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ABSTRACT

Diffusion models are widely used for generative tasks across domains. While
pre-trained diffusion models effectively capture the training data distribution, it is
often desirable to shape these distributions using reward functions to align with
downstream applications. Policy gradient methods, such as Proximal Policy Op-
timization (PPO), are widely used in the context of autoregressive generation.
However, the marginal likelihoods required for such methods are intractable for
diffusion models, leading to alternative proposals and relaxations. In this context,
we unify variants of Rejection sAmpling based Fine-Tuning (RAFT) as GRAFT,
and show that this induces same solution as PPO objective with reshaped rewards.
We then introduce P-GRAFT to shape distributions at intermediate noise levels
and demonstrate empirically that this can lead to more effective fine-tuning. We
mathematically explain this via a bias-variance tradeoff. Motivated by this, we
propose inverse noise correction to improve flow models without leveraging explicit
rewards. We empirically evaluate our methods on text-to-image(T2I) generation,
layout generation, molecule generation and unconditional image generation. No-
tably, our framework, applied to Stable Diffusion v2, improves over policy gradient
methods on popular T2I benchmarks in terms of VQAScore and shows an 8.81%
relative improvement over the base model. For unconditional image generation,
inverse noise correction improves FID of generated images at lower FLOPs/image.

1 INTRODUCTION

Pre-trained generative models often require task-specific adaptations based on reward feedback
- a standard strategy is to leverage RL algorithms, such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017). While such methods have found great success in the context of language
modeling (Bai et al., 2022; Ouyang et al., 2022), their adoption to diffusion models is not straight-
forward. In particular, unlike autoregressive (AR) models, marginal likelihoods required for the
implementation of KL regularization in PPO are intractable for diffusion models. Mathematically,
suppose p(·) is the distribution induced by a generative model. Given a sample (not necessarily
generated by the model), we can compute the likelihood of x = (x1, . . . , xn) for AR models as
p(x1)p(x2|x1)...p(xn|x1, . . . , xn−1). This is because AR models predict the next token distribution
conditioned on the previous tokens. This likelihood can directly be used for RL algorithms. Diffusion
models, on the other hand, model the conditional likelihoods along the denoising time axis, i.e. we
only have access to p(xt−1|xt), the conditional distribution of the denoised state given the previous
state. From these conditionals, it is intractable to compute the marginal likelihood p(x). This makes
the marginal likelihood unavailable to implement popular RL algorithms like PPO. Hence, in practice,
KL regularization is ignored (Black et al., 2023) or relaxations such as trajectory KL regularization
(Fan et al., 2023) is considered. However, ignoring the KL term results in unstable training in
large-scale settings (Deng et al., 2024), whereas using the trajectory KL constraint gives subpar
results (Black et al., 2023). Further, fine-tuning with trajectory KL also results in the initial value
function bias problem (Domingo-Enrich et al., 2024; Uehara et al., 2024).

Apart from policy gradient methods, recent research has also focused on fine-tuning methods based
on rejection sampling such as RSO (Liu et al., 2023b), RAFT (Dong et al., 2023) and Reinforce-Rej
(Xiong et al., 2025). Further, fine-tuning based on Best-of-N (BoN) sampling and its relation to
policy gradient methods have also been explored, but in the context of autoregressive models (Amini
et al., 2024; Gui et al., 2024). Given the intractability of PPO with (marginal) KL regularization as
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described above, we explore conceptual connections between rejection sampling based fine-tuning
methods and PPO, specifically in the context of diffusion models. In particular, we make the following
contributions:

(a) We conceptualize a Generalized Rejection Sampling (GRS) framework which subsumes various
rejection sampling strategies including classical rejection sampling from MCMC literature and Best-
of-N. We show that GRS samples from the solution to PPO but with a reshaped reward - fine-tuning
using GRS, which we term Generalized Rejection sAmpling Fine-Tuning (GRAFT) enables implicit
marginal KL regularization for diffusion models, despite the marginal likelihoods being intractable.

(b) Leveraging properties of diffusion models, we propose Partial-GRAFT (P-GRAFT) a framework
which fine-tunes only till an intermediate denoising step by assigning the rewards of final generations
to partial, noisy generations. We show that this leads to better fine-tuning empirically and provide
a mathematical justification via a bias-variance tradeoff. Empirically, we demonstrate significant
quality gains across the tasks of text-to-image generation, layout generation and molecule generation.

(c) Motivated by P-GRAFT, we introduce Inverse Noise Correction - an adapter-based, parameter-
efficient method to improve flow models even without explicit rewards. We empirically demonstrate
improved quality as well as FLOPs for unconditional image generation.

(d) In particular, SDv2 fine-tuned using P-GRAFT demonstrates significant improvements in VQAS-
core over policy-gradient methods as well as SDXL-Base across datasets. The proposed Inverse
Noise Correction strategy provides significant FID improvement at reduced FLOPs/image.

A more comprehensive list of related work can be found in Appendix A.

2 PRELIMINARIES

PPO for Generative Modeling: Following (Stiennon et al., 2020), we introduce PPO in our setting:
Consider a state space X , a reward function r : X → R and a reference probability measure p̄ over
X . Let P(X) be the set of probability measures over X and α ∈ (0,∞). Define Rreg : P(X )→ R
by Rreg(p) = EX∼p[r(X)]− αKL(p||p̄), where KL(·∥·) is the KL divergence. PPO aims to obtain

pppo = arg supp∈P(X )R
reg(p) . (1)

Using the method of Lagrangian Multipliers, we can show that pppo(x) ∝ exp(r(x)/α)p̄(x). In
generative modeling literature, p̄ is often the law of generated samples from a pre-trained model -
fine-tuning is done on the model so as to sample from the tilted distribution pppo.

PPO solution via Rejection Sampling: Classical rejection sampling from the Monte Carlo literature
(Thomopoulos, 2012) can be used to sample from pppo. We note this folklore result in our setting:

Lemma 2.1. Let r(x) ≤ rmax for some rmax. Given a sample Y ∼ p̄, we accept it with probability

P(Accept|Y ) = exp
(

r(Y )−rmax

α

)
. Then, conditioned on Accept, Y is a sample from pppo.

Lemma 2.1 provides a way to obtain exact samples from pppo. A well known challenge with this
method is sample inefficiency - as often in practice, α is small leading to small acceptance probability.
Thus, methods such as Best-of-N (BoN) which always accept a fixed fraction of samples are used.

We now introduce Generalized Rejection sAmpling Fine Tuning (GRAFT), a framework to unify
existing rejection sampling approaches such as BoN and RAFT. Going beyond, GRAFT also admits
novel rejection sampling strategies such as those involving de-duplication as we describe in the
next section. Theoretically, Lemma 3.2 shows that GRAFT samples from the solution to the PPO
objective, but with reshaped rewards. We then discuss its utility in the context of diffusion models.
Empirically, GRAFT outperforms policy-gradient methods across multiple tasks including text-to-
image generation.

3 GRAFT: GENERALIZED REJECTION SAMPLING FINE TUNING

Assume (X(i))i∈[M ] are M i.i.d. samples with law p̄ over a space X . Given reward function r : X →
R, let the reward corresponding to X(i) be Ri := r(X(i)), the empirical distribution of (X(i))i∈[M ]
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be P̂X(·) and the empirical CDF of (Ri)i∈[M ] be F̂R(·). We introduce Generalized Rejection
Sampling (GRS) to accept a subset of high reward samples, A := (Y (j))j∈[Ms] ⊆ (X(i))i∈[M ],
where Y (j) denotes the jth accepted sample.
Definition 3.1. Generalized Rejection Sampling (GRS): Let the acceptance function A : R ×
[0, 1]×X × [0, 1]→ [0, 1] be such that A is co-ordinate wise increasing in the first two co-ordinates.
The acceptance probability of sample i is pi := A(Ri, F̂R(Ri), X

(i), P̂X). Draw Ci ∼ Ber(pi) ∀ i ∈
{1, . . . ,M}, not necessarily independent of each other. Then, X(i) ∈ A iff Ci = 1.

Definition 3.1 subsumes popular rejection sampling approaches such as RAFT and BoN. We now
show that GRS implicitly samples from the solution to PPO with the reshaped reward r̂(·):
Lemma 3.2. The law of accepted samples under GRS (Def 3.1) given by p(X(1) = x|X(1) ∈ A) is
the solution to the following Proximal Policy Optimization problem:

argmax
p̂

[Ex∼p̂r̂(x)− αKL (p̂∥p̄)] ; r̂(x)
α

:= log
(
E
[
A(r(x), F̂R(r(x)), x, P̂X)|X(1) = x

])
Here, the expectation is with respect to the randomness in the empirical distributions F̂R and P̂X .

r̂(·) is monotonically increasing with respect to the actual reward since A is an increasing function of
the reward and its empirical CDF. We now instantiate GRS with commonly used variants of A:

Top− K Sampling: Let the reward distribution be continuous with CDF F (·). We accept the top K
samples out of the M samples based on their reward values.

Corresponding Acceptance Function: A(r, F̂R, x, P̂X) =

{
0 if F̂R(r) ≤ 1− K

M

1 if F̂R(r) > 1− K
M

Lemma 3.2 shows that this acceptance function results in the the reshaped reward r̂: r̂(x)
α =

log
[∑K−1

k=0

(
M−1

k

)
F (r(x))M−k−1(1− F (r(x)))k

]
.

Preference Rewards: Setting M = 2 and K = 1 in the above formulation gives preference rewards,
i.e., X(1) is accepted and X(2) is rejected if r(X(1)) > r(X(2)) (and vice versa). This strategy
results in the reshaped reward r̂(x)

α = logF (r(x)). Since F is an increasing function, the reward
r(x) is monotonically reshaped to logF (r(x)).

Varying K from 1 to M , varies the strength of the tilt in Top− K sampling. In particular, K = M

corresponds to r̂(x)
α = 0 (no tilt) and K = 1 corresponds to r̂(x)

α = M logF (r(x)).

Binary Rewards with De-Duplication: Suppose r(X) ∈ {0, 1} (for eg., corresponds to unstable/
stable molecules in molecule generation). De-duplication of the generated samples might be necessary
to maintain diversity. Given any structure function f (for eg., gets the molecule structure from a
configuration), let Nf (X, P̂X) = |{i : f(X(i)) = f(X)}|, i.e, the number of copies of X in the data.

Proposed Acceptance Function: A(r, F̂R, x, P̂X) =

{
0 if r = 0

1

Nf (x,P̂X )
if r = 1

Draw Ci ∼ Ber(pi) without-replacement among the duplicate/similar samples (i.e, they are
marginally Bernoulli but are not independent). Thus, exactly one out of the duplicate molecules are
selected almost surely. Applying Lemma 3.2, we conclude that:

r̂(x)

α
=

{
−∞ if r(x) = 0

logE
[

1

Nf (x,P̂X )

∣∣X(1) = x
]

if r(x) = 1

We see that the shaped reward increases with diversity and with the value of the original reward. We
use this in the molecule generation experiments to avoid mode collapse (Section 6.2).

Implications for diffusion models: While specialized versions of Lemma 3.2 are known in the
context of AR models (Amini et al., 2024), the result is particularly useful in the context of diffusion
models. Note that given a sample x along with a prompt y, the marginal likelihood p̄(x|y) can be
easily computed for AR models. For diffusion models, we only have access to conditional likelihoods
along the denoising trajectory of the diffusion process whereas KL(p||p̄) is intractable. That is,
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if the denoising process is run from tN to t0, we have access to p̄(xti |xti+1
). A commonly used

relaxation is the trajectory KL, KL(p(X0:T )||p̄(X0:T )), which can be shown as an upper bound on
the marginal KL. As discussed in (Domingo-Enrich et al., 2024), this constraint can lead to the initial
value function bias problem since the KL regularization is with respect to the learned reverse process.
It becomes necessary to learn an appropriate tilt even at time T . In this context, Lemma 3.2 offers a
simple yet effective alternative to implicitly achieve marginal KL regularization.

Based on GRS, we propose GRAFT: Generalized Rejection sAmpling Fine Tuning (Algorithm 7)
- given a reference model p̄, we generate samples and perform the GRS strategy proposed in 3.1. A
dataset is generated from the accepted samples and standard training is done on the generated dataset.

4 PARTIAL-GRAFT FOR DIFFUSION MODELS

Having established that GRAFT samples from the PPO solution, we now examine methods to further
improve the framework. Continuous diffusion models typically start with Gaussian noise XT at time
T and denoise it to the output X0 via a discretized continuous time SDE. With N denoising steps,
the model constructs a denoising trajectory XtN → . . . Xti → · · · → Xt0 (tN = T and t0 = 0),
denoted by XT :0. We now consider the effect of shaping the distribution of an intermediate state
Xt. To provide intuition, we consider the case of text-to-image generation. The higher noise levels
decide the “outline" of the image to be denoised and is sensitive to the conditioning. Additionally,
fine-tuning denoisers at lower noise levels require relatively more samples because learning is more
difficult. Thus, we introduce P-GRAFT to fine-tune only the decision-making higher noise levels. For
the rest of the denoising process, it suffices to revert to the original denoiser. Theoretically, we show
that although this results in higher reward variance (due to reward being used to select a partially
noisy state), learning becomes easier due to lower bias at higher noise levels. Empirically, this
results in consistent performance improvements over GRAFT (and other baselines) for text-to-image
benchmarks with Stable Diffusion v2.

For the rest of the discussion, we reserve n and N to refer to discrete timesteps, and t and T for
continuous time. For any t ∈ [0, T ] denote the marginal density of Xt by p̄t(x).

We first extend GRS to Partial Generalized Rejection Sampling (P-GRS). Let X(1)
t , . . . , X

(M)
t be

partially denoised (denoised till time t) samples. Let their corresponding completely denoised samples
be X(1)

0 , . . . , X
(M)
0 . Rewards are computed using the completely denoised samples (i.e. Ri = r(Xi

0)

for the ith sample). We denote the empirical distribution of {X(1)
0 , . . . , X

(M)
0 } by P̂X0(·) and the

empirical CDF of {R1, . . . , RM} by F̂R(·).
Definition 4.1. Partial Generalized Rejection Sampling (P-GRS): Consider an acceptance function
A : R × [0, 1] × X × [0, 1] → [0, 1] such that A is co-ordinate wise increasing in the first two
co-ordinates. The acceptance probability of sample i is pi := A(Ri, F̂R(Ri), X

(i)
0 , P̂X0). Draw

Ci ∼ Ber(pi) ∀ i ∈ [M ], not necessarily independent of each other. Then, X(i)
t ∈ A iff Ci = 1.

Lemma 4.2. The law of the accepted samples under P-GRS ( Def. 4.1) given by pt(X
(1)
t = x|X(1)

t ∈
A) is the solution to the following Proximal Policy Optimization problem:

argmax
p̂

[EX∼p̂r̂(X)− αKL (p̂∥p̄t)] ; r̂(x)
α

:= log
(
E
[
A(r(X

(1)
0 ), F̂R(r(X

(1)
0 )), X

(1)
0 , P̂X)

∣∣X(1)
t = x

])
The key difference is that the reshaped reward now depends on the expected value of the acceptance
function given a partially denoised state Xt. This tilts p̄t instead of p̄0. It is straightforward to modify
the reshaped rewards corresponding to GRS to that of P-GRS. We illustrate this by instantiating
Lemma 4.2 for preference rewards, as done with GRS (Lemma 3.2) above.

Preference rewards: With P-GRS, pt
(
X

(1)
t = x|X(1)

t ∈ A
)
∝ p̄t(x) exp

(
r̂(x)
α

)
with r̂(x)

α =

logE[F (r(X0))|Xt = x].

Based on Lemma 4.2, we introduce P-GRAFT: Partial GRAFT (Algorithms 1 and 2). Here, fine-
tuning is done on a (sampled) dataset of partially denoised vectors instead of fully denoised vectors.
The fine-tuned model is only trained from times T to t, and is used for denoising from noise only till
time t. We switch to the reference model for further denoising. The resulting stitched distribution is
given in Appendix D.3.1. We will now give a mathematical justification for P-GRAFT.
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4.1 A BIAS-VARIANCE TRADEOFF JUSTIFICATION FOR P-GRAFT

We analyze P-GRAFT from a bias-variance tradeoff viewpoint. Let us associate reward r(X0) with
Xt. As argued in Lemma 4.3, variance of r(X0) conditioned on Xt increases with t. Consequently,
P-GRAFT obtains noisy rewards, seemingly making it less effective than GRAFT. However, we
subsequently show that the learning problem itself becomes easier when t is large since the score
function becomes simpler (i.e, the bias reduces). Therefore, we can balance the trade-off between the
two by choosing an “appropriate” intermediate time t for the distributional tilt.
Lemma 4.3. The expected conditional variance E[Var(r(X0)|Xt)] is an increasing function of t.

Example: Consider molecule generation, where molecules are generated by a pre-trained diffusion
model. The generated molecule can be stable (r(X0) = 1) or unstable (r(X0) = 0). Intuitively, Xt,
for t < T , carries more information about r(X0) than XT . We reinforce this claim empirically by
giving the following illustrative statistical test. Consider the two hypotheses:

H0 : r(X0) is independent of Xt ; H1 : r(X0) and Xt are dependent.

Algorithm 1 P-GRAFT: Training

Input: Trainable model pθ, Reference model p̄, Reward
function r, Acceptance function A, Number of rounds
NS , Intermediate timestep NI

1: Initialize empty set D
2: for j = 1 to NS do
3: Generate M trajectories: X(i)

T :0 ∼ p̄T :0 ; i ∈ [M ]

4: Obtain rewards: r(X(i)
0 ) ; i ∈ [M ]

5: Perform P-GRS using acceptance function A on
X

(i)
tNI

; i ∈ [M ] to get accepted samples A
6: Perform D ← D ∪ A
7: end for
8: Train pθ on D for t ∈ {tNI

, . . . , tN}
9: return pθ

Algorithm 2 P-GRAFT: Inference

Input: Fine tuned model p̂, Reference
model p̄, Intermediate timestep NI ,
Per-step denoiser DEN

1: Sample XT ∼ N (0, I)
2: for n = N − 1 to NI do
3: Xtn ← DEN(p̂, Xtn+1

, tn+1)
4: end for
5: for n = NI − 1 to 0 do
6: Xtn ← DEN(p̄, Xtn+1

, tn+1)
7: end for
8: return Xt0

Figure 1: Law of r̂(Xt)

Table 1: Conditional variance.

n E [Var(r(X0)|Xtn)]

N 0.1341
3N/4 0.1327
N/2 0.1312
N/4 0.0848

Given Xt, we obtain 100 roll outs
X

(i)
0 |Xt for 1 ≤ i ≤ 100 and

its empirical average r̂(Xt) =∑100
i=1 r(X

(i)
0 )/100. If r(X0) is

independent of Xt (under H0),
the law of r̂(Xt) is the binomial
distribution Bin(100, θ) with θ =
P(r(X0) = 1) being the marginal
probability of observing a stable
molecule. We perform 1000 rep-
etitions for the experiment above
for various values of t and plot the
empirical distributions in Figure 1. For t = t3N/4 (when Xt close to N (0, I)), the distribution is
close to the Binomial distribution and for t = tN/4 (when Xt is close to the target) it is far. That is,
XtN/4

already carries a lot of information about r(X0). This is further supported by the expected
conditional variances reported in Table 1.

Bias reduces with increasing t: We follow the Stochastic Differential Equation (SDE) framework
from Song et al. (2020b) for our analysis. Let the target distribution q0 be the law of accepted samples
under P-GRS. Diffusion models consider the forward process to be the Ornstein-Uhlenbeck Process
given by dXf

t = −Xf
t dt +

√
2dBt where Xf

0 ∼ q0 is drawn from the target distribution over Rd

and Bt is the standard Brownian motion in Rd. It is well known that Xf
t

d
= e−tXf

0 +
√
1− e−2tZ,

where Z ∼ N (0, I) independent of Xf
0 .

5
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Let qt be the density of the law of Xf
t . Diffusion models learn the score function [0, T ] × Rd ∋

(t,X)→ ∇ log qt(X) via score matching (see Appendix A for literature review on score matching).
P-GRAFT, in contrast, attempts to learn ∇ log qs between for s ∈ [t, T ]. At time T , ∇ log qT (X) ≈
−X , the score of the standard Gaussian distribution, which is easy to learn. When t = 0, the score
∇ log q0(X) corresponds to the data distribution which can be very complicated. Diffusion models
use Denoising Score Matching, based on Tweedie’s formula introduced by (Vincent, 2011). We show
via Bakry-Emery theory (Bakry et al., 2013) that the score function∇ log qt(X) converges to q∞(X)
exponentially in t, potentially making the learning easier. Consider sθ(X, t) : Rd × R+ → Rd to be
a neural network with parameters θ, then score matching objective is given by:

L(θ) = E
∫ T

0

dt∥X
f
t −e−tX

f
0

1−e−2t + sθ(X
f
t , t)∥

2.

In practice, L(θ) is approximated with samples. By Tweedie’s formula, we have:

E[X
f
t −e−tXf

0

1−e−2t |Xf
t ] = −∇ log qt(X

f
t ). Thus, for some constant C, independent of θ:

L(θ) + C = E
∫ T

0

dt∥∇ log qt(X
f
t )− sθ(X

f
t , t)∥

2 =

∫ T

0

dt

∫
Rd

dX qt(X)∥∇ log qt(X)− sθ(X, t)∥2.

As shown by (Benton et al., 2023), L(θ) directly controls the quality of generations. Note that q∞ is
the density of N (0, I) and ∇ log q∞(X) = −X . The theorem below is proved in Appendix D.5.

Theorem 4.4. Define Hs
t for s ≤ t: Hs

t =
∫ t

s
dt
∫
Rd dXqs(X)∥∇ log qs(X) − ∇ log q∞(X)∥2.

Then,

HT
t ≤

e−2t

1− e−2t
Ht

0

Therefore, the score functions between time (t, T ) are exponentially closer to the simple Gaussian
score function compared to the score functions between times (0, t) in the precise sense given in
Theorem 4.4. This means that the score functions at later times should be easier to learn.

5 INVERSE NOISE CORRECTION FOR FLOW MODELS

Noise Distribution (p0)
Image Distribution (pdata)
Learned Distribution (p1)
Inverse Noise Distribution (prev

1 )
ẋ = vθ(x, t)
ẋ = −vθ(x, 1 − t)
ẋ = vθ′ (x, t)

Figure 2: Inverse Noise Correction Setup

In the analysis so far,
we have established bias-
variance tradeoffs for dif-
fusion models - models
which use SDEs to sam-
ple from a target distribu-
tion. We now extend this
analysis to flow models,
which use ODEs to sam-
ple. Flow models follow
a deterministic ODE start-
ing from an initial (random) noise. The bias-variance results from the previous section indicate that,
conditioned on the initial noise vector, the variance of reward should be zero, making the learning pro-
cess potentially easier. Another property of flow models is that because of the deterministic mapping,
they admit reversal - this property has been utilized extensively in the literature to map images to
‘noise’ for image editing Rout et al. (2024); Garibi et al. (2024) and as part of the 2-rectification Liu
et al. (2022) to achieve straighter flows. We will combine these two ideas to develop a framework for
improving flow models even without explicit rewards. We now develop this idea from first principles.

We restrict our attention to flow models with optimal transport based interpolation (Lipman et al.,
2022; Liu et al., 2022), which learn a velocity field v(x, t) : Rd× [0, 1]→ Rd such that the following
ODE’s solution at time t = 1 has the target distribution pdata:

dXt

dt
= v(Xt, t), X0 ∼ N (0, I). (2)

Note that in the literature for flow models (unlike diffusion models), t = 0 corresponds to noise and
t = 1 corresponds to the target, a convention we follow in this section.
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The errors in learned model: Suppose we have a pre-trained vector-field, corresponding to parameter
θ and solve the ODE equation 2 with v(x, t) = vθ(x, t). Then, Law(X1) ̸= pdata due to:

a) Discretization error of the ODE and b) Statistical error due to imperfect learning.

Despite these two errors, the trained ODE is still invertible. We will leverage reversibility to arrive at
our algorithm. To this end, consider the time reversal of equation 2:

dxrev
t

dt
= −vθ(xrev

t , 1− t), xrev(0) ∼ pdata. (3)

Algorithm 3 Inverse Noise Correction: Training

Input: Dataset D := {X(1), X(2), . . . , X(M)} ∼
pdata, step-size η, backward Euler steps Nb

1: vθ = TRAIN_FLOW(N (0, I), D).
2: for i = 1 to M do
3: X

rev,(i)
1 ← BWD_Euler

(
vθ, η,X

(i), Nb

)
4: end for
5: Dataset Drev ← {X rev,(1)

1 , . . . , X
rev,(M)
1 } ∼ prev1

6: vθrev = TRAIN_FLOW(N (0, I), Drev)
7: return vθ, vθ′

Algorithm 4 Inference

Input: Flow models vθ, vθrev , step-size η,
Initial point X0 ∼ N (0, I)

1: X rev
1 ← FWD_Euler(vθrev , η,X0)

2: X1 ← FWD_Euler(vθ, η,X rev
1 )

3: return X1

The Inverse Noise: Consider the forward Euler discretization of equation 2 with step-size η:

x̂(i+1)η ← x̂iη + ηvθ(x̂iη, iη) . (4)

Let Tθ,η be the function which maps x̂0 to x̂1 i.e, x̂1 = Tθ,η(x̂0). The foward Euler approximation
T−1
θ,η (x̂1) ≈ ŷ1 where ŷiη ← ŷ(i−1)η − ηvθ(ŷ(i−1)η, 1− (i− 1)η) with ŷ0 = x̂1 is not good enough

as noted in the image inversion/ editing literature Rout et al. (2024); Wang et al. (2024); Garibi et al.
(2024). This is mitigated via numerical and control theoretic techniques. We utilize the ‘backward
Euler discretization’ (equation 3, as used in Garibi et al. (2024)) to exactly invert equation 4.

x̂rev
ηi ← x̂rev

η(i−1) − ηvθ(x̂
rev
ηi , 1− η(i− 1)) (5)

This is an implicit equation since x̂rev
ηi being calculated in the LHS also appears in the RHS. It is not

apriori clear that this can be solved. Lemma 5.1 addresses this issue:

Lemma 5.1. Suppose vθ is L Lipschitz in x under ℓ2-norm and ηL < 1. Then,

(1) x̂rev
ηi in equation 5 has a unique solution which can be obtained by a fixed point method.

(2) Tθ,η is invertible and T−1
θ,η (x

rev
0 ) = xrev

1 .

That is, the mapping from noise to data given by the learned, discretized model is invertible. We show
some important consequences of this in Lemma 5.2. Define the following probability distributions.
Let pdata = Law(Data) (i.e, target data distribution).

p0 = Law(x̂0) = N (0, I) p1 = Law(x̂1) prev0 = Law(x̂rev
0 ) = pdata prev1 = Law(x̂rev

1 )

We call prev1 the inverse noise distribution. With perfect training and 0 discretization error, prev1 =
N (0, I). However, due to these errors prev1 ̸= N (0, I).

Lemma 5.2. Under the assumption of Lemma 5.1, prev1 , p1, pdata and p0 = N (0, I) satisfy:

1. (Tθ,η)#p
rev
1 = pdata ; 2. TV(prev1 , p0) = TV(p1, p

data) ; 3. KL(p0||prev1 ) = KL(p1||pdata) .

That is, the distance between the inverse noise and the true noise is the same as the distance between
the generated distribution and the true target distribution. Item 1 shows that if we can sample from the
inverse noise distribution prev1 , then we can use the pre-trained model vθ(·, ·) with discretization and
obtain samples from the true target pdata. In Kim et al. (2024), the authors note that even 2-rectification
suffers when the inverse noise prev1 is far fromN (0, I). While 2-rectification aims to improve improve
the computational complexity while maintaining quality by aiming to obtain straight flows, we
introduce inverse noise correction to improve quality of generations in a sample efficient way.
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Inverse Noise Correction: Inverse Noise Correction is given in Algorithms 3 and 4, and illustrated
in Figure 2. Given samples from the target distribution, D, TRAIN_FLOW(N (0, I),D) trains a
rectified flow model between N (0, I) to the target distribution Liu et al. (2022). Now, suppose we
are given a dataset {X(1), . . . , X(M)} ∼ pdata and a trained flow model vθ which generates x̂1 ∼ p1
using equation 4 starting with x̂0 ∼ p0. We obtain samples X

rev,(i)
1 ∼ prev1 by backward Euler

iteration in equation 5. Thereafter, we train another flow model vθrev which learns to sample from prev1
starting from N (0, I).

During inference, we sample a point from X0 ∼ N (0, I) and obtain a sample X rev
1 ∼ prev1 using

vθrev . Once we have the corrected noise sample, we generate images using the original flow model
vθ which now starts from X rev

1 instead of X0. FWD_Euler(vθ, η, x̂0) obtains x̂1 via Euler iteration
(equation 4). Similarly, BWD_Euler(vθ, η, x̂rev

0 , Nb) obtains xrev
1 by approximately solving backward

Euler iteration (equation 5). They are formally described as Algorithms 5 and 6 in Appendix B.
Theoretical Justification along the lines of Section 4.1 is given in Appendix D.8.

6 EXPERIMENTS

We use the notation P-GRAFT(NI ) to denote P-GRAFT with intermediate timestep NI as described
in Algorithms 1 and 2. For instance, P-GRAFT(0.75N ) would denote instantiating P-GRAFT with
NI = 0.75N , where N is the total number of denoising steps. Recall that tN corresponds to pure
noise and t0 corresponds to a completely denoised sample.

6.1 TEXT-TO-IMAGE GENERATION

Setup: The objective is to fine-tune a pre-trained model so that generated images better align with
prompts. We consider Stable Diffusion v2 (SDv2) (Rombach et al., 2022) as the pre-trained model.
The reward model used is VQAScore (Lin et al., 2024) - a prompt-image alignment score between 0
to 1, with higher scores denoting better prompt-alignment. We fine-tune (separately) on GenAI-Bench
(Li et al., 2024a) as well as the train split of T2ICompBench++ (Huang et al., 2025). Evaluations are
done on GenAI-Bench, validation split of T2ICompBench++ and GenEval (Ghosh et al., 2023). We
use LoRA (Hu et al., 2021) for compute-efficient fine-tuning. Top− K sampling (Section 3) is used
for both GRAFT and P-GRAFT. Since LoRA fine-tuning is used, the model switching in 2 can be
done by simply turning off the LoRA adapter. More implementation details are given in Appendix E.

Results: are reported in Table 2 - for fine-tuning on GenAI-Bench, we use Top− 10 of 100 samples
and on T2ICompBench++, we use Top− 1 of 4 samples. First, note that both GRAFT and P-
GRAFT outperform base SDv2, SDXL-Base and DDPO. The best performance is obtained for
P-GRAFT with NI = 0.25N across all evaluations - this clearly shows the bias-variance tradeoff
in action. Further, both GRAFT and P-GRAFT also generalize to unseen prompts.

In particular, DDPO did not improve over the baseline even when trained with more samples and
FLOPs as compared to GRAFT/P-GRAFT. Experiments with different sets of hyperparameters as
well as adding other features such as KL regularization and a per-prompt advantage estimator on
top of DDPO also did not show any significant improvements over SDv2 (see Appendix E.3). We
also conduct ablations to further verify the effectiveness of the proposed methods - these include
experiments on different values of (M,K) in Top− K of M sampling, different LoRA ranks for
fine-tuning as well as a reverse P-GRAFT strategy (where the fine-tuned model is used in the later
denoising steps instead of initial steps). We find that P-GRAFT remains effective across different
(M,K) and that performance is insensitive to the LoRA rank. Further, P-GRAFT significantly
outperforms reverse P-GRAFT. More details on ablations can be found in Appendix E.1.

6.2 LAYOUT AND MOLECULE GENERATION

Setup: All experiments are done on pre-trained models trained using IGD (Anil et al., 2025), a
discrete-continuous diffusion framework capable of handling both layout generation and molecule
generation. For layouts, we experiment with improving the alignment of elements in the generated
layout as measured by the alignment metric - note that the reward is taken as 1 - alignment since lower
values for the metric indicate better alignment. For molecules, the objective is to generate a larger
fraction of stable molecules - molecules which are deemed stable are assigned a reward of 1 whereas
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Table 2: Text-to-Image Generation fine-tuning on SDv2: VQAScore (normalized to 100) reported
on GenAI-Bench, T2ICompBench++ - Val (denoted as T2I - Val) and GenEval.

Model
Fine-Tuned on GenAI-Bench Fine-Tuned on T2ICompBench++ - Train

GenAI T2I - Val GenEval GenAI T2I - Val GenEval

SD v2 66.87±0.14 69.20±0.17 73.49±0.41 66.87±0.14 69.20±0.17 73.49±0.41

SDXL-Base 69.69±0.17 72.98±0.16 73.90±0.40 69.69±0.17 72.98±0.16 73.90±0.40

DDPO 65.70±0.17 68.03±0.16 72.13±0.37 64.65±0.17 69.05±0.15 69.60±0.37

GRAFT 70.51±0.15 75.69±0.13 79.85±0.31 70.97±0.14 75.88±0.13 79.57±0.30

P-GRAFT(0.75N ) 69.46±0.15 74.51±0.14 79.44±0.33 69.51±0.15 74.30±0.13 78.50±0.33

P-GRAFT(0.5N ) 71.00±0.14 75.45±0.14 80.60±0.31 70.73±0.14 75.37±0.12 79.25±0.30

P-GRAFT(0.25N ) 71.94±0.14 76.12±0.13 80.96±0.29 71.42±0.14 76.15±0.13 80.29±0.30

Table 3: Layout Generation: Fine-tuning
results for unconditional and category-
conditional generation on PubLayNet.

Model
Unconditional Class-conditional

Alignment FID Alignment FID

Baseline 0.094 8.32 0.088 4.08
GRAFT 0.064 10.68 0.068 5.04

P-GRAFT(0.5N ) 0.071 9.24 0.072 4.55
P-GRAFT(0.25N ) 0.053 9.91 0.064 4.67

Table 4: Molecule Generation: Fine-tuning re-
sults on QM9. (Relative) number of sampling
rounds required are also reported.

Model Mol: Stability Sampling Rounds

Baseline 90.50±0.15 -
GRAFT 90.76±0.20 9×

P-GRAFT(0.5N ) 90.46±0.27 1×
P-GRAFT(0.25N ) 92.61±0.13 1×

unstable molecules are assigned a reward of 0. For molecule generation, we use the de-duplication
instantiation of GRAFT/P-GRAFT (Section 3) to ensure diversity of generated molecules - we
use RDKit to determine whether two molecules are identical or not. We use PubLayNet (Zhong
et al., 2019) for layout generation, and QM9 (Ramakrishnan et al., 2014) for molecule generation.
To the best of our knowledge, this is the first work which addresses fine-tuning in the context of
discrete-continuous diffusion models. Ablations and experimental details are given in Appendix F.

Results: for layout generation are given in Table 3. Both P-GRAFT and GRAFT uniformly improve
performance across both unconditional and class-conditional generation, with P-GRAFT:0.25N
giving the best performance. We also report FID scores computed between the generated samples and
the test set of PubLayNet - this is a measure of how close the generated samples are to the pre-training
distribution. As expected, the baseline has the lowest FID. Note that the FID score for P-GRAFT is
smaller than GRAFT, indicating that P-GRAFT aligns more closely to the pre-training distribution.
For molecule generation, results are given in Table 4. Again, the best performance is with P-GRAFT
at 0.25N . Note that improvement with GRAFT is marginal, despite being trained on 9× the number
of samples used for P-GRAFT - this points to the learning difficulty in later denoising steps.

6.3 IMAGE GENERATION WITH INVERSE NOISE CORRECTION

Setup: We consider unconditional image generation on CelebA-HQ (Karras et al., 2017) and LSUN-
Church (Yu et al., 2015) at 256× 256 resolution. We first train pixel-space flow models from scratch.
A training corpus of inverted noise is then generated by running the trained flow models in reverse,
employing the backward Euler method, on all samples in the dataset. A second flow model, which
we refer to as the Noise Corrector model, is then trained to generate this inverse noise. Once the
Noise Corrector is trained, this model is first used to transform standard Gaussian noise to the inverse
noise. The pre-trained model then generates samples starting from the inverse noise. FID with 50000
generated samples with respect to the dataset is used to measure the performance. We emphasize
that the our goal is not to compete with state-of-the-art (SOTA) models rather to demonstrate that
our procedure can be used to improve the performance of a given flow model by simply learning the
distributional shift of noise at t = 0. SOTA models are larger ( Rombach et al. (2022) has ≈ 300M
parameters) and are more sophisticated - we do not seek to match their performance.

Results: Table 5, shows that the Noise Corrector significantly improves FID scores across both
datasets. Apart from quality gains, Noise Corrector also allows for faster generation - running the
Noise Corrector for 100 steps and then running the pre-trained model for 100 steps can outperforms

9
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Table 5: Image Generation: Results for inverse noise correction on CelebA-HQ and LSUN-Church.
The noise corrector samples the inverse noise starting from N (0, I) for ‘Sampling Steps’, and the
pre-trained model samples the image starting from the inverse noise.

Sampling Steps FID
FLOPs/image

(×1012)
Inference Time

(in seconds)Noise Corrector
(16M parameters)

Pre-Trained Model
(65M parameters)

CelebA-HQ
(256× 256)

LSUN-Church
(256× 256)

- 1000 11.93 8.40 6.869 482.85
- 200 13.39 8.63 1.374 96.64

100 100 8.94 7.90 0.903 67.85
200 200 8.02 7.26 1.806 135.42

the pre-trained model with 1000 steps. The Noise Corrector only has 0.25× the number of parameters,
leading to further latency gains as evidenced by FLOPs counts.

7 CONCLUSION

We establish GRAFT, a framework for provably sampling from PPO solution with marginal KL for
diffusion models through rejection sampling. We then introduce P-GRAFT, a principled framework
for intermediate distribution shaping of diffusion models and provide a mathematical justification for
this framework. Both GRAFT and P-GRAFT perform well empirically, outperforming policy gradient
methods on the text-to-image generation task. Further, both frameworks also extend seamlessly to
discrete-continuous diffusion models. Finally, we introduce Inverse Noise Correction, a strategy to
improve flow models even without explicit rewards and demonstrate significant quality gains even
with lower FLOPs/image.
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8 ETHICS STATEMENT

The proposed method fine-tunes a pre-trained diffusion model based on rewards. Potentially, fine-
tuning towards undesirable goals is possible by using specialized rewards. Practitioners are suggested
to exercise caution in this regard.

9 REPRODUCIBILITY STATEMENT

Algorithms 1, 2, 3, 4, 5, 6 and 7 provide algorithmic descriptions of the proposed methods. The
experimental setup used for experiments, including hyperparameters, are described in Section 6 as
well as Appendices E, F and G. Proofs for the theoretical claims are given in Appendix D.
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APPENDIX

A RELATED WORK

Policy Gradient Methods: Majority of the existing literature on policy gradient methods in the
context of generative modeling draw inspiration from Proximal Policy Optimization(PPO) (Schulman
et al., 2017) and REINFORCE (Williams & Peng, 1991). PPO based methods in the context of
language modeling include Bai et al. (2022); Ouyang et al. (2022); Liu et al. (2023a); Stiennon et al.
(2020), whereas frameworks based on REINFORCE include (Li et al., 2023; Ahmadian et al., 2024;
Shao et al., 2024; Hu et al., 2025). Policy gradient methods have also been studied in the context of
fine-tuning diffusion models (Black et al., 2023; Fan et al., 2023; Ren et al., 2024).

Offline Fine-Tuning Methods: Algorithms which utilize offline preference datasets for fine-tuning
generative models have also been widely studied. In the context of language modeling, these include
methods like SLiC (Zhao et al., 2023), DPO (Rafailov et al., 2023) and SimPO (Meng et al., 2024).
Such methods have also been explore in the context of diffusion models as well - these include
methods like Diffusion-DPO (Wallace et al., 2024) and Diffusion-KTO (Li et al., 2024b).

Rejection Sampling Methods: Recently, many works have explored rejection sampling methods
in the context of autoregressive models - these include RSO (Liu et al., 2023b), RAFT (Dong et al.,
2023) and Reinforce-Rej (Xiong et al., 2025). In particular, Reinforce-Rej demonstrated that rejection
sampling methods can match or even outperform policy gradient methods.

Fine-Tuning Diffusion Models: Apart from the policy gradient methods discussed already, a
host of other methods have also been proposed for fine-tuning diffusion models. Direct reward
backpropagation methods include DRaFT (Clark et al., 2023) and AlignProp (Prabhudesai et al.,
2023). Note that these methods assume access to a differentiable reward. Uehara et al. (2024)
approaches the problem from the lens of entropy-regularized control - however, the method is
computationally heavy and requires gradient checkpointing as well as optimizing an additional neural
SDE. Domingo-Enrich et al. (2024) proposes a memoryless forward process to overcome the initial
value function bias problem for the case of ODEs. PRDP Deng et al. (2024) formulates a supervised
learning objective whose optimum matches with the solution to PPO, but with trajectory KL constraint
- the supervised objective, with clipping, was found to make the training stable as compared to DDPO.

Score Matching: Score matching for distribution estimation was first introduced in (Hyvärinen &
Dayan, 2005). The algorithm used in this case is called Implicit Score Matching. Diffusion models
primarily use Denoising Score Matching (DSM), which is based on Tweedie’s formula (Vincent,
2011; Kingma & Cun, 2010). The sample complexity of DSM has been extensively studied in
the literature (Kumar et al., 2025; Block et al., 2020; Gupta et al., 2024; Chen et al., 2023).Many
alternative procedures such as Sliced Score Matching (Song et al., 2020a) and Target Score Matching
(De Bortoli et al., 2024) have been proposed.

ODE Reversal in Flow Models: A prominent use case of ODE reversal in flow models is that of
image editing (Hertz et al., 2022; Kim et al., 2022; Hong et al., 2024; Mokady et al., 2023; Rout et al.,
2024; Garibi et al., 2024). The reverse ODE has also been used to achieve straighter flows, allowing
for faster generation, through 2-rectification/reflow algorithm (Liu et al., 2022; Lee et al., 2024; Zhu
et al., 2024; Liu et al., 2023c). Notably, concurrent work Eyring et al. (2025) also proposes a strategy
for aligning distilled models by fine-tuning at the noise level.
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B ODE SOLVER ALGORITHMS

In the backward Euler Algorithm 6, at each time instant j in the reverse procedure, we solve a fixed
point equation to obtain high precision solution of Eq. equation 5. The step-size η is tuned empirically
so that the recursion does not blow up. Once the step-size is carefully tuned, the iteration converges
to the solution at an exponential rate. In practice, we observed that Nb = 10 is sufficient to obtain
satisfactory results.

Algorithm 5 Forward Euler (FWD_Euler)

Input: Flow model vθ, step-size η, Initial
point X0

1: for j = 0 to ⌊1/η⌋ − 1 do
2: Xj+1 ← Xj + ηvθ(Xj , ηj)
3: end for
4: return X⌊1/η⌋

Algorithm 6 Backward Euler (BWD_Euler)

Input: Flow model vθ, step size η, sample X(i) from
the dataset, Number of fixed point iterations Nb

1: X rev
1 = X(i)

2: for j = 0 to ⌊1/η⌋ − 1 do
3: X̂ rev

0 = X rev
j

4: for k = 0 to Nb − 1 do
5: X̂ rev

k+1 ← X rev
j − ηvθ(X̂

rev
k , 1− η(j + 1))

6: end for
7: X rev

j+1 ← X̂ rev
Nb

8: end for
9: return X rev

⌊1/η⌋

C GRAFT: ALGORITHM

While instantiations of GRAFT are well-known in the literature and are straightforward to implement,
we provide the exact algorithm here for the sake of completeness.

Algorithm 7 GRAFT: Training

Input: Trainable pθ, Reference p̄, Reward function r, Acceptance function A, Number of sampling
rounds NS

1: Initialize empty set D
2: for i = 0 to NS do
3: Get M samples: {X(1), . . . , X(M)} ∼ p̄
4: Obtain rewards: r(X(i)) ; i ∈ [M ]
5: Perform GRS using acceptance function A to get accepted samples A
6: Perform D ← D ∪ A
7: end for
8: Train pθ on D
9: return pθ
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D PROOFS

D.1 LEMMA 3.2

Proof. Let B be any measurable set. Consider the following probability measure:

P(X(1) ∈ B|X(1) ∈ A).

Using Bayes’ rule, this measure can be rewritten as:

P(X(1) ∈ B|X(1) ∈ A) = P(X(1) ∈ B,X(1) ∈ A)
P(X(1) ∈ A)

.

Recall that X(1) is drawn from the distribution p̄. Then, from the definition of P(X(1) ∈ B,X(1) ∈
A), we have:

P(X(1) ∈ B,X(1) ∈ A) =
∫
B

P(X(1) ∈ A|X(1) = x)dp̄(x).

From Definition 3.1, we know that X(1) ∈ A iff C1 = 1. Therefore:

P(X(1) ∈ B,X(1) ∈ A) =
∫
B

P(C1 = 1|X(1) = x)dp̄(x)

=

∫
B

E
[
1(C1 = 1)|X(1) = x

]
dp̄(x)

where 1(·) denotes the indicator function. Using the tower property of expectations, this can be
rewritten as:

P(X(1) ∈ B,X(1) ∈ A) =
∫
B

E
[
E
[
(1(C1 = 1)|X(1) = x,X(2), . . . , X(M))

]∣∣X(1) = x
]
dp̄(x)

=

∫
B

E
[
P
(
C1 = 1|X(1) = x,X(2), . . . , X(M)

)∣∣X(1) = x
]
dp̄(x).

Note that in the conditional expectation here, X(1), . . . , X(M), are distributed according to p̄0 since
{X(j)}Mj=1 are i.i.d samples. Again, from Definition 3.1, we know that

P(C1 = 1|X(1) = x, {X(j)}Mj=2) = A(r(x), F̂R(r(x)), x, P̂X)

where F̂R and P̂X are computed using the samples {X(j)}nj=1. From definition of Radon-Nikodym
derivative, the distribution of the accepted samples can therefore be written as:

p̄a(x) = Z1E
[
A(r(x), F̂R(r(x)), x, P̂X)|X(1) = x

]
p̄(x) (6)

where Z1 = 1/P(X(1) ∈ A) is a normalizing constant independent of x. Now, from the method of
Lagrangian Multipliers, as mentioned in Section 2, the solution to the PPO optimization objective
with reward function r̂(·) is given by:

pppo(x) = Z2 exp

(
r̂(x)

α

)
p̄(x) (7)

where Z2 is the normalization constant. Comparing equation 6 and equation 7, p̄a = pppo whenever:

r̂(x)

α
= log

(
E
[
A(r(x), F̂R(r(x)), x, P̂X |X(1) = x

])
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D.2 INSTANTIATIONS OF GRAFT

D.2.1 TOP-K OUT OF M SAMPLING

Substituting A(·) in:

log
(
E{X(j)}n

j=2

[
A(r(x), F̂R(r(x)), x, P̂X)|X(1) = x, {X(j)}Mj=2

])
we get:

log

(∫
{X(j)}n

j=2

1(r(x) ∈ Top− K(r(x), r(x(2)), . . . , r(x(M))))dp̄(x(2)) . . . dp̄(x(M))

)

where Top− K(r(x), r(x(2)), . . . , r(x(M))) denotes the top-K samples in
{r(x), r(x(2)), . . . , r(x(M))}. Let UK denote the event where X(1) = x ranks in top-K
among the M samples, where the other M − 1 samples are i.i.d from p̄. This event can be
decomposed as:

UK = ∪Kk=1Ek

where Ek denotes the event where r(x) is the kth in the ranked (descending) ordering of rewards.
Further, note that {Ek} are mutually exclusive events. Therefore:

P(UK) =

K∑
k=1

P(Ek)

Computing P(Ek): If x ranks kth when ranked in terms of rewards, there are k − 1 samples
which have higher rewards than x and M − k samples which have lower rewards than x. Thus, the
required probability can be computed by finding the probability of having K − 1 samples having
higher rewards and the rest having lower rewards. Note that the ordering within the K − 1 group or
M −K group doesn’t matter. The probability of any one sample having a higher reward than r(x)
is 1 − F (r(x)) and having a lower reward is F (r(x)). Therefore, the required probability can be
computed as:

P(Ek) =

(
M − 1

k − 1

)
(1− F (r(x)))k−1(F (r(x)))M−k

And hence:

P(UK) =

K−1∑
k=0

(
M − 1

k

)
(1− F (r(x)))k(F (r(x)))M−k−1

Therefore:

r̂(x)

α
= log

(
K−1∑
k=0

(
M − 1

k

)
(1− F (r(x)))k(F (r(x)))M−k−1

)

It is straightforward to check that this is an increasing function in r.

D.2.2 PREFERENCE REWARDS

Substituting A(·) in:

log
(
EX(2)A(r(x), F̂R(r(x)), x, P̂X)|X(1) = x,X(2)

)
we get:

log

(∫
X(2)

1(r(x(2)) ≤ r(x))dp̄(x(2))

)
= logF (r(x))
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D.3 LEMMA 4.2

Proof. Let B be any measurable set. Consider the following probability measure:

P(X(1)
t ∈ B|X(1)

t ∈ A).

Using Bayes’ rule, this measure can be rewritten as:

P(X(1)
t ∈ B|X(1)

t ∈ A) = P(X(1)
t ∈ B,X

(1)
t ∈ A)

P(X(1)
t ∈ A))

.

Recall that X(1)
t is drawn from the distribution p̄t. Then, from the definition of P(X(1)

t ∈ B,X
(1)
t ∈

A), we have:

P(X(1)
t ∈ B,X

(1)
t ∈ A) =

∫
B

P(X(1)
t ∈ A|X(1)

t = x)dp̄t(x).

From Definition 4.1, we know that X(1)
t ∈ A iff C1 = 1. Therefore:

P(X(1)
t ∈ B,X

(1)
t ∈ A) =

∫
B

P(C1 = 1|X(1)
t = x)dp̄t(x)

=

∫
B

E
[
1(C1 = 1)|X(1)

t = x
]
dp̄t(x)

where 1(·) denotes the indicator function. Using the tower property of expectations, this can be
rewritten as:

P(X(1)
t ∈ B,X

(1)
t ∈ A) =

∫
B

E
[
E
[
(1(C1 = 1)|X(1)

t = x,X
(1)
0 , X

(2)
0 , . . . , X

(M)
0 )

]∣∣X(1)
t = x

]
dp̄t(x)

=

∫
B

E
[
P
(
C1 = 1|X(1)

t = x,X
(1)
0 , X

(2)
0 , . . . , X

(M)
0

)∣∣X(1)
t = x

]
dp̄t(x).

Note that in the conditional expectation here, X(2)
0 , . . . , X

(M)
0 , are distributed according to p̄0

since {X(j)
0 }nj=1 are i.i.d samples. However, X(1)

0 is distributed according to p̄0|t because of the

conditioning on X
(1)
t . Again, from Definition 4.1, we know that

P(C1 = 1|X(1)
t = x, {X(j)

0 }Mj=1) = A(r(X
(1)
0 ), F̂R(r(X

(1)
0 )), X

(1)
0 , P̂X)

where F̂R and P̂X are computed using the samples {X(j)}Mj=1. From the definition of Radon-
Nikodym derivative, the density of the accepted samples can therefore be written as:

p̄at (x) = Z1E
[
A(r(X

(1)
0 ), F̂R(r(X

(1)
0 )), X

(1)
0 , P̂X |X(1)

t = x)
]
p̄t(x) (8)

where Z1 = 1/P(X(1)
t ∈ A)) is a normalizing constant independent of x. Now, from the method of

Lagrangian Multipliers, as mentioned in Section 2, the solution to the PPO optimization objective
(with reward function r̂(·)) is (where Z2 is the normalization constant):

pppo(x) = Z2 exp

(
r̂(x)

α

)
p̄t(x). (9)

Comparing equation 8 and equation 9, p̄at = pppo whenever:

r̂(x)

α
= log

(
E
[
A(r(X

(1)
0 ), F̂R(r(X

(1)
0 )), X

(1)
0 , P̂X |X(1)

t = x
])

(10)
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D.3.1 DISTRIBUTION INDUCED BY THE STITCHED MODEL

Let us denote the distribution the stitched model samples from as ps. From the discussion above, the
distribution the P-GRAFT fine-tuned model samples from at time t is p̄at . Further, let p̄0|t denote the
distribution of samples at time 0, given a sample at time t under the base model. Then clearly:

ps(x0) =

∫
p̄0|t(x0|xt)p̄

a
t (xt)dxt

= Z

∫
p̄0|t(x0|xt)p̄t(xt) exp

(
r̂(xt)

α

)
dxt

where Z is a normalization constant independent of x0. In general, an explicit solution to this integral
cannot be computed.

To get some intuition about the tilt, we analyze two edge cases. Assume that the acceptance probability
depends only on r(X0) and F̂R(r(X0)).

Case 1: The reward of a sample at time 0 is independent of the latent at time t xt.

The acceptance probability is also independent of the latent at time t xt.

From equation 10,

r̂(x)

α
= log

(
E
[
A(r(X

(1)
0 ), F̂R(r(X

(1)
0 )))|X(1)

t = x
])

= log
(
E
[
A(r(X

(1)
0 ), F̂R(r(X

(1)
0 )))

])
since acceptance probability is independent of xt. Note that the expectation is over X(1)

0 , . . . , X
(M)
0 ,

as discussed above. Hence, because of the independence assumption, log (E [A(·)]) is independent of
X

(1)
t and hence r̂(x)

α is independent of x. Let us denote this quantity as Z1. Then:

ps(x0) = Z

∫
p̄0|t(x0|xt)p̄t(xt) exp(Z1)dxt

= Z exp(Z1)

∫
p̄0|t(x0|xt)p̄t(xt)dxt

= Z exp(Z1)p̄(x0)

= p̄(x0)

where we have used the fact that p̄(x0) is the normalized reference distribution. Hence, if acceptance
probability of a sample at time 0 is independent of the latent at time t xt, the stitched model results in
no tilt whatsoever.

Case 2: The reward of a sample at time 0 is completely determined by the latent at time t xt.

A unique mapping rt exists such that r(X0) = rt(Xt), where X0 ∼ p0:t(·|Xt). Therefore, from
equation 10,

r̂(x)

α
= log

(
E
[
A(r(X

(1)
0 ), F̂R(r(X

(1)
0 )))|X(1)

t = x
])

= log
(
E
[
A(rt(x), F̂R(rt(x)))

])
Note that the expectation here is only over X(2)

0 , . . . , X
(M)
0 because of the conditioning. And hence:

ps(x0) = Z

∫
p̄0|t(x0|xt)p̄t(xt) exp

(
r̂(xt)

α

)
dxt

= Z

∫
p̄0|t(x0|xt)p̄t(xt)E

[
A(rt(xt), F̂R(rt(xt)))

]
dxt
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Using the fact that rt(xt) = r(x0), we have:

ps(x0) = Z

∫
p̄0|t(x0|xt)p̄t(xt)E

[
A(r(x0), F̂R(r(x0)))

]
dxt

= ZE
[
A(r(x0), F̂R(r(x0)))

] ∫
p̄0|t(x0|xt)p̄t(xt)dxt

= Zp̄(x0)E
[
A(r(x0), F̂R(r(x0)))

]
Comparing ps(x0) with Lemma 3.2, we see that in this case, P-GRAFT results in sampling from the
exact same distribution as GRAFT.

For the cases in between case 1 and case 2, P-GRAFT interpolates between the reference distribution
and the distribution induced by GRAFT.

D.3.2 JUSTIFICATION FOR KL REGULARIZATION AT INTERMEDIATE TIMESTEP

Intuitively, KL regularization at an intermediate time-step ensures that the generated latents at this
time-step remain close (in distribution) to the latents of the reference model. Since the rest of
denoising happens with the reference model, this also ensures that the distribution of final generated
samples remains close to the sample distribution of the reference model.

More formally, suppose the fine-tuned model obeys KL(pt||p̄t) ≤ α, where pt is the fine-tuned
model and p̄t is the reference model. Let the final distribution induced by the stitched model be ps0.
Due to the contraction of KL divergences under Markov Chains, a.k.a Data Processing Inequality
(Theorem 7.4 in Polyanskiy & Wu (2025)), KL(ps0||p̄0) ≤ α because we follow the same Markov
Chain from time t to 0 during denoising due to stitching.

D.4 PROOF OF LEMMA 4.3

Proof. Let s > t. Note that Xs → Xt → X0 forms a Markov chain. By the law of total variance,
we have for any random variables Y,Z:

Var(Z) = EVar(Z|Y ) + Var(E[Z|Y ])

≥ EVar(Z|Y ) (11)

Given Xs, Suppose Z, Y be jointly distributed as the law of (r(X0), Xt). Then, we have Xs almost
surely:

Var(r(X0)|Xs) ≥ E[Var(r(X0)|Xs, Xt)|Xs] = E[Var(r(X0)|Xt)|Xs] (12)

In the last line, we have used the Markov property to show that the law of r(X0)|Xs, Xt is the same
as the law of r(X0)|Xt almost surely. We conclude the result by taking expectation over both the
sides.

D.5 PROOF OF THEOREM 4.4

Proof. We will follow the exposition in Vempala & Wibisono (2019) for our proofs. qt converges
to q∞ as t → ∞. By (Vempala & Wibisono, 2019, Lemma 2) applied to the forward process, we
conclude that:

d

dt
KL(qt||q∞) = −

∫
Rd

dXqt(X)∥∇ log qt(X)−∇ log q∞(X)∥2

=⇒
∫ T

t

dt

∫
Rd

dXqs(X)∥∇ log qs(X)−∇ log q∞(X)∥2 = KL(qt||q∞)− KL(qT ||q∞) (13)

For brevity, we call the LHS to be HT
t . Clearly,

HT
t − e−2tHT

0 = KL(qt||q∞)− e−2tKL(q0||q∞) + KL(qT ||q∞)(e−2t − 1) .
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Notice that q∞ is the density of the standard Gaussian random variable. Therefore, it satisfies the
Gaussian Logarithmic Sobolev inequality Gross (1975). Thus, we can apply (Vempala & Wibisono,
2019, Theorem 4) to conclude that for every s ≥ 0, KL(qs||q∞) ≤ e−2sKL(q0||q∞). Thus,

HT
t ≤

e−2t

1− e−2t
Ht

0

D.6 PROOF OF LEMMA 5.1

The uniqueness and the convergence of fixed point iteration for implicit Euler methods have been
established under great generality in Butcher (2016). However, we give a simpler proof for our
specialized setting here.

1. Consider the update for the backward Euler iteration at each time step t = ηi

x̂rev
ηi → x̂rev

η(i−1) − ηvθ(x̂
rev
ηi , 1− η(i− 1))

Let us define an operator T
x̂rev
η(i−1)

θ,η : Rd → Rd such that

T
x̂rev
η(i−1)

θ,η (x) = x̂rev
η(i−1) − ηvθ(x, 1− η(i− 1))

First, we will show that T
x̂rev
η(i−1)

θ,η as defined above is a contractive operator under the
condition ηL < 1. Then, one can use Banach fixed point theorem to establish uniqueness of
the solution and obtain the solution through fixed point iteration. To this end, consider two

point x1 and x2 in Rd and apply T
x̂rev
η(i−1)

θ,η to them∥∥∥T x̂rev
η(i−1)

θ,η (x1)− T
x̂rev
η(i−1)

θ,η (x2)
∥∥∥
2
= η∥vθ(x1, 1− η(i− 1))− vθ(x2, 1− η(i− 1))∥2

≤ ηL∥x1 − x2∥2.

Since ηL < 1, we conclude that T
x̂rev
η(i−1)

θ,η is a contractive operator. Thus, by Banach fixed

point theorem, the fixed point equation T
x̂rev
η(i−1)

θ,η (x) = x has a unique solution for each step
t = ηi. To obtain the solution to the backward Euler update, we use the Banach fixed point
method, i.e., start with x(0) = x̂rev

η(i−1) (or any arbitrary point in Rd) and run the iteration

x(k+1) = T
x̂rev
η(i−1)

θ,η (x(k)). Then, limk→∞ x(k) = x̂rev
ηi .

2. The invertibility of the operator Tθ,η follows directly from the previous part. Since the
solution for the backward Euler method is unique at each time step t = ηi, it implies that
there exists a one-to-one mapping between sample points xrev

0 and xrev
1 .

D.7 PROOF OF LEMMA 5.2

Before starting the proof of this lemma, we will state the following well-known theorem from
information theory.

Theorem D.1. [Date Processing Inequality] Let X and Y be two sample spaces. Denote P(X ) and
P(Y) as the set of all possible probability distributions on X and Y , respectively. Let PX , QX ∈
P(X ) and PY |X be a transition kernel. Denote PY and QY to be the push through, i.e., PY (B) =∫
X PY |X(B|X = x)dPX(x). Then, for any f -divergence we have

Df (PX ||QX) ≥ Df (PY |QY ) (14)

1. By part 3 of Lemma 5.1, we have that xrev
1 = T−1

θ,η (x
rev
0 ) =⇒ Tθ,η(x

rev
1 ) = xrev

0 . Suppose
xrev
0 ∼ p∗, then by definition, xrev

1 ∼ prev1 . This concludes the result.
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2. Recall that TV-norm is an f -divergence. Furthermore, Tθ,η is the push forward function
from p0 and prev1 to p1 and p∗, respectively. Thus, using DPI D.1, we have

TV(prev1 , p0) ≥ TV(p∗, p1).

Additionally, Tθ,η is an invertible mapping. Hence, T−1
θ,η can also be viewed as the push

forward function from p1 and p∗ to p0 and prev1 , respectively. Thus, again using DPI D.1, we
get

TV(p∗, p1) ≥ TV(prev1 , p0).

Combining both the bounds, we get the desired claim.

3. KL divergence is also a valid f -divergence. Thus, repeating the arguments from the previous
part, one gets the desired equality.

D.8 THEORETICAL JUSTIFICATION FOR INVERSE NOISE CORRECTION

In this section, our goal is to provide a theoretical justification for inverse noise correction in the
context of flow models. Specifically, we will argue that if KL(pX ||N (0, I)) is small, then it is
less challenging to learn the score function corresponding to pt and thereby the velocity field vXt
governing the rectified flow. To this end, let X be a sample from a distribution pX and Z, Y be
standard normal random variables all independent of each other. Consider the following two linear
interpolations:

Xt = tX + (1− t)Z (15a)
Yt = tY + (1− t)Z. (15b)

Denote pt and qt as the distribution of Xt and Yt, respectively. Then, it is easy to verify that they
satisfy the following continuity equations:

ṗt +∇ · (vXt pt) = 0 (16a)

q̇t +∇ · (vYt qt) = 0 (16b)

where vXt (x) = E[X − Z|Xt = x] and vYt (x) = E[Y − Z|Yt = x]. Then, we have the following
theorem which establishes the relation between KL-divergence of p1 and q1 in terms of the velocities
vXt and vYt . The proof for the theorem is provided in Section D.9.

Theorem D.2. Let pt and qt be the distribution of Xt and Yt defined in equation 15. Then, the
KL-divergence between p1 and q1 satisfy the following relation

KL(p1||q1) = KL(pX ||N (0, I)) =

∫ 1

0

t

1− t

∫
Rd

pt(x)
∥∥vXt (x)− vYt (x)

∥∥2 dxdt. (17)

Now, consider the distribution of the inverse noise prev1 obtained by iterating equation 5 and substitute
it with pX in the theorem above. Suppose that the flow model is trained such that KL(pdata||p1) ≤ ϵ.
Then, by Lemma 5.2 it follows that KL(prev1 ||p0) ≤ ϵ. Combining this observation with equation 17,
it is easy to see that the velocities vXt (x) and vYt (x) should be close to each other. Additionally, since
qt simply corresponds to learning a flow model from standard Gaussian to itself, we can explicitly
compute vYt as follows:

vYt (x) =
x

t
+

1− t

t

−x
(1− t)2 + t2

=
x(2t− 1)

(1− t)2 + t2
.

Thus, vYt (x) is a linear function of x and a rational function of t. Because KL(prev1 ||p0) ≤ ϵ, Theorem
D.2 suggests that learning vXt from data should be relatively easier as it is close to vYt .
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D.9 PROOF OF THEOREM D.2

Then, the time derivative of the KL-divergence between pt and qt is given by

dKL(pt||qt)
dt

=

∫
Rd

d

dt

(
pt(x) log

(
pt(x)

qt(x)

))
dx

=

∫
Rd

(
ṗt(x) log

(
pt(x)

qt(x)

)
+ pt(x)

d

dt
log(pt(x))− pt(x)

d

dt
log(qt(x))

)
dx

=

∫
Rd

(
ṗt(x) log

(
pt(x)

qt(x)

)
+ ṗt(x)− pt(x)

q̇t(x)

qt(x)

)
dx

We will consider each term separately as T1, T2 and T3. For T1 using the continuity equation, we
have

T1 =

∫
Rd

ṗt(x) log

(
pt(x)

qt(x)

)
dx

= −
∫
Rd

∇ · (vXt (x)pt(x)) log

(
pt(x)

qt(x)

)
dx

=

∫
Rd

pt(x)

〈
vXt (x),∇ log

(
pt(x)

qt(x)

)〉
dx (Integration by parts)

Note that
∫
Rd pt(x)dx = 1 for all t ∈ [0, 1]. Thus for T2, we obtain

T2 =

∫
Rd

ṗt(x)dx =
d

dt

∫
Rd

pt(x)dx =
d

dt
1 = 0.

For the final term T3, we again use the continuity equation to get

T3 = −
∫
Rd

pt(x)
q̇t(x)

qt(x)
dx

=

∫
Rd

pt(x)
∇ · (vYt qt)

qt(x)
dx

= −
∫
Rd

qt(x)

〈
∇
(
pt(x)

qt(x)

)
, vYt (x)

〉
dx (Integration by parts)

= −
∫
Rd

pt(x)

〈
∇ log

(
pt(x)

qt(x)

)
, vYt (x)

〉
dx.

Combining all the terms above, we get

dKL(pt||qt)
dt

=

∫
Rd

pt(x)

〈
∇ log

(
pt(x)

qt(x)

)
, vXt (x)− vYt (x)

〉
dx. (18)

To obtain an expression for score function in terms of the velocity vector, we use Tweedie’s formula
Efron (2011) which leads us to

E[X − Z|Xt = x] =
1

1− t
E[X −Xt|Xt = x]

=
1

1− t
E[X|Xt = x]− x

1− t

=
1

t(1− t)

(
x+ (1− t)2∇ log pt(x)

)
− x

1− t
(Tweedie’s Formula)

=
x

t
+

1− t

t
∇ log pt(x). (19)

Similarly, we obtain

vYt (x) = E[Y − Z|Yt = x] =
x

t
+

1− t

t
∇ log qt(x). (20)
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Plugging in the expressions for the score functions into equation 18, we obtain

dKL(pt||qt)
dt

=

∫
Rd

pt(x)

〈
t

1− t

(
vXt (x)− vYt (x)

)
, vXt (x)− vYt (x)

〉
dx

=
t

1− t

∫
Rd

pt(x)
∥∥vXt (x)− vYt (x)

∥∥2 dx
=⇒ KL(p1||q1)− KL(p0||q0) =

∫ 1

0

t

1− t

∫
Rd

pt(x)
∥∥vXt (x)− vYt (x)

∥∥2 dxdt.
Recall that p0 = q0 = q1 = N (0, I) and p1 = pX . Thus, we get the desired claim

KL(pX ||N (0, I)) =

∫ 1

0

t

1− t

∫
Rd

pt(x)
∥∥vXt (x)− vYt (x)

∥∥2 dxdt.
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E TEXT-TO-IMAGE GENERATION

E.1 ABLATIONS

E.1.1 DIFFERENT CHOICES OF K AND M

We report results for various choices of K and M for Top− K of M sampling for GenAI-Bench
in Tables 6, 7 and 8. Note that these models are also trained on GenAI-Bench. We also report the
(mean)score separately for the “Basic" and “Advanced" split in the prompt set. Results for Top− 10
of 100 sampling for T2I-CompBench++ is given in Table 9. Models for Table 9 were trained on
the train split of T2I-CompBench++. All results are consistent with the developed theory: both
GRAFT and P-GRAFT outperform base SDv2 and P-GRAFT, for an appropriate choice of NI always
outperform GRAFT.

Table 6: VQAScore on GenAI-Bench for K = 1 and M = 4

Model Basic Advanced Mean

SD v2 74.83 59.19 66.32
GRAFT 77.33 62.76 69.41

P-GRAFT (0.8N ) 76.30 62.18 68.62
P-GRAFT (0.5N ) 78.57 63.38 70.32

Table 7: VQAScore on GenAI-Bench for K = 1 and M = 100

Model Basic Advanced Mean

SD v2 74.83 59.19 66.32
GRAFT 79.61 64.26 71.2

P-GRAFT (0.75N ) 76.02 62.91 68.89
P-GRAFT (0.5N ) 78.68 64.5 70.97

P-GRAFT (0.25N ) 80.05 64.85 71.79

Table 8: VQAScore on GenAI-Bench for K = 25 and M = 100

Model Basic Advanced Mean

SD v2 74.83 59.19 66.32
GRAFT 78.01 63.31 70.02

P-GRAFT (0.75N ) 77.36 63.33 69.73
P-GRAFT (0.5N ) 78.18 64.28 70.62

P-GRAFT (0.25N ) 78.77 65.29 71.44

Table 9: VQAScore on T2I-CompBench++ (Val) for K = 10 and M = 100

Model Mean

SD v2 69.76
GRAFT 74.66

P-GRAFT (0.25N ) 75.16

E.1.2 CONDITIONAL VARIANCE OF REWARD FOR TEXT-TO-IMAGE GENERATION

While experimental results in Table 2 already demonstrate the bias-variance tradeoff, we provide
further evidence of Lemma 4.3 in the context of text-to-image generation. We evaluate conditional
variance of VQAReward scores of the base SDv2 model in GenAI-Bench. We follow the methodology
as described in Section 4.1 except that we generate 4 images per prompt for a total of 1600 prompts.
The results are given in Table 10. It can be seen that even at NI = 0.75N , the expected conditional
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variance of the reward is significantly smaller than at tN . This explains why even NI = 0.75N gives
a significant gain over the base model as seen in Table 2.

Table 10: Expected conditional variance for T2I generation

NI E [Var(r(X0)|Xtn)]

N 0.0193
3N/4 0.0080
N/2 0.0039
N/4 0.0019

E.1.3 EFFECT OF LORA RANK

We increase the LoRA rank used for fine-tuning and check the impact on the performance. Table 11
shows that increasing LoRA rank does not seem to affect performance, indicating that the default
LoRA rank is sufficient. Ablations are done on GenAI-Bench with M = 100,K = 1.

Table 11: Effect of LoRa Rank

Model Rank Mean Reward

P-GRAFT (0.5N )

4 70.97
6 70.87
8 70.57
10 70.84

P-GRAFT (0.25N )

4 71.79
6 71.84
8 71.49
10 71.63

E.1.4 REVERSE STITCHING

In P-GRAFT, we always use the fine-tuned model for the first (N −NI) steps and then switch to
the reference model. We experiment with a reverse stitching strategy, where we use the reference
model for the earlier denoising steps and fine-tuned model for the later denoising steps. For switching
timestep NI , we denote this strategy as RP-GRAFT (N+I) - i.e. RP-GRAFT (0.75N ) indicates that
the base model will be used from tN to t0.75N , after which the fine-tuned model will be used. From
Table 12, we observe that this strategy is significantly worse when compared to P-GRAFT - this
provides further evidence of the bias-variance tradeoff. Ablations are done with M = 100,K = 1.

Table 12: Ablations on reverse stitching

Model Basic Advanced Mean

SDv2 74.83 59.19 66.32
GRAFT 79.61 64.26 71.20

RP-GRAFT (0.75N ) 79.23 62.63 70.20
RP-GRAFT (0.5N ) 76.60 60.87 68.05
RP-GRAFT (0.25N ) 75.74 59.76 67.05

E.2 IMPLEMENTATION DETAILS

Since we require samples only from the pre-trained model, sampling and training can be done
separately. Therefore, we first perform rejection sampling according to Top− K of M for the chosen
values of K and M . The selected samples are then used as the dataset for training. If not mentioned
explicitly, hyperparameters can be assumed to be the default values for SD 2.0 in the Diffusers library
(von Platen et al., 2022).
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Training on GenAI-Bench:

The hyperparameters for sampling and training are given in Table 13 and Table 14 respectively. Note
that one training epoch is defined as one complete pass over the training dataset. The size of the
training dataset depends on the chosen K and M . For instance, K = 10 and M = 100 results in 10
images per-prompt, for a total of 16000 images. One training epoch corresponds to a single pass over
these 16000 images, which with a batch size of 8 corresponds to 2000 iterations per epoch.

Table 13: Sampling hyperparameters for GenAI-Bench

Sampling Steps 50
Scheduler EulerDiscreteScheduler

Guidance Scale 7.5

Table 14: Training hyperparameters for GenAI-Bench

Training Epochs 10
Image Resolution 768× 768

Batch Size 8
Learning Rate 10−4

LR Schedule Constant
LoRA Fine-Tuning True

Training on T2I-CompBench++:

The hyperparameters for sampling and training are given in Table 15 and Table 16 respectively. We
use different sampling schedulers for the two datasets to ensure that our results hold irrespective of
the choice of the scheduler.

Table 15: Sampling hyperparameters for T2I-CompBench++

Sampling Steps 50
Scheduler DDIMScheduler

η (DDIMScheduler specific hyperparameter ) 1.0
Guidance Scale 7.5

P-GRAFT Training:

Training and sampling using GRAFT is straightforward since standard training and inference scripts
can be used out-of-the box: the only additional step need is rejection sampling on the generated
samples before training. For P-GRAFT, the following changes are to be made:

• While sampling the training data, the intermediate latents should also be saved along with
the final denoised iamge/latent. Rejection sampling is to be done on these intermediate
latents, but using the rewards corresponding to the final denoised images.

• While training, note that training has to be done by noising the saved intermediate latents.
This needs a re-calibration of the noise schedule, since by default, training assumes that we
start from completely denoised samples. The easiest way to re-calibrate the noise schedule
is by getting a new set of values for the betas parameter, new_betas as follows (where
NI denotes the intermediate step of P-GRAFT):

new_betas[0, NI ]← 0

new_betas[NI , N ]← betas[NI , N ]

After re-calibrating the noise, we use new_betas to get the corresponding new_alphas
and new_alphas_cumprod. It is also necessary to note that while training, the denoiser
has been trained to predict X0 given any noised state Xt and not the saved intermediate
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Table 16: Training hyperparameters for T2I-CompBench++

Training Epochs 10
Image Resolution 768× 768

Batch Size 8
Learning Rate 10−4

LR Schedule Constant
LoRA Fine-Tuning True

latent XtNI
. Let the corresponding saved completely denoised latent be X0 To ensure that

the training is consistent, we train using the following strategy:

Sample ϵ ∼ N (0, I)

Get Xt ←
(√

new_alphas_cumprod[t]
)
XtNi

+
(√

1− new_alphas_cumprod[t]
)
ϵ

Get ϵ′ ←
Xt −

√
alphas_cumprod[t]X0√

1− alphas_cumprod[t]

Compute Loss using Xt and ϵ′

E.3 POLICY GRADIENT ALGORITHMS

DDPO(Black et al., 2023) is an on-policy policy gradient method for diffusion models that optimizes
a clipped importance-weighted objective over the denoising trajectory. The original paper reports
results on experiments using at most 400 prompts. Both prompt sets we consider are significantly
larger (1600 prompts for GenAI-Bench and 5600 (train) prompts for T2I-CompBench++). This
difference is crucial, since it has been shown in Deng et al. (2024) that scaling DDPO to large
prompt sets result in unstable training and subpar performance. We also observe this phenomenon,
as evidenced by the results in Table 2. As menioned in the main text, we also augment DDPO with
additional elements in an attempt to improve performance. In particular, we study the following
variants:

1. DDPO: Clipped importance-weighted policy gradient.

2. DDPO+KL DDPO augmented with a stepwise KL regularizer to the (frozen) reference
model.

3. DDPO+KL+EMA DDPO with KL regularization as well as a prompt-wise exponential-
moving-average baseline for advantage estimation.

Baseline Implementation: We use the official PyTorch implementation of DDPO1 - we further
adapt the codebase to implement other variants. Fine-tuning is always done on SDv2 using LoRA
on the UNet only with a LoRA rank of 16. For the results reported in Table 2, we retain the
hyperparameters used in Black et al. (2023). In particular, we use a PPO clip range of 10−4, gradient
clipping norm of 1.0, Adam optimizer with β1 = 0.9, β2 = 0.999 and weight decay of 10−4.
Following the original paper, we train with a relatively high learning rate of 3× 10−4 since LoRA
fine-tuning is used. We sample 32 prompts per epoch and train with a batch size of 8, leading to 4
training iterations per epoch. However, note that each training iteration requires gradients across
the whole denoising trajectory - this means that within each training iteration, 50 gradient calls are
needed, corresponding to 50 sampling steps. For GenAI-Bench, training is done for 500 such epochs,
whereas for T2I-Compbench++, training is done for 800 epochs. With this setup, in Tables 17 and 18,
we compare the sampling/compute requirements for DDPO and GRAFT/P-GRAFT. In particular,
note that GRAFT/P-GRAFT already outperforms DDPO with K = 1,M = 4 despite DDPO being
trained on 10× more samples and 50× more gradient calls.

Additional configurations with base hyperparameters: With the base hyperparameters described
above, we also try augmenting DDPO with KL and EMA as described above. The training curves are
given in Figure 3.

1https://github.com/kvablack/ddpo-pytorch
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(a) DDPO+KL (b) DDPO+KL+EMA

Figure 3: Training curves for the three policy-gradient baselines on GenAI Bench (1,600 prompts)
with low value of clipping.

(a) DDPO (b) DDPO+KL (c) DDPO+KL+EMA

Figure 4: Training curves for the three policy-gradient baselines on GenAI Bench (1,600 prompts)
with high value of clipping.

DDPO: We also try additional settings for hyperparameters apart from the oens we have reported
so far. Sampling uses DDIM with T ∈ [40, 50] steps and classifier-free guidance g = 5. Optimiza-
tion uses AdamW with learning rates {2×10−5, 10−5}, batch sizes 8/8 (sampling/training),PPO-
style clipping ϵ ∈ {0.1, 0.2}. Following DDPO, we replay the scheduler to compute per-step
log-probabilities on the same trajectories: ℓt = log pθ(xt−1 | xt, c) and ℓoldt = log pθ0(xt−1 | xt, c).
We use the clipped objective:

LDDPO = −E
[
min

(
rtA, clip(rt, 1−ϵ, 1+ϵ)A

)]
, rt = exp

(
ℓt − ℓoldt

)
, (21)

with a centered batchwise advantage A. Specifically, we experiment with higher clipping range,
ϵ∈{0.1, 0.2} and use a whitened batchwise advantage. ℓt, ℓoldt are obtained by replaying the DDIM
scheduler on the same trajectory.

Result. On 1600 prompts, the learning curve exhibits a short initial rise followed by a sharp collapse
after ∼150 steps (Fig. 4). The setting of 1600 heterogenous prompts induces high variance and
many ratios rt saturate at the clipping boundary, producing low-magnitude effective gradients and
the observed drop in reward.

DDPO+KL: We augment equation 21 with a per-step quadratic penalty to the frozen reference:

LDDPO+KL = LDDPO + β
1

T

T∑
t=1

(
ℓt − ℓoldt

)2
, β ∈ {0.02, 0.005}. (22)

Result. The KL term prevents divergence of the policy and eliminates the reward collapse after the
first few steps. Even with this, average reward improvements remain limited. Larger β contracts the
policy towards the reference, whereas smaller β provides insufficient variance control, yielding small
net gains.

DDPO+KL+EMA (prompt-wise baseline): To mitigate cross-prompt bias, we maintain for each
prompt z, an EMA of reward and variance,

b(z)← (1−α)b(z) + α r, v(z)← (1−α)v(z) + α
(
r − b(z)

)2
,

and employ a whitened advantage inside equation 21: Â = r−b(z)√
v(z)+ε

+ η, η ∼ N (0, σ2).

Result. Training is the most stable among the three variants and exhibits smooth reward trajectories
without collapse, yet the absolute improvement in mean reward is modest relative to the base policy.
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PRDP: We also tried implementing PRDP (Deng et al., 2024) using the PRDP loss function provided
in the appendix of the paper since no official code was provided. However, we did not see any signifi-
cant improvement compared to the baseline despite following the algorithm and hyperparameters
closely. One potential reason for this could be that we use LoRA fine-tuning whereas the original
paper uses full fine-tuning. Further, we rely on gradient checkpointing for the implementation as well
since the backpropogation is through the entire sampling trajectory.

Table 17: Comparison of Sampling Cost and Training Cost for GenAI-Bench

Algorithm Samples generated Samples Trained on Gradient Calls

GRAFT(K = 10,M = 100) 160k 16k 20k
GRAFT (K = 1,M = 4) 6.4k 1.6k 2k

DDPO 16k 16k 100k

Table 18: Comparison of Sampling Cost and Training Cost for T2I-CompBench++

Algorithm Samples generated Samples Trained on Gradient Calls

GRAFT (K = 1,M = 4) 22.4k 5.6k 7k
DDPO 25.6k 25.6k 160k

E.4 COMPUTE FLOPS ANALYSIS OF P-GRAFT

We compare the compute cost of P-GRAFT and DDPO in terms of total UNet FLOPs. Let Fu denote
the cost of one UNet forward pass at 64×64 latent resolution. Following Kaplan et al. (2020), we
approximate a backward training step 2 times of a forward step. So if Fu is the forward step compute,
a forward + backward step will incur 3Fu. We assume a batch size of 1 for both algorithms for
standardization.

For P prompts, M samples per prompt, top-K retained, T diffusion steps, Esft epochs. For the
implementation we use the standard stable diffusion training script that only samples a single timestep
t ∈ [0, T ] during training:

FP-GRAFT = P M T︸ ︷︷ ︸
sampling

Fu + Esft P K︸ ︷︷ ︸
training

3Fu,

FDDPO = Eddpo Ngen T︸ ︷︷ ︸
trajectories

·(1 + 3)Fu

GenAI-Bench configuration. We use P=1600, M=100, K=10, T=40, Esft=10 for P-GRAFT;
Trajectories generated per epoch Ngen=128, and Number of Epochs Eddpo=50 for DDPO

Table 19: FLOPs in units of forward pass Fu for GenAI-Bench.

Algorithm Sampling Training Total

P-GRAFT (K=10, M=100) 6.40M 0.48M 6.88M
P-GRAFT (K=1, M=4) 0.256M 0.048M 0.304M
DDPO (E=50, Ngen=128) 0.256M 0.768M 1.024M

Discussion. P-GRAFT’s total compute is dominated by sample generation, while backpropagation
is confined to fine-tuning on the selected top-K samples. In contrast, DDPO backpropagates through
all T denoising steps online for every sample, creating a sequential bottleneck. Consequently,
despite DDPO’s nominal FLOPs appearing comparable or lower in our regime, its wall-clock time
is substantially longer due to stepwise backward passes that are less parallelizable. Moreover, as
shown in Table 2, P-GRAFT achieves higher rewards under the reported budgets; and in the compute-
matched case (K=1; Table 6), P-GRAFT still outperforms DDPO, indicating that gains come from
improved optimization and not just additional training compute.
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E.5 QUALITATIVE EXAMPLES

E.5.1 GENAI-BENCH

Prompt: Three flowers in the meadow, with only the red rose blooming; the others are not open.

SDv2 DDPO GRAFT P-GRAFT

Prompt: In the yoga room, all the mats are red.

SDv2 DDPO GRAFT P-GRAFT

Prompt: Three policemen working together to direct traffic at a busy intersection.

SDv2 DDPO GRAFT P-GRAFT

Prompt: There is an apple and two bananas on the table, neither of which is bigger than the apple.

SDv2 DDPO GRAFT P-GRAFT

Figure 5: Qualitative examples on GENAI-BENCH. All results are reported for the same seed across
different algorithms.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

E.5.2 T2I-COMPBENCH++

Prompt: a cubic dice and a cylindrical pencil holder

SDv2 DDPO GRAFT P-GRAFT

Prompt: a bee on the bottom of a airplane

SDv2 DDPO GRAFT P-GRAFT

Prompt: a green bench and a blue bowl

SDv2 DDPO GRAFT P-GRAFT

Prompt: a green acorn and a brown leaf

SDv2 DDPO GRAFT P-GRAFT

Figure 6: Qualitative examples on T2I-COMPBENCH. All results are reported for the same seed
across different algorithms.
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F LAYOUT AND MOLECULE GENERATION

F.1 INTERLEAVED GIBBS DIFFUSION (IGD)

Fine-tuning for both layout generation and molecule generation are done using models pre-trained
using the Interleaved Gibbs Diffusion (IGD) (Anil et al., 2025) framework. IGD performs well
for discrete-continuous generation tasks with strong constraints between variables - and hence is
particularly useful for tasks like layout generation and molecule generation. Further, IGD offers a
generalizable framework which can be used for both tasks - while other discrete-continuous diffusion
frameworks exist, they are specialized to a particular task, often using domain specific adaptations.

On a high-level, IGD interleaves diffusion for discrete and continuous elements using Gibbs-style
noising and denoising. Essentially, discrete elements are noised using flipping and trained using a
binary classification loss. Continuous elements use typical DDPM-style noising and training. While
the exact forward and reverse processes are different from DDPM-style processes which we have
considered in the main text, the key results follow empirically and theoretically.

F.2 LAYOUT GENERATION

Problem Formulation: A layout is defined as a set of N elements {ei}Ni=1. Each element ei is
represented by a discrete category ti ∈ N and a continuous bounding box vector pi ∈ R4. Following
(Anil et al., 2025), we use the parameterization pi = [xi, yi, li, wi]

⊤, where (xi, yi) represents the
upper-left corner of the bounding box, and (li, wi) its length and width, respectively. Unconditional
generation represents generation with no explicit conditioning for the elements, whereas Class-
Conditional generation indicates generations conditioned on element categories.

Implementation Details: For pre-training, we follow the exact strategy used in (Anil et al., 2025).
Fine-tuning is also done with the same hyperparameters used for pre-training. Since the data and
model sizes are significantly smaller compared to images, each round of rejection sampling is done on
32768 samples, of which the top 50% samples are selected. For each sampling round, 10000 training
iterations are performed with a training batch size of 4096. The results reported in Table 3 are for 20
such sampling rounds. FID computation is done by comparing against the test split of PubLayNet.

F.3 MOLECULE GENERATION

Problem Formulation: The task of molecule generation involves synthesizing molecules given a
dataset of molecules. A molecule consists of n atoms denoted by {zi,pi}ni=1, where zi ∈ N is the
atom’s atomic number and pi ∈ R3 is the position. A diffusion model is trained to generate such
molecules. In this work, we take such a pre-trained model, and try to increase the fraction of stable
molecules, as deemed by RDKit.

Implementation Details: For pre-training, we follow the exact strategy used in (Anil et al., 2025).
Fine-tuning is also done with the same hyperparameters used for pre-training. Since the data and
model sizes are significantly smaller compared to images, each round of rejection sampling is done
on 32768 samples. We select all stable molecules, but with the de-duplication strategy described
in Section 3 - we find that this is crucial to maintain diversity of generated molecules. For each
sampling round, 10000 training iterations are performed with a training batch size of 4096. The 1×
in Table 4 corresponds to 10 such sampling rounds - 9× therefore corresponds to 90 sampling rounds.

Uniqueness of Generated Molecules: To demonstrate that the fine-tuned models still generate
diverse molecules, and do not collapse to generating a few stable molecules, we report the uniqueness
metric computed across the generated molecules below. From Table 20, it is clear that the fine-tuned
models still generate diverse samples since the uniqueness of the generated molecules remain close
to the pre-trained model. Uniqueness is as determined by RDKit.

Effect of de-duplication We also try out an ablation where we use GRAFT, but without the de-
duplication - i.e., we train on all stable molecules irrespective of whether they are unique or not. The
results are shown in Figure 7 - without de-duplication, it can be seen that though stability is recovered,
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Table 20: Uniqueness of generated molecules

Model Mol: Stability Uniqueness

Baseline 90.50±0.15 95.60±0.10

GRAFT 90.76±0.20 96.04±0.46

P-GRAFT(0.5N ) 90.46±0.27 95.70±0.28

P-GRAFT(0.25N ) 92.61±0.13 95.32±0.07

(a) Molecule Stability (b) Molecule Uniqueness

Figure 7: Molecule Stability and Uniqueness without De-duplication

uniqueness is lost, indicating that the model produces only a small subset of molecules it was initially
able to produce.

Fine-Tuning without Predictor-Corrector: IGD makes use of a version of predictor-corrector
method (Lezama et al., 2022; Zhao et al., 2024; Campbell et al., 2022; Gat et al., 2024) termed
ReDeNoise at inference-time to further improve generations. The results reported so far make use of
this predictor-corrector. While ReDeNoise improves performance significantly, it comes at the cost
of higher inference-time compute. We report results of the baseline and fine-tuned version without
ReDeNoise in Table 21. Both GRAFT and P-GRAFT still show improvement over the baseline, even
without ReDeNoise.

Table 21: Results for Molecule Generation without ReDeNoise

Model Mol: Stability Sampling Steps

Baseline 84.00 -
GRAFT 87.13 9×

P-GRAFT (0.5N ) 84.57 1×
P-GRAFT (0.25N ) 88.36 1×
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G INVERSE NOISE CORRECTION

G.1 IMPLEMENTATION DETAILS

The pre-trained models, corresponding to TRAIN_FLOW function in Algorithm 3, are trained using
the NSCNpp architecture and hyperparameters from the official codebase of Song et al. (2020b) with
minor changes which we describe below. The noise corrector model is also trained with the same
architecture except that the number of channels are reduced from the original 128 to 64 channels
- this leads to a reduction in parameter count by ≈ 4×. For the pre-trained model, we train with
num_scales = 2000, positional embeddings and a batch size of 128. For the noise corrector model,
we use the same hyperparameters except for num_scales = 1000. FID with 50000 samples is
used to measure the performance, as is standard in the literature. Note that a separate noise corrector
model is trained for each choice of η in Algorithm 3, i.e., for the results reported in Table 5, separate
noise corrector models are trained for pre-trained steps of 100 and 200.

CelebA-HQ: For the baseline pre-trained flow model, we use the checkpoint after 330k iterations,
since this gave the lowest FID. For noise corrector model training, we use this checkpoint to generate
the inverted noise dataset and train on it for 150k iterations.

LSUN-Church: For the baseline pre-trained flow model, we use the checkpoint after 350k iterations,
since this gave the lowest FID. For noise corrector model training, we use this checkpoint to generate
the inverted noise dataset and train on it for 55k iterations. Note that Backward Euler (Algorithm 6)
suffered from numerical instability, which we hypothesize is due to plain backgrounds, when done on
LSUN-Church. To alleviate this issue, we perturb the images with a small Gaussian noise N (0, σ2I),
with σ = 10−3.

G.2 FLOPS COMPARISON

We present a comparison of the exact FLOPs used for inference:
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(a) Celeb HQ
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(b) LSUN Church

Figure 8: FLOPs vs FID: The inverse corrected model achieves better FID despite incurring lower
FLOPs. Corresponding LDM models have been added for both datasets for reference.

38


	Introduction
	Preliminaries
	GRAFT: Generalized Rejection sAmpling Fine Tuning
	Partial-GRAFT for Diffusion Models
	A Bias-Variance Tradeoff Justification for P-GRAFT

	Inverse Noise Correction for Flow Models
	Experiments
	Text-to-Image Generation
	Layout and Molecule Generation
	Image Generation with Inverse Noise Correction

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Related Work
	ODE Solver Algorithms
	GRAFT: Algorithm
	Proofs
	Lemma 3.2
	Instantiations of GRAFT
	Top-K out of M sampling
	Preference Rewards

	Lemma 4.2
	Distribution induced by the stitched model
	Justification for KL regularization at Intermediate Timestep

	Proof of Lemma 4.3
	Proof of Theorem 4.4
	Proof of Lemma 5.1
	Proof of Lemma 5.2
	Theoretical Justification for Inverse Noise Correction
	Proof of Theorem D.2

	Text-to-Image Generation
	Ablations
	Different choices of K and M
	Conditional Variance of Reward for Text-to-Image Generation
	Effect of LoRA Rank
	Reverse Stitching

	Implementation Details
	Policy Gradient Algorithms
	Compute FLOPs Analysis of P-GRAFT
	Qualitative Examples
	GenAI-Bench
	T2I-CompBench++


	Layout and Molecule Generation
	Interleaved Gibbs Diffusion (IGD)
	Layout Generation
	Molecule Generation

	Inverse Noise Correction
	Implementation Details
	FLOPs Comparison


