition function. SMAC uses an ensem-
ble of trees, using sample variance to measure uncertainty
(Lindauer et al., 2022). Entmoot defines a mean function
with a tree surrogate, and uses a distance-based uncertainty
(Thebelt et al., 2021). Finally, BARKPrior samples tree
kernels from the prior, without performing the MCMC steps
to sample the posterior. Appendix D provides further details
of the methods.

7.1. Model fit comparison

We perform regression with both BART and BARK. The
purpose of this section is to demonstrate that we do not
lose predictive power when using the kernel perspective of
the BARK model. We show this in the tabular regression
setting, where BART is already known to be strong. We
use the default setting for the model hyperparameters; for
discussion on the selection of these values, see Appendix G.

We use real datasets from the UCI Repository (Cortez &
Silva, 2008; Nash et al., 1994; Quinlan, 1993; Yeh, 1998;
Dua & Graff, 2017). We compare the predictive perfor-
mances in Table 1. The performance of the two models is
similar, suggesting that BARK can achieve similarly strong
regression performance to BART. Our slight increase in
NLPD performance may be due to our GP perspective,
which effectively allows us to marginalize over the distri-
bution of leaf values. Appendix F discusses the training
time on these regression problems, and Table 7 provides a
comparison to the GP-RBF model.

We further investigate the trajectory of the marginal log
likelihood of the MCMC chain in Fig. 4. As the MCMC
process makes local proposals, each sample is highly corre-
lated with the previous sample, and the correlation decreases
as the distance between samples (or lag) increases. This is
quantified by the autocorrelation of the samples {X}Ss=1,
ρ(τ) = E[(Xt+τ − µ)(Xt − µ)]/σ2

X , where τ is the lag.
Since we are limited by the optimization procedure to a
small number of samples, we want our samples to be almost

0 300Sample
−2

−1

0

M
L
L

AutoMPG

0 300Sample

Abalone

0 50Lag, τ
0.0

0.5

1.0

ρ
(τ

)

0 50Lag, τ

Figure 4: Evolution of the marginal log likelihood (MLL) of
the training data over MCMC samples, and the correspond-
ing autocorrelation, ρ(τ). Lines are plot for 20 MCMC
chains, with a single random chain shown in solid colour.

entirely uncorrelated. We find that the samples become un-
correlated after 50 samples, which suggests that the chosen
thinning rate of 100 is sufficient.

7.2. Synthetic benchmarks

We perform Bayesian optimization on four mixed-space syn-
thetic benchmarks, initialized with min(2D, 30) datapoints
sampled uniformly from the domain. For each method, we
report the median and inter-quartile range across 20 runs.

TreeFunction and TreeFunctionCat are functions sampled
from the BART prior, each with 10 continuous dimensions,
and the latter with an additional 10 categorical dimensions.
DiscreteAckley and DiscreteRosenbrock are partially dis-
cretized functions from Dreczkowski et al. (2023); Bliek
et al. (2021). Appendix D has further benchmark details.

We show the results in Fig. 5. A key takeaway here is that,
despite TreeFunction and TreeFunctionCat being drawn
from the BART prior, the BART baseline does not outper-
form LeafGP and BARK. This shows the strength of the
optimization formulation, and that a grid-based UCB evalu-
ation is insufficient to find the global optimum. BARK both
captures uncertainty over the tree structure, and optimizes
the UCB efficiently, to achieve the strongest performance.

DiscreteRosenbrock shows a failure case of BARK; the
optimum lies in a very shallow region, which the piecewise-
constant prior of BARK models worse than the smooth prior
of the GP-RBF, and Entmoot’s distanced-based uncertainty
quantification. These synthetic benchmarks tend to favor
the smoothness assumptions of the RBF kernel over the
stepwise-constant functions in the BARK posterior. We
provide further results for continuous synthetic functions in
Appendix E.2.

7

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

Table 1: Benchmark performance of the BART model against BARK, given as mean (and standard deviation). The number
of training points used for each benchmark is given by n. The number of dimensions for each problem is given by D
(continuous + integer + categorical). The better performing model is in bold for each metric.

Benchmark n D NLPD ↓ MSE ↓
BART BARK BART BARK

Abalone 400 7+0+1 1.10 (0.06) 1.09 (0.06) 0.53 (0.06) 0.52 (0.06)
Auto MPG 100 4+3+0 0.46 (0.12) 0.45 (0.08) 0.14 (0.02) 0.15 (0.02)
Concrete 300 8+0+0 0.54 (0.02) 0.31 (0.06) 0.17 (0.01) 0.11 (0.01)
Student Performance 250 0+13+17 1.27 (0.09) 1.27 (0.06) 0.72 (0.08) 0.73 (0.07)

0 50 100

−20

−15

−10

−5

B
es

t
ob

se
rv

ed
 v

al
u
e TreeFunction

0 50 100
−10

−8

−6

−4

−2

TreeFunctionCat

0 50 100

Iteration

3.2

3.3

3.4

3.5

3.6

B
es

t
ob

se
rv

ed
 v

al
u
e DiscreteAckley

0 50 100

Iteration

0

1

2

3

4
DiscreteRosenbrock

BARK

LeafGP

BART

SMAC

BARKPrior

Entmoot

GP-RBF

Figure 5: Optimization of synthetic benchmarks. The
shaded regions contain the 25th and 75th percentile of regret
achieved across the 20 runs.

7.3. Applied benchmarks

We evaluate these methods on applied benchmarks. We use
the hyperparameter optimization benchmarks SVRBench
and XGBoostMNIST (Dreczkowski et al., 2023). We further
evaluate using CCOBench (Dreifuerst et al., 2021), which
optimizes the configuration of antennas to maximize net-
work coverage, and PestControl (Dreczkowski et al., 2023),
optimizing the choice of pesticide used at 25 different sta-
tions. Fig. 6 gives the results.

BARK outperforms BARKPrior, which itself is a strong
method. This shows that the global UCB optimization over
tree kernels alone leads to good optimization performance,
but proper inference leads to greater improvements. BARK
also consistently outperforms LeafGP in both synthetic and
applied problems, demonstrating the importance of captur-
ing the uncertainty over tree structure.

GP-RBF achieves the best final value on XGBoostMNIST.
When it is feasible to enumerate over every categorical com-

0 50 100

244

245

246

247

B
es

t
o
b
se

rv
ed

 v
al

u
e SVRBench

0 50 100

0.03

0.04

0.05

0.06

XGBoostMNIST

0 50 100

Iteration

0.14

0.16

0.18

0.20
B

es
t

ob
se

rv
ed

 v
al

u
e CCOBench

0 50 100

Iteration

12

14

16

PestControl

BARK

LeafGP

BART

SMAC

BARKPrior

Entmoot

GP-RBF

GP-RBF (enum)

Figure 6: Optimization of applied benchmarks. XGBoostM-
NIST allows enumeration of GP-RBF, whereas other bench-
marks require alternating optimization.

bination, GP-RBF is a strong choice. However, in the other
applied benchmarks where the alternating optimization ap-
proach must be employed, BARK is highly competitive with
GP-RBF.

Bandit optimization with material design. BART has
been used to perform material selection using Bayesian
optimization in Lei et al. (2021). Given a dataset of 403
candidate compounds (specifically, a class known as MAX
phases), we maximize the bulk modulus and minimize the
shear modulus (Talapatra et al., 2018). We present a compar-
ison of BARK’s performance on this task, alongside BART
and GP-RBF, in Fig. 7.

Since this benchmark has a (small) finite number of can-
didates, it reveals that BART and BARK have similar BO
performance when the acquisition function optimization is
ablated. Furthermore, we see that the tree-based methods
are better surrogates for this problem than the RBF product
kernel, as BARK and BART identify the best candidate in
fewer iterations than GP-RBF.

8

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

0.0

0.5

1.0

B
es

t
id

en
ti
fi
ed

 %

0 25 50

Iteration

0

30

60

M
ea

n
 s

im
p
le

 r
eg

re
t

MAX (bulk modulus)

0 25 50

Iteration

MAX (shear modulus)

BARK BART GP-RBF

Figure 7: Optimization over compounds in the MAX dataset.
We report the mean of the simple regret across 20 runs
(lines), and the fractions of the runs that identify the com-
pound with the best objective value (bars).

0 50 100
10−2

100

102

T
im

e
(s

)

Fitting

0 50 100

Optimization

Number of iterations

BARK

LeafGP

BART

SMAC

BARKPrior

Entmoot

GP-RBF

GP-RBF (enum)

Figure 8: Time taken to fit the surrogate and optimize the
acquisition function for the XGBoostMNIST benchmark.

7.4. Wall-time discussion

BARK’s most significant limitation is its wall-time perfor-
mance. Fitting the model takes approximately 50 seconds,
and the optimization of the acquisition function is limited to
100 seconds. This is due to the combination of the expensive
MCMC procedure, and the large optimization formulation.
We compare the fitting and optimization times against other
methods in Fig. 8, and provide a further selection of wall-
time comparisons in Appendix F.2.

We therefore recommend BARK for BO settings where the
objective is expensive to evaluate, taking at least several
minutes, or having a large associated financial cost. Here,
the benefit of an accurate model with strong uncertainty
quantification is worth the cost paid in wall-time. Note that
the PestControl and MAX (material design) benchmarks
reflect examples of such black-box functions. For settings
where experiments are cheap and/or function evaluations
are quick, we recommend alternate methods.

8. Conclusion
We present BARK, a fully Bayesian Gaussian process tree
kernel, that jointly trains the tree structure with the GP. This
model explores a similar posterior to the additive tree model
BART, but provides explicit uncertainty quantification, mak-
ing BARK a strong surrogate for Bayesian optimization. We
show competitive performance on BO, especially in com-
binatorial settings, due to its strong surrogate and efficient
optimizer, beating state-of-the-art approaches.

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
We would like to thank Alexander Larionov for support in
implementing benchmarks and baseline methods. Funding
for this work was provided by BASF SE, Ludwigshafen
am Rhein, and EPSRC through the Modern Statistics and
Statistical Machine Learning CDT for TB (EP/Y034813/1)
and JPF (EP/S023151/1). TB is also funded by the EPSRC
IConIC Prosperity Partnership (EP/X025292/1). RM holds
concurrent appointments as a Professor at Imperial and as
an Amazon Scholar. This paper describes work performed
at Imperial prior to joining Amazon and is not associated
with Amazon.

References
Ammari, B. L., Johnson, E. S., Stinchfield, G., Kim, T.,

Bynum, M., Hart, W. E., Pulsipher, J., and Laird, C. D.
Linear model decision trees as surrogates in optimization
of engineering applications. Computers & Chemical En-
gineering, 178:108347, October 2023. ISSN 0098-1354.
doi: 10.1016/j.compchemeng.2023.108347.

Balandat, M., Karrer, B., Jiang, D. R., Daulton, S., Letham,
B., Wilson, A. G., and Bakshy, E. BoTorch: A Framework
for Efficient Monte-Carlo Bayesian Optimization. In
Advances in Neural Information Processing Systems 33,
2020.

Balog, M., Lakshminarayanan, B., Ghahramani, Z., Roy,
D. M., and Teh, Y. W. The Mondrian Kernel. In 32nd
Conference on Uncertainty in Artificial Intelligence (UAI),
June 2016.

Bliek, L., Guijt, A., Verwer, S., and de Weerdt, M. Black-
box mixed-variable optimisation using a surrogate model
that satisfies integer constraints. In Proceedings of the

9

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

Genetic and Evolutionary Computation Conference Com-
panion, GECCO ’21, pp. 1851–1859, New York, NY,
USA, 2021. Association for Computing Machinery. ISBN
9781450383516. doi: 10.1145/3449726.3463136.

Breiman, L. Random Forests. Machine Learning, 45
(1):5–32, 2001. ISSN 0885-6125. doi: 10.1023/a:
1010933404324.

Buathong, P., Ginsbourger, D., and Krityakierne, T. Kernels
over sets of finite sets using RKHS embeddings, with
application to Bayesian (combinatorial) optimization. In
AISTATS, pp. 2731–2741. PMLR, 2020.

Chipman, H. A., George, E. I., and McCulloch, R. E.
Bayesian CART Model Search. Journal of the Ameri-
can Statistical Association, 93(443):935–948, September
1998. ISSN 1537-274X. doi: 10.1080/01621459.1998.
10473750.

Chipman, H. A., George, E. I., and McCulloch, R. E. BART:
Bayesian additive regression trees. The Annals of Applied
Statistics, 4(1), March 2010. ISSN 1932-6157. doi:
10.1214/09-aoas285.

Cohen, M. K., Daulton, S., and Osborne, M. A. Log-linear-
time Gaussian processes using binary tree kernels. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22, Red
Hook, NY, USA, 2022. Curran Associates Inc. ISBN
9781713871088.

Cortez, P. and Silva, A. M. G. Using data mining to predict
secondary school student performance. In Pyschology,
2008. URL https://api.semanticscholar.
org/CorpusID:16621299.

Daulton, S., Wan, X., Eriksson, D., Balandat, M., Osborne,
M. A., and Bakshy, E. Bayesian Optimization over Dis-
crete and Mixed Spaces via Probabilistic Reparameteriza-
tion. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave,
D., Cho, K., and Oh, A. (eds.), Advances in Neural Infor-
mation Processing Systems, volume 35, pp. 12760–12774.
Curran Associates, Inc., 2022.

Davies, A. and Ghahramani, Z. The Random Forest Kernel
and other kernels for big data from random partitions,
2014.

Daxberger, E., Makarova, A., Turchetta, M., and Krause,
A. Mixed-variable Bayesian optimization. In IJCAI, pp.
2633–2639, 2021.

Deshwal, A., Belakaria, S., and Doppa, J. R. Bayesian
optimization over hybrid spaces. In ICML, pp. 2632–
2643. PMLR, 2021.

Deshwal, A., Ament, S., Balandat, M., Bakshy, E., Doppa,
J. R., and Eriksson, D. Bayesian Optimization over High-
Dimensional Combinatorial Spaces via Dictionary-based
Embeddings. In Ruiz, F., Dy, J., and van de Meent, J.-W.
(eds.), Proceedings of The 26th International Conference
on Artificial Intelligence and Statistics, volume 206 of
Proceedings of Machine Learning Research, pp. 7021–
7039. PMLR, April 2023.

Dreczkowski, K., Grosnit, A., and Ammar, H. B. Frame-
work and Benchmarks for Combinatorial and Mixed-
variable Bayesian Optimization. In Thirty-seventh Confer-
ence on Neural Information Processing Systems Datasets
and Benchmarks Track, 2023.

Dreifuerst, R. M., Daulton, S., Qian, Y., Varkey, P., Balandat,
M., Kasturia, S., Tomar, A., Yazdan, A., Ponnampalam,
V., and Heath, R. W. Optimizing Coverage and Capacity
in Cellular Networks using Machine Learning. In ICASSP
2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 8138–8142,
2021. doi: 10.1109/ICASSP39728.2021.9414155.

Dua, D. and Graff, C. UCI Machine Learning Repository,
2017. URL http://archive.ics.uci.edu/ml.

Dürholt, J. P., Asche, T. S., Kleinekorte, J., Mancino-Ball,
G., Schiller, B., Sung, S., Keupp, J., Osburg, A., Boyne,
T., Misener, R., Eldred, R., Costa, W. S., Kappatou, C.,
Lee, R. M., Linzner, D., Walz, D., Wulkow, N., and
Shafei, B. BoFire: Bayesian Optimization Framework
Intended for Real Experiments, 2024.

Eriksson, D. and Jankowiak, M. High-dimensional Bayesian
optimization with sparse axis-aligned subspaces. In UAI,
volume 161, pp. 493–503, 2021.

Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., and
Poloczek, M. Scalable Global Optimization via Local
Bayesian Optimization. In NeurIPS, volume 32, 2019.

Folch, J. P., Lee, R. M., Shafei, B., Walz, D., Tsay, C.,
van der Wilk, M., and Misener, R. Combining multi-
fidelity modelling and asynchronous batch Bayesian Op-
timization. Computers & Chemical Engineering, 172:
108194, 2023.

Frazier, P. I. A tutorial on Bayesian optimization. arXiv
preprint arXiv:1807.02811, 2018.

Friedman, J. H. Greedy function approximation: A gra-
dient boosting machine. The Annals of Statistics, 29
(5), October 2001. ISSN 0090-5364. doi: 10.1214/aos/
1013203451.

Garrido-Merchán, E. C. and Hernández-Lobato, D. Dealing
with categorical and integer-valued variables in Bayesian
optimization with Gaussian processes. Neurocomputing,
380:20–35, 2020.

10

https://api.semanticscholar.org/CorpusID:16621299
https://api.semanticscholar.org/CorpusID:16621299
http://archive.ics.uci.edu/ml

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

Gelfand, A. E. Gibbs Sampling. Journal of the American
Statistical Association, 95(452):1300–1304, December
2000. ISSN 1537-274X. doi: 10.1080/01621459.2000.
10474335.

Gramacy, R. B. and Lee, H. K. H. Bayesian Treed Gaussian
Process Models With an Application to Computer Mod-
eling. Journal of the American Statistical Association,
103(483):1119–1130, September 2008. ISSN 1537-274X.
doi: 10.1198/016214508000000689.

Griffiths, R.-R., Klarner, L., Moss, H., Ravuri, A., Truong,
S., Du, Y., Stanton, S., Tom, G., Rankovic, B., Jamasb,
A., et al. Gauche: A library for Gaussian processes in
chemistry. Advances in Neural Information Processing
Systems, 36, 2024.

Harville, D. A. Matrix Algebra From a Statistician’s Per-
spective. Springer New York, 1997.

Häse, F., Aldeghi, M., Hickman, R. J., Roch, L. M., and
Aspuru-Guzik, A. Gryffin: An algorithm for Bayesian
optimization of categorical variables informed by expert
knowledge. Applied Physics Reviews, 8(3), 2021.

Hastings, W. K. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika, 57(1):
97–109, 1970.

Head, T., MechCoder, Louppe, G., Iaroslav Shcherbatyi,
Fcharras, Zé Vinícius, Cmmalone, Schröder, C., Nel215,
Campos, N., Young, T., Cereda, S., Fan, T., Rene-Rex,
Kejia (KJ) Shi, Schwabedal, J., Carlosdanielcsantos,
Hvass-Labs, Pak, M., SoManyUsernamesTaken, Call-
away, F., Estève, L., Besson, L., Cherti, M., Karlson
Pfannschmidt, Linzberger, F., Cauet, C., Gut, A., Mueller,
A., and Fabisch, A. scikit-optimize/scikit-optimize:
v0.5.2, 2018.

Hill, J., Linero, A., and Murray, J. Bayesian Additive
Regression Trees: A Review and Look Forward. An-
nual Review of Statistics and Its Application, 7(1):251–
278, March 2020. ISSN 2326-831X. doi: 10.1146/
annurev-statistics-031219-041110.

Hvarfner, C., Hellsten, E. O., and Nardi, L. Vanilla Bayesian
Optimization Performs Great in High Dimensions. In
Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A.,
Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.), Pro-
ceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learn-
ing Research, pp. 20793–20817. PMLR, 21–27 Jul 2024.

Jenatton, R., Archambeau, C., González, J., and Seeger, M.
Bayesian optimization with tree-structured dependencies.
In Precup, D. and Teh, Y. W. (eds.), Proceedings of the

34th International Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Research,
pp. 1655–1664. PMLR, August 2017.

Kapelner, A. and Bleich, J. bartMachine: Machine Learning
with Bayesian Additive Regression Trees. Journal of
Statistical Software, 70(4), 2016. ISSN 1548-7660. doi:
10.18637/jss.v070.i04.

Lalchand, V. and Rasmussen, C. E. Approximate Infer-
ence for Fully Bayesian Gaussian Process Regression.
In Proceedings of The 2nd Symposium on Advances in
Approximate Bayesian Inference, volume 118, pp. 1–12.
PMLR, 2020.

Lee, D., Park, H., and Yoo, C. D. Face alignment using
cascade Gaussian process regression trees. In CVPR, pp.
4204–4212, 2015.

Lei, B., Kirk, T. Q., Bhattacharya, A., Pati, D., Qian, X., Ar-
royave, R., and Mallick, B. K. Bayesian optimization with
adaptive surrogate models for automated experimental de-
sign. npj Computational Materials, 7(1), December 2021.
ISSN 2057-3960. doi: 10.1038/s41524-021-00662-x.

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp,
A., Deng, D., Benjamins, C., Ruhkopf, T., Sass, R., and
Hutter, F. SMAC3: A Versatile Bayesian Optimization
Package for Hyperparameter Optimization. Journal of
Machine Learning Research, 23(54):1–9, 2022.

Linero, A. R. A review of tree-based Bayesian methods.
Communications for Statistical Applications and Meth-
ods, 24(6):543–559, November 2017. ISSN 2383-4757.
doi: 10.29220/csam.2017.24.6.543.

Linero, A. R. and Yang, Y. Bayesian Regression Tree En-
sembles that Adapt to Smoothness and Sparsity. Jour-
nal of the Royal Statistical Society Series B: Statistical
Methodology, 80(5):1087–1110, September 2018. ISSN
1467-9868. doi: 10.1111/rssb.12293.

Loh, W. Classification and regression trees. WIREs Data
Mining and Knowledge Discovery, 1(1):14–23, January
2011. ISSN 1942-4795. doi: 10.1002/widm.8.

Luo, Z. T., Sang, H., and Mallick, B. A Bayesian Contigu-
ous Partitioning Method for Learning Clustered Latent
Variables. Journal of Machine Learning Research, 22
(37):1–52, 2021.

Luo, Z. T., Sang, H., and Mallick, B. A Nonstationary
Soft Partitioned Gaussian Process Model via Random
Spanning Trees. Journal of the American Statistical As-
sociation, 119(547):2105–2116, October 2023. ISSN
1537-274X. doi: 10.1080/01621459.2023.2249642.

11

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

Maia, M., Murphy, K., and Parnell, A. C. GP-BART: A
novel Bayesian additive regression trees approach using
Gaussian processes. Computational Statistics Data Anal-
ysis, 190:107858, February 2024. ISSN 0167-9473. doi:
10.1016/j.csda.2023.107858.

Mistry, M., Letsios, D., Krennrich, G., Lee, R. M., and Mis-
ener, R. Mixed-Integer Convex Nonlinear Optimization
with Gradient-Boosted Trees Embedded. INFORMS Jour-
nal on Computing, 33(3):1103–1119, July 2021. ISSN
1526-5528. doi: 10.1287/ijoc.2020.0993.

Mišić, V. V. Optimization of Tree Ensembles. Opera-
tions Research, 68(5):1605–1624, September 2020. ISSN
1526-5463. doi: 10.1287/opre.2019.1928.

Nash, W., Sellers, T., Talbot, S., Cawthorn, A., and Ford, W.
The Population Biology of Abalone (Haliotis species) in
Tasmania. I. Blacklip Abalone (H. rubra) from the North
Coast and Islands of Bass Strait. Sea Fisheries Division,
Technical Report No, 48, January 1994.

Ober, S. W., Rasmussen, C. E., and van der Wilk, M. The
promises and pitfalls of deep kernel learning. In UAI, pp.
1206–1216. PMLR, 2021.

Papenmeier, L., Nardi, L., and Poloczek, M. Increasing the
Scope as You Learn: Adaptive Bayesian Optimization in
Nested Subspaces. In NeurIPS, volume 35, pp. 11586–
11601, 2022.

Petrillo, G. On the Gaussian process limit of Bayesian
Additive Regression Trees, 2024.

Quinlan, J. R. Combining instance-based and model-based
learning. In Proceedings of the Tenth International
Conference on International Conference on Machine
Learning, ICML’93, pp. 236–243, San Francisco, CA,
USA, 1993. Morgan Kaufmann Publishers Inc. ISBN
1558603077.

Quiroga, M., Garay, P. G., Alonso, J. M., Loyola, J. M.,
and Martin, O. A. Bayesian additive regression trees for
probabilistic programming, 2022.

Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes
for Machine Learning. The MIT Press, 2005.

Ru, B., Alvi, A., Nguyen, V., Osborne, M. A., and Roberts,
S. Bayesian optimisation over multiple continuous and
categorical inputs. In III, H. D. and Singh, A. (eds.),
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 8276–8285. PMLR, July 2020.

Scornet, E. Random Forests and Kernel Methods. IEEE
Transactions on Information Theory, 62(3):1485–1500,
March 2016. ISSN 1557-9654. doi: 10.1109/tit.2016.
2514489.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
De Freitas, N. Taking the human out of the loop: A
review of Bayesian optimization. Proceedings of the
IEEE, 104(1):148–175, 2015.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
Bayesian Optimization of Machine Learning Algorithms.
In Pereira, F., Burges, C., Bottou, L., and Weinberger,
K. (eds.), Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012.

Sobol, I. M. On the distribution of points in a cube and the
approximate evaluation of integrals. Ussr Computational
Mathematics and Mathematical Physics, 7:86–112, 1967.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. W.
Information-Theoretic Regret Bounds for Gaussian Pro-
cess Optimization in the Bandit Setting. IEEE Trans-
actions on Information Theory, 58(5):3250–3265, May
2012. ISSN 1557-9654. doi: 10.1109/tit.2011.2182033.

Surjanovic, S. and Bingham, D. Virtual Library of Simu-
lation Experiments: Test Functions and Datasets. Re-
trieved January 29, 2024, from http://www.sfu.
ca/~ssurjano, 2013.

Talapatra, A., Boluki, S., Duong, T., Qian, X., Dougherty,
E., and Arróyave, R. Autonomous efficient experiment de-
sign for materials discovery with Bayesian model averag-
ing. Physical Review Materials, 2(11):113803, November
2018. ISSN 2475-9953. doi: 10.1103/physrevmaterials.
2.113803.

Thebelt, A., Kronqvist, J., Mistry, M., Lee, R. M.,
Sudermann-Merx, N., and Misener, R. ENTMOOT:
A framework for optimization over ensemble tree mod-
els. Computers & Chemical Engineering, 151:107343,
August 2021. ISSN 0098-1354. doi: 10.1016/j.
compchemeng.2021.107343.

Thebelt, A., Tsay, C., Lee, R. M., Sudermann-Merx, N.,
Walz, D., Shafei, B., and Misener, R. Tree ensemble
kernels for Bayesian optimization with known constraints
over mixed-feature spaces. In Proceedings of the 36th In-
ternational Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022a. Curran
Associates Inc. ISBN 9781713871088.

Thebelt, A., Tsay, C., Lee, R. M., Sudermann-Merx, N.,
Walz, D., Tranter, T., and Misener, R. Multi-objective
constrained optimization for energy applications via tree
ensembles. Applied Energy, 306:118061, January 2022b.
ISSN 0306-2619. doi: 10.1016/j.apenergy.2021.118061.

Wan, X., Nguyen, V., Ha, H., Ru, B., Lu, C., and Osborne,
M. A. Think Global and Act Local: Bayesian Optimi-
sation over High-Dimensional Categorical and Mixed

12

http://www.sfu.ca/~ssurjano
http://www.sfu.ca/~ssurjano

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

Search Spaces. International Conference on Machine
Learning (ICML) 38, 2021.

Wang, L., Fonseca, R., and Tian, Y. Learning Search Space
Partition for Black-box Optimization using Monte Carlo
Tree Search. In NeurIPS, pp. 19511–19522, 2020.

Wang, M., He, J., and Hahn, P. R. Local Gaussian Process
Extrapolation for BART Models with Applications to
Causal Inference. Journal of Computational and Graph-
ical Statistics, 33(2):724–735, September 2023a. ISSN
1537-2715. doi: 10.1080/10618600.2023.2240384.

Wang, W., Zhang, X., and Zou, L. Regret Optimality of
GP-UCB, 2023b.

Wang, X., Jin, Y., Schmitt, S., and Olhofer, M. Recent
advances in Bayesian optimization. ACM Computing
Surveys, 55(13s):1–36, 2023c.

Wilson, J., Hutter, F., and Deisenroth, M. Maximizing ac-
quisition functions for Bayesian optimization. Advances
in neural information processing systems, 31, 2018.

Woodbury, M. A. Inverting modified matrices. In Mem-
orandum Rept. 42, Statistical Research Group, pp. 4.
Princeton Univ., 1950.

Xie, Y., Zhang, S., Paulson, J., and Tsay, C. Global Op-
timization of Gaussian Process Acquisition Functions
Using a Piecewise-Linear Kernel Approximation, 2024.

Yeh, I.-C. Modeling of strength of high-
performance concrete using artificial neural net-
works. Cement and Concrete Research, 28
(12):1797–1808, 1998. ISSN 0008-8846. doi:
https://doi.org/10.1016/S0008-8846(98)00165-3.
URL https://www.sciencedirect.com/
science/article/pii/S0008884698001653.

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. Algorithm 778:
L-BFGS-B: Fortran subroutines for large-scale bound-
constrained optimization. ACM Trans. Math. Softw., 23
(4):550–560, December 1997. ISSN 0098-3500. doi:
10.1145/279232.279236. URL https://doi.org/
10.1145/279232.279236.

Ziomek, J. K. and Bou Ammar, H. Are Random Decom-
positions all we need in High Dimensional Bayesian Op-
timisation? In ICML, volume 202, pp. 43347–43368,
2023.

13

https://www.sciencedirect.com/science/article/pii/S0008884698001653
https://www.sciencedirect.com/science/article/pii/S0008884698001653
https://doi.org/10.1145/279232.279236
https://doi.org/10.1145/279232.279236

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

0.00 0.25 0.50 0.75 1.00

−0.4

−0.2

0.0

0.2

0.4

0.6

Objective Function

0.00 0.25 0.50 0.75 1.00

GP Predictions

BARK GP-RBF Objective function

(a) Continuous

0 2 4 6

−1.0

−0.5

0.0

0.5

Objective function

0 2 4 6

GP Predictions

BARK GP-RBF Objective function

(b) Discrete (ordered)

A B C D E F

0

2

4

6

8
Objective function

A B C D E F

GP Predictions

BARK GP-Indicator Objective function

(c) Categorical (unordered)

Figure 9: Regression on a set of 1D toy functions, fit using a BARK GP and an RBF kernel. These functions highlight some
notable differences in behavior between the two models.

A. Related work comparison
We provide a summary of the existing literature in Appendix A, that highlights key similarities and differences between the
various BO methods covered in the literature review.

B. Toy regression examples
As discussed in the main paper, our key motivation behind using tree-based kernels is the optimization of the acquisition
function over mixed feature spaces. However, these models also model the underlying function differently, which we
investigate in this section by considering some toy 1D problems in Fig. 9.

First, the tree kernel is better able to model non-stationary functions, where the lengthscale varies over the search space.
For example, in Figs. 9a and 9b the very short lengthscale for small input values means that the RBF kernel learns a short
lengthscale over the whole space, leading to large uncertainty around x = 0.5, unlike the BARK model which has a much
lower variance in this region.

Second, BARK has a prior belief about the correlation between categorical values. Since each split in the tree structure
divides the categorical values into two subsets, the prior probability that two values will be placed in the same leaf is
non-zero. Conversely, the indicator kernel used in Ru et al. (2020) explicitly assigns zero correlation between different
categorical values. This results in increased variance for unseen categories, as shown in Fig. 9c.

These properties are not necessarily ‘better’ - different black-box functions require different modeling assumptions. For
example, the MAX benchmark in Section 7.3 requires fewer BO iterations when modeled using trees. However, other
benchmarks are better modeled with the assumption of smoothness provided by Euclidean GP kernels.

C. Notation
C.1. Table of symbols

We list a selection of the key symbols used in this paper in Table 3.

2This method requires prior knowledge of the structure of the tree function.

14

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

Table 2: Comparison of a selection of relevant existing approaches for Bayesian optimization. For each method, we
describe the underlying surrogate used to model the objective, and the tool used to optimize the acquisition function.
A ‘mixture’ kernel is the combination of a categorical kernel kh and a continuous kernel kx of the form k(z, z′) =
kh(h,h

′) · kx(x,x′) + kh(h,h
′) + kx(x,x

′)

Method Reference Surrogate Optimization GP
Trees/

Partitions
Mixed
domain

BART Chipman et al.
(2010)

Bayesian sum-of-trees Grid ✗ ✓ ✓

ENTMOOT Thebelt et al.
(2021)

Gradient boosted trees MIP ✗ ✓ ✓

SMAC Lindauer et al.
(2022)

Random forest Random local search ✗ ✓ ✓

LeafGP Thebelt et al.
(2022)

GP (Tree kernel) MIP ✓ ✓ ✓

BARK Ours GP (Bayesian tree kernel) MIP ✓ ✓ ✓

Exact GP Garrido-
Merchán
(2020)

GP (Matérn) with input
rounding

Gradient descent ✓ ✗ ✓

CASMO-
POLITAN

Wan et al.
(2021)

Local GP (Mixture) Alternate gradient de-
scent + discrete per-
turbation

✓ ✓ ✓

CoCaBo Ru et al.
(2020)

GP (Mixture) Multi-armed bandit +
gradient descent

✓ ✗ ✓

RKHS Em-
beddings

Buathong et al.
(2020)

GP (Deep embeddings) Genetic optimization
using derivatives

✓ ✗ ✓

MiVaBo Daxberger et
al. (2021)

Linear model (with non-
linear features)

Thompson sampling ✗ ✗ ✓

Gryffin Häse et al.
(2021)

BNN with simplex projec-
tion

Gradient descent ✗ ✗ ✓

HyBO Deshwal et al.
(2021)

GP (Diffusion kernel) CMA-ES: alternating
continuous and dis-
crete subspaces

✓ ✗ ✓

PR Daulton et al.
(2022)

GP (Mixture) Gradient descent ✓ ✗ ✓

TuRBO Eriksson et al.
(2019)

Local GP (Matérn) Thompson sampling ✓ ✓ ✗

BAxUS Papenmeier et
al. (2022)

Local GP (Matérn, with em-
beddings)

Thompson sampling ✓ ✓ ✗

Tree struc-
tured

Jenatton et al.
(2017)

GP (Matérn) + shared
weights

Path-based + gradient
descent

✓ ✓2 ✓

15

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

Table 3: Symbols used to define tree operations. Any symbol followed by a star, ·∗, is defined with respect to a proposal

Symbol Meaning

m Number of trees in forest
T Tree structure
M Vector of leaf values
T Forest structure (set of trees, {Tt}mt=1)
M Forest leaf values (set of values, {Mt}mt=1)

q(· → ·∗) Proposal probability
w0 Number of leaf nodes
w1 Number of singly-internal decision nodes (both children

are leaves)

η Node
dη Depth of node η

(α, β) Node depth prior parameters
(ν, q) Noise prior parameters

C.2. Model hyperparameters

For clarity, we provide an overview of the parameters used in the BARK model in Appendix C.2.

Table 4: Hyperparameters and parameters of the BARK model. For fixed parameters, their value is given. Parameters that
are sampled are given the label Sampled.

Symbol Description Value

m Number of trees in ensemble 50
(α, β) Parameters of node depth prior (0.95, 2)
(ν, q) Parameters of noise prior (3, 0.9)

σ2
0 Signal variance 1

σ2
y Noise variance Sampled

Ti The ith tree structure Sampled

D. Experimental details
D.1. Method details

BARK. For both model fitting and BO, we use 16 samples for the BARK kernel. Increasing the number of samples would
(marginally) improve the model fit, however this would increase the complexity of the optimization problem, meaning that
the optimization would take longer to converge. BARK uses 1000 burn-in samples and 400 kernel samples, running in
parallel with 4 chains. We use a thinning rate of 100 to obtain the 16 samples. We evaluate the effect of increasing the
number of samples in Appendix G.

In BO we only generate the burn-in samples in the first iteration. Since each iteration only adds a single datapoint, the
posterior from the previous iteration will be close enough to that of the current iteration that further mixing is not required.

For BARK (as well as BART), we use the default number of trees m = 50, as suggested by Kapelner & Bleich (2016), and
the default parametrization of the noise, (ν, q) = (3, 0.9).

BART. For model fitting and BO, BART takes 1000 samples to burn-in the MCMC chain, and 1000 posterior samples. This
is run in parallel for 4 chains.

There is no procedure in the literature for optimizing acquisition functions for BART, and the MIP formulation would be too

16

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

expensive for the 1000s of BART samples required. We therefore evaluate the surrogate on a grid of max(25D, 214) points
using a space-filling approach (Sobol, 1967). At each iteration, we sample a new grid to better explore the domain. This grid
size was chosen to match the wall clock time of the BARK optimization (as shown in Fig. 11.

Each sample f (s) in BART is a single, deterministic function draw, whereas a BARK sample fBARK|T ∼ GP(· , ·) is a
distribution over functions. Therefore, where BARK allows access to the exact UCB for each sample as detailed in Eq. (1),
BART requires the sample-based estimation of Wilson et al. (2018), UCB(x) ≈ 1

S

∑S
s=1 µ+ κ

√
π/2|y(s) − µ|, where µ

is the empirical average of the observations.

We use the PyMC-BART v0.8.2 implementation (Quiroga et al., 2022).

GP-RBF. We use the default priors from (Hvarfner et al., 2024), namely a squared exponential kernel with a log-normal
lengthscale prior

p(ℓ) = LN (
√
2 + log

√
D,

√
3)

We use the BoFire v0.0.16 implementation (Dürholt et al., 2024), which in turn uses BoTorch v0.11.3 (Balandat et al., 2020).
To optimize mixed space acquisition functions, we use the optimize_acqf_mixed_alternating function provided
by BoTorch.

LeafGP. We use the implementation provided by Thebelt et al. (2022a).

SMAC. We use the SMAC3 v.2.0 implementation (Lindauer et al., 2022), using the ask-tell interface.

Entmoot. We use the BoFire v0.0.16 implementation (Dürholt et al., 2024).

D.2. Benchmark details

A description of the benchmarks used in Bayesian optimization is given in Tables 5 and 6. For each BO benchmark, we
generate a set of min(2D, 30) initial points, and run the optimization loop for 100 iterations, reporting the minimum value
observed up to iteration t.

The experiments were run on a High Performance Computing cluster, equipped with AMD EPYC 7742 processors, with
each core allocated 16GB of RAM. For models capable of multithreading, we use 8 CPUs; otherwise, only 1.

Table 5: Synthetic benchmarks for Bayesian optimization. For each benchmark, we give the number of dimensions D, and
the bounds for the continuous (x), discrete ordinal (i), and categorical (h) features.

Benchmark D Features

TreeFunction 10 x ∈ [0, 1]10

TreeFunctionCat 20 x ∈ [0, 1]10

h ∈ {1, · · · , 5}10
DiscreteAckley 13 x ∈ [−1, 1]3

i ∈ {−1, 1}10
DiscreteRosenbrock 10 x ∈ [−5, 10]4

i ∈ {−5, 0, 5, 10}6

E. Additional results
E.1. Regression comparison with GP-RBF

In Section 7.1, we show that BART and BARK have similar modeling abilities, and that our kernel perspective on BART
still leads to strong regression performance. For completeness, we also provide a comparison to the GP-RBF model, with
linear combination of sum and product kernels, in Table 7.

E.2. Continuous benchmarks

In the main experiments of the paper, we note the motivating use case for BARK is in optimizing over mixed feature
spaces. However, we also provide two additional benchmarks here, for continuous synthetic problems. Specifically, we

17

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

Table 6: Applied benchmarks for Bayesian optimization. The descriptions of SVRBench, XGBoostMNIST, and PestControl
are from the source paper, Dreczkowski et al. (2023).

Benchmark D Features

SVRBench 53 x1 is log ϵ, x2 is logC, x3 is log γ, h are features to include.
x1 ∈ [−2, 0]
x2 ∈ [−2, 2]
x3 ∈ [−1, 1]
h ∈ {exclude, include}50

XGBoostMNIST 8 x1 is log learning rate, x2 is min split loss, c3 is min split loss, x4 is reg
lambda, i1 is max depth, h1 is booster, h2 is grow policy, h3 is objective
x1 ∈ [−5, 0]
x2 ∈ [0, 10]
x3 ∈ [0.001, 1]
x4 ∈ [0, 5]
i1 ∈ {1, · · · , 10}
h1 ∈ {gbtree, dart}
h2 ∈ {depthwise, lossguide}
h3 ∈ {multi:softmax,multi:softprob}

CCOBench 30 x are transmission powers, i are downtilts.
x ∈ [30, 50]15

i ∈ {0, · · · , 5}15

PestControl 25 h are pesticide choices at each of 25 stages.
h ∈ {pest1, pest2, pest3, pest4, none}25

MAX 28 h0, h1, h2 are the M, A, and X elements respectively. x{1,··· ,12} are
chemical properties of the MAX compound. x{13,··· ,28} are nuisance
features (uniform noise).
h0 ∈ Melements, |Melements| = 9
h1 ∈ Aelements, |Aelements| = 12
h2 ∈ Xelements, |Xelements| = 2
x{13,··· ,28} ∈ [−1, 1]16

use the Hartmann and Styblinksi-Tang problems from the SFU library (Surjanovic & Bingham, 2013). We show the BO
performance in Fig. 10. The smooth functions are more suited to GP-RBF, however BARK outperforms all other tree-based
methods, and still shows good performance in this unfavorable setting on the Styblinski-Tang benchmark.

F. Time comparison
F.1. Posterior sampling

BART and BARK both take significantly longer to train than the other baselines, as they are MCMC-based methods. Given
N observations, training BART has O(N) complexity, whereas BARK trains with O(N3) complexity (which is reduced to
O(N2) when sampling tree structures due to the low-rank update discussed in Section 5). We therefore expect BART to
scale far more favorably with many observations. In Table 8, we show the time taken to train the models on the regression
problems from Section 7. The fitting time for BARK is reasonable in the low-data regime of BO, matching that of BART
when only 40 training points are used. Since we apply our model in the BO setting, where the evaluation of the black-box
function may take hours, or possibly even days, we argue that this time taken is not a significant limitation of the model.
We also note that we use fewer samples for BARK (400 samples per parallel chain) compared to BART (1000 samples per
chain).

18

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

Table 7: Regression performance of the BART and GP-RBF models, given as mean (and standard deviation). The number
of training points used for each benchmark is given by n. The number of dimensions for each problem is given by D
(continuous + integer + categorical). The better performing model is in bold for each metric.

Benchmark n D NLPD ↓ MSE ↓
BARK GP-RBF BARK GP-RBF

Abalone 400 7+0+1 1.09 (0.06) 1.06 (0.05) 0.52 (0.06) 0.49 (0.05)
Auto MPG 100 4+3+0 0.45 (0.08) 0.50 (0.22) 0.15 (0.02) 0.15 (0.03)
Concrete Compressive Strength 300 8+0+0 0.31 (0.06) 0.39 (0.04) 0.11 (0.01) 0.15 (0.01)
Student Performance 250 0+13+17 1.27 (0.06) 1.43 (0.06) 0.73 (0.07) 1.00 (0.10)

0 50 100

Iteration

−3

−2

−1

B
es

t
ob

se
rv

ed
 v

al
u
e

Hartmann

0 50 100

Iteration

−350

−300

−250

−200

StyblinskiTang

BARK

LeafGP

BART

GP-RBF

SMAC

BARKPrior

Entmoot

Figure 10: Bayesian optimization performance on benchmarks with a continuous-only domain: Hartmann (6D) and
Styblinski-Tang (10D), both from the SFU library of synthetic functions.

Table 8: Mean (and standard deviation) time to generate 1000 samples from the posterior for the BART and BARK models
across 20 random data splits. We compare against BART using the PyMC-BART implementation.

Benchmark n Sampling time (seconds per
1000 samples)

BART BARK

Student Performance 40 20.84 (5.86) 19.36 (7.80)
Auto MPG 100 18.09 (6.08) 71.04 (7.97)
Abalone 400 20.81 (4.98) 951.91 (14.28)

19

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

F.2. Optimization

We provide a comparison of the time taken to fit and optimize the models in the BO loop in Fig. 11.

BARK is slower than competing methods, taking approximately 50s to fit the model, and 100s to optimize. This is due to the
combination of the expensive MCMC procedure, and the large optimization formulation. This is comparable to the fitting
time for BART, and the time taken to evaluate BART on a grid of 214 points. BARK is best applied in BO settings where the
objective is expensive to evaluate (e.g. taking at least several minutes, or having a large associated financial cost). Note that
the PestControl and MAX (material design) benchmarks reflect examples of such black-box functions. For settings where
experiments are cheap and/or function evaluations are quick, we recommend alternate methods.

G. Hyperparameter sensitivity
G.1. Node depth prior

Throughout our experiments, we use the default BART values of (α, β) = (0.95, 2.0) for the node depth prior. These are
the only hyperparameters for the tree generating process, so it is natural to ask how sensitive our method is to the selection
of these values.

We evaluate the regression performance for a grid of (α, β) values in Fig. 12. We show that the default values have generally
strong performance across both small- and large-data regimes. Furthermore, changing the hyperparameters do not have a
significant impact on the observed NLPD - all of the results are well within the standard deviation reported in Table 1. We
therefore conclude that our method is largely insensitive to the hyperparameter choice, and use the default BART values.

We also note that, while a smaller value of β may lead to stronger regression in some cases, concentrating the prior on
deeper trees will make the optimization problem more difficult. Maia et al. (2024) explore a similar sensitivity analysis for
their BART-based model, and also opt for the default BART hyperparameters.

G.2. Number of samples

In all experiments with BARK, we use 16 samples from the posterior - 4 samples collected from 4 parallel MCMC
chains. This is a compromise between model fit, and optimization speed: increasing the number of samples improves the
performance of the surrogate, at the cost of adding more constraints to the optimization formulation, rendering the task of
optimizing the acquisition function more expensive.

In Fig. 13, we show the effect of increasing the number of samples on regression performance. We observe that increasing
the number of samples 16 gives marginal improvement on predictive performance, while rendering the optimization problem
significantly more difficult.

H. Posterior sampling
Many of the derivations are included in Kapelner & Bleich (2016). We include all of these terms here for completeness,
however derivations are omitted where they are presented in the literature. A table of symbols is provided in Appendix C.

The grow and prune proposals are the inverse of each other, and the change operation is its own inverse. As long as the
probability of selecting each proposal is equal to the probability of its inverse proposal, the ratio of proposal probabilities
(e.g., the probability of selecting the grow proposal) does not need to be included in the Metropolis Hastings ratio.

Transition ratio (prune and grow) Below is the ratio for the grow proposal. The probability of selecting the target node
is 1

w0
, and the probability of selecting the target node for a prune (the inverse proposal) is 1

w∗
1

. The ratio for the prune
proposal is the inverse of this ratio.

q(T ∗ → T)

q(T → T ∗)
=

w0 · Pr(rule)
w∗

1

(6)

Prior ratio (prune and grow) The grow prior ratio is given below, and the prune prior ratio is the inverse of this
expression.

20

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

0 50 100
10−2

100

102

T
im

e
(s

)

Fitting

0 50 100

Number of iterations

Optimization

0 50 100

Total

PestControl

0 50 100
10−2

100

102

T
im

e
(s

)

Fitting

0 50 100

Number of iterations

Optimization

0 50 100

Total

TreeFunctionCat

0 50 100
10−2

100

102

T
im

e
(s

)

Fitting

0 50 100

Number of iterations

Optimization

0 50 100

Total

XGBoostMNIST

BARK

LeafGP

BART

SMAC

BARKPrior

Entmoot

GP-RBF

GP-RBF (enum)

Figure 11: Time taken to fit the surrogate, optimize the acquisition, and combined time for each method used in the Bayesian
optimization experiments. We compare the time taken per iteration across three benchmarks. For the XGBoostMNIST
benchmark, GB-RBF is optimized by enumerating every discrete combination, leading to increased optimization times in
line with BARK.

21

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

1.0 1.5 1.75 2.0 2.25 2.5
β

0.5

0.9

0.95

0.99

α

AutoMPG (n=20)

1.0 1.5 1.75 2.0 2.25 2.5
β

0.5

0.9

0.95

0.99

α

AutoMPG (n=100)

1.0 1.5 1.75 2.0 2.25 2.5
β

0.5

0.9

0.95

0.99

α

Student (n=40)

1.0 1.5 1.75 2.0 2.25 2.5
β

0.5

0.9

0.95

0.99

α

Student (n=250)

0.63

0.66

0.69

N
L
P

D

↓

0.44

0.45

0.46

0.47

N
L
P

D

↓

1.355

1.360

1.365

N
L
P

D

↓

1.273

1.274

1.275

N
L
P

D

↓

Figure 12: Regression performance of BARK for four tasks, varying the node depth hyperparameters, averaged across 20
test/train splits. Larger, darker dots show stronger performance. The default value pair (0.95, 2.0) is circled. Note that the
range of NLPDs for each task is small, and is far less than the standard deviations of performance given in Table 1.

p(T ∗)

p(T)
= α

(
1− α

(2+dη)β

)2
((1 + dη)β − α) Pr(rule)

(7)

We note that the splitting rule probability terms in the transition ratio and the prior ratio cancel. This means that, as long
as the same distribution is used for the transition kernel as the prior distribution on trees, the acceptance probability is
independent of the choice of splitting rule distribution.

Transition ratio and prior ratio (change) As noted in Kapelner & Bleich (2016), the transition ratio and the prior ratio
cancel in the expression for the acceptance probability. All that remains is the likelihood term.

Prior ratio (noise) This can be simply calculated using the ratio of the priors placed over the hyperparameter.

Transition ratio (noise) As stated in Section 5, we sample the noise hyperparameter in a transformed space, to ensure that
the parameter remains positive. Specifically:

θ = g−1(σ2)

θ∗ ∼ N (θ∗; θ, σ2
ϵ)

σ2∗ = g(θ∗)

22

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

1 2 3 4 5 6 7 8
Samples per chain

1

2

3

4

5

6
N

u
m

b
er

 o
f
ch

ai
n
s

AutoMPG (n=100)

1 2 3 4 5 6 7 8
Samples per chain

1

2

3

4

5

6

N
u
m

b
er

 o
f
ch

ai
n
s

Student (n=250)

0.45

0.50

0.55

N
L
P

D

↓

1.26

1.27

1.28

1.29

N
L
P

D

↓

Figure 13: NLPD for varying the number of chains and number of samples per chain, averaged across 10 runs. Larger,
darker dots show stronger performance. The BARK default (4, 4) is circled.

where g : R → R+. We use the softplus transform, g(θ) = log(1 + exp(θ)). Given this transform, we can then obtain the
probability density function of σ2∗,

fσ2∗(σ2∗) = fθ∗(g−1(σ2∗))

∣∣∣∣ d

dθ∗
g−1(σ2∗)

∣∣∣∣
log fσ2∗(σ2∗) = − 1

2σ2
ϵ

(
g−1(σ2∗)− g−1(σ2)

)2
− log

(
1− exp

(
−σ2∗

))
+ const

We therefore obtain the log-transition ratio,

log
fσ2∗

fσ2

= −
(
1 +

1

σ2
ϵ

)
log

(
exp
(
σ2∗)− 1

exp(σ2)− 1

)
+ σ2∗ − σ2

I. Regret bounds and kernel approximation
Bayesian optimization literature often provides bounds on the cumulative regret during the optimization process. In this
section, we discuss why this is a challenge for our method, and provide some discussion on how a regret bound might be
attained.

I.1. General regret bounds: existing methods are not applicable

An initial exploration of the literature in Bayesian optimization and bandits gave us two promising avenues for proving
regret bounds, however upon more detailed examination we found the problem to be far more difficult than we originally
envisaged – even under strong simplifying assumptions such as the tree structure being known.

The first attempt relates to the direct application of Theorem 1 in Srinivas et al. (2012). Indeed, if we assume the tree
structure was known, the kernel is well defined and the bounds would seemingly follow. However, the proof heavily relies
on Lipschitz-continuity of the function, and the assumption of an RHKS norm implying differentiability. In our setting, this
is not necessarily the case - near decision boundaries, there are discontinuities that cannot be bounded.

An additional avenue that could be explored relates to the bandit literature. Indeed, assume that the objective function, f , is
sampled from a tree-kernel GP. The complexity of f is bounded: this can be achieved by thresholding the prior probability
of the tree structure. Observations of f have Gaussian noise, i.e. y(x) = f(x) + ϵ. Even though we have a continuous
space, there is a finite number of splits, so the resulting problem is trying to find the best subspace - defining a multi-armed
bandit problem. However, the number of resulting arms will be extremely large, therefore standard bounds for independent
bandits under UCB will be far too loose.

23

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

We could further reformulate the problem in a semi-bandit setting, where each of the trees in the forest is a bandit, and
instead of observing individual rewards, we observe the sum of the bandits in so called "super-arms". This setting is explored
in the combinatorial multi-armed bandit literature, where there is a collection of M super-arms each with n arms whose sum
we can observe. However, in the literature M << n, but in our case we have far more splits than trees, so M >> n, which
again results in very loose bounds. This approach would also be conditioned on a known tree structure, which would not
match the setting where the tree structure is being explored.

I.2. Asymptotic bounds: kernel approximation fails

I.2.1. THE LAPLACE KERNEL AS AN APPROXIMATION

The connection between asymptotic tree kernels and the Matern- 12 kernel (often referred to as the Laplace kernel) have been
explored in the literature since Balog et al. (2016). This opens up the idea that Matern regret bounds (Wang et al., 2023b)
can be combined with approximation guarantees (e.g. Xie et al. (2024)) to obtain asymptotic regret bounds (as the number
of trees increases). However, as we will show, further inspection reveals the kernel approximation is too crude for the BART
and BARK models to be meaningful.

Firstly, let us begin by showcasing the scenario in which the kernel is a good approximation, as it was originally explored in
Linero (2017). We work in the domain X = [0, 1]D, and in the following setting. Something that is important to note is that
the following two assumptions do not hold for either BART or BARK models:

Assumptions.

1. For any leaf node η ∈ LT , the depth of the node dη ∼ Poisson(λ)

2. For any decision node η ∈ JT , the selected feature jη ∼ Categorical
(

1
D , · · · 1

D

)
, and the decision rule Cη ∼ U(0, 1).

Theorem. The limit of the kernel as m → ∞ is given by

k(x,x′) = exp

(
− λ

D
|x− x′|1

)
(8)

Proof. We aim to find k(x,x′), which is equal to 1− Pr(split ∈ [x,x′]). Let δ = |x− x′|1/D. For n splits, the probability
of no splits in this interval is pn = (1− δ)n. For the leaf node η that contains the point x, let dη ∼ q. By assumption, the
probability mass function of q is the Poisson distribution. Let x ∼ x′ denote the event that x and x′ fall in the same leaf, i.e.,
Pr(x ∼ x′) = ET [ϕ(x, T)

Tϕ(x′, T)]. Then:

Pr(x ∼ x′) =

∞∑
n=0

qnpn

=

∞∑
n=0

qn(1− δ)n

=

∞∑
n=0

λn exp(−λ)

n!
(1− δ)n

= exp(−λ)

∞∑
n=0

[λ(1− δ)]n

n!

= exp(−λ) exp(λ(1− δ))

= exp

(
− λ

D
|x− x′|1

)

where we use the Taylor expansion of exp(λ(1− δ)) to obtain the approximation.

24

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

The 1
D term in the Laplace approximation points to a useful natural property of the BARK kernel: as the dimensionality of

the problem increases, the effective lengthscale increases. This leads to a similar behaviour as Hvarfner et al. (2024), where
we assume less complex models in higher dimension to mitigate the curse of dimensionality.

If the BARK kernel can indeed be approximated by the Laplace kernel, then we can use the result of Wang et al. (2023b) to
show that the cumulative regret is bounded by Õ(T

1+2D
2+2D), enjoying sub-linear regret. Even if the approximation is only

correct up to some error ϵ, then we could employ Xie et al. (2024) to correct the regret bounds.

I.2.2. DROPPING SPLIT INDEPENDENCE AND POISSON ASSUMPTIONS

In the previous subsection, we assume that the splits chosen at each decision node are independent. This results in ‘logically
empty’ leaf nodes that cannot be reached by any point in the domain. However, this assumption is necessary to obtain a
stationary kernel.

We also note that the assumption of the Poisson distribution of node depths does not follow the BART (nor BARK) prior.
The Poisson distribution is obtained by considering the successes of several independent identically distributed events,
whereas the probability of a split depends on the depth of the node. The Poisson distribution places too high a probability
mass on large trees, which is in practice avoided by the BART depth prior. Moreover, the Poisson distribution is placed on
the depth of a given node. However, for any distribution of node depths, a datapoint is more likely to fall into a more shallow
node, as the volume of the subset of the domain defined by that node will be larger. This assumption therefore places an
even higher probability on a given datapoint falling into a deep node than is observed in practice.

This discrepancy was considered in Petrillo (2024), who show that the GP limit of BART follows a complicated kernel
that can needs to be calculated recursively. In this subsection, we alter the assumptions from Linero (2017) and show the
approximation is too loose to be used for regret bounds. In particular we consider the following:

1. The splitting rules are sampled uniformly in the subspace defined by previous splits (i.e. there are no logically empty
splits).

2. We use the true depth prior used by BART and BARK (i.e. we no longer assume the distribution to be Poisson).

We consider the ‘chopping’ process. The interval [0, 1] is repeatedly chopped, discarding the region to the right of the chop.
The location of each chop is uniformly distributed on the remaining interval: such that Td ∼ U [0, 1], and the length of the
remaining interval ld =

∏d
i=1 ti. For a point x ∈ [0, 1], let the event Sd be the event that ld ∈ [0, x] and ld−1 /∈ [0, x]- that

is, the dth chop disconnects x from 0. This is equivalent to the event that at a split of depth d at a decision node, the points 0
and x are placed in different leaf nodes.

Td ∼ U [0, 1]
− log Td ∼ Exp(1)

− logLd = −
∑
i

log Ti ∼ Gamma(d, 1)

Given the distribution of − logLd, we can compute the cumulative distribution function of Ld as below:

FLd
(ld) =

1

(d− 1)!

∫ log ld

0

td−1e−tdt

fLd
(ld) =

1

(d− 1)!
(− log ld)

d−1

25

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

Pr(Sd) = Pr(Ld ≤ x and Ld−1 > x)

Pr(Sd)

Pr(Ld−1 > x)
= Pr(Ld ≤ x | Ld−1 > x)

=

∫ 1

0

Pr(Ld ≤ x | ld−1)fLd−1
(ld−1 | Ld−1 > x) dld−1

=

∫ 1

x

x

ld−1

fLd−1
(ld−1)

Pr(Ld−1 > x)
dld−1

Pr(Sd) =
x

(d− 2)!

∫ 1

x

1

l
(− log l)d−2 dl

=
x

(d− 1)!
(− log x)d−1

We now consider the probability of there being any split between 0 and x. Let π(d) the prior probability of a node being a
split, which depends only on the node depth. Then, the probability of any split ocurring between 0 and x is:

Pr(split ∈ [0, x]) = π(1)(Pr(S1) + π(2)(Pr(S2) + · · ·))

=

∞∑
d=1

Pr(Sd)

d∏
i=1

π(d)

This expression is the probability that the two points are separated, i.e., 1− k(0, x). Unfortunately, from this expression we
are able to see that the approximation will quickly diverge away from the Laplace kernel as we increase the preference for
low-depth trees, as can be seen in Figure 14. Particularly, for the depth prior both BART and BARK use β = 2.0 resulting
in a vastly different kernel to the Laplace.

J. Optimizer details
Typical acquisition function optimization is performed using gradient based approaches, such as the second-order method
L-BFGS. However, functions sampled from the BARK kernel have zero gradient everywhere, and so these cannot be used.
Instead, we formulate the optimization problem as a mixed-integer program, optimizing directly over the tree structure using
the formulation in Thebelt et al. (2022a). We use Gurobi 11 to optimize the acquisition function.

This approach comes with additional advantages:

• We can naturally optimize over mixed spaces, as continuous and categorical features are treated equivalently by
considering only the tree structure.

• We can include nonlinear constraints.

• In some cases, we can provide a guarantee of global optimality.

J.1. Optimizer hyperparameters

Table 9 contains list of the hyperparameters that have been set for the solver. We note that MIP solvers have hundreds of
parameters, and it would be infeasible to tune them all.

We set the MIP gap to 10%, such that the best acquisition function value is guaranteed to be with in 10% of the global
optimum. We found that in practice, the found point is generally much closer to the global optimum, however it takes more
time to prove this optimality. We also note that it is not necessary to guarantee global optimality, since gradient-based
methods do not guarantee global optimality either.

26

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

d
∼

P
o
is

so
n
(λ

)

Cη ∼U(0, 1)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Cη ∼U(0, 1)∩NonEmptySplits

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

d
∼

T
ru

eP
ri

o
r(
α
,β

)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

β= 0.5 β= 1.0 β= 2.0

Figure 14: Tree kernel approximation: we compare the effect of strengthening the prior to prefer smaller trees. Indeed, we
observe that as β increases, the true kernel and the Laplace kernel become very distinct. We set λ = − ln(1− α). Plots are
k(0, x).

Parameter Description Value

NonConvex 0 if the problem is convex in the con-
tinuous variables; 2 otherwise

0

MIPGap Gap between the upper and lower
bound of the optimal value

10%

Heuristics Time spent using heuristics to find
feasible points

20%

Time Limit Maximum time to find the optimum
point

100s

Table 9: Some settings of the MIP solver parameters.

27

BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

J.2. Optimization formulation

See Thebelt et al. (2022a) for further discussion on the formulation of the tree kernel optimization.

We encode the tree model as below. This formulation is based on Thebelt et al. (2022a), with the only difference that the
set T is the set of all trees across all MCMC samples. By using S samples from the tree kernel posterior, we increase the
number of constraints in the optimization model by a factor of S.

∑
l∈Lt

zt,l = 1, ∀t ∈ T , (9a)

∑
l∈left(s)

zt,l ≤
∑

j∈C(s)

νV(s),j , ∀t ∈ T ,∀s ∈ splits(t), (9b)

∑
l∈right(s)

zt,l ≤ 1−
∑

j∈C(s)

νV(s),j , ∀t ∈ T ,∀s ∈ splits(t), (9c)

Ki∑
j=1

νi,j = 1, ∀i ∈ C, (9d)

νi,j ≤ νi,j+1, ∀i ∈ N ,∀j ∈ [Ki − 1] , (9e)
νi,j ∈ {0, 1}, ∀i ∈ [n] ,∀j ∈ [Ki] , (9f)
zt,l ≥ 0, ∀t ∈ T ,∀l ∈ Lt. (9g)

The objective to be optimized is the UCB acquisition function. The key difference here is that we now have S samples of the
mean and standard deviation at each input x, which we sum over to obtain the integrated acquisition function. The equality
of the variance is relaxed to an inequality (≤) to provide a second-order cone constraint.

x∗
lb,x

∗
ub,x

∗
cat ∈ argmax

x

S∑
s=1

µ(s)(x) + κσ(s)(x) (10a)

µ(s)(x) = KxX;θ(s)(KXX;θ(s) + σ2
y
(s)

I)
−1

y (10b)

σ(s)2(x) ≤ Kxx;θ(s) −KxX;θ(s)(KXX;θ(s) + σ(s)
y

2
I)

−1

KXx;θ(s) (10c)

28

	Introduction
	Related Work
	Background
	Gaussian process Bayesian optimization
	Forest kernels
	Bayesian Additive Regression Trees

	The BART model
	The BARK model
	Motivating the Bayesian treatment of the kernel
	Differences from the BART model
	Computational consideration

	BARK for Bayesian optimization
	Optimizing the acquisition function
	Uniform splitting rule
	The Laplace approximation for regret bounds

	Experiments
	Model fit comparison
	Synthetic benchmarks
	Applied benchmarks
	Wall-time discussion

	Conclusion
	Related work comparison
	Toy regression examples
	Notation
	Table of symbols
	Model hyperparameters

	Experimental details
	Method details
	Benchmark details

	Additional results
	Regression comparison with GP-RBF
	Continuous benchmarks

	Time comparison
	Posterior sampling
	Optimization

	Hyperparameter sensitivity
	Node depth prior
	Number of samples

	Posterior sampling
	Regret bounds and kernel approximation
	General regret bounds: existing methods are not applicable
	Asymptotic bounds: kernel approximation fails
	The Laplace kernel as an approximation
	Dropping split independence and Poisson assumptions

	Optimizer details
	Optimizer hyperparameters
	Optimization formulation

