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Abstract

The principle of compositionality plays a pivotal role in both machine learning
and physical sciences but remains under-explored, particularly in the context of
synthetic data derived from physical energy potentials. This study aims to bridge
this gap by examining the compositional nature of synthetic datasets generated
using composite energy potentials. By combining established Lennard-Jones and
Morse potentials into a composite potential, we generate synthetic datasets using
Markov Chain Monte Carlo (MCMC) techniques. These datasets serve as training
grounds for machine learning models, specifically Neural Ordinary Differential
Equations (ODEs). Our primary focus is to investigate whether the properties of
the composite datasets retain the characteristics of their individual components,
effectively testing the principle of compositionality. The findings not only shed
light on the compositional integrity of synthetic physical datasets but also lay the
groundwork for more robust and interpretable machine learning models applied to
complex physical systems by using the formalism of Category Theory.

1 Introduction

The intersection of machine learning (ML) and physical sciences has evolved into a fertile ground
for pioneering research [Noé+20; KW16]. Notably, one area that is being critically examined is
the role of compositionality in both ML models and physical systems [GV22], which seems under-
explored. Compositionality is essential for enabling simple interpretations and the reverse process,
decomposition, of complex systems into simpler sub-systems. When composition holds, it allows for
more efficient and interpretable models in both physics and machine learning. In line with this, the
current study is devoted to a exploration of compositionality in the context of synthetic datasets and
the energy potentials from which they were derived. Whereas in [DL23] where structured processes
were imposed on generative models, we hope to uncover implicit structures in physical systems
generative modeling.

The key objectives of this study are twofold:

• Composing Energy Potentials: We create a composite energy potential, drawing upon
established energy potentials such as Lennard-Jones and Morse. These are relatively simple
potentials with different physical interpretations. This enables us to investigate whether
certain properties, like performance invariance and physical system distributions, hold
(remain unchanged) when moving from individual to compositional structures [Che+18].

• Composing Synthetic Datasets: We also produce synthetic datasets through Markov Chain
Monte Carlo (MCMC) methods, based on the individual and composite energy potentials.
These datasets serve as a platform for training machine learning models, specifically Neural
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Ordinary Differential Equations (ODEs), to assess whether performance measures stay
invariant under different forms of composition [HJA20; Hoo+23].

The cornerstone of this work is to establish under what conditions compositionality can be considered
a valid principle in the realm of machine learning applied to physical systems. Through this, we
aim to contribute insights that could potentially simplify the modeling of more complex systems
in physics and machine learning. We also formalise this inquiry in the setting of Category Theory
[SGW21] as it is increasingly used to study compositional problems in machine learning.

1.1 Significance to Machine Learning in Physical Sciences

Understanding the invariance properties of machine learning models has profound implications for
the physical sciences, where the quest for universal laws often requires the composition of simpler
systems to form more complex ones. In our study, we use relatively simple energy potentials to
minimize the issue of sampling inefficiencies, making the results more interpretable and generalizable.
Our approach paves the way to developing robust and versatile machine learning models that can adapt
to composed systems without significant loss in performance, enabling more accurate simulations and
predictions for physical systems by utilizing machine-learned approximations of energy potentials,
and establishing a framework for evaluating the reliability of machine learning models when applied
to complex, composed physical systems, thereby bridging the gap between true physical laws and
derived synthetic datasets.

1.1.1 Interpretations in Category Theory

In the language of category theory, the entities we are dealing with can be conceptualized as follows:

• Categories: Our individual energy potentials (LJ, Morse) and their datasets (DLJ, DM) can
be thought of as objects in separate categories. These categories house the structures we’re
interested in: either energy potentials or datasets generated from these potentials.

• Functors: The Neural ODE training process serves as a functor, mapping the objects in
our categories (energy potentials or datasets) to another category of performance measures.
For instance, the functor might take the LJ energy potential and map it to a performance
measure PLJ.

• Natural Transformations: The composition procedures we’re investigating—whether
combining energy potentials to form a Joint potential, or concatenating datasets derived
from independent runs of MCMC—can be viewed as natural transformations between these
functors. They essentially encapsulate how varying the underlying structure (be it in terms
of energy potentials or datasets) results in a transformation of performance measures.

The real power of this category-theoretical viewpoint lies in its ability to formalize our scientific
problem neatly. Our study revolves around the question of whether different paths through these
categories and functors lead to the same outcome—that is, whether the diagrams commute. If they
do, it implies a certain robustness and invariance in how Neural ODEs respond to compositional
procedures, whether it’s in terms of energy potentials or datasets derived from them.

More explicitly, commutativity of these diagrams would imply that the order of operations—whether
you compose first and then train, or train first on individual components and then compose—does not
matter. This would be a powerful result, indicating that Neural ODEs trained on simpler potentials or
their corresponding datasets can be naturally extended to more complex, composite systems without
loss of performance.

2 Category-Theoretical Framework in Neural ODEs

This section presents a category-theoretical approach to understanding Neural ODE parameterizations
with respect to energy potentials and datasets.

2.1 Categories and Objects

Energy Potential Category (E):
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• Objects (E): Different energy potentials.

• Morphisms: Monoidal addition of energy potentials.

Dataset Category (D):

• Objects (D): Datasets derived from MCMC based on energy potentials.

• Morphisms: Concatenation of datasets.

2.2 Functor for Neural ODE Training

Let T : E ∪ D → Φ be a functor that maps objects and morphisms from both E and D to a space of
neural network parameterizations Φ, updating parameters ϕ through Neural ODE training.

2.3 Commutative Diagrams

ELJ T (ELJ)

ELJ+M T (ELJ+M )

T

+ +

T

(1)

DLJ T (DLJ)

DLJ+M T (DLJ+M )

T

⊕ ⊕

T

(2)

2.4 Addition of Energy Functions and Concatenation of Datasets

Addition in E :
ELJ+M = ELJ + EM (3)

Concatenation in D:
DLJ+M = DLJ ⊕DM (4)

These diagrams represent the fundamental inquiry: whether the Neural ODE training functor T
preserves the structure of the compositions in both E and D. Specifically, it questions if T (ELJ+M )
is analogous to T (DLJ+M ), thus exploring the relationship between the parameterization changes
due to different energy potential compositions and dataset concatenations.

2.5 Transformation between Categories

The transformation from E to D is facilitated through MCMC simulations, where energy potentials are
used to generate corresponding datasets. The reverse transformation is not defined in this framework
by may be recoverable via if we can define an Adjoint Functor encompassing MCMC.

3 Methodology

We employ Neural Ordinary Differential Equations (Neural ODEs) trained by energy for the composed
energy potential and by maximum likelihood for the composed synthetic datasets. The key question
this study aims to answer is ’under what circumstances does performance and energy distributions
of the generated systems remain invariant when subject procedures of composition of the energy
potential or the synthetic datasets’?
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3.1 Datasets and Objectives

The following datasets are derived: Dataset_LJ: Generated using MCMC with Lennard-Jones (LJ)
potential, Dataset_Morse: Generated using MCMC with Morse potential, Dataset_Joint: Gen-
erated using MCMC with a composite of LJ and Morse potentials (referred to as UJoint), and
Dataset_Concat: Concatenation of Dataset_LJ and Dataset_Morse.

The primary objective is to investigate the invariance of the Neural ODE’s performance under
three different types of training conditions. Composition of Synthetic Datasets: To evaluate if the
performance of a model trained on concatenated datasets (Dataset_Concat) is relatively similar to
that of a model trained on the composed dataset (Dataset_Joint). Composition of Energy Potentials:
To evaluate if the Neural ODE’s performance when trained directly on UJoint is comparable to
when trained on the individual energy potentials. Cross-Comparison: To compare the Neural ODE’s
performance when trained directly on UJoint against both the joint and concatenated datasets. This
offers a more nuanced understanding of how well the model generalizes across different compositional
procedures.

The study aims to provide a comprehensive analysis on the interplay between compositional synthetic
datasets and energy potentials. Specifically, we investigate whether performance invariance under
different types of composition holds similarly, thereby deepening our understanding of the role of
true physical laws in machine learning applications for the physical sciences.

4 Results

We trained three different Neural ODE models, Model_Energy: Trained using the energy-based
loss function, with Adam optimizer and learning rate 1 × 10−5. Model_MLE: Trained using
Maximum Likelihood Estimation (MLE) with datasets, with Adam optimizer and learning rate
1× 10−4. Model_MLE_Cat: Trained using MLE with concatenated datasets, with Adam optimizer
and learning rate 1× 10−4.

Datasets were selected such that for composed energy functions the last 1000 elements from a
simulation run of 10,000 timesteps, while for concatenated datasets only the last 500 elements from
each individual run were concatenated.

4.1 Discussion on Statistical Measures

Table 1: Statistical Summary of Training and Generated Data (Filtered by specific criteria in Ap-
pendix)

Data Source Mean Max Min Var Mode
Training Data 32.17 112.23 13.02 507.67 21.27

Generated (Energy) 20.51 23.58 17.91 0.82 19.59
Generated (MLE) 21.76 93.81 4.37 131.53 16.28

Generated (MLE Concatenated) 25.58 170.24 4.52 552.09 17.59

Figure Description: The table presents a statistical summary of the energy distributions for various
data sources. All values have been filtered to include only those instances where the energy is less
than 1000 units. The columns represent the mean, maximum, minimum, variance, and mode of these
energy values. The data sources include the original training data, a model trained to minimize energy
(Generated Energy), a Maximum Likelihood Estimate (MLE) model, and an MLE model trained on
concatenated datasets from the Lennard-Jones and Morse potentials (MLE Concatenated). Analyzing
the table, several insights can be gleaned regarding the behavior of the different models: High
Variance in MLE Concatenated: Among all the models, the MLE Concatenated version has a high
variance, which is closer to that of the training data. This suggests that it is able to explore a broader
range of configurations, hinting at better compositionality at the data level. Low Variance in Energy-
Based Learning: The model trained by energy exhibits a much lower variance compared to the other
models and the training data. This could indicate that the energy-based model is narrowly focused
on a specific region of the energy landscape, possibly representing overfitting, or mode collapse, to
lower-energy configurations. Challenges in MLE: The MLE model displays a mean and variance
that are neither too close nor too far from the training data, possibly indicating challenges in modeling
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joint energies effectively. Limited Energy Range in Energy-Based Learning: Both the minimum
and maximum energy values for the model trained by energy are constrained within a narrow range,
which could indicate limited exploration capabilities. This is in contrast to MLE models, which show
a broader range of energy values. Emergence of New Configurations: Interestingly, Both MLE
generated models have minimum energy values that are lower than the training data. This suggests
that the models are capable of exploring new lower energy configurations beyond what is present in
the training set.

Figure 1: Histograms showing the energy distribution of different models and the training data. Each
model’s output is filtered to include energies less than 1000 kcal/mol.

5 Discussions

Our analyses indicate that Maximum Likelihood Estimation (MLE) based methods demonstrate strong
evidence of compositional behavior, especially when compared to the training data derived from
Monte Carlo Markov Chain (MCMC) methods. Notably, the MLE Concatenated model performs
surprisingly well, displaying statistical measures close to the training set. This goes beyond mere
compositionality to indicate emergence, which is particularly intriguing as the MLE Concatenated
model outperforms what would be expected from merely summing the synthetic datasets from
the Lennard-Jones and Morse potentials. This revelation calls for a deeper exploration of the
compositional nature of concatenated synthetic datasets.

Our results suggest that while energy-based models excel in learning the underlying data distribution,
they may lack the compositional richness observed in MLE models. This poses an avenue for future
research, particularly in the domain of making energy-based models more compositional.

References
[RC04] Christian P. Robert and George Casella. “The Metropolis—Hastings Algorithm”. In:

Monte Carlo Statistical Methods. New York, NY: Springer New York, 2004, pp. 267–
320. ISBN: 978-1-4757-4145-2. DOI: 10.1007/978- 1- 4757- 4145- 2_7. URL:
https://doi.org/10.1007/978-1-4757-4145-2_7.

[KW16] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolu-
tional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[Che+18] Ricky T. Q. Chen et al. “Neural Ordinary Differential Equations”. In: arXiv preprint
arXiv:1806.07366 (2018). URL: https://arxiv.org/abs/1806.07366.

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Probabilistic Models”.
In: arXiv preprint arXiv:2006.11239 (2020). URL: https://arxiv.org/abs/2006.
11239.

[Noé+20] Frank Noé et al. “Machine learning for molecular simulation”. In: Annual review of
physical chemistry 71 (2020), pp. 361–390.

[Wan+20] Xipeng Wang et al. “The Lennard-Jones potential: when (not) to use it”. In: Physical
Chemistry Chemical Physics 22.19 (2020), pp. 10624–10633.

5

https://doi.org/10.1007/978-1-4757-4145-2_7
https://doi.org/10.1007/978-1-4757-4145-2_7
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239


[Pin+21] Redi Kristian Pingak et al. “Accuracy of Morse and Morse-like oscillators for di-
atomic molecular interaction: A comparative study”. In: Results in Chemistry 3 (2021),
p. 100204. ISSN: 2211-7156. DOI: https://doi.org/10.1016/j.rechem.2021.
100204. URL: https://www.sciencedirect.com/science/article/pii/
S2211715621001090.
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A Methods

A.1 Energy Potentials

We employ two energy potentials: the Lennard-Jones (LJ) and the Morse potentials. The LJ potential
[Wan+20] is given by:

ULJ(r) = 4C

((
A

r

)12

−
(
A

r

)6
)

(5)

and the Morse potential [Pin+21] is:

UMorse(r) = C
(
1− e−A(r−re)

)2
(6)

A.2 Neural Ordinary Differential Equations (Neural ODEs)

We use Neural ODEs [Che+18] to model the dynamics of the system, particularly for capturing the
continuous-time transformations in the data. A Neural ODE is represented as:

dz

dt
= f(z(t), t; θ) (7)

where z(t) is the state of the system at time t and f is a neural network parameterized by θ.

A.2.1 Latent Space and Analytic Expression

The latent space of our Neural ODE model is assumed to follow a unit Gaussian distribution. The
negative log-likelihood (NLL) of this distribution, with unit variance, has a simple analytic expression
given by:

NLL =
1

2

(
z2 + log(2π)

)
(8)

This analytic form allows for efficient and precise calculations during the training and evaluation
stages.
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A.2.2 Training Objective for Neural ODE

The Neural ODE model is trained using different objectives depending on the type of data used for
training. Two primary training methods are used: Training by Energy and Training by Maximum
Likelihood Estimation (MLE).

Training by Energy: When using the compositional energy function, the loss function is the
absolute difference between the predicted energy and the target energy:

Lenergy(θ) = |UJoint(z(t))− UTarget| (9)

Here UJoint represents the composite energy potential, and UTarget is the ground truth energy.

Training by MLE: When working with compositional synthetic datasets, the training is performed
using Maximum Likelihood Estimation. The model aims to minimize the negative log-likelihood
(NLL) between the generated data and the ground truth, which is modeled as a Gaussian distribution
with unit variance:

LMLE(θ) =
1

2

(
(z(t)− µ)2 + log(2π)

)
(10)

In this expression, µ represents the mean of the Gaussian distribution, which is assumed to be zero in
our case.

By training in both directions, we aim to explore the invariance of performance under different
compositional procedures, either in the form of energy functions or synthetic datasets.

A.3 Metropolis-Hastings Algorithm for Dataset Generation

Datasets are generated using the Metropolis-Hastings algorithm [RC04], with specific energy poten-
tials serving as the target distributions. These potentials include the Lennard-Jones (LJ) potential, the
Morse potential, and a combined (Joint) energy potential. Given an initial state x0 and a specified
energy potential U(x) (which could be ULJ , UMorse, or UJoint), the algorithm iteratively performs
the following steps:

1. Generate a candidate x′ from a proposal distribution q(x′|xt).

2. Compute the acceptance probability α as:

α = min

(
1,

e−U(x′)/T

e−U(xt)/T

)
where T is the temperature parameter of the Metropolis-Hastings algorithm.

3. Accept or reject the candidate based on α.

A.3.1 Algorithm Parameters

For our experiments, the following algorithmic parameters were set:

• Number of atoms (Natoms) = 10

• Initial state randomly generated in 3D for Natoms

• Number of iterations = 10,000

• Temperature (T ) = 300.0

• Energy scaling factor (k) = 1.0

Different datasets are generated by setting U(x) to ULJ , UMorse, or UJoint for different runs of the
algorithm.
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B Justification for Using Lennard-Jones and Morse Potentials

B.1 Lennard-Jones Potential

The Lennard-Jones (LJ) potential is a mathematically simple model that captures the essential
features of the interaction between neutral atoms and molecules. The potential captures both the
Pauli repulsion at short distances and the van der Waals attraction at longer distances, making it an
ideal choice for a broad range of molecular systems. It has been widely used in the literature for
molecular dynamics simulations and other types of modeling.

Parameters:

• C = 1.0: This parameter specifies the depth of the potential well, serving as a scaling factor
for the energy. In this study, it is set to 1.0 for simplicity and computational convenience.

• A = 1.0: The distance-related constant is also set to 1.0, enabling the potential to serve as a
normalized benchmark.

B.2 Morse Potential

The Morse potential serves as another critical approach for modeling the interactions between
atoms, especially in situations where bonds can be formed or broken. This potential captures the
anharmonicity of real molecular bonds more effectively than a harmonic oscillator model would. The
Morse potential is particularly useful for describing vibrational energy levels and is often used in
more complex models like QM/MM simulations.

Parameters:

• C = 1.0: As with the LJ potential, C serves as a scaling factor for the energy and is set to
1.0 for normalized comparison.

• A = 1.0: This dimensionless parameter is related to the width of the potential well. It is set
to 1.0 for computational simplicity.

• re = 1.0: The equilibrium bond distance, set to 1.0 in the same unit as the coordinates,
serves as a normalized value for simplified calculations.

B.3 Composite Energy Function

The composite energy function UJoint combines both Lennard-Jones and Morse potentials, scaled by
parameters α and β. This allows the model to capture both the non-bonded interactions (via the LJ
potential) and the bond formation/breaking behaviors (via the Morse potential).

By choosing normalized and dimensionless parameters for these energy potentials, we aim to study
the underlying relationships and invariances in a generalized setting, abstracting away from the
specifics of any particular molecular system.

B.4 Simplicity and Sampling Considerations for Compositional Studies

The choice of Lennard-Jones and Morse potentials serves a dual purpose: not only do these potentials
represent physical systems with reasonable fidelity, but they also allow for efficient sampling. In many
physical systems, sampling is often the most computationally expensive step and could introduce
various irregularities that confound the study.

B.4.1 Enabling Efficient Compositional Studies

The relative mathematical simplicity of these potentials significantly mitigates the computational
demands of Monte Carlo simulations. This enables us to generate synthetic datasets efficiently, and
more importantly, allows us to focus on the study of compositional properties without the interference
of sampling-related issues.

This is crucial for a study aiming to examine the compositional nature of different procedures, as
it ensures that our findings are not skewed by the complexities or irregularities introduced by the
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sampling process. One limitation of this study is the relative simplicity of the physical systems
under investigation. Both the Lennard-Jones and Morse potentials are chosen for their computational
convenience rather than their ability to model complex physical phenomena. Future work should
extend these findings to more complicated systems, paying close attention to the sampling methods
employed to ensure an accurate representation of the energy landscape.

C Data Filtering Methodology

To ensure a more reliable comparison between the generated data and the training set, the generated
samples were subjected to an outlier removal procedure. This step is crucial to remove extreme energy
values that may not be representative of the typical configuration spaces that we are interested in
studying. The method used for outlier removal is based on the Interquartile Range (IQR). Specifically,
we calculate the first quartile Q1 and the third quartile Q3 of the data, and then determine the IQR as
IQR = Q3−Q1.

def remove_outliers(data):
Q1 = np.percentile(data, 25)
Q3 = np.percentile(data, 75)
IQR = Q3 - Q1
filtered_data = data[(data >= Q1 - 1.5 * IQR) & (data <= Q3 + 1.5 * IQR)]
filtered_data = filtered_data[filtered_data <= 1000]
return filtered_data

Generated samples that lie outside [Q1−1.5×IQR,Q3+1.5×IQR] are considered as outliers and
are removed from the dataset. Additionally, to focus on configurations that are physically meaningful
and computationally tractable, we also filter out any samples with energy values greater than 1000.
It should be noted that this filtering is applied only to the generated data and not to the training
data, to rigorously assess the capacity of the models to generate physically relevant and comparable
configurations.
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