
Learning to Use Tools via Cooperative and Interactive Agents
with Large Language Models

Anonymous ACL submission

Abstract

Tool learning empowers large language models001
(LLMs) as agents to use external tools002
and extend their utility. Existing methods003
employ one single LLM-based agent to004
iteratively select and execute tools, thereafter005
incorporating execution results into the next006
action prediction. Despite their progress,007
these methods suffer from performance008
degradation when addressing practical tasks009
due to: (1) the pre-defined pipeline with010
restricted flexibility to calibrate incorrect011
actions, and (2) the struggle to adapt a012
general LLM-based agent to perform a013
variety of specialized actions. To mitigate014
these problems, we propose ConAgents, a015
Cooperative and interactive Agents framework,016
which coordinates three specialized agents017
for tool selection, tool execution, and action018
calibration separately. ConAgents introduces019
two communication protocols to enable the020
flexible cooperation of agents. To effectively021
generalize the ConAgents into open-source022
models, we also propose specialized action023
distillation, enhancing their ability to perform024
specialized actions in our framework. Our025
extensive experiments on three datasets026
show that the LLMs, when equipped with027
the ConAgents, outperform baselines with028
substantial improvement (i.e., up to 14% higher029
success rate)1.030

1 Introduction031

Although large language models (LLMs) have032

achieved remarkable performance in a broad033

range of natural language processing tasks (Wang034

et al., 2023c; Chang et al., 2023), they still035

encounter inherent limitations such as out-of-date036

information (Qin et al., 2023b; Mallen et al.,037

2023). Tool learning is proposed to equip LLMs038

with various auxiliary resources, e.g., a search039

engine (Qin et al., 2023a; Nakano et al., 2021)040

1https://anonymous/ConAgents

(a) Previous works

Tool
server

Question: Can you tell me what is the latest movie in December 24, 2023 directed

by Lilly Wachowski?

Executed
results

(2)
Execution

(3) Result
Incorporation

❌

Tool name
(1) Selection

Failure

Success

(b) Our method
Automatic interaction

Skip

Execution
agent

Review
agent

Tool-use
planning

tool
code

Action review

reflection

results
execute

Adaptive interaction

review

error

review

review

action

(1)

(2)

action

agent

agent

Grounding
agent

Figure 1: Comparison between (a) existing single-agent
tool learning method and (b) our cooperative agent
framework ConAgents. The ConAgents coordinates
three agents through two proposed communication
protocols, e.g., automatic and adaptive interaction.

or a calculator (Schick et al., 2023; Gao et al., 041

2023a), which empower them as tool-use agents 042

and improve their proficiency in tackling concrete 043

complex tasks. As shown in Figure 1(a), most 044

previous studies allow the LLM-based agent to 045

interleave multiple actions in a pre-defined order 046

to interact with tools (Yao et al., 2023; Yang et al., 047

2023b; Qin et al., 2024). The agent first breaks 048

down the task and plans a series of tools in a step- 049

by-step manner. For each step, the agent executes 050

the tools by passing arguments and continuously 051

incorporates useful intermediates into the next 052

action prediction. 053

Despite the advancement of existing methods, 054

they face two challenges in practice. First, most of 055

them alternate the planning and execution with a 056

pre-defined pipeline (Yang et al., 2023b; Song et al., 057

2023), which inevitably constrains their flexibility 058

in handling exceptional errors that frequently occur 059

during a tool-use workflow (Zhuang et al., 2023; 060

Wang et al., 2023b; Prasad et al., 2023). When 061

failing to invoke tools, it is crucial to enable agents 062

to revise their incorrect actions instead of directly 063

shifting to the next step with the error response of 064

1

https://anonymous.4open.science/r/Cooperative-Agents-8CC6/

previous steps. Second, it is struggling to adapt065

a single LLM-based agent to learn a variety of066

specialized actions in solving a task (Dziri et al.,067

2023; Yin et al., 2023). Solving a practical task068

involves varied actions with substantial differences,069

e.g., planning, execution, and reflection, drawing070

upon different facets of the LLMs (Shen et al.,071

2024; Qiao et al., 2024). Therefore, developing072

effective agent flow and adapting tool-use models073

to solve practical tasks remains a challenging074

research topic.075

In this work, we propose ConAgents, a076

Cooperative and interative Agents framework077

for tool learning tasks. As illustrated in078

Figure 1, ConAgents decomposes the overall079

tool-use workflow using three specialized agents:080

Grounding, Execution, and Review agents. The081

grounding agent reasons the task description and082

grounds it into planning by specifying which tool083

to use. The execution agent follows the planning to084

execute the selected tool by generating executable085

code. The review agent reviews the incorrectness086

in planning or execution, providing feedback for087

revision. To enable the dynamic cooperation088

of these specialized agents, we propose two089

communication protocols, including automatic and090

adaptive interaction. In the process of automatic091

interaction, the review agent provides real-time092

reviews to calibrate incorrect actions. Thus, the093

agent flow alternates between the planning-review094

and execution-review phases as shown in Figure 1.095

In the process of adaptive interaction, the review096

agent only provides feedback when exceptional097

errors are captured while executing the tools.098

For a comprehensive evaluation, we conduct099

experiments on two benchmarks, i.e., ToolBench100

and RestBench, using various LLMs as backbones.101

We find that ConAgents outperforms the state-of-102

the-art baseline with both communication protocols103

(6% improvement in Success Rate on average).104

Despite closed-source LLMs performing well105

with our framework, we find the open-source106

models may struggle with the modulized agent107

flow. Thus, we propose an approach called108

specialized action distillation (SPAN), enhancing109

the performance of open-source models in110

ConAgents. We heuristically sample 2,919 high-111

quality tasks from the ToolBench (Qin et al.,112

2024) training set, and cluster them based on their113

similarity, retaining only one task in each cluster114

to avoid duplication. For each task, we guide the115

GPT-4 to generate solutions using ConAgents, and116

reorganize them into actions tailored to specialized 117

agent functionalities in ConAgents. These actions 118

are separately distilled into different student models 119

through instruction tuning. We employ parameter- 120

efficient tuning techniques, i.e., LoRA (Hu et al., 121

2021), further extending our distillation method 122

into low-resource scenarios. Experiment results 123

show that our distillation method empowers open- 124

source models with strong performance with only 125

500 training examples. 126

Our contributions are summarized as follows: 127

(1) We propose ConAgents, a cooperative and 128

interactive agents framework, for tool learning 129

tasks. ConAgents coordinates three specialized 130

agents with two communication protocols to solve 131

a complex task. (2) We propose specialized 132

action distillation (SPAN), which more effectively 133

enables open-source models to work with the 134

ConAgents; (3) Both automatic and human 135

evaluation conducted on two benchmarks validate 136

the superiority of ConAgents. 137

2 Related Work 138

LLMs for tool learning. Enhancing LLMs with 139

external tools has been proven a promising method 140

for solving practical tasks (Bran et al., 2023; 141

Qu et al., 2024; Wang et al., 2024b). Previous 142

works empower a tool-learning agent typically by 143

supervised fine-tuning (Patil et al., 2023; Yang 144

et al., 2023a; Gao et al., 2023b) or prompt 145

learning (Lu et al., 2023; Shen et al., 2023). 146

Specifically, the former trains LLMs on tool-use 147

dataset (Wang et al., 2023c), teaching LLMs how 148

to use tools from the data. The latter directly 149

demonstrates tool usages to LLM using in-context 150

examples (Paranjape et al., 2023; Kim et al., 2023). 151

However, solving complex tasks with tools involves 152

various actions, e.g., deciding which tools to use, 153

what arguments to pass, and how to utilize the 154

results (Schick et al., 2023; Qiao et al., 2024). 155

Compelling one single agent to learn all abilities 156

places even greater pressure on it (Yin et al., 2023; 157

Prasad et al., 2023). In addition, as the tasks 158

become complex, LLMs-based agents struggle 159

to incorporate lengthy task-solving contexts to 160

predict the next actions correctly due to their 161

limited working memory (Shi et al., 2023). In 162

contrast, our proposed ConAgents coordinates 163

three specialized agents, generating a solution 164

through agent cooperation. 165

2

Multi-agent cooperation. Synergizing multiple166

agents has demonstrated strong performance on a167

variety of tasks (Liu et al., 2023; Sun et al., 2023;168

Zhang et al., 2023), enhancing the capabilities169

of individual agents (Talebirad and Nadiri, 2023;170

Mohtashami et al., 2023; Qian et al., 2023). Recent171

studies take multiple agents into a debate for a172

fixed number of rounds (Wang et al., 2023a; Liang173

et al., 2023), boosting their factuality (Cohen et al.,174

2023) and reasoning abilities (Du et al., 2023; Fu175

et al., 2023). In the tool learning tasks, recent176

work separately implements the task planning and177

execution with different agents, thereby reducing178

the workload of a single agent (Shen et al., 2024;179

Song et al., 2023; Qiao et al., 2024). Despite their180

progress, their agent flow is simplified into a pre-181

defined pipeline (Prasad et al., 2023), struggling182

to handle exceptional errors that frequently occur183

during the tool-use workflows (Zhuang et al., 2023;184

Wang et al., 2023b). In our work, we propose two185

communication protocols, which enable the action186

calibrations and dynamic cooperation of agents.187

3 Methodology188

3.1 Overall Framework189

Our cooperative framework, ConAgents, is190

proposed to enable the dynamic cooperation of191

agents to solve complex tasks. As shown in192

Figure 2, ConAgents streamlines and modularizes193

the workflow of tool learning tasks into a grounding194

agent MG, execution agent ME , and review agent195

MR. These agents are implemented with different196

system prompt or learnable parameters. Given a197

complex task x, the MG first decomposes x into198

simpler sub-tasks and generates tool-use planning199

t in a step-by-step manner. For each step, the ME200

executes the selected tool by writing executable201

code following the planning t. The execution202

result r is then incorporated into the context of203

the grounding agent MG to predict planning in the204

next iteration. The MR is employed to simulate an205

expert to provide feedback to agent MG and ME ,206

guiding them to revise their incorrect planning or207

execution. To coordinate these three specialized208

agents, we explore and analyze two communication209

protocols, including the automatic and adaptive210

interactions.211

3.2 Specialized Agents212

Grounding Agent. The grounding agent is213

designed to break down an input task and generate214

a series of tool-use planing. At ith iteration, 215

the grounding agent generates planning ti on the 216

condition of the task x and current trajectory Hi = 217

{(tj , rj)|j < i}, consisting of the accumulation of 218

previous planning t<i and results r<i. It can be 219

formulated as: 220

ti = MG(x,S,Hi), (1) 221

where ti contains a tool selected from the provided 222

toolset S and necessary arguments to invoke the 223

tool, such as “Use the Bing search to find a 224

movie shown on Dec 24, 2023”. 225

Execution Agent. Following the generated 226

planning ti, the execution agent ME executes the 227

selected tool by generating executable code c with 228

the assistance of the tool documentation d. This 229

process can be formulated as: 230

ci = ME(d, ti). 231

The execution result ri is obtained by running 232

the generated code ci to request the data from 233

the backend servers of tools, denoted as ri = 234

Execute(ci). When the tool fails to execute, the 235

ri indicates an error message as a failure signal. 236

When the tool executes successfully, the result ri 237

contains the targeted information in response to the 238

planning ti. 239

Review Agent. Incorrect planning and execution 240

are frequently observed during the tool-use 241

workflow. The review agent MR is employed as an 242

expert, providing feedback to agent MG and ME 243

for revision. Specifically, if the planning generated 244

by MG is vague or selects a non-existing tool, the 245

agent MR generates verbal feedback to instruct the 246

MG to reformulate planning. It can be formulated 247

as: 248

fR→G = MR(x,S, ti) (2) 249

Similarly, if ME hallucinates generating a wrong 250

program to execute the tool, the agent MR reviews 251

execution results (or errors) and re-checks the 252

tool documentation, providing instructions for 253

calibration: 254

fR→E = MR (x, d, ci, ri) (3) 255

We denote the maximum turns of interaction 256

between agent MR and agent MG (or ME) is 257

denoted as α (or β). Their communication protocol 258

and action flow are explained in § 3.3. 259

3

Question: Can you recommend the latest TV series released on December 24, 2023, directed by

Lilly Wachowski?

Grounding
Agent

Review
Agent

Toolset

Search TV

Execution
Agent

Planning

(2) ExecutionExecution

review

review

(1) Planning

If error

If execution
error

If planning
error

review

review

(2) Execution

(1) Planning

Planning

Search TV

Execution
Result

planning & execution

feedback ...

Specialized agents

(a) Automatic agent interaction

(b) Adaptive agent interaction

AgentGrounding Review Execution

Grounding Execution Review

Figure 2: Our proposed cooperative and interactive agent framework. The left shows the three specialized agents in
our framework (§ 3.1). The right illustrates two proposed communication protocols to coordinate these specialized
agents, including the automatic and adaptive communication (§ 3.3).

3.3 Agent communication protocols260

We propose two agent communication protocols,261

including automatic and adaptive interaction.262

Automatic interaction. As illustrated in263

Figure 2, our automatic interaction alternates264

between planning-review and execution-review265

phases. For the ith step, it starts with the interaction266

between the agent MG and MR until a correct267

planning ti is determined or up to the maximum268

turns α. Formally, it can be formulated as:269

tji = MG(x,S,Hi, {t<j
i , f<j

R→G}︸ ︷︷ ︸
planning calibration

)
(4)270

Here, j indicates jth interaction of two agents.271

Following the planning t, the agent ME generates272

executable programs to execute the selected tool273

and calibrates the incorrect result r with the274

feedback of agent MR for up to β turns. This275

process can be formulated as:276

cji = ME(ti, d, {c<j
i , f<j

R→E}︸ ︷︷ ︸
execution calibration

)
(5)277

The calibrated result is then incorporated into the278

context of MG for the next planning generation.279

Adaptive interaction. In our adaptive interaction280

strategy, the agent flow primarily alternates from281

(1) generating tool-use planning by agent MG and282

(2) generating execution code by agent ME , in 283

a step-by-step manner. The review agent MR 284

is adaptively triggered to provide feedback only 285

when the generated code fails to execute correctly. 286

Specifically, a runtime error can be caused by either 287

unfeasible planning or coding faulty. Thus, the 288

agent MR first reviews the generated planning 289

and code, routines the errors to agent MG or ME 290

accordingly, and provides feedback for revision. 291

4 Specialization by Agent Distillation 292

Our initial experiment shows that powerful LLMs 293

such as GPT-4, achieve promising results when 294

equipped with our framework. However, these 295

model are often considered black boxes (Qin et al., 296

2023a; Gao et al., 2023b) with potential privacy 297

issues. Thus, we aim to adapt our framework 298

to open-source models. We propose specialized 299

action distillation (SPAN), which distills the task- 300

solving trajectory of powerful commercial LLMs 301

into different open-source LLM agents tailored to 302

specific functionalities in ConAgents. 303

4.1 Synthesize the Training Dataset 304

Our distillation method collects the task-solving 305

trajectory of specialized agents simulated by GPT- 306

4, in ConAgents (§ 3.1). To achieve this, we first 307

sample tasks from ToolBench (Qin et al., 2024), 308

which contains nearly 200k practical tasks across 309

4

Statistic

The data scale 500
The average tokens of input task 52.48
The average number of candidate tools 20
The average number of ground truth tools per task 3.39
The average turns of planning-review interaction 4.62
The average turns of execution-review interaction 5.21

Table 1: The statistics of our synthetic dataset in our
specialized action distillation method.

3,451 tools. We select 2,919 tasks using various310

heuristic strategies (see Appendix A.2 for more311

details). Each task x is paired with a list of312

relevant tools. Since we find that some tasks in313

ToolBench are very similar to each other, we cluster314

them based on the semantic similarities between315

task descriptions and retain one instance for each316

cluster. Next, we supplement each of these selected317

tasks with a detailed solution. Specifically, we318

separately implement our grounding, execution,319

and review agent with GPT-4, and coordinate320

them using the proposed automatic communication321

protocol (§ 3.3) to generate solutions. Finally, we322

synthesize a dataset with 500 diverse examples.323

Each example contains a task x, a candidate toolset324

S, and the task-solving trajectory of three agents.325

The statistics of our synthetic dataset are provided326

in Table 1.327

4.2 Agent Training328

Due to the large number of parameters of the329

LLM, we employ a parameter-efficient tuning330

technique (i.e., LoRa (Hu et al., 2021)) to train331

each specialized agent separately. The objective is332

to optimize the delta parameters ∆θ of the LLM θ333

to minimize the loss function.334

We reorganize the dataset according to the335

agents’ functionality (§ 3.1), thereby distilling336

specific abilities into different student models.337

Formally, given a task x, in the ith step, the338

Hi contains historical planning and execution339

results. We train the agent MG to generate the340

ith tool-use planning ti on the condition of Hi341

and revise its incorrect planning following the342

review from agent MR (Eq. 4). We train the agent343

ME to generate programs c for tool execution344

following the generated planning t and feedback345

of agent MR (Eq. 5). Similarly, the agent MR346

are trained to provide feedback as Eq. 2 and Eq. 3.347

We apply the standard language modeling loss for348

the optimization. More details and formulations349

can be found in Appendix A.1. 350

5 Experimental Setup 351

5.1 Datasets and Evaluation Metrics 352

Datasets. We conduct experiments on two well 353

established benchmarks, i.e., RestBench (Song 354

et al., 2023) and Toolbench (Qin et al., 2024). The 355

RestBench consists of two subsets, including: (1) 356

TMDB, a high-quality human annotated dataset 357

consisting of 54 movie-related tools; and (2) 358

Spotify, a dataset with 40 music-related tools. The 359

Toolbench contains various practical tasks across 360

diverse scenarios. We provide more details for 361

these datasets in Appendix A.3. 362

Evaluation metrics. Following Yang et al. 363

(2023a); Gao et al. (2023b), we use two evaluation 364

metrics: (1) Success Rate (Success%) measuring 365

the proportion of successful query completions, 366

and (2) Correct Path Rate (Path%) calculating the 367

F1 score between the generated tool sequence and 368

ground-truth tool sequence. We also conduct a 369

human evaluation, in which three well-educated 370

volunteers are invited to evaluate 30 randomly 371

sampled cases with a three-scale rating in two 372

aspects: (1) Executability (Exec): whether multiple 373

tools are invoked in a correct logical order; and (2) 374

Utility: whether the execution results of tools can 375

be used to generate an answer. 376

5.2 Baselines 377

We compare our method with agent-based tool 378

learning methods, including: (1) Chameleon (Lu 379

et al., 2023), an LLM-based agent that directly 380

generates multi-step plans for tool use and then 381

sequentially executes the plan; (2) ReAct (Yao et al., 382

2023), which prompts LLM to generate the chain- 383

of-thought and actions in an interleaved manner.; 384

(3) CodeAct (Wang et al., 2024a), which allows 385

the LLM to generate executable code snippets as 386

actions to use tools; (4) ToolLLM (DFSDT, Qin 387

et al., 2024), which enhances LLMs with the Depth 388

First Search-based Decision Tree (DFSDT) to 389

select tools to solve a task. For further comparison, 390

Since our ConAgents coordinates three specialized 391

agents, we also establish two baselines, i.e., 392

ReAct@N and ToolLLM@N, which are up to 393

N times runs of their vanilla method (ReAct or 394

ToolLLM) until an input task is completed. 395

We also consider baselines with multi-agent 396

architecture, including (1) RestGPT (Song et al., 397

2023): which consists of a planning module, a 398

5

Method RestBench-TMDB RestBench-Spotify ToolBench

Success Rate Path% Success Rate Path% Success Rate Path%
gpt-3.5-turbo
 ReAct (Yao et al., 2023) 40.00 71.19 51.28 60.35 39.39 65.04
 Chameleon (Lu et al., 2023) 63.00 66.10 56.20 64.55 37.44 67.55
 CodeAct (Wang et al., 2024a) 63.00 80.91 54.30 76.64 – –
 ToolLLM (DFSDT, Qin et al., 2024) 68.00 76.77 61.40 74.77 66.39 86.43
² Reflexion (Shinn et al., 2023) 53.00 55.00 49.10 50.90 – –
² α-UMi (Shen et al., 2024) 62.00 70.23 66.74 70.27 67.55 78.37
² RestGPT (Song et al., 2023) 65.00 69.21 67.10 70.75 63.88 77.40
² ConAgents w/ Ada 78.00 79.57 69.43 77.54 69.84 81.58
² ConAgents w/ Auto 79.00 81.97 71.21 79.17 72.15 83.33

 ReAct@N → N = 2 54.00 67.90 56.71 59.47 41.41 63.67
 ReAct@N → N = 3 62.00 65.40 58.13 63.26 42.67 66.12
 ToolLLM@N → N = 2 70.00 76.54 63.16 75.27 68.37 86.43
 ToolLLM@N → N = 3 71.00 78.11 63.16 76.30 68.77 87.54

Table 2: The results on three datasets. The metrics Success% and Path% indicate the Success Rate and Correct
Path Rate, respectively. The icon denotes the single-agent method and ² symbolizes multi-agent architecture.

Method TMDB Spotify

Success% Path% Success% Path%
² ConAgents (Mistral-8x7B)
w/ Auto (Distilled) 53.00 79.32 36.09 73.92
w/ Auto (Vanilla) 49.00 76.22 34.21 68.14
w/ Ada (Distilled) 51.00 78.74 35.47 69.86
w/ Ada (Vanilla) 47.00 74.05 33.33 66.41

Baselines (Mistral-8x7B)
 ReAct 26.00 61.21 21.35 47.21
 ReAct@3 33.00 63.27 26.93 50.31
 ToolLLM 37.00 64.32 28.07 52.31
 ToolLLM@3 45.00 74.40 31.58 57.68
² RestGPT 34.00 72.20 31.58 67.82

Table 3: We employ the Mixtral-8x7B as the backbone
LLM of for our method and baselines. The Vanilla and
Distilled indicate enable our framework by prompting
and our action distillation, respectively.

tool selector, an executor, and a response parsing399

module; (2) Reflexion (Shinn et al., 2023), which400

employs an LLM for task execution and uses401

another LLM to verbally reflect on task feedback402

signals; and (3) α-UMi (Shen et al., 2024), which403

consists of a planner, an executor, and an answer404

generator.405

5.3 Implementation Details406

We use gpt-3.5-turbo2 from OpenAI as the LLM407

backbone for each agent in our method and all408

baselines. We instruct the three agents to perform409

specific actions with different system prompts410

shown in Appendix A.6. The decoding temperature411

2https://openai.com/chatgpt

is set to 0 for the most deterministic generation. 412

We also repeat the experiment with an open-source 413

model Mistral-8x7B3 for further comparison. In 414

our agent communication (§ 3.3), we set the 415

maximum iteration of interactions α = 3 and β = 416

3, respectively. For each sample in the test set, we 417

provide all the baselines with the same candidate 418

toolset for a fair comparison, which contains the 419

required tools and ten randomly sampled tools. 420

Our action distillation separately trains three 421

Mistral-8x7B using the corresponding optimization 422

objectives in § 4.2 with the learning rate of 5×10−5. 423

The training of our model can be done within 4 424

hours with 3 NVIDIA A800-PCIE-80GB GPUs 425

using LoRA (Hu et al., 2021). 426

6 Results and Analysis 427

6.1 Experimental Results 428

Overall performance. Table 2 demonstrates the 429

experimental performances of all methods. We find 430

that our proposed ConAgents outperforms all the 431

baselines in three datasets in terms of all metrics. 432

A reason here is that our cooperative framework 433

design enables each agent to perform specialized 434

actions instead of grasping all required capabilities, 435

thereby reducing the workload encountered by 436

a single agent. The significant improvement 437

over ReAct@N and ToolLLM@N baselines 438

can further validate the effectiveness of our 439

framework. Compared with baselines with 440

multi-agent architecture like RestGPT, ConAgents 441

3https://huggingface.co/mistralai

6

https://openai.com/chatgpt
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

Method TMDB Spotify

Success% Path% Success% Path%

Ours w/ Auto 79.00 81.97 71.43 77.54
w/o MR →MG 77.00↓2.0 78.10↓3.9 68.42↓3.0 75.33↓2.2
w/o MR →ME 75.00↓4.0 74.23↓7.7 64.91↓6.5 72.41↓5.1
w/ static coop. 75.00↓4.00 75.74↓6.2 67.12↓4.3 75.07 ↓2.5

Table 4: The ablation study on two datasets with gpt-
3.5-turbo as backbone. See § 6.3 for details

achieves about 12% higher Success Rate. The442

potential reason for our improvement is that the443

proposed two communication protocols enable444

the dynamic interaction of agents, which is more445

flexible to handle exception errors.446

Performance with the open-source LLM. We447

further evaluate our ConAgents by swapping the448

backbone LLM with Mistral-8x7B and repeating449

the experiment under the same conditions. As450

shown in Table 3, we implement our framework451

in two ways with Mistral-8x7B: (1) directly452

prompting (w/ Auto and w/ Ada); (2) tuning with453

our proposed action distillation (w/ Auto† and w/454

Ada†). We observe that directly prompting Mistral-455

8x7B with ConAgents yields better performance456

than baselines. The action distillation further457

improves overall performance substantially, such458

as pushing the Success Rate from 47.00 to 51.00 in459

the TMDB dataset. These results further prove the460

effectiveness of our cooperative framework.461

6.2 Human Evaluation462

Table 5 shows the results of the human evaluation.463

We find that ConAgents achieves the best464

results in the Executability aspect with 0.08~0.12465

improvement. These results further validate the466

necessity of agent specialization and cooperation.467

The overall Kappa statistics for Executability and468

Utility are 0.75 and 0.71, illustrating substantial469

agreement (Landis and Koch, 1977) among the470

annotators.471

6.3 Ablation Study472

To better understand the impact of different473

components of our method, we make the following474

modifications to the architecture and measure the475

effect.476

- w/o MR → MG. We remove the interaction477

between agent MR and MG in our framework. As478

shown in Table 4, the Success Rate has a average479

2.50 decline, while the Correct Path Rate has a480

3.05 average decline on two datasets. This results481

Method TMDB Spotify

Exec Utility Exec Utility
gpt-3.5-turbo
 ReAct 1.89 1.93 1.77 2.10
 ToolLLM 2.26 1.87 2.26 2.30
² RestGPT 2.35 2.45 2.30 2.40
² Ours w/ Auto 2.47 2.56 2.43 2.50
² Ours w/ Ada 2.43 2.50 2.38 2.45

Table 5: Human evaluation on Executability (Exec) and
Correct Rate of Parsing (Parsing).

validate the necessity of feedback of MR which 482

can instruct the MG to revise incorrect planning. 483

- w/o MR → ME . We remove the interaction 484

between agent MR and ME in our framework 485

when programming to execute tools. As shown in 486

Table 4, the Success Rate suffers from obvious 487

decrease in both two datasets. These results 488

indicate that the agent MR can review the 489

generated programs of agent ME and provide 490

useful instruction for calibrating errors. 491

- w/ static cooperation. We implement the MR 492

with a code compiler, which is triggered to provide 493

static feedback only when runtime errors are 494

raised during executing tools by agent ME . This 495

allows us to compare our framework with a static 496

algorithm for agent cooperation. Table 4 present 497

the results, where we observe a 4.12 average 498

decrease in the Success Rate, e.g., dropping from 499

79.00 to 75.00 on the TMDB dataset. The same 500

trend is also observed in the Correct Path Rate, 501

e.g., a 2.5 decrease on the Spotify dataset. These 502

results indicate the superiority of our dynamic 503

agent cooperation framework. 504

6.4 Case Study 505

We conduct the case studies and find that our 506

cooperative agent framework is more effective at 507

executing various tools and handle exceptional 508

errors in solving tasks. We also provide examples 509

to explain the detailed process of agent cooperation. 510

The details can be found in Appendix A.5. 511

7 Discussion 512

Qualitative analysis for the maximum number 513

of interactions. In our automatic agent 514

interaction, agents MG and ME revise their 515

actions following the feedback of agent MR 516

for up to α and β turns, respectively. To further 517

explore the impact of the interaction times on 518

7

1 2 3 4 5
Iteration number

50

58

66

74

82

Su
cc

es
s R

at
e

: 1 5, =3

1 2 3 4 5
Iteration number

50

56

62

68

75

Su
cc

es
s R

at
e

: 1 5, = 3
Ours Ours w/o Iteration

Figure 3: The qualitative analysis for the maximum
interaction turns α and β in our agent communication
protocols (Section 3.3) on the TMDB dataset.

overall performance, we conduct a quantitative519

and qualitative analysis by varying α and β from 1520

to 5. Then we evaluate our framework using the521

RestBench-TMDB dataset with the same settings522

as in Table 2. As illustrated in Figure 3, we find523

an increasing Success Rate when the maximum524

iteration turns shifts from 1 to 3. In addition, a525

relatively stable trend is observed when the α and526

β keep increasing (from 3 to 5), which indicates527

the agents can correct most errors within 3 turns.528

We also look at the poorly performing cases where529

we find that since the planning from agent MG530

is typically open-ended, the MR struggles to531

detect all the incorrect planning. For example, the532

planning may be plausible and clear but lacks the533

required arguments to execute tools, thus resulting534

in a failure of ME in subsequent steps.535

Qualitative analysis for the efficiency of536

inference. Due to the intensive inference cost537

of LLMs-based agents, we further explore the538

efficiency of our ConAgents. To explain more539

intuitively, we compare the token consumption for540

the ConAgents and baselines using the RestBench-541

TMDB dataset with the same settings as in Table 2.542

As illustrated in Figure 4, we find that although543

our framework achieves better performance, we544

spend fewer tokens compared with strong baselines545

such as RestGPT and ToolLLM@3. The reason546

is that the cooperative framework ConAgents547

enables each agent to perform specific tasks548

more efficiently, reducing the length exploration549

trajectory by the single agent.550

The quality of generated review. We further551

analyze the quality of reviews given by review552

agent MR. Specifically, we randomly sample553

50 task-solving trajectories in Table 2 (w/ Auto)554

manually analyze the review of review agent. For555

most tasks, we find that the agent MR can assist556

21248 19875

12066

21883
28231 30145 28675

4000

12000

20000

28000

36000

Ours
(A

uto)

Ours
(A

da)

ReA
ct

ReA
ct@

3

Too
lL

LM

Too
lL

LM@
3

Rest
GPT

Average token consumption

Figure 4: The efficiency analysis for different methods,
where we count the average consumed tokens.

agent ME to revise its generated code or provides 557

useful reviews for the planning generated by agent 558

MG, such as only select tools from given 559

list. In addition, we find that in less than 5% 560

of tasks, the agent MR hallucinates giving an 561

incorrect review, indicating its reliability. 562

Runtime consistency. Considering the non- 563

deterministic nature of LLM generation, we 564

analyze the consistency of our framework. We 565

repeat our method multiple times with the same 566

settings as in Table 2. The statistical significance 567

of differences observed between the performance 568

of two runs is tested using a two-tailed paired t- 569

test. We find no significant difference between the 570

results of two randomly conducted experiments 571

(significance level α = 0.05). 572

8 Conclusions 573

We present a cooperative and interactive agents 574

framework (ConAgents) for tool learning, which 575

diverges from previous work by allowing the 576

cooperation of agents to solve complex tasks. The 577

ConAgents first modularizes the overall workflow 578

with three specialized agents for tool planning, 579

tool execution, and action calibration, respectively. 580

Then, two communication protocols are introduced 581

to enable the dynamic cooperation of these agents. 582

To generalize our framework to open-source 583

models, we propose specialized action distillation, 584

enhancing the models’ capability to perform 585

specific actions. Extensive experiments conducted 586

on three datasets demonstrate the superiority of 587

our ConAgents, e.g., pushing the success rate to 588

77.00 with 13.2% point improvement. Our future 589

work includes: (1) extending our method to agents 590

empowered by multi-modal foundation models, 591

incorporating image and sound; (2) coordinating 592

the cooperation between strong and weak agents. 593

8

Limitations594

The main limitation is that our LLM-based agent is595

limited when perceiving multi-modal tasks. When596

executing the tools, we represent the image and597

speech input with url, following previous works.598

In the future, we plan to extend our method599

to agents empowered by multi-modal foundation600

models.601

Ethics Statement602

The paper proposes a cooperative agent framework,603

synergizing specialized agents to solve complex604

tasks. The modularized design enables the agents605

to utilize feedback from the tool environment606

to calibrate themselves adaptively. In addition607

to the use of state-of-the-art commercial LLMs,608

we have experimented with an open-source LLM,609

for reproducibility reasons and to allow the use610

of our method in lower-resource contexts. All611

the tools used in our experiment are provided by612

open-source platforms, including TMDB, Spotify,613

and Rapid API, thus ensuring a high level of614

transparency and reproducibility.615

We have made every effort to ensure that our616

research does not harm individuals or groups, nor617

does it involve any form of deception or potential618

misuse of information.619

References620

Andres M Bran, Sam Cox, Andrew D White, and621
Philippe Schwaller. 2023. Chemcrow: Augmenting622
large-language models with chemistry tools. arXiv623
preprint arXiv:2304.05376.624

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,625
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,626
Cunxiang Wang, Yidong Wang, et al. 2023. A627
survey on evaluation of large language models. ACM628
Transactions on Intelligent Systems and Technology.629

Roi Cohen, May Hamri, Mor Geva, and Amir630
Globerson. 2023. Lm vs lm: Detecting factual631
errors via cross examination. arXiv preprint632
arXiv:2305.13281.633

Yilun Du, Shuang Li, Antonio Torralba, Joshua B634
Tenenbaum, and Igor Mordatch. 2023. Improving635
factuality and reasoning in language models through636
multiagent debate. arXiv preprint arXiv:2305.14325.637

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine638
Li, Liwei Jian, Bill Yuchen Lin, Peter West, Chandra639
Bhagavatula, Ronan Le Bras, Jena D Hwang, et al.640
2023. Faith and fate: Limits of transformers on641
compositionality. arXiv preprint arXiv:2305.18654.642

Yao Fu, Hao Peng, Tushar Khot, and Mirella Lapata. 643
2023. Improving language model negotiation with 644
self-play and in-context learning from ai feedback. 645
arXiv preprint arXiv:2305.10142. 646

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 647
Pengfei Liu, Yiming Yang, Jamie Callan, and 648
Graham Neubig. 2023a. PAL: Program-aided 649
language models. In PMLR, pages 10764–10799. 650

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen 651
Fang, Xin Xin, Pengjie Ren, Zhumin Chen, Jun 652
Ma, and Zhaochun Ren. 2023b. Confucius: Iterative 653
tool learning from introspection feedback by easy-to- 654
difficult curriculum. 655

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 656
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 657
and Weizhu Chen. 2021. Lora: Low-rank 658
adaptation of large language models. arXiv preprint 659
arXiv:2106.09685. 660

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. 661
2023. Language models can solve computer tasks. 662
ArXiv, abs/2303.17491. 663

J Richard Landis and Gary G Koch. 1977. The 664
measurement of observer agreement for categorical 665
data. biometrics, pages 159–174. 666

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, 667
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and 668
Shuming Shi. 2023. Encouraging divergent thinking 669
in large language models through multi-agent debate. 670
arXiv preprint arXiv:2305.19118. 671

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and 672
Diyi Yang. 2023. Dynamic llm-agent network: An 673
llm-agent collaboration framework with agent team 674
optimization. arXiv preprint arXiv:2310.02170. 675

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai- 676
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and 677
Jianfeng Gao. 2023. Chameleon: Plug-and-play 678
compositional reasoning with large language models. 679
ArXiv, abs/2304.09842. 680

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi 681
Das, Daniel Khashabi, and Hannaneh Hajishirzi. 682
2023. When not to trust language models: 683
Investigating effectiveness of parametric and non- 684
parametric memories. In Proceedings of the 61st 685
Annual Meeting of the Association for Computational 686
Linguistics (Volume 1: Long Papers), pages 9802– 687
9822. 688

Amirkeivan Mohtashami, Florian Hartmann, Sian 689
Gooding, Lukas Zilka, Matt Sharifi, et al. 2023. 690
Social learning: Towards collaborative learning 691
with large language models. arXiv preprint 692
arXiv:2312.11441. 693

Reiichiro Nakano, Jacob Hilton, S. Arun Balaji, Jeff Wu, 694
Long Ouyang, Christina Kim, Christopher Hesse, 695
Shantanu Jain, Vineet Kosaraju, William Saunders, 696
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen 697

9

http://arxiv.org/abs/2308.14034
http://arxiv.org/abs/2308.14034
http://arxiv.org/abs/2308.14034
http://arxiv.org/abs/2308.14034
http://arxiv.org/abs/2308.14034

Krueger, Kevin Button, Matthew Knight, Benjamin698
Chess, and John Schulman. 2021. Webgpt: Browser-699
assisted question-answering with human feedback.700
ArXiv, abs/2112.09332.701

Bhargavi Paranjape, Scott M. Lundberg, Sameer702
Singh, Hanna Hajishirzi, Luke Zettlemoyer, and703
Marco Tulio Ribeiro. 2023. Art: Automatic multi-704
step reasoning and tool-use for large language705
models. ArXiv, abs/2303.09014.706

Shishir G Patil, Tianjun Zhang, Xin Wang, and707
Joseph E Gonzalez. 2023. Gorilla: Large language708
model connected with massive apis. arXiv preprint709
arXiv:2305.15334.710

Archiki Prasad, Alexander Koller, Mareike Hartmann,711
Peter Clark, Ashish Sabharwal, Mohit Bansal,712
and Tushar Khot. 2023. Adapt: As-needed713
decomposition and planning with language models.714
arXiv preprint arXiv:2311.05772.715

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,716
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong717
Sun. 2023. Communicative agents for software718
development. arXiv preprint arXiv:2307.07924.719

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,720
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei721
Lv, and Huajun Chen. 2024. Autoact: Automatic722
agent learning from scratch via self-planning. arXiv723
preprint arXiv:2401.05268.724

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao725
Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning726
Ding, Huadong Wang, Ruobing Xie, Fanchao Qi,727
Zhiyuan Liu, Maosong Sun, and Jie Zhou. 2023a.728
WebCPM: Interactive web search for Chinese long-729
form question answering. In ACL, pages 8968–8988.730

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,731
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,732
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,733
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun734
Zhu, Shi Liang, Xingyu Shen, Bokai Xu, Zhen Zhang,735
Yining Ye, Bo Li, Ziwei Tang, Jing Yi, Yu Zhu,736
Zhenning Dai, Lan Yan, Xin Cong, Ya-Ting Lu,737
Weilin Zhao, Yuxiang Huang, Jun-Han Yan, Xu Han,738
Xian Sun, Dahai Li, Jason Phang, Cheng Yang,739
Tongshuang Wu, Heng Ji, Zhiyuan Liu, and Maosong740
Sun. 2023b. Tool learning with foundation models.741
ArXiv, abs/2304.08354.742

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan,743
Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru Tang,744
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,745
Jie Zhou, Marc H. Gerstein, Dahai Li, Zhiyuan Liu,746
and Maosong Sun. 2024. Toolllm: Facilitating large747
language models to master 16000+ real-world apis.748
In ICLR.749

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,750
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong751
Wen. 2024. Tool learning with large language752
models: A survey. arXiv preprint arXiv:2405.17935.753

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 754
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola 755
Cancedda, and Thomas Scialom. 2023. Toolformer: 756
Language models can teach themselves to use tools. 757
ArXiv, abs/2302.04761. 758

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming 759
Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei 760
Huang. 2024. Small llms are weak tool learners: A 761
multi-llm agent. arXiv preprint arXiv:2401.07324. 762

Yongliang Shen, Kaitao Song, Xu Tan, Dong Sheng 763
Li, Weiming Lu, and Yue Ting Zhuang. 2023. 764
Hugginggpt: Solving ai tasks with chatgpt and its 765
friends in huggingface. ArXiv, abs/2303.17580. 766

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan 767
Scales, David Dohan, Ed H. Chi, Nathanael Schärli, 768
and Denny Zhou. 2023. Large language models 769
can be easily distracted by irrelevant context. In 770
Proceedings of the 40th International Conference on 771
Machine Learning, Proceedings of Machine Learning 772
Research. PMLR. 773

Noah Shinn, Federico Cassano, Beck Labash, Ashwin 774
Gopinath, Karthik Narasimhan, and Shunyu Yao. 775
2023. Reflexion: Language agents with verbal 776
reinforcement learning.(2023). arXiv preprint 777
cs.AI/2303.11366. 778

Yifan Song, Weimin Xiong, Dawei Zhu, Chengzu Li, 779
Ke Wang, Ye Tian, and Sujian Li. 2023. Restgpt: 780
Connecting large language models with real-world 781
applications via restful apis. ArXiv, abs/2306.06624. 782

Qiushi Sun, Zhangyue Yin, Xiang Li, Zhiyong Wu, 783
Xipeng Qiu, and Lingpeng Kong. 2023. Corex: 784
Pushing the boundaries of complex reasoning 785
through multi-model collaboration. arXiv preprint 786
arXiv:2310.00280. 787

Yashar Talebirad and Amirhossein Nadiri. 2023. 788
Multi-agent collaboration: Harnessing the power 789
of intelligent llm agents. arXiv preprint 790
arXiv:2306.03314. 791

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, 792
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun 793
Li. 2023a. Mac-sql: Multi-agent collaboration for 794
text-to-sql. arXiv preprint arXiv:2312.11242. 795

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe 796
Zhang, Yunzhu Li, Hao Peng, and Heng Ji. 2024a. 797
Executable code actions elicit better llm agents. In 798
ICML. 799

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi 800
Chen, Lifan Yuan, Hao Peng, and Heng Ji. 2023b. 801
Mint: Evaluating llms in multi-turn interaction 802
with tools and language feedback. arXiv preprint 803
arXiv:2309.10691. 804

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 805
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh 806
Hajishirzi. 2023c. Self-instruct: Aligning language 807
models with self-generated instructions. In ACL. 808

10

http://arxiv.org/abs/2402.01030

Zhiruo Wang, Zhoujun Cheng, Hao Zhu, Daniel Fried,809
and Graham Neubig. 2024b. What are tools anyway?810
a survey from the language model perspective. arXiv811
preprint arXiv:2403.15452.812

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,813
Xiu Li, and Ying Shan. 2023a. Gpt4tools: Teaching814
large language model to use tools via self-instruction.815
ArXiv, abs/2305.18752.816

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin817
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng818
Liu, Ce Liu, Michael Zeng, and Lijuan Wang.819
2023b. Mm-react: Prompting chatgpt for multimodal820
reasoning and action. ArXiv, abs/2303.11381.821

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak822
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.823
React: Synergizing reasoning and acting in language824
models. In ICLR.825

Da Yin, Faeze Brahman, Abhilasha Ravichander,826
Khyathi Chandu, Kai-Wei Chang, Yejin Choi, and827
Bill Yuchen Lin. 2023. Lumos: Learning agents with828
unified data, modular design, and open-source llms.829
arXiv preprint arXiv:2311.05657.830

Junjie Zhang, Yupeng Hou, Ruobing Xie, Wenqi Sun,831
Julian McAuley, Wayne Xin Zhao, Leyu Lin, and832
Ji-Rong Wen. 2023. Agentcf: Collaborative learning833
with autonomous language agents for recommender834
systems. arXiv preprint arXiv:2310.09233.835

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,836
and Chao Zhang. 2023. Toolqa: A dataset for837
llm question answering with external tools. arXiv838
preprint arXiv:2306.13304.839

A Appendix840

841

A.1 Details of Action Distillation842

Our specialized action distillation (SPAN) trains843

three student models separately using the task-844

solving trajectory of a powerful model, i.e., GPT-845

4 in our implementation. These three student846

models are trained to conduct specific actions of the847

grounding agent, execution agent, and review agent,848

respectively. Their initial parameters weights θ are849

initialized from the same open-source model Mθ.850

Since we use LoRa (Hu et al., 2021) for parameter-851

efficient tuning, the optimization objective of our852

distillation is to search for the delta parameter ∆θ853

to minimize the loss function. Here, we introduce854

their detailed optimization objectives.855

Notations. As mentioned in § 3, we denote 856

an input task as x, which is solved in a step- 857

by-step manner while the task-solving context is 858

denoted as H. In ith step, the context Hi contains 859

historical planning t<i and execution results r<i. 860

The planning t specifies a tool to use in a current 861

step which is selected from a candidate toolset S. 862

Training of grounding agent. Given a task x, 863

we train the grounding agent MG to decompose 864

x into simpler sub-tasks and ground each sub-task 865

into tool-use planning t on the condition of the 866

current context H and revise incorrect planning 867

following the feedback fR→G of the review agent 868

MR. For each step ti, we use the standard 869

language modeling loss for optimization, which 870

can be formulated as: 871

LG =− logPθ+∆θG

(
tji |x,Hi,S, {t<j

i , f<j
R→G}

)
872

Here, the j indicate the jth interaction between the 873

agent MG and MR. The {t<j
i , f<j

R→G} indicates 874

the planning-review alternated from agent MG to 875

MR. The LoRa parameter of agent MG is denoted 876

as ∆θG. 877

Training of execution agent. Similarly, in the ith 878

step, we train the execution agent ME to execute 879

a tool following the planning ti by generating an 880

executable program, and then calibrate incorrect 881

code following the review of agent MR. Formally, 882

the optimization objective can be formulated as: 883

LE =− logPθ+∆θE

(
cji |x, t, d, {c

<j
i , f<j

R→E}
)

884

Here, d indicates the tool documentation. The 885

LoRa parameter of agent ME is denoted as ∆θE . 886

Training of review agent. The review agent 887

agent is trained to provide reviews for agent ME 888

and MR, calibrating their incorrect actions, i.e., 889

planning or execution. Thus, the optimization 890

objective can be formulated as: 891

LR =−
α∑

j=1

logPθ+∆θR

(
f j
R→G|x, S, t

j−1
i

)
−

β∑
j=1

logPθ+∆θR

(
f j
R→E |x, d, c

j−1
i , rj−1

i

) 892

Here, the LoRa parameter of agent MR is denoted 893

as ∆θR. 894

11

A.2 Heuristic Strategies for Data Selection895

We employ the following heuristic methods to filter896

low-quality tasks in the original ToolBench:897

• Each task in ToolBench is paired with a898

list of candidate tools. Generally, the more899

candidate tools there are, the more complex900

the task. Thus, we filter out tasks with fewer901

than 10 candidate tools to ensure the overall902

complexity of the sampled tasks.903

• To improve the quality of our training dataset,904

we remove tasks if their tools are not callable905

or deprecated.906

• We remove tasks if their tools lack907

the required documentation or if the908

documentation is less than 100 words in909

length.910

A.3 Datasets911

Experiment dataset We conduct experiments on912

three commonly-used datasets with tool learning913

tasks, including:914

• RestBench (Song et al., 2023): a high-quality915

human annotated dataset consisting of 54916

tools about movie scenarios.917

• RestBench-Spotify (Song et al., 2023): a918

dataset with 40 tools for music scenarios.919

• ToolBench (Qin et al., 2024): a dataset920

containing diverse real-world tools across921

various applications, which contains the922

simple tasks, i.e., solving a task with one923

single tool, and complex tasks, i.e., executing924

multiple tools in a logic order to solve a task.925

We conduct experiments on the full dataset of926

TMDB and Spotify. Due to the intensive inference927

cost of LLMs-based agents, we randomly sample928

117 cases as test sets from the complex tasks in929

Toolbench datasets to evaluate the performance930

of our cooperative agent framework in solving931

practical tasks. We will release the sampled task932

for the transparency consideration.933

Extend existing datasets. The original934

ToolBench benchmark only provides a step-by-935

step task-solving trajectory of GPT-3.5, which936

consists of both valid ground truth tools and937

irrelevant tools. However, our evaluation involves938

computing the overlap between model-selected939

tools with ground truth tools. Therefore, we 940

repurpose the ToolBench to support our evaluation 941

methods. Specifically, for each task, we extract 942

the tools in the original solution provided by 943

ToolBench and only retain the relevant tools that 944

are required for solving the task. We invite three 945

well-educated masters with relevant research 946

backgrounds to implement this process. To 947

guarantee annotation quality, we ask at least two 948

annotators to annotate the same task repeatedly. If 949

there is a discrepancy between the two annotators 950

(i.e., two annotators give different answers), we 951

ask a third annotator to recheck it. We hold 952

regular meetings and pre-annotation tests to ensure 953

that each expert undergoes detailed training to 954

familiarize themselves with our annotation task. 955

We will release these repurposed tasks to facilitate 956

future research. 957

A.4 Evaluation Metrics Details 958

Automatic evaluation. We mainly employ 959

Success Rate and Correct Path Rate as two 960

automatic evaluation metrics, following previous 961

works (Yang et al., 2023a; Gao et al., 2023b). The 962

Success Rate (Success%) computes the proportion 963

of successful query completions. Specifically, 964

when all the ground-truth tools are executed 965

correctly, the Success Rate is set to 1; otherwise, 966

it is set to 0. The Correct Path Rate (Path%) 967

computes the F1 score between the generated tool 968

sequence and the ground-truth tool sequence. 969

Human evaluation We conduct a human 970

evaluation on two metrics, including: (1) 971

Executability (Exec): whether the multiple 972

tools are invoked in a correct logical order to 973

complete the task; and (2) Utility: whether 974

the execution results of tools can be used to 975

generate an answer. We invite three well-educated 976

volunteers to evaluate 30 cases randomly sampled 977

from RestBench-TMDB and RestBench-Spotify 978

datasets, respectively, with a three-scale rating. 979

Using a 3-point scale over a binary scale provides 980

an option for the annotators to factor in their 981

subjective interpretation of the extent of success 982

or failure of a system’s response to satisfy a 983

user’s request. The instructions used in our 984

human evaluation are summarized as follows. 985

986

The evaluation guideline for our human evaluation. 987
988
989

In this evaluation task , you are 990
provided with some question -solution 991

12

pairs. The question can be only solved992
by using real -world tools (or APIs). The993
solution is a sequential tool -use994

process , involving multi -step tool995
callings.996

997
Your task is to rate the quality of the998
solution on a three scale based on the999
following two metrics:1000
1. Executability: Whether multiple tools1001
are invoked in a correct logical order1002

to complete the task.1003
2. Utility: Whether the model can1004
observe the relevant values from lengthy1005
execution results , incorporate them to1006

predict the next action , and finally1007
output a correct answer.1008

1009
We also provide scoring criteria for1010
your reference. Please adhere to our1011
criteria since we will re-check the1012
score you provide.1013
Now , read the following criteria and1014
rate the provided question -solution1015
pairs. Note that , you are encouraged to1016
give us feedback and share any confusion1017
you may have.1018

1019
== Scoring Criteria ==1020

1021
1. For the Executability metric:1022
- Three points: Call all necessary tools1023
correctly and solve the task. Allow for1024
redundant tools or inference steps.1025

- Two points: Not fully calling all1026
necessary tools correctly , partially1027
solving the task.1028
- One point: Only some sub -steps are1029
solved and the entire task is not1030
completed. And there is a lot of1031
redundancy or incorrect reasoning.1032

1033
2. For the Utility metric:1034
- Three points: A majority of the1035
execution results of the tools are1036
correctly used to address the question (1037
minor mistakes are allowed).1038
- Two points: Only part of the execution1039
results of the tools are used. For1040

example , in a question requiring finding1041
an actor ’s highest -grossing film , the1042

correct solution is to sequentially look1043
at all the films the actor has appeared1044
in, instead of just counting the top -k1045

like top -5 or top -10.1046
- One point: Only a small part of the1047
execution results of the tools are used ,1048
while other useful intermediates are1049

ignored.10501051

A.5 Case Study1052

We conduct several case studies and find that our1053

method is effective at executing various tools and1054

incorporating execution results to solve the input1055

tasks. Figure 5 presents a concrete example of the1056

workflow of our proposed cooperative framework.1057

Case for our automatic agent communication. 1058

Figure 5 shows an example of our proposed 1059

automatic communication protocol. For each turn, 1060

the communication starts with the planning-and- 1061

review between the grounding agent and review 1062

agent. Following the planning , the execution agent 1063

generates programs to execute tools and calibrates 1064

the incorrect result with the review of review agent. 1065

For example, in the first turn, the agent MG re- 1066

generate a planning following the review from 1067

agent MR, and finally output a clear planning. 1068

This example also illustrate the interaction between 1069

grounding agent MG and review agent MR, where 1070

the agent MG calibrates its execution programs 1071

following the feedback of MR, and finally generate 1072

Case for our adaptive agent communication 1073

Figure 6 shows an example of our proposed 1074

adaptive communication protocol. The agent 1075

flow mainly alternates between (1) generating 1076

tool-use planning by grounding agent and (2) 1077

generating execution code by execution agent, 1078

in a step-by-step manner. The review agent is 1079

adaptively triggered to provide feedback only when 1080

the generated code fails to execute correctly. For 1081

example, in the second turn, agent ME initially 1082

generates a wrong program due to the lack of 1083

necessary arguments. Then, agent MR reviews 1084

the current context, routes this error to agent MG, 1085

and instructs MG to supplement this argument, 1086

instead of directly shifting to the next state with an 1087

error response. This example intuitively illustrates 1088

the process of our adaptive interaction. 1089

A.6 System prompt for Agents 1090

We provide the system prompts of three specialized 1091

agents in our ConAgents as follows. 1092

13

Who directed the top-1 rated movie

Decision: wrong
Review: The code correctly makes a
request. However, it does not parse
the response to extract the target
values as specified in the instruction.

Input: ```python
url = base_url+"/movie/top_rated"
params = {'page': 1, 'region': 'US'}
response = requests.get(url, headers=headers,
params=params)
data = response.json()
print(top_rated_movie_id)```
Output: {'id': 278, 'genreids': [18, 80], ori...

First, use "GET_movie_top_rated" to search
for the **movie id** of the top-1 rated
movie

Decision: correct
Review: The code is correct ...

Input: ```python
url = base_url+"/movie/top_rated"
params = {'page': 1, 'region': 'US'}
response = requests.get(url, headers=headers,
params=params)
data = response.json()
print(top_rated_movie_id)```
Output: 278

Continue, based on the **movie id** 278, use
"GET_movie_movie_id_credits" to search for the
person of its director

Input: ```python
url = base_url+"/movie/278/credits"
data = requests.get(url, headers=headers).json()
= responsefor crew_member in data['crew’]:

if crew_member['job'] == 'Director’:
print(crew_member['name’])

```
Output: Frank Darabont

Decision: correct
Review: The code is correct ...

Last, I am finished executing a plan.
The answer is [The top-1 rated movie was directed by Frank Darabont]

Decision: correct
Review: Your planning is clear...

Decision: correct
Review: Your planning is clear ...

Figure 5: An example to illustrate the proposed automatic agent communication of our framework ConAgents.
For each turn, the communication starts with the planning-and-review between the grounding agent and
review agent. Following the planning , the execution agent generates programs to execute tools and
calibrates the incorrect result with the review of review agent . In this figure, we highlight the useful review of
review agent with red.

14



Can you give me a photo belong to the second episode of the first season of the 
Witcher?

Decision: planning

Review: Your planning lack the required 

**person id**

First, use "GET_search_tv" to search for the TV show id of \"The 
Witcher

Last, the task is solved and the answer is [the second episode of the first season of The 

Witcher: https://image.tmdb.org/t/p/original/7KWyZgiSXSAuagbtzjTZLrkOtNk.jpg

Input: ```python
season = 1
episode = 2
url = base_url+f"/tv/<YOUR_TV_ID>}/{season}/{episode}/images"
response = requests.get(url, headers=headers)
print(response.json())
```
Output: {'success': False, 'status_message': 'Invalid id: The pre-
requisite id is invalid or not found.’}

Continue, use season_episode_images
to get the images that belong to the second episode
of the first season of The Witcher

Input: ```python
tv_id = 71912
season_number = 1
episode_number = 2
url = base_url+f"/{tv_id}/season/{season_number}/episode/{episode_number}/images”
print(response.json())
```
Output: {'id': 1954612, 'stills': [{'aspect_ratio': 1.778, 'heig

Use season_episode_images to obtain images 
from the second episode of the first season of 
The Witcher. The TV show ID is 71912, the 
season number is 1, and the episode number is 2."

Input: ```python
import requests
url = base_url+"/search/tv"
params = {'query': 'The Witcher', 'include_adult': 'false'}
response = requests.get(url, headers=headers, params=params)
data = response.json()
print(data['results'][0]['id’])
```

Output:

71912 ✅

❌

✅

(No triggered to provide review)

(No triggered to provide review)

Figure 6: An example to illustrate the proposed adaptive agent communication in our framework ConAgents. The
agent flow mainly alternates from (1) generating tool-use planning by grounding agent and (2) generating execution
code by execution agent, in a step-by-step manner. The review agent is adaptively triggered to provide feedback
only when the generated code fails to execute correctly . In this figure, we highlight the review of review agent with
red.

15

1093

The prompt to enable the grounding agent in our cooperative framework. We detail the system prompt and1094

input prompt, respectively.1095
1096
1097

==== System prompt ====1098
In this task , you are provided a series of real -world APIs. Please give a solution1099
to plan which API to use step -by-step to solve the user ’s query. Specifically , you1100
should solve a query with interleaving Thought , Action , Observation steps.1101
You should break down the user ’s query into several simple sub -task. And give your1102
Thought and Action step -by-step , waiting for the Observation to continue to give the1103
subsequent solution.1104

1105
Starting blow , you have to output in the following format1106
User query: the query a User wants help with related to the API.1107
Thought 1: the first step of your plan for how to solve the query1108
Action 1: Select just one API from the provided API list and output its API name1109
Observation 1: the result of executing the first step of your plan1110
Thought 2: based on the API response , the second step of your plan for how to solve1111
the query.1112
Action 2: Select just one API from the provided API list and output its API name1113
Observation 2: the result of executing the second step of your plan1114
... (this Thought and Action step can be repeated N times)1115
Thought N: The task is solved and the answer is [PROVIDE YOUR ANSWER]!1116
Action N: Finish1117

1118
{examples}1119

1120
In your Thought , You are encouraged to specify what key information you want to1121
obtain from the full results or the selected API. For example , you are encouraged to1122
give a plan "Find the ** movie id** of the Matrix" instead of "Find the movie Matrix1123

".1124
1125

==== Input task ====1126
1127

Here are the details of the APIs you can use. You can ONLY use the above APIs!1128
{Candidate toolset}1129

1130
User query: {query}11311132

16

1133

The prompt to enable the execution agent in our cooperative framework. We detail the system prompt and 1134

input prompt, respectively. 1135
1136

==== System prompt ==== 1137
1138

In this task , you should write Python code to call the following API according to my 1139
instructions. Note that: you should always `print` the final answer. 1140

1141
1142

==== Input prompt ==== 1143
Here is the documentation of the API 1144
{tool documentation} 1145

1146
Any information , e.g., person id or movie id, you need to obtain it by calling 1147
appropriate APIs. DO NOT make up value by yourself! 1148
Instruction: {instruction} 1149
Your output: ```python 1150
Your Python code 1151
``` 11521153

1154

The prompt to enable the review agent in our cooperative framework. We detail the system prompt and 1155

input prompt, respectively. 1156
1157

==== System prompt ==== 1158
Please review my solution and evaluate whether my solution is correct. 1159

1160
==== Input prompt ==== 1161
My solution contains the Planning , Code , and Execution results. 1162
Planning: the specific plan for how to solve the query 1163
Code: the Python code snippet which calls the APIs to solve the question 1164
Code output: the result of executing the Python code 1165

1166
Here is the tool documentation. 1167
{tool documentation} 1168

1169
Now , please review my solution. Your review should contain the type of error ( 1170
planning error and Code error) and a clear instruction on how to fix it. 1171
(1) Planning error: The planning is vague , and lacks required arguments to call a 1172
function or does not explicitly state what information to extract from the function ’ 1173
s return value. 1174
(2) Code error: The planning is correct and specific , but the code encounters Python 1175
runtime errors , e.g., KeyError or TypeError. 1176

1177
Starting below , please first identify the error type of my solution and then 1178
provide a clear instruction on how to fix it. Here are some review examples: 1179
{examples} 1180

1181
Here is my specific solution. 1182
{solution} 1183

1184
Please give your review. 1185
Error: 11861187

17


