
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FINE-TUNING DIFFUSION MODELS VIA INTERMEDIATE
DISTRIBUTION SHAPING

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models are widely used for generative tasks across domains. While
pre-trained diffusion models effectively capture the training data distribution, it is
often desirable to shape these distributions using reward functions to align with
downstream applications. Policy gradient methods, such as Proximal Policy Op-
timization (PPO), are widely used in the context of autoregressive generation.
However, the marginal likelihoods required for such methods are intractable for
diffusion models, leading to alternative proposals and relaxations. In this context,
we unify variants of Rejection sAmpling based Fine-Tuning (RAFT) as GRAFT,
and show that this implicitly performs PPO with reshaped rewards. We then intro-
duce P-GRAFT to shape distributions at intermediate noise levels and demonstrate
empirically that this can lead to more effective fine-tuning. We mathematically
explain this via a bias-variance tradeoff. Motivated by this, we propose inverse
noise correction to improve flow models without leveraging explicit rewards. We
empirically evaluate our methods on text-to-image(T2I) generation, layout gen-
eration, molecule generation and unconditional image generation. Notably, our
framework, applied to Stable Diffusion 2, improves over policy gradient methods
on popular T2I benchmarks in terms of VQAScore and shows an 8.81% relative
improvement over the base model. For unconditional image generation, inverse
noise correction improves FID of generated images at lower FLOPs/image.

1 INTRODUCTION

Pre-trained generative models often require task-specific adaptations based on reward feedback - a
standard strategy is to leverage RL algorithms, such as Proximal Policy Optimization (PPO) (Schul-
man et al., 2017). While such methods have found great success in the context of language modeling
(Bai et al., 2022; Ouyang et al., 2022), their adoption to diffusion models is not straightforward. In
particular, unlike autoregressive models, marginal likelihoods required for the implementation of KL
regularization in PPO are intractable for diffusion models. Hence, in practice, KL regularization
is ignored (Black et al., 2023) or relaxations such as trajectory KL regularization (Fan et al., 2023)
is considered. However, ignoring the KL term results in unstable training in large-scale settings
(Deng et al., 2024), whereas using the trajectory KL constraint gives subpar results (Black et al.,
2023). Further, fine-tuning with trajectory KL also results in the initial value function bias problem
(Domingo-Enrich et al., 2024; Uehara et al., 2024).

Apart from policy gradient methods, recent research has also focused on fine-tuning methods based
on rejection sampling such as RSO (Liu et al., 2023b), RAFT (Dong et al., 2023) and Reinforce-Rej
(Xiong et al., 2025). Further, fine-tuning based on Best-of-N (BoN) sampling and its relation to
policy gradient methods have also been explored, but in the context of autoregressive models (Amini
et al., 2024; Gui et al., 2024). Given the intractability of (marginal)PPO, we explore conceptual
connections between rejection sampling based fine-tuning methods and PPO, specifically in the
context of diffusion models. In particular, we make the following contributions:

(a) We conceptualize a Generalized Rejection Sampling (GRS) framework which subsumes various
rejection sampling strategies including classical rejection sampling from MCMC literature and Best-
of-N. We show that GRS samples from the solution to PPO but with a reshaped reward - fine-tuning
using GRS, which we term Generalized Rejection sAmpling Fine-Tuning (GRAFT) enables PPO
with marginal KL constraint for diffusion models, despite the marginal likelihoods being intractable.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(b) Leveraging properties of diffusion models, we propose Partial-GRAFT (P-GRAFT) a framework
which fine-tunes only till an intermediate denoising step by assigning the rewards of final generations
to partial, noisy generations. We show that this leads to better fine-tuning empirically and provide
a mathematical justification via a bias-variance tradeoff. Empirically, we demonstrate significant
quality gains across the tasks of text-to-image generation, layout generation and molecule generation.

(c) Motivated by P-GRAFT, we introduce Inverse Noise Correction - an adapter-based, parameter-
efficient method to improve flow models even without explicit rewards. We empirically demonstrate
improved quality as well as FLOPs for unconditional image generation.

(d) In particular, SDv2 fine-tuned using P-GRAFT demonstrates significant improvements in VQAS-
core over policy-gradient methods as well as SDXL-Base across datasets. The proposed Inverse
Noise Correction strategy provides significant FID improvement at reduced FLOPs/image.

A more comprehensive list of related work can be found in Appendix A.

2 PRELIMINARIES

PPO for Generative Modeling: Following (Stiennon et al., 2020), we introduce PPO in our setting:
Consider a state space X , a reward function r : X → R and a reference probability measure p̄ over
X . Let P(X) be the set of probability measures over X and α ∈ (0,∞). Define Rreg : P(X)→ R
by Rreg(p) = EX∼p[r(X)]− αKL(p||p̄), where KL(·∥·) is the KL divergence. PPO aims to obtain

pppo = arg supp∈P(X)R
reg(p) . (1)

Using the method of Lagrangian Multipliers, we can show that pppo(x) ∝ exp(r(x)/α)p̄(x). In
generative modeling literature, p̄ is often the law of generated samples from a pre-trained model -
fine-tuning is done on the model so as to sample from the tilted distribution pppo.

PPO via Rejection Sampling: Classical rejection sampling from the Monte Carlo literature (Tho-
mopoulos, 2012) can be used to sample from pppo. We note this folklore result in our setting:
Lemma 2.1. Let r(x) ≤ rmax for some rmax. Given a sample Y ∼ p̄, we accept it with probability

P(Accept|Y) = exp
(

r(Y)−rmax

α

)
. Then, conditioned on Accept, Y is a sample from pppo.

Lemma 2.1 provides a way to obtain exact samples from pppo. A well known challenge with this
method is sample inefficiency - as often in practice, α is small leading to small acceptance probability.
Thus, in practice, methods such as Best-of-N (BoN) which always accept a fixed fraction of samples
are used. We now introduce Generalized Rejection sAmpling Fine Tuning (GRAFT), a framework to
unify such rejection sampling approaches. More specifically, Lemma 3.2 shows that this still leads to
PPO, but with reshaped rewards. We then discuss its utility in the context of diffusion models.

3 GRAFT: GENERALIZED REJECTION SAMPLING FINE TUNING

Assume (X(i))i∈[M] are M i.i.d. samples with law p̄ over a space X . Given reward function r : X →
R, let the reward corresponding to X(i) be Ri := r(X(i)), the empirical distribution of (X(i))i∈[M]

be P̂X(·) and the empirical CDF of (Ri)i∈[M] be F̂R(·). We introduce Generalized Rejection
Sampling (GRS) to accept a subset of high reward samples, A := (Y (j))j∈[Ms] ⊆ (X(i))i∈[M],
where Y (j) denotes the jth accepted sample.
Definition 3.1. Generalized Rejection Sampling (GRS): Let the acceptance function A : R ×
[0, 1]×X × [0, 1]→ [0, 1] be such that A is co-ordinate wise increasing in the first two co-ordinates.
The acceptance probability of sample i is pi := A(Ri, F̂R(Ri), X

(i), P̂X). Draw Ci ∼ Ber(pi) ∀ i ∈
{1, . . . ,M}, not necessarily independent of each other. Then, X(i) ∈ A iff Ci = 1.

Definition 3.1 subsumes popular rejection sampling approaches such as RAFT and BoN. We now
show that GRS implicitly samples from the solution to PPO with the reshaped reward r̂(·):
Lemma 3.2. The law of accepted samples under GRS (Def 3.1) given by p(X(1) = x|X(1) ∈ A) is
the solution to the following Proximal Policy Optimization problem:

argmax
p̂

[Ex∼p̂r̂(x)− αKL (p̂∥p̄)] ; r̂(x)
α

:= log
(
E
[
A(r(x), F̂R(r(x)), x, P̂X)|X(1) = x

])

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Here, the expectation is with respect to the randomness in the empirical distributions F̂R and P̂X .

r̂(·) is monotonically increasing with respect to the actual reward since A is an increasing function of
the reward and its empirical CDF. We now instantiate GRS with commonly used variants of A:

Top− K Sampling: Let the reward distribution be continuous with CDF F (·). We accept the top K
samples out of the M samples based on their reward values.

Corresponding Acceptance Function: A(r, F̂R, x, P̂X) =

{
0 if F̂R(r) ≤ 1− K

M

1 if F̂R(r) > 1− K
M

Lemma 3.2 shows that this acceptance function performs PPO with the reshaped reward r̂ satisfying:
r̂(x)
α = log

[∑K−1
k=0

(
M−1

k

)
F (r(x))M−k−1(1− F (r(x)))k

]
.

Preference Rewards: Setting M = 2 and K = 1 in the above formulation gives preference rewards,
i.e., X(1) is accepted and X(2) is rejected if r(X(1)) > r(X(2)) (and vice versa). This strategy
performs PPO with the reshaped reward r̂(x)

α = logF (r(x)). Since F is an increasing function, the
PPO equivalent monotonically reshapes the reward r(x) to logF (r(x)).

Varying K from 1 to M , varies the strength of the tilt in Top− K sampling. In particular, K = M

corresponds to r̂(x)
α = 0 (no tilt) and K = 1 corresponds to r̂(x)

α = M logF (r(x)).

Binary Rewards with De-Duplication: Suppose r(X) ∈ {0, 1} (for eg., corresponds to unstable/
stable molecules in molecule generation). De-duplication of the generated samples might be necessary
to maintain diversity. Given any structure function f (for eg., extracts the molecule structure from
a configuration), let Nf (X, P̂X) = |{i : f(X(i)) = f(X)}|, i.e, the number of copies of X in the
data.

Proposed Acceptance Function: A(r, F̂R, x, P̂X) =

{
0 if r = 0

1

Nf (x,P̂X)
if r = 1

Draw Ci ∼ Ber(pi) without-replacement among the duplicate/similar samples (i.e, they are
marginally Bernoulli but are not independent). Thus, exactly one out of the duplicate molecules are
selected almost surely. Applying Lemma 3.2, we conclude that this performs PPO with

r̂(x)

α
=

{
−∞ if r(x) = 0

logE
[

1

Nf (x,P̂X)

∣∣X(1) = x
]

if r(x) = 1

We see that the shaped reward increases with diversity and with the value of the original reward. We
use this in the molecule generation experiments to avoid mode collapse (Section 6.2).

Implications for diffusion models: While specialized versions of Lemma 3.2 are known in the
context of AR models (Amini et al., 2024), the result is particularly useful in the context of diffusion
models. Note that given a sample x along with a prompt y, the marginal likelihood p̄(x|y) can be
easily computed for AR models. For diffusion models, we only have access to conditional likelihoods
along the denoising trajectory of the diffusion process whereas KL(p||p̄) is intractable. That is,
if the denoising process is run from tN to t0, we have access to p̄(xti |xti+1

). A commonly used
relaxation is the trajectory KL, KL(p(X0:T)||p̄(X0:T)), which can be shown as an upper bound on
the marginal KL. As discussed in (Domingo-Enrich et al., 2024), this constraint can lead to the initial
value function bias problem since the KL regularization is with respect to the learned reverse process.
It becomes necessary to learn an appropriate tilt even at time T . In this context, Lemma 3.2 offers a
simple yet effective alternative to implicitly achieve marginal KL regularization.

Based on GRS, we propose GRAFT: Generalized Rejection sAmpling Fine Tuning (Algorithm 7)
- given a reference model p̄, we generate samples and perform the GRS strategy proposed in 3.1. A
dataset is generated from the accepted samples and standard training is done on the generated dataset.

4 PARTIAL-GRAFT FOR DIFFUSION MODELS

Having established that GRAFT implicitly performs PPO, we now examine methods to further
improve the framework. Continuous diffusion models typically start with Gaussian noise XT at time
T and denoise it to the output X0 via a discretized continuous time SDE. With N denoising steps,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the model constructs a denoising trajectory XtN → . . . Xti → · · · → Xt0 (tN = T and t0 = 0),
denoted by XT :0. We now consider the effect of shaping the distribution of an intermediate state
Xt. For the rest of the discussion, we reserve n and N to refer to discrete timesteps, and t and T for
continuous time. For any t ∈ [0, T] denote the marginal density of Xt by p̄t(x).

We first extend GRS to Partial Generalized Rejection Sampling (P-GRS). Let X(1)
t , . . . , X

(M)
t be

partially denoised (denoised till time t) samples. Let their corresponding completely denoised samples
be X(1)

0 , . . . , X
(M)
0 . Rewards are computed using the completely denoised samples (i.e. Ri = r(Xi

0)

for the ith sample). We denote the empirical distribution of {X(1)
0 , . . . , X

(M)
0 } by P̂X0(·) and the

empirical CDF of {R1, . . . , RM} by F̂R(·).
Definition 4.1. Partial Generalized Rejection Sampling (P-GRS): Consider an acceptance function
A : R × [0, 1] × X × [0, 1] → [0, 1] such that A is co-ordinate wise increasing in the first two
co-ordinates. The acceptance probability of sample i is pi := A(Ri, F̂R(Ri), X

(i)
0 , P̂X0

). Draw
Ci ∼ Ber(pi) ∀ i ∈ [M], not necessarily independent of each other. Then, X(i)

t ∈ A iff Ci = 1.

Lemma 4.2. The law of the accepted samples under P-GRS (Def. 4.1) given by pt(X
(1)
t = x|X(1)

t ∈
A) is the solution to the following Proximal Policy Optimization problem:

argmax
p̂

[EX∼p̂r̂(X)− αKL (p̂∥p̄t)] ; r̂(x)
α

:= log
(
E
[
A(r(X

(1)
0), F̂R(r(X

(1)
0)), X

(1)
0 , P̂X)

∣∣X(1)
t = x

])
The key difference is that the reshaped reward now depends on the expected value of the acceptance
function given a partially denoised state Xt. This tilts p̄t instead of p̄0. It is straightforward to
modify the PPO rewards corresponding to GRS to that of P-GRS. We illustrate this by instantiating
Lemma 4.2 for preference rewards, as done with GRS (Lemma 3.2) above.

Preference rewards: With P-GRS, pt
(
X

(1)
t = x|X(1)

t ∈ A
)
∝ p̄t(x) exp

(
r̂(x)
α

)
with r̂(x)

α =

logE[F (r(X0))|Xt = x].

Based on Lemma 4.2, we introduce P-GRAFT: Partial GRAFT (Algorithms 1 and 2). Here,
fine-tuning is done on a (sampled) dataset of partially denoised vectors instead of fully denoised
vectors. The fine-tuned model is only trained from times T to t, and is used for denoising from noise
only till time t. We switch to the reference model for further denoising. We will now discuss the
mathematical aspects of P-GRAFT and provide a justification for its improved performance.

4.1 A BIAS-VARIANCE TRADEOFF JUSTIFICATION FOR P-GRAFT

We analyze P-GRAFT from a bias-variance tradeoff viewpoint. Let us associate reward r(X0) with
Xt. As argued in Lemma 4.3, variance of r(X0) conditioned on Xt increases with t. Consequently,
P-GRAFT obtains noisy rewards, seemingly making it less effective than GRAFT. However, we
subsequently show that the learning problem itself becomes easier when t is large since the score
function becomes simpler (i.e, the bias reduces). Therefore, we can balance the trade-off between the
two by choosing an “appropriate” intermediate time t for the distributional tilt.
Lemma 4.3. The expected conditional variance E[Var(r(X0)|Xt)] is an increasing function of t.

Example: Consider molecule generation, where molecules are generated by a pre-trained diffusion
model. The generated molecule can be stable (r(X0) = 1) or unstable (r(X0) = 0). Intuitively, Xt,
for t < T , carries more information about r(X0) than XT . We reinforce this claim empirically by
giving the following illustrative statistical test. Consider the two hypotheses:

H0 : r(X0) is independent of Xt ; H1 : r(X0) and Xt are dependent.

Given Xt, we obtain 100 roll outs X
(i)
0 |Xt for 1 ≤ i ≤ 100 and its empirical average r̂(Xt) =∑100

i=1 r(X
(i)
0)/100. If r(X0) is independent of Xt (under H0), the law of r̂(Xt) is the binomial

distribution Bin(100, θ) with θ = P(r(X0) = 1) being the marginal probability of observing a stable
molecule. We perform 1000 repetitions for the experiment above for various values of t and plot the
empirical distributions in Figure 1. For t = t3N/4 (when Xt close to N (0, I)), the distribution is
close to the Binomial distribution and for t = tN/4 (when Xt is close to the target) it is far. That is,
XtN/4

already carries a lot of information about r(X0). This is further supported by the expected
conditional variances reported in Table 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 P-GRAFT: Training

Input: Trainable model pθ, Reference model p̄, Reward
function r, Acceptance function A, Number of rounds
NS , Intermediate timestep NI

1: Initialize empty set D
2: for j = 1 to NS do
3: Generate M trajectories: X(i)

T :0 ∼ p̄T :0 ; i ∈ [M]

4: Obtain rewards: r(X(i)
0) ; i ∈ [M]

5: Perform P-GRS using acceptance function A on
X

(i)
tNI

; i ∈ [M] to get accepted samples A
6: Perform D ← D ∪ A
7: end for
8: Train pθ on D for t ∈ {tNI

, . . . , tN}
9: return pθ

Algorithm 2 P-GRAFT: Inference

Input: Fine tuned model p̂, Reference
model p̄, Intermediate timestep NI ,
Per-step denoiser DEN

1: Sample XT ∼ N (0, I)
2: for n = N − 1 to NI do
3: Xtn ← DEN(p̂, Xtn+1 , tn+1)
4: end for
5: for n = NI − 1 to 0 do
6: Xtn ← DEN(p̄, Xtn+1 , tn+1)
7: end for
8: return Xt0

Figure 1: Law of r̂(Xt)

Table 1: Conditional variance.

n E [Var(r(X0)|Xtn)]

N 0.1341
3N/4 0.1327
N/2 0.1312
N/4 0.0848

Bias reduces with increasing t:
We follow the Stochastic Differ-
ential Equation (SDE) framework
from Song et al. (2020b) for our
analysis. Let the target distribu-
tion q0 be the law of accepted sam-
ples under P-GRS. Diffusion mod-
els consider the forward process
to be the Ornstein-Uhlenbeck Pro-
cess given by dXf

t = −Xf
t dt +√

2dBt where Xf
0 ∼ q0 is drawn

from the target distribution over Rd and Bt is the standard Brownian motion in Rd. It is well known
that Xf

t
d
= e−tXf

0 +
√
1− e−2tZ, where Z ∼ N (0, I) independent of Xf

0 .

Let qt be the density of the law of Xf
t . Diffusion models learn the score function [0, T] × Rd ∋

(t,X)→ ∇ log qt(X) via score matching (see Appendix A for literature review on score matching).
P-GRAFT, in contrast, attempts to learn ∇ log qs between for s ∈ [t, T]. At time T , ∇ log qT (X) ≈
−X , the score of the standard Gaussian distribution, which is easy to learn. When t = 0, the score
∇ log q0(X) corresponds to the data distribution which can be very complicated. Diffusion models
use Denoising Score Matching, based on Tweedie’s formula introduced by (Vincent, 2011). We show
via Bakry-Emery theory (Bakry et al., 2013) that the score function∇ log qt(X) converges to q∞(X)
exponentially in t, potentially making the learning easier. Consider sθ(X, t) : Rd × R+ → Rd to be
a neural network with parameters θ, then score matching objective is given by:

L(θ) = E
∫ T

0

dt∥X
f
t −e−tX

f
0

1−e−2t + sθ(X
f
t , t)∥

2.

In practice, L(θ) is approximated with samples. By Tweedie’s formula, we have:

E[X
f
t −e−tXf

0

1−e−2t |Xf
t] = −∇ log qt(X

f
t). Thus, for some constant C, independent of θ:

L(θ) + C = E
∫ T

0

dt∥∇ log qt(X
f
t)− sθ(X

f
t , t)∥

2 =

∫ T

0

dt

∫
Rd

dX qt(X)∥∇ log qt(X)− sθ(X, t)∥2.

As shown by (Benton et al., 2023), L(θ) directly controls the quality of generations. Note that q∞ is
the density of N (0, I) and ∇ log q∞(X) = −X . The theorem below is proved in Appendix D.5.

Theorem 4.4. Define Hs
t for s ≤ t: Hs

t =
∫ t

s
dt
∫
Rd dXqs(X)∥∇ log qs(X) − ∇ log q∞(X)∥2.

Then,

HT
t ≤

e−2t

1− e−2t
Ht

0

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Therefore, the score functions between time (t, T) are exponentially closer to the simple Gaussian
score function compared to the score functions between times (0, t) in the precise sense given in
Theorem 4.4. This means that the score functions at later times should be easier to learn.

5 INVERSE NOISE CORRECTION FOR FLOW MODELS

Noise Distribution (p0)
Image Distribution (pdata)
Learned Distribution (p1)
Inverse Noise Distribution (prev

1)
ẋ = vθ(x, t)
ẋ = −vθ(x, 1 − t)
ẋ = vθ′ (x, t)

Figure 2: Inverse Noise Correction Setup

In the analysis so far,
we have established bias-
variance tradeoffs for dif-
fusion models - models
which use SDEs to sam-
ple from a target distribu-
tion. We now extend this
analysis to flow models,
which use ODEs to sam-
ple. Flow models follow
a deterministic ODE start-
ing from an initial (random) noise. The bias-variance results from the previous section indicate that,
conditioned on the initial noise vector, the variance of reward should be zero, making the learning pro-
cess potentially easier. Another property of flow models is that because of the deterministic mapping,
they admit reversal - this property has been utilized extensively in the literature to map images to
‘noise’ for image editing Rout et al. (2024); Garibi et al. (2024) and as part of the 2-rectification Liu
et al. (2022) to achieve straighter flows. We will combine these two ideas to develop a framework for
improving flow models even without explicit rewards. We now develop this idea from first principles.

We restrict our attention to flow models with optimal transport based interpolation (Lipman et al.,
2022; Liu et al., 2022), which learn a velocity field v(x, t) : Rd× [0, 1]→ Rd such that the following
ODE’s solution at time t = 1 has the target distribution pdata:

dXt

dt
= v(Xt, t), X0 ∼ N (0, I). (2)

Note that in the literature for flow models (unlike diffusion models), t = 0 corresponds to noise and
t = 1 corresponds to the target, a convention we follow in this section.

The errors in learned model: Suppose we have a pre-trained vector-field, corresponding to parameter
θ and solve the ODE equation 2 with v(x, t) = vθ(x, t). Then, Law(X1) ̸= pdata due to:

a) Discretization error of the ODE and b) Statistical error due to imperfect learning.

Despite these two errors, the trained ODE is still invertible. We will leverage reversibility to arrive at
our algorithm. To this end, consider the time reversal of equation 2:

dxrev
t

dt
= −vθ(xrev

t , 1− t), xrev(0) ∼ pdata. (3)

Algorithm 3 Inverse Noise Correction: Training

Input: Dataset D := {X(1), X(2), . . . , X(M)} ∼
pdata, step-size η, backward Euler steps Nb

1: vθ = TRAIN_FLOW(N (0, I), D).
2: for i = 1 to M do
3: X

rev,(i)
1 ← BWD_Euler

(
vθ, η,X

(i), Nb

)
4: end for
5: Dataset Drev ← {X rev,(1)

1 , . . . , X
rev,(M)
1 } ∼ prev1

6: vθrev = TRAIN_FLOW(N (0, I), Drev)
7: return vθ, vθ′

Algorithm 4 Inference

Input: Flow models vθ, vθrev , step-size η,
Initial point X0 ∼ N (0, I)

1: X rev
1 ← FWD_Euler(vθrev , η,X0)

2: X1 ← FWD_Euler(vθ, η,X rev
1)

3: return X1

The Inverse Noise: Consider the forward Euler discretization of equation 2 with step-size η:

x̂(i+1)η ← x̂iη + ηvθ(x̂iη, iη) . (4)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Let Tθ,η be the function which maps x̂0 to x̂1 i.e, x̂1 = Tθ,η(x̂0). The foward Euler approximation
T−1
θ,η (x̂1) ≈ ŷ1 where ŷiη ← ŷ(i−1)η − ηvθ(ŷ(i−1)η, 1− (i− 1)η) with ŷ0 = x̂1 is not good enough

as noted in the image inversion/ editing literature Rout et al. (2024); Wang et al. (2024); Garibi et al.
(2024). This is mitigated via numerical and control theoretic techniques. We utilize the ‘backward
Euler discretization’ (equation 3, as used in Garibi et al. (2024)) to exactly invert equation 4.

x̂rev
ηi ← x̂rev

η(i−1) − ηvθ(x̂
rev
ηi , 1− η(i− 1)) (5)

This is an implicit equation since x̂rev
ηi being calculated in the LHS also appears in the RHS. It is not

apriori clear that this can be solved. Lemma 5.1 addresses this issue:
Lemma 5.1. Suppose vθ is L Lipschitz in x under ℓ2-norm and ηL < 1. Then,

(1) x̂rev
ηi in equation 5 has a unique solution which can be obtained by a fixed point method.

(2) Tθ,η is invertible and T−1
θ,η (x

rev
0) = xrev

1 .

That is, the mapping from noise to data given by the learned, discretized model is invertible. We show
some important consequences of this in Lemma 5.2. Define the following probability distributions.
Let pdata = Law(Data) (i.e, target data distribution).

p0 = Law(x̂0) = N (0, I) p1 = Law(x̂1) prev0 = Law(x̂rev
0) = pdata prev1 = Law(x̂rev

1)

We call prev1 the inverse noise distribution. With perfect training and 0 discretization error, prev1 =
N (0, I). However, due to these errors prev1 ̸= N (0, I).
Lemma 5.2. Under the assumption of Lemma 5.1, prev1 , p1, pdata and p0 = N (0, I) satisfy:

1. (Tθ,η)#p
rev
1 = pdata ; 2. TV(prev1 , p0) = TV(p1, p

data) ; 3. KL(p0||prev1) = KL(p1||pdata) .

That is, the distance between the inverse noise and the true noise is the same as the distance between
the generated distribution and the true target distribution. Item 1 shows that if we can sample from the
inverse noise distribution prev1 , then we can use the pre-trained model vθ(·, ·) with discretization and
obtain samples from the true target pdata. In Kim et al. (2024), the authors note that even 2-rectification
suffers when the inverse noise prev1 is far fromN (0, I). While 2-rectification aims to improve improve
the computational complexity while maintaining quality by aiming to obtain straight flows, we
introduce inverse noise correction to improve quality of generations in a sample efficient way.

Inverse Noise Correction: Inverse Noise Correction is given in Algorithms 3 and 4, and illustrated
in Figure 2. Given samples from the target distribution, D, TRAIN_FLOW(N (0, I),D) trains a
rectified flow model between N (0, I) to the target distribution Liu et al. (2022). Now, suppose we
are given a dataset {X(1), . . . , X(M)} ∼ pdata and a trained flow model vθ which generates x̂1 ∼ p1
using equation 4 starting with x̂0 ∼ p0. We obtain samples X

rev,(i)
1 ∼ prev1 by backward Euler

iteration in equation 5. Thereafter, we train another flow model vθrev which learns to sample from prev1
starting from N (0, I).

During inference, we sample a point from X0 ∼ N (0, I) and obtain a sample X rev
1 ∼ prev1 using

vθrev . Once we have the corrected noise sample, we generate images using the original flow model
vθ which now starts from X rev

1 instead of X0. FWD_Euler(vθ, η, x̂0) obtains x̂1 via Euler iteration
(equation 4). Similarly, BWD_Euler(vθ, η, x̂rev

0 , Nb) obtains xrev
1 by approximately solving backward

Euler iteration (equation 5). They are formally described as Algorithms 5 and 6 in Appendix B.
Theoretical Justification along the lines of Section 4.1 is given in Appendix D.8.

6 EXPERIMENTS

We use the notation P-GRAFT(NI) to denote P-GRAFT with intermediate timestep NI as described
in Algorithms 1 and 2. For instance, P-GRAFT(0.75N) would denote instantiating P-GRAFT with
NI = 0.75N , where N is the total number of denoising steps. Recall that tN corresponds to pure
noise and t0 corresponds to a completely denoised sample.

6.1 TEXT-TO-IMAGE GENERATION

Setup: The objective is to fine-tune a pre-trained model so that generated images better align with
prompts. We consider Stable Diffusion v2 (Rombach et al., 2022) as the pre-trained model. The

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Text-to-Image Generation fine-tuning on SDv2: VQAScore (normalized to 100) reported
on GenAI-Bench, T2ICompBench++ - Val (denoted as T2I - Val) and GenEval.

Model
Fine-Tuned on GenAI-Bench Fine-Tuned on T2ICompBench++ - Train

GenAI T2I - Val GenEval GenAI T2I - Val GenEval

SD v2 66.87±0.14 69.20±0.17 73.49±0.41 66.87±0.14 69.20±0.17 73.49±0.41

SDXL-Base 69.69±0.17 72.98±0.16 73.90±0.40 69.69±0.17 72.98±0.16 73.90±0.40

DDPO 65.70±0.17 68.03±0.16 72.13±0.37 64.65±0.17 69.05±0.15 69.60±0.37

GRAFT 70.51±0.15 75.69±0.13 79.85±0.31 70.97±0.14 75.88±0.13 79.57±0.30

P-GRAFT(0.75N) 69.46±0.15 74.51±0.14 79.44±0.33 69.51±0.15 74.30±0.13 78.50±0.33

P-GRAFT(0.5N) 71.00±0.14 75.45±0.14 80.60±0.31 70.73±0.14 75.37±0.12 79.25±0.30

P-GRAFT(0.25N) 71.94±0.14 76.12±0.13 80.96±0.29 71.42±0.14 76.15±0.13 80.29±0.30

Table 3: Layout Generation: Fine-tuning
results for unconditional and category-
conditional generation on PubLayNet.

Model
Unconditional Class-conditional

Alignment FID Alignment FID

Baseline 0.094 8.32 0.088 4.08
GRAFT 0.064 10.68 0.068 5.04

P-GRAFT(0.5N) 0.071 9.24 0.072 4.55
P-GRAFT(0.25N) 0.053 9.91 0.064 4.67

Table 4: Molecule Generation: Fine-tuning re-
sults on QM9. (Relative) number of sampling
rounds required are also reported.

Model Mol: Stability Sampling Rounds

Baseline 90.50±0.15 -
GRAFT 90.76±0.20 9×

P-GRAFT(0.5N) 90.46±0.27 1×
P-GRAFT(0.25N) 92.61±0.13 1×

reward model used is VQAScore (Lin et al., 2024) - a prompt-image alignment score between 0 to 1,
with higher scores denoting better prompt-alignment. We fine-tune (separately) on GenAI-Bench (Li
et al., 2024a) as well as the train split of T2ICompBench++ (Huang et al., 2025). Evaluations are
done on GenAI-Bench, validation split of T2ICompBench++ and GenEval (Ghosh et al., 2023). We
use LoRA (Hu et al., 2021) for compute-efficient fine-tuning. Top− K sampling (Section 3) is used
for both GRAFT and P-GRAFT. Since LoRA fine-tuning is used, the model switching in 2 can be
done by simply turning off the LoRA adapter. More implementation details are given in Appendix E.

Results: are reported in Table 2 - for fine-tuning on GenAI-Bench, we use Top− 10 of 100 samples
and on T2ICompBench++, we use Top− 1 of 4 samples. First, note that both GRAFT and P-
GRAFT outperform base SDv2, SDXL-Base and DDPO. The best performance is obtained for
P-GRAFT with NI = 0.25N across all evaluations - this clearly shows the bias-variance tradeoff
in action. Further, both GRAFT and P-GRAFT also generalize to unseen prompts.

In particular, DDPO did not improve over the baseline even when trained with more samples and
FLOPs as compared to GRAFT/P-GRAFT. Experiments with different sets of hyperparameters as
well as adding other features such as KL regularization and a per-prompt advantage estimator on
top of DDPO also did not show any significant improvements over SDv2 (see Appendix E.3). We
also conduct ablations to further verify the effectiveness of the proposed methods - these include
experiments on different values of (M,K) in Top− K of M sampling, different LoRA ranks for
fine-tuning as well as a reverse P-GRAFT strategy (where the fine-tuned model is used in the later
denoising steps instead of initial steps). We find that P-GRAFT remains effective across different
(M,K) and that performance is insensitive to the LoRA rank. Further, P-GRAFT significantly
outperforms reverse P-GRAFT. More details on ablations can be found in Appendix E.1.

6.2 LAYOUT AND MOLECULE GENERATION

Setup: All experiments are done on pre-trained models trained using IGD (Anil et al., 2025), a
discrete-continuous diffusion framework capable of handling both layout generation and molecule
generation. For layouts, we experiment with improving the alignment of elements in the generated
layout as measured by the alignment metric - note that the reward is taken as 1 - alignment since lower
values for the metric indicate better alignment. For molecules, the objective is to generate a larger
fraction of stable molecules - molecules which are deemed stable are assigned a reward of 1 whereas
unstable molecules are assigned a reward of 0. For molecule generation, we use the de-duplication
instantiation of GRAFT/P-GRAFT (Section 3) to ensure diversity of generated molecules - we
use RDKit to determine whether two molecules are identical or not. We use PubLayNet (Zhong

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Image Generation: Results for inverse noise correction on CelebA-HQ and LSUN-Church.
The noise corrector samples the inverse noise starting from N (0, I) for ‘Sampling Steps’, and the
pre-trained model samples the image starting from the inverse noise.

Sampling Steps FID
FLOPs/image

(×1012)Noise Corrector
(16M parameters)

Pre-Trained Model
(65M parameters)

CelebA-HQ
(256× 256)

LSUN-Church
(256× 256)

- 1000 11.93 8.40 6.869
- 200 13.39 8.63 1.374

100 100 8.94 7.90 0.903
200 200 8.02 7.26 1.806

et al., 2019) for layout generation, and QM9 (Ramakrishnan et al., 2014) for molecule generation.
To the best of our knowledge, this is the first work which addresses fine-tuning in the context of
discrete-continuous diffusion models. Ablations and experimental details are given in Appendix F.

Results: for layout generation are given in Table 3. Both P-GRAFT and GRAFT uniformly improve
performance across both unconditional and class-conditional generation, with P-GRAFT:0.25N
giving the best performance. We also report FID scores computed between the generated samples and
the test set of PubLayNet - this is a measure of how close the generated samples are to the pre-training
distribution. As expected, the baseline has the lowest FID. Note that the FID score for P-GRAFT is
smaller than GRAFT, indicating that P-GRAFT aligns more closely to the pre-training distribution.
For molecule generation, results are given in Table 4. Again, the best performance is with P-GRAFT
at 0.25N . Note that improvement with GRAFT is marginal, despite being trained on 9× the number
of samples used for P-GRAFT - this points to the learning difficulty in later denoising steps.

6.3 IMAGE GENERATION WITH INVERSE NOISE CORRECTION

Setup: We consider unconditional image generation on CelebA-HQ (Karras et al., 2017) and LSUN-
Church (Yu et al., 2015) at 256× 256 resolution. We first train pixel-space flow models from scratch.
A training corpus of inverted noise is then generated by running the trained flow models in reverse,
employing the backward Euler method, on all samples in the dataset. A second flow model, which
we refer to as the Noise Corrector model, is then trained to generate this inverse noise. Once the
Noise Corrector is trained, this model is first used to transform standard Gaussian noise to the inverse
noise. The pre-trained model then generates samples starting from the inverse noise. FID with 50000
generated samples with respect to the dataset is used to measure the performance. We emphasize
that the our goal is not to compete with state-of-the-art (SOTA) models rather to demonstrate that
our procedure can be used to improve the performance of a given flow model by simply learning the
distributional shift of noise at t = 0. SOTA models are larger (Rombach et al. (2022) has ≈ 300M
parameters) and are more sophisticated - we do not seek to match their performance.

Results: Table 5, shows that the Noise Corrector significantly improves FID scores across both
datasets. Apart from quality gains, Noise Corrector also allows for faster generation - running the
Noise Corrector for 100 steps and then running the pre-trained model for 100 steps can outperforms
the pre-trained model with 1000 steps. The Noise Corrector only has 0.25× the number of parameters,
leading to further latency gains as evidenced by FLOPs counts.

7 CONCLUSION

We establish GRAFT, a framework for provably performing PPO with marginal KL for diffusion
models through rejection sampling. We then introduce P-GRAFT, a principled framework for
intermediate distribution shaping of diffusion models and provide a mathematical justification for this
framework. Both GRAFT and P-GRAFT perform well empirically, outperforming policy gradient
methods on the text-to-image generation task. Further, both frameworks also extend seamlessly to
discrete-continuous diffusion models. Finally, we introduce Inverse Noise Correction, a strategy to
improve flow models even without explicit rewards and demonstrate significant quality gains even
with lower FLOPs/image.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

The proposed method fine-tunes a pre-trained diffusion model based on rewards. Potentially, fine-
tuning towards undesirable goals is possible by using specialized rewards. Practitioners are suggested
to exercise caution in this regard.

9 REPRODUCIBILITY STATEMENT

Algorithms 1, 2, 3, 4, 5, 6 and 7 provide algorithmic descriptions of the proposed methods. The
experimental setup used for experiments, including hyperparameters, are described in Section 6 as
well as Appendices E, F and G. Proofs for the theoretical claims are given in Appendix D.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Afra Amini, Tim Vieira, Elliott Ash, and Ryan Cotterell. Variational best-of-n alignment. arXiv
preprint arXiv:2407.06057, 2024.

Gautham Govind Anil, Sachin Yadav, Dheeraj Nagaraj, Karthikeyan Shanmugam, and Prateek Jain.
Interleaved gibbs diffusion for constrained generation. arXiv preprint arXiv:2502.13450, 2025.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and geometry of Markov diffusion
operators, volume 348. Springer Science & Business Media, 2013.

Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly d-linear conver-
gence bounds for diffusion models via stochastic localization. arXiv preprint arXiv:2308.03686,
2023.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Adam Block, Youssef Mroueh, and Alexander Rakhlin. Generative modeling with denoising auto-
encoders and langevin sampling. arXiv preprint arXiv:2002.00107, 2020.

John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons,
2016.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and
distribution recovery of diffusion models on low-dimensional data. In International Conference
on Machine Learning, pp. 4672–4712. PMLR, 2023.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models on
differentiable rewards. arXiv preprint arXiv:2309.17400, 2023.

Valentin De Bortoli, Michael Hutchinson, Peter Wirnsberger, and Arnaud Doucet. Target score
matching. arXiv preprint arXiv:2402.08667, 2024.

Fei Deng, Qifei Wang, Wei Wei, Tingbo Hou, and Matthias Grundmann. Prdp: Proximal reward
difference prediction for large-scale reward finetuning of diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7423–7433, 2024.

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky TQ Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
ICLR 2025, arXiv:2409.08861, 2024.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Association,
106(496):1602–1614, 2011.

Luca Eyring, Shyamgopal Karthik, Alexey Dosovitskiy, Nataniel Ruiz, and Zeynep Akata. Noise hy-
pernetworks: Amortizing test-time compute in diffusion models. arXiv preprint arXiv:2508.09968,
2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. Advances in Neural Information Processing Systems,
36:79858–79885, 2023.

Daniel Garibi, Or Patashnik, Andrey Voynov, Hadar Averbuch-Elor, and Daniel Cohen-Or. Renoise:
Real image inversion through iterative noising. In European Conference on Computer Vision, pp.
395–413. Springer, 2024.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. Advances in Neural Information Processing Systems, 37:
133345–133385, 2024.

Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
for evaluating text-to-image alignment. Advances in Neural Information Processing Systems, 36:
52132–52152, 2023.

Leonard Gross. Logarithmic sobolev inequalities. American Journal of Mathematics, 97(4):1061–
1083, 1975.

Lin Gui, Cristina Gârbacea, and Victor Veitch. Bonbon alignment for large language models and
the sweetness of best-of-n sampling. Advances in Neural Information Processing Systems, 37:
2851–2885, 2024.

Shivam Gupta, Aditya Parulekar, Eric Price, and Zhiyang Xun. Improved sample complexity
bounds for diffusion model training. Advances in Neural Information Processing Systems, 37:
40976–41012, 2024.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-
to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626, 2022.

Seongmin Hong, Kyeonghyun Lee, Suh Yoon Jeon, Hyewon Bae, and Se Young Chun. On exact
inversion of dpm-solvers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7069–7078, 2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with
robustness to both prompt and reward models. arXiv preprint arXiv:2501.03262, 2025.

Kaiyi Huang, Chengqi Duan, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench++:
An enhanced and comprehensive benchmark for compositional text-to-image generation, 2025.
URL https://arxiv.org/abs/2307.06350.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020. URL https://arxiv.org/abs/2001.08361.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Beomsu Kim, Yu-Guan Hsieh, Michal Klein, Marco Cuturi, Jong Chul Ye, Bahjat Kawar, and
James Thornton. Simple reflow: Improved techniques for fast flow models. arXiv preprint
arXiv:2410.07815, 2024.

Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models
for robust image manipulation. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 2426–2435, 2022.

12

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2307.06350
https://arxiv.org/abs/2001.08361

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Durk P Kingma and Yann Cun. Regularized estimation of image statistics by score matching.
Advances in neural information processing systems, 23, 2010.

Syamantak Kumar, Dheeraj Nagaraj, and Purnamrita Sarkar. Dimension-free score matching and
time bootstrapping for diffusion models. arXiv preprint arXiv:2502.10354, 2025.

Sangyun Lee, Zinan Lin, and Giulia Fanti. Improving the training of rectified flows. Advances in
neural information processing systems, 37:63082–63109, 2024.

Jose Lezama, Tim Salimans, Lu Jiang, Huiwen Chang, Jonathan Ho, and Irfan Essa. Discrete
predictor-corrector diffusion models for image synthesis. In The Eleventh International Conference
on Learning Representations, 2022.

Baiqi Li, Zhiqiu Lin, Deepak Pathak, Jiayao Li, Yixin Fei, Kewen Wu, Tiffany Ling, Xide Xia,
Pengchuan Zhang, Graham Neubig, and Deva Ramanan. Genai-bench: Evaluating and improving
compositional text-to-visual generation, 2024a. URL https://arxiv.org/abs/2406.
13743.

Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Yusuke Kato, and Kazuki Kozuka. Aligning dif-
fusion models by optimizing human utility. Advances in Neural Information Processing Systems,
37:24897–24925, 2024b.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
simple, effective, and efficient reinforcement learning method for aligning large language models.
arXiv preprint arXiv:2310.10505, 2023.

Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation, 2024. URL
https://arxiv.org/abs/2404.01291.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Chain of hindsight aligns language models with
feedback. arXiv preprint arXiv:2302.02676, 2023a.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu Liu.
Statistical rejection sampling improves preference optimization. arXiv preprint arXiv:2309.06657,
2023b.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference
on Learning Representations, 2023c.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
free reward. Advances in Neural Information Processing Systems, 37:124198–124235, 2024.

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
editing real images using guided diffusion models. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 6038–6047, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-image
diffusion models with reward backpropagation. 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

13

https://arxiv.org/abs/2406.13743
https://arxiv.org/abs/2406.13743
https://arxiv.org/abs/2404.01291

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization.
arXiv preprint arXiv:2409.00588, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Litu Rout, Yujia Chen, Nataniel Ruiz, Constantine Caramanis, Sanjay Shakkottai, and Wen-Sheng
Chu. Semantic image inversion and editing using rectified stochastic differential equations. arXiv
preprint arXiv:2410.10792, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in artificial intelligence, pp. 574–584. PMLR,
2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
neural information processing systems, 33:3008–3021, 2020.

Nick T Thomopoulos. Essentials of Monte Carlo simulation: Statistical methods for building
simulation models. Springer Science & Business Media, 2012.

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-time
diffusion models as entropy-regularized control. arXiv preprint arXiv:2402.15194, 2024.

Santosh Vempala and Andre Wibisono. Rapid convergence of the unadjusted langevin algorithm:
Isoperimetry suffices. Advances in neural information processing systems, 32, 2019.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul,
Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and Thomas
Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/huggingface/
diffusers, 2022.

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8228–8238, 2024.

Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li,
and Ying Shan. Taming rectified flow for inversion and editing. arXiv preprint arXiv:2411.04746,
2024.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241–268, 1991.

14

https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling to
reinforce. arXiv preprint arXiv:2504.11343, 2025.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Yixiu Zhao, Jiaxin Shi, Feng Chen, Shaul Druckmann, Lester Mackey, and Scott Linderman. Informed
correctors for discrete diffusion models. arXiv preprint arXiv:2407.21243, 2024.

Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: largest dataset ever for document lay-
out analysis. In 2019 International Conference on Document Analysis and Recognition (ICDAR),
2019. doi: 10.1109/ICDAR.2019.00166.

Yuanzhi Zhu, Xingchao Liu, and Qiang Liu. Slimflow: Training smaller one-step diffusion models
with rectified flow. In European Conference on Computer Vision, pp. 342–359. Springer, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX

A RELATED WORK

Policy Gradient Methods: Majority of the existing literature on policy gradient methods in the
context of generative modeling draw inspiration from Proximal Policy Optimization(PPO) (Schulman
et al., 2017) and REINFORCE (Williams & Peng, 1991). PPO based methods in the context of
language modeling include Bai et al. (2022); Ouyang et al. (2022); Liu et al. (2023a); Stiennon et al.
(2020), whereas frameworks based on REINFORCE include (Li et al., 2023; Ahmadian et al., 2024;
Shao et al., 2024; Hu et al., 2025). Policy gradient methods have also been studied in the context of
fine-tuning diffusion models (Black et al., 2023; Fan et al., 2023; Ren et al., 2024).

Offline Fine-Tuning Methods: Algorithms which utilize offline preference datasets for fine-tuning
generative models have also been widely studied. In the context of language modeling, these include
methods like SLiC (Zhao et al., 2023), DPO (Rafailov et al., 2023) and SimPO (Meng et al., 2024).
Such methods have also been explore in the context of diffusion models as well - these include
methods like Diffusion-DPO (Wallace et al., 2024) and Diffusion-KTO (Li et al., 2024b).

Rejection Sampling Methods: Recently, many works have explored rejection sampling methods
in the context of autoregressive models - these include RSO (Liu et al., 2023b), RAFT (Dong et al.,
2023) and Reinforce-Rej (Xiong et al., 2025). In particular, Reinforce-Rej demonstrated that rejection
sampling methods can match or even outperform policy gradient methods.

Fine-Tuning Diffusion Models: Apart from the policy gradient methods discussed already, a
host of other methods have also been proposed for fine-tuning diffusion models. Direct reward
backpropagation methods include DRaFT (Clark et al., 2023) and AlignProp (Prabhudesai et al.,
2023). Note that these methods assume access to a differentiable reward. Uehara et al. (2024)
approaches the problem from the lens of entropy-regularized control - however, the method is
computationally heavy and requires gradient checkpointing as well as optimizing an additional neural
SDE. Domingo-Enrich et al. (2024) proposes a memoryless forward process to overcome the initial
value function bias problem for the case of ODEs. PRDP Deng et al. (2024) formulates a supervised
learning objective whose optimum matches with the solution to PPO, but with trajectory KL constraint
- the supervised objective, with clipping, was found to make the training stable as compared to DDPO.

Score Matching: Score matching for distribution estimation was first introduced in (Hyvärinen &
Dayan, 2005). The algorithm used in this case is called Implicit Score Matching. Diffusion models
primarily use Denoising Score Matching (DSM), which is based on Tweedie’s formula (Vincent,
2011; Kingma & Cun, 2010). The sample complexity of DSM has been extensively studied in
the literature (Kumar et al., 2025; Block et al., 2020; Gupta et al., 2024; Chen et al., 2023).Many
alternative procedures such as Sliced Score Matching (Song et al., 2020a) and Target Score Matching
(De Bortoli et al., 2024) have been proposed.

ODE Reversal in Flow Models: A prominent use case of ODE reversal in flow models is that of
image editing (Hertz et al., 2022; Kim et al., 2022; Hong et al., 2024; Mokady et al., 2023; Rout et al.,
2024; Garibi et al., 2024). The reverse ODE has also been used to achieve straighter flows, allowing
for faster generation, through 2-rectification/reflow algorithm (Liu et al., 2022; Lee et al., 2024; Zhu
et al., 2024; Liu et al., 2023c). Notably, concurrent work Eyring et al. (2025) also proposes a strategy
for aligning distilled models by fine-tuning at the noise level.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B ODE SOLVER ALGORITHMS

In the backward Euler Algorithm 6, at each time instant j in the reverse procedure, we solve a fixed
point equation to obtain high precision solution of Eq. equation 5. The step-size η is tuned empirically
so that the recursion does not blow up. Once the step-size is carefully tuned, the iteration converges
to the solution at an exponential rate. In practice, we observed that Nb = 10 is sufficient to obtain
satisfactory results.

Algorithm 5 Forward Euler (FWD_Euler)

Input: Flow model vθ, step-size η, Initial
point X0

1: for j = 0 to ⌊1/η⌋ − 1 do
2: Xj+1 ← Xj + ηvθ(Xj , ηj)
3: end for
4: return X⌊1/η⌋

Algorithm 6 Backward Euler (BWD_Euler)

Input: Flow model vθ, step size η, sample X(i) from
the dataset, Number of fixed point iterations Nb

1: X rev
1 = X(i)

2: for j = 0 to ⌊1/η⌋ − 1 do
3: X̂ rev

0 = X rev
j

4: for k = 0 to Nb − 1 do
5: X̂ rev

k+1 ← X rev
j − ηvθ(X̂

rev
k , 1− η(j + 1))

6: end for
7: X rev

j+1 ← X̂ rev
Nb

8: end for
9: return X rev

⌊1/η⌋

C GRAFT: ALGORITHM

While instantiations of GRAFT are well-known in the literature and are straightforward to implement,
we provide the exact algorithm here for the sake of completeness.

Algorithm 7 GRAFT: Training

Input: Trainable pθ, Reference p̄, Reward function r, Acceptance function A, Number of sampling
rounds NS

1: Initialize empty set D
2: for i = 0 to NS do
3: Get M samples: {X(1), . . . , X(M)} ∼ p̄
4: Obtain rewards: r(X(i)) ; i ∈ [M]
5: Perform GRS using acceptance function A to get accepted samples A
6: Perform D ← D ∪ A
7: end for
8: Train pθ on D
9: return pθ

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D PROOFS

D.1 LEMMA 3.2

Proof. Let B be any measurable set. Consider the following probability measure:

P(X(1) ∈ B|X(1) ∈ A).

Using Bayes’ rule, this measure can be rewritten as:

P(X(1) ∈ B|X(1) ∈ A) = P(X(1) ∈ B,X(1) ∈ A)
P(X(1) ∈ A)

.

Recall that X(1) is drawn from the distribution p̄. Then, from the definition of P(X(1) ∈ B,X(1) ∈
A), we have:

P(X(1) ∈ B,X(1) ∈ A) =
∫
B

P(X(1) ∈ A|X(1) = x)dp̄(x).

From Definition 3.1, we know that X(1) ∈ A iff C1 = 1. Therefore:

P(X(1) ∈ B,X(1) ∈ A) =
∫
B

P(C1 = 1|X(1) = x)dp̄(x)

=

∫
B

E
[
1(C1 = 1)|X(1) = x

]
dp̄(x)

where 1(·) denotes the indicator function. Using the tower property of expectations, this can be
rewritten as:

P(X(1) ∈ B,X(1) ∈ A) =
∫
B

E
[
E
[
(1(C1 = 1)|X(1) = x,X(2), . . . , X(M))

]∣∣X(1) = x
]
dp̄(x)

=

∫
B

E
[
P
(
C1 = 1|X(1) = x,X(2), . . . , X(M)

)∣∣X(1) = x
]
dp̄(x).

Note that in the conditional expectation here, X(1), . . . , X(M), are distributed according to p̄0 since
{X(j)}Mj=1 are i.i.d samples. Again, from Definition 3.1, we know that

P(C1 = 1|X(1) = x, {X(j)}Mj=2) = A(r(x), F̂R(r(x)), x, P̂X)

where F̂R and P̂X are computed using the samples {X(j)}nj=1. From definition of Radon-Nikodym
derivative, the distribution of the accepted samples can therefore be written as:

p̄a(x) = Z1E
[
A(r(x), F̂R(r(x)), x, P̂X)|X(1) = x

]
p̄(x) (6)

where Z1 = 1/P(X(1) ∈ A) is a normalizing constant independent of x. Now, from the method of
Lagrangian Multipliers, as mentioned in Section 2, the solution to the PPO optimization objective
with reward function r̂(·) is given by:

pppo(x) = Z2 exp

(
r̂(x)

α

)
p̄(x) (7)

where Z2 is the normalization constant. Comparing equation 6 and equation 7, p̄a = pppo whenever:

r̂(x)

α
= log

(
E
[
A(r(x), F̂R(r(x)), x, P̂X |X(1) = x

])

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D.2 INSTANTIATIONS OF GRAFT

D.2.1 TOP-K OUT OF M SAMPLING

Substituting A(·) in:

log
(
E{X(j)}n

j=2

[
A(r(x), F̂R(r(x)), x, P̂X)|X(1) = x, {X(j)}Mj=2

])
we get:

log

(∫
{X(j)}n

j=2

1(r(x) ∈ Top− K(r(x), r(x(2)), . . . , r(x(M))))dp̄(x(2)) . . . dp̄(x(M))

)

where Top− K(r(x), r(x(2)), . . . , r(x(M))) denotes the top-K samples in
{r(x), r(x(2)), . . . , r(x(M))}. Let UK denote the event where X(1) = x ranks in top-K
among the M samples, where the other M − 1 samples are i.i.d from p̄. This event can be
decomposed as:

UK = ∪Kk=1Ek

where Ek denotes the event where r(x) is the kth in the ranked (descending) ordering of rewards.
Further, note that {Ek} are mutually exclusive events. Therefore:

P(UK) =

K∑
k=1

P(Ek)

Computing P(Ek): If x ranks kth when ranked in terms of rewards, there are k − 1 samples
which have higher rewards than x and M − k samples which have lower rewards than x. Thus, the
required probability can be computed by finding the probability of having K − 1 samples having
higher rewards and the rest having lower rewards. Note that the ordering within the K − 1 group or
M −K group doesn’t matter. The probability of any one sample having a higher reward than r(x)
is 1 − F (r(x)) and having a lower reward is F (r(x)). Therefore, the required probability can be
computed as:

P(Ek) =

(
M − 1

k − 1

)
(1− F (r(x)))k−1(F (r(x)))M−k

And hence:

P(UK) =

K−1∑
k=0

(
M − 1

k

)
(1− F (r(x)))k(F (r(x)))M−k−1

Therefore:

r̂(x)

α
= log

(
K−1∑
k=0

(
M − 1

k

)
(1− F (r(x)))k(F (r(x)))M−k−1

)

It is straightforward to check that this is an increasing function in r.

D.2.2 PREFERENCE REWARDS

Substituting A(·) in:

log
(
EX(2)A(r(x), F̂R(r(x)), x, P̂X)|X(1) = x,X(2)

)
we get:

log

(∫
X(2)

1(r(x(2)) ≤ r(x))dp̄(x(2))

)
= logF (r(x))

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.3 LEMMA 4.2

Proof. Let B be any measurable set. Consider the following probability measure:

P(X(1)
t ∈ B|X(1)

t ∈ A).

Using Bayes’ rule, this measure can be rewritten as:

P(X(1)
t ∈ B|X(1)

t ∈ A) = P(X(1)
t ∈ B,X

(1)
t ∈ A)

P(X(1)
t ∈ A))

.

Recall that X(1)
t is drawn from the distribution p̄t. Then, from the definition of P(X(1)

t ∈ B,X
(1)
t ∈

A), we have:

P(X(1)
t ∈ B,X

(1)
t ∈ A) =

∫
B

P(X(1)
t ∈ A|X(1)

t = x)dp̄t(x).

From Definition 4.1, we know that X(1)
t ∈ A iff C1 = 1. Therefore:

P(X(1)
t ∈ B,X

(1)
t ∈ A) =

∫
B

P(C1 = 1|X(1)
t = x)dp̄t(x)

=

∫
B

E
[
1(C1 = 1)|X(1)

t = x
]
dp̄t(x)

where 1(·) denotes the indicator function. Using the tower property of expectations, this can be
rewritten as:

P(X(1)
t ∈ B,X

(1)
t ∈ A) =

∫
B

E
[
E
[
(1(C1 = 1)|X(1)

t = x,X
(1)
0 , X

(2)
0 , . . . , X

(M)
0)

]∣∣X(1)
t = x

]
dp̄t(x)

=

∫
B

E
[
P
(
C1 = 1|X(1)

t = x,X
(1)
0 , X

(2)
0 , . . . , X

(M)
0

)∣∣X(1)
t = x

]
dp̄t(x).

Note that in the conditional expectation here, X(2)
0 , . . . , X

(M)
0 , are distributed according to p̄0

since {X(j)
0 }nj=1 are i.i.d samples. However, X(1)

0 is distributed according to p̄0|t because of the

conditioning on X
(1)
t . Again, from Definition 4.1, we know that

P(C1 = 1|X(1)
t = x, {X(j)

0 }Mj=1) = A(r(X
(1)
0), F̂R(r(X

(1)
0)), X

(1)
0 , P̂X)

where F̂R and P̂X are computed using the samples {X(j)}Mj=1. From the definition of Radon-
Nikodym derivative, the density of the accepted samples can therefore be written as:

p̄at (x) = Z1E
[
A(r(X

(1)
0), F̂R(r(X

(1)
0)), X

(1)
0 , P̂X |X(1)

t = x)
]
p̄t(x) (8)

where Z1 = 1/P(X(1)
t ∈ A)) is a normalizing constant independent of x. Now, from the method of

Lagrangian Multipliers, as mentioned in Section 2, the solution to the PPO optimization objective
(with reward function r̂(·)) is (where Z2 is the normalization constant):

pppo(x) = Z2 exp

(
r̂(x)

α

)
p̄t(x). (9)

Comparing equation 8 and equation 9, p̄at = pppo whenever:

r̂(x)

α
= log

(
E
[
A(r(X

(1)
0), F̂R(r(X

(1)
0)), X

(1)
0 , P̂X |X(1)

t = x
])

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.4 PROOF OF LEMMA 4.3

Proof. Let s > t. Note that Xs → Xt → X0 forms a Markov chain. By the law of total variance,
we have for any random variables Y,Z:

Var(Z) = EVar(Z|Y) + Var(E[Z|Y])

≥ EVar(Z|Y) (10)

Given Xs, Suppose Z, Y be jointly distributed as the law of (r(X0), Xt). Then, we have Xs almost
surely:

Var(r(X0)|Xs) ≥ E[Var(r(X0)|Xs, Xt)|Xs] = E[Var(r(X0)|Xt)|Xs] (11)

In the last line, we have used the Markov property to show that the law of r(X0)|Xs, Xt is the same
as the law of r(X0)|Xt almost surely. We conclude the result by taking expectation over both the
sides.

D.5 PROOF OF THEOREM 4.4

Proof. We will follow the exposition in Vempala & Wibisono (2019) for our proofs. qt converges
to q∞ as t → ∞. By (Vempala & Wibisono, 2019, Lemma 2) applied to the forward process, we
conclude that:

d

dt
KL(qt||q∞) = −

∫
Rd

dXqt(X)∥∇ log qt(X)−∇ log q∞(X)∥2

=⇒
∫ T

t

dt

∫
Rd

dXqs(X)∥∇ log qs(X)−∇ log q∞(X)∥2 = KL(qt||q∞)− KL(qT ||q∞) (12)

For brevity, we call the LHS to be HT
t . Clearly,

HT
t − e−2tHT

0 = KL(qt||q∞)− e−2tKL(q0||q∞) + KL(qT ||q∞)(e−2t − 1) .

Notice that q∞ is the density of the standard Gaussian random variable. Therefore, it satisfies the
Gaussian Logarithmic Sobolev inequality Gross (1975). Thus, we can apply (Vempala & Wibisono,
2019, Theorem 4) to conclude that for every s ≥ 0, KL(qs||q∞) ≤ e−2sKL(q0||q∞). Thus,

HT
t ≤

e−2t

1− e−2t
Ht

0

D.6 PROOF OF LEMMA 5.1

The uniqueness and the convergence of fixed point iteration for implicit Euler methods have been
established under great generality in Butcher (2016). However, we give a simpler proof for our
specialized setting here.

1. Consider the update for the backward Euler iteration at each time step t = ηi

x̂rev
ηi → x̂rev

η(i−1) − ηvθ(x̂
rev
ηi , 1− η(i− 1))

Let us define an operator T
x̂rev
η(i−1)

θ,η : Rd → Rd such that

T
x̂rev
η(i−1)

θ,η (x) = x̂rev
η(i−1) − ηvθ(x, 1− η(i− 1))

First, we will show that T
x̂rev
η(i−1)

θ,η as defined above is a contractive operator under the
condition ηL < 1. Then, one can use Banach fixed point theorem to establish uniqueness of

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

the solution and obtain the solution through fixed point iteration. To this end, consider two

point x1 and x2 in Rd and apply T
x̂rev
η(i−1)

θ,η to them∥∥∥T x̂rev
η(i−1)

θ,η (x1)− T
x̂rev
η(i−1)

θ,η (x2)
∥∥∥
2
= η∥vθ(x1, 1− η(i− 1))− vθ(x2, 1− η(i− 1))∥2

≤ ηL∥x1 − x2∥2.

Since ηL < 1, we conclude that T
x̂rev
η(i−1)

θ,η is a contractive operator. Thus, by Banach fixed

point theorem, the fixed point equation T
x̂rev
η(i−1)

θ,η (x) = x has a unique solution for each step
t = ηi. To obtain the solution to the backward Euler update, we use the Banach fixed point
method, i.e., start with x(0) = x̂rev

η(i−1) (or any arbitrary point in Rd) and run the iteration

x(k+1) = T
x̂rev
η(i−1)

θ,η (x(k)). Then, limk→∞ x(k) = x̂rev
ηi .

2. The invertibility of the operator Tθ,η follows directly from the previous part. Since the
solution for the backward Euler method is unique at each time step t = ηi, it implies that
there exists a one-to-one mapping between sample points xrev

0 and xrev
1 .

D.7 PROOF OF LEMMA 5.2

Before starting the proof of this lemma, we will state the following well-known theorem from
information theory.

Theorem D.1. [Date Processing Inequality] Let X and Y be two sample spaces. Denote P(X) and
P(Y) as the set of all possible probability distributions on X and Y , respectively. Let PX , QX ∈
P(X) and PY |X be a transition kernel. Denote PY and QY to be the push through, i.e., PY (B) =∫
X PY |X(B|X = x)dPX(x). Then, for any f -divergence we have

Df (PX ||QX) ≥ Df (PY |QY) (13)

1. By part 3 of Lemma 5.1, we have that xrev
1 = T−1

θ,η (x
rev
0) =⇒ Tθ,η(x

rev
1) = xrev

0 . Suppose
xrev
0 ∼ p∗, then by definition, xrev

1 ∼ prev1 . This concludes the result.

2. Recall that TV-norm is an f -divergence. Furthermore, Tθ,η is the push forward function
from p0 and prev1 to p1 and p∗, respectively. Thus, using DPI D.1, we have

TV(prev1 , p0) ≥ TV(p∗, p1).

Additionally, Tθ,η is an invertible mapping. Hence, T−1
θ,η can also be viewed as the push

forward function from p1 and p∗ to p0 and prev1 , respectively. Thus, again using DPI D.1, we
get

TV(p∗, p1) ≥ TV(prev1 , p0).

Combining both the bounds, we get the desired claim.

3. KL divergence is also a valid f -divergence. Thus, repeating the arguments from the previous
part, one gets the desired equality.

D.8 THEORETICAL JUSTIFICATION FOR INVERSE NOISE CORRECTION

In this section, our goal is to provide a theoretical justification for inverse noise correction in the
context of flow models. Specifically, we will argue that if KL(pX ||N (0, I)) is small, then it is
less challenging to learn the score function corresponding to pt and thereby the velocity field vXt
governing the rectified flow. To this end, let X be a sample from a distribution pX and Z, Y be
standard normal random variables all independent of each other. Consider the following two linear
interpolations:

Xt = tX + (1− t)Z (14a)
Yt = tY + (1− t)Z. (14b)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Denote pt and qt as the distribution of Xt and Yt, respectively. Then, it is easy to verify that they
satisfy the following continuity equations:

ṗt +∇ · (vXt pt) = 0 (15a)

q̇t +∇ · (vYt qt) = 0 (15b)

where vXt (x) = E[X − Z|Xt = x] and vYt (x) = E[Y − Z|Yt = x]. Then, we have the following
theorem which establishes the relation between KL-divergence of p1 and q1 in terms of the velocities
vXt and vYt . The proof for the theorem is provided in Section D.9.

Theorem D.2. Let pt and qt be the distribution of Xt and Yt defined in equation 14. Then, the
KL-divergence between p1 and q1 satisfy the following relation

KL(p1||q1) = KL(pX ||N (0, I)) =

∫ 1

0

t

1− t

∫
Rd

pt(x)
∥∥vXt (x)− vYt (x)

∥∥2 dxdt. (16)

Now, consider the distribution of the inverse noise prev1 obtained by iterating equation 5 and substitute
it with pX in the theorem above. Suppose that the flow model is trained such that KL(pdata||p1) ≤ ϵ.
Then, by Lemma 5.2 it follows that KL(prev1 ||p0) ≤ ϵ. Combining this observation with equation 16,
it is easy to see that the velocities vXt (x) and vYt (x) should be close to each other. Additionally, since
qt simply corresponds to learning a flow model from standard Gaussian to itself, we can explicitly
compute vYt as follows:

vYt (x) =
x

t
+

1− t

t

−x
(1− t)2 + t2

=
x(2t− 1)

(1− t)2 + t2
.

Thus, vYt (x) is a linear function of x and a rational function of t. Because KL(prev1 ||p0) ≤ ϵ, Theorem
D.2 suggests that learning vXt from data should be relatively easier as it is close to vYt .

D.9 PROOF OF THEOREM D.2

Then, the time derivative of the KL-divergence between pt and qt is given by

dKL(pt||qt)
dt

=

∫
Rd

d

dt

(
pt(x) log

(
pt(x)

qt(x)

))
dx

=

∫
Rd

(
ṗt(x) log

(
pt(x)

qt(x)

)
+ pt(x)

d

dt
log(pt(x))− pt(x)

d

dt
log(qt(x))

)
dx

=

∫
Rd

(
ṗt(x) log

(
pt(x)

qt(x)

)
+ ṗt(x)− pt(x)

q̇t(x)

qt(x)

)
dx

We will consider each term separately as T1, T2 and T3. For T1 using the continuity equation, we
have

T1 =

∫
Rd

ṗt(x) log

(
pt(x)

qt(x)

)
dx

= −
∫
Rd

∇ · (vXt (x)pt(x)) log

(
pt(x)

qt(x)

)
dx

=

∫
Rd

pt(x)

〈
vXt (x),∇ log

(
pt(x)

qt(x)

)〉
dx (Integration by parts)

Note that
∫
Rd pt(x)dx = 1 for all t ∈ [0, 1]. Thus for T2, we obtain

T2 =

∫
Rd

ṗt(x)dx =
d

dt

∫
Rd

pt(x)dx =
d

dt
1 = 0.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

For the final term T3, we again use the continuity equation to get

T3 = −
∫
Rd

pt(x)
q̇t(x)

qt(x)
dx

=

∫
Rd

pt(x)
∇ · (vYt qt)

qt(x)
dx

= −
∫
Rd

qt(x)

〈
∇
(
pt(x)

qt(x)

)
, vYt (x)

〉
dx (Integration by parts)

= −
∫
Rd

pt(x)

〈
∇ log

(
pt(x)

qt(x)

)
, vYt (x)

〉
dx.

Combining all the terms above, we get

dKL(pt||qt)
dt

=

∫
Rd

pt(x)

〈
∇ log

(
pt(x)

qt(x)

)
, vXt (x)− vYt (x)

〉
dx. (17)

To obtain an expression for score function in terms of the velocity vector, we use Tweedie’s formula
Efron (2011) which leads us to

E[X − Z|Xt = x] =
1

1− t
E[X −Xt|Xt = x]

=
1

1− t
E[X|Xt = x]− x

1− t

=
1

t(1− t)

(
x+ (1− t)2∇ log pt(x)

)
− x

1− t
(Tweedie’s Formula)

=
x

t
+

1− t

t
∇ log pt(x). (18)

Similarly, we obtain

vYt (x) = E[Y − Z|Yt = x] =
x

t
+

1− t

t
∇ log qt(x). (19)

Plugging in the expressions for the score functions into equation 17, we obtain

dKL(pt||qt)
dt

=

∫
Rd

pt(x)

〈
t

1− t

(
vXt (x)− vYt (x)

)
, vXt (x)− vYt (x)

〉
dx

=
t

1− t

∫
Rd

pt(x)
∥∥vXt (x)− vYt (x)

∥∥2 dx
=⇒ KL(p1||q1)− KL(p0||q0) =

∫ 1

0

t

1− t

∫
Rd

pt(x)
∥∥vXt (x)− vYt (x)

∥∥2 dxdt.
Recall that p0 = q0 = q1 = N (0, I) and p1 = pX . Thus, we get the desired claim

KL(pX ||N (0, I)) =

∫ 1

0

t

1− t

∫
Rd

pt(x)
∥∥vXt (x)− vYt (x)

∥∥2 dxdt.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E TEXT-TO-IMAGE GENERATION

E.1 ABLATIONS

E.1.1 DIFFERENT CHOICES OF K AND M

We report results for various choices of K and M for Top− K of M sampling for GenAI-Bench
in Tables 6, 7 and 8. Note that these models are also trained on GenAI-Bench. We also report the
(mean)score separately for the “Basic" and “Advanced" split in the prompt set. Results for Top− 10
of 100 sampling for T2I-CompBench++ is given in Table 9. Models for Table 9 were trained on
the train split of T2I-CompBench++. All results are consistent with the developed theory: both
GRAFT and P-GRAFT outperform base SDv2 and P-GRAFT, for an appropriate choice of NI always
outperform GRAFT.

Table 6: VQAScore on GenAI-Bench for K = 1 and M = 4

Model Basic Advanced Mean

SD v2 74.83 59.19 66.32
GRAFT 77.33 62.76 69.41

P-GRAFT (0.8N) 76.30 62.18 68.62
P-GRAFT (0.5N) 78.57 63.38 70.32

Table 7: VQAScore on GenAI-Bench for K = 1 and M = 100

Model Basic Advanced Mean

SD v2 74.83 59.19 66.32
GRAFT 79.61 64.26 71.2

P-GRAFT (0.75N) 76.02 62.91 68.89
P-GRAFT (0.5N) 78.68 64.5 70.97

P-GRAFT (0.25N) 80.05 64.85 71.79

Table 8: VQAScore on GenAI-Bench for K = 25 and M = 100

Model Basic Advanced Mean

SD v2 74.83 59.19 66.32
GRAFT 78.01 63.31 70.02

P-GRAFT (0.75N) 77.36 63.33 69.73
P-GRAFT (0.5N) 78.18 64.28 70.62

P-GRAFT (0.25N) 78.77 65.29 71.44

Table 9: VQAScore on T2I-CompBench++ (Val) for K = 10 and M = 100

Model Mean

SD v2 69.76
GRAFT 74.66

P-GRAFT (0.25N) 75.16

E.1.2 CONDITIONAL VARIANCE OF REWARD FOR TEXT-TO-IMAGE GENERATION

While experimental results in Table 2 already demonstrate the bias-variance tradeoff, we provide
further evidence of Lemma 4.3 in the context of text-to-image generation. We evaluate conditional
variance of VQAReward scores of the base SDv2 model in GenAI-Bench. We follow the methodology
as described in Section 4.1 except that we generate 4 images per prompt for a total of 1600 prompts.
The results are given in Table 10. It can be seen that even at NI = 0.75N , the expected conditional

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

variance of the reward is significantly smaller than at tN . This explains why even NI = 0.75N gives
a significant gain over the base model as seen in Table 2.

Table 10: Expected conditional variance for T2I generation

NI E [Var(r(X0)|Xtn)]

N 0.0193
3N/4 0.0080
N/2 0.0039
N/4 0.0019

E.1.3 EFFECT OF LORA RANK

We increase the LoRA rank used for fine-tuning and check the impact on the performance. Table 11
shows that increasing LoRA rank does not seem to affect performance, indicating that the default
LoRA rank is sufficient. Ablations are done on GenAI-Bench with M = 100,K = 1.

Table 11: Effect of LoRa Rank

Model Rank Mean Reward

P-GRAFT (0.5N)

4 70.97
6 70.87
8 70.57
10 70.84

P-GRAFT (0.25N)

4 71.79
6 71.84
8 71.49
10 71.63

E.1.4 REVERSE STITCHING

In P-GRAFT, we always use the fine-tuned model for the first (N −NI) steps and then switch to
the reference model. We experiment with a reverse stitching strategy, where we use the reference
model for the earlier denoising steps and fine-tuned model for the later denoising steps. For switching
timestep NI , we denote this strategy as RP-GRAFT (N+I) - i.e. RP-GRAFT (0.75N) indicates that
the base model will be used from tN to t0.75N , after which the fine-tuned model will be used. From
Table 12, we observe that this strategy is significantly worse when compared to P-GRAFT - this
provides further evidence of the bias-variance tradeoff. Ablations are done with M = 100,K = 1.

Table 12: Ablations on reverse stitching

Model Basic Advanced Mean

SDv2 74.83 59.19 66.32
GRAFT 79.61 64.26 71.20

RP-GRAFT (0.75N) 79.23 62.63 70.20
RP-GRAFT (0.5N) 76.60 60.87 68.05
RP-GRAFT (0.25N) 75.74 59.76 67.05

E.2 IMPLEMENTATION DETAILS

Since we require samples only from the pre-trained model, sampling and training can be done
separately. Therefore, we first perform rejection sampling according to Top− K of M for the chosen
values of K and M . The selected samples are then used as the dataset for training. If not mentioned
explicitly, hyperparameters can be assumed to be the default values for SD 2.0 in the Diffusers library
(von Platen et al., 2022).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Training on GenAI-Bench:

The hyperparameters for sampling and training are given in Table 13 and Table 14 respectively. Note
that one training epoch is defined as one complete pass over the training dataset. The size of the
training dataset depends on the chosen K and M . For instance, K = 10 and M = 100 results in 10
images per-prompt, for a total of 16000 images. One training epoch corresponds to a single pass over
these 16000 images, which with a batch size of 8 corresponds to 2000 iterations per epoch.

Table 13: Sampling hyperparameters for GenAI-Bench

Sampling Steps 50
Scheduler EulerDiscreteScheduler

Guidance Scale 7.5

Table 14: Training hyperparameters for GenAI-Bench

Training Epochs 10
Image Resolution 768× 768

Batch Size 8
Learning Rate 10−4

LR Schedule Constant
LoRA Fine-Tuning True

Training on T2I-CompBench++:

The hyperparameters for sampling and training are given in Table 15 and Table 16 respectively. We
use different sampling schedulers for the two datasets to ensure that our results hold irrespective of
the choice of the scheduler.

Table 15: Sampling hyperparameters for T2I-CompBench++

Sampling Steps 50
Scheduler DDIMScheduler

η (DDIMScheduler specific hyperparameter) 1.0
Guidance Scale 7.5

P-GRAFT Training:

Training and sampling using GRAFT is straightforward since standard training and inference scripts
can be used out-of-the box: the only additional step need is rejection sampling on the generated
samples before training. For P-GRAFT, the following changes are to be made:

• While sampling the training data, the intermediate latents should also be saved along with
the final denoised iamge/latent. Rejection sampling is to be done on these intermediate
latents, but using the rewards corresponding to the final denoised images.

• While training, note that training has to be done by noising the saved intermediate latents.
This needs a re-calibration of the noise schedule, since by default, training assumes that we
start from completely denoised samples. The easiest way to re-calibrate the noise schedule
is by getting a new set of values for the betas parameter, new_betas as follows (where
NI denotes the intermediate step of P-GRAFT):

new_betas[0, NI]← 0

new_betas[NI , N]← betas[NI , N]

After re-calibrating the noise, we use new_betas to get the corresponding new_alphas
and new_alphas_cumprod. It is also necessary to note that while training, the denoiser
has been trained to predict X0 given any noised state Xt and not the saved intermediate

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 16: Training hyperparameters for T2I-CompBench++

Training Epochs 10
Image Resolution 768× 768

Batch Size 8
Learning Rate 10−4

LR Schedule Constant
LoRA Fine-Tuning True

latent XtNI
. Let the corresponding saved completely denoised latent be X0 To ensure that

the training is consistent, we train using the following strategy:

Sample ϵ ∼ N (0, I)

Get Xt ←
(√

new_alphas_cumprod[t]
)
XtNi

+
(√

1− new_alphas_cumprod[t]
)
ϵ

Get ϵ′ ←
Xt −

√
alphas_cumprod[t]X0√

1− alphas_cumprod[t]

Compute Loss using Xt and ϵ′

E.3 POLICY GRADIENT ALGORITHMS

DDPO(Black et al., 2023) is an on-policy policy gradient method for diffusion models that optimizes
a clipped importance-weighted objective over the denoising trajectory. The original paper reports
results on experiments using at most 400 prompts. Both prompt sets we consider are significantly
larger (1600 prompts for GenAI-Bench and 5600 (train) prompts for T2I-CompBench++). This
difference is crucial, since it has been shown in Deng et al. (2024) that scaling DDPO to large
prompt sets result in unstable training and subpar performance. We also observe this phenomenon,
as evidenced by the results in Table 2. As menioned in the main text, we also augment DDPO with
additional elements in an attempt to improve performance. In particular, we study the following
variants:

1. DDPO: Clipped importance-weighted policy gradient.

2. DDPO+KL DDPO augmented with a stepwise KL regularizer to the (frozen) reference
model.

3. DDPO+KL+EMA DDPO with KL regularization as well as a prompt-wise exponential-
moving-average baseline for advantage estimation.

Baseline Implementation: We use the official PyTorch implementation of DDPO1 - we further
adapt the codebase to implement other variants. Fine-tuning is always done on SDv2 using LoRA
on the UNet only with a LoRA rank of 16. For the results reported in Table 2, we retain the
hyperparameters used in Black et al. (2023). In particular, we use a PPO clip range of 10−4, gradient
clipping norm of 1.0, Adam optimizer with β1 = 0.9, β2 = 0.999 and weight decay of 10−4.
Following the original paper, we train with a relatively high learning rate of 3× 10−4 since LoRA
fine-tuning is used. We sample 32 prompts per epoch and train with a batch size of 8, leading to 4
training iterations per epoch. However, note that each training iteration requires gradients across
the whole denoising trajectory - this means that within each training iteration, 50 gradient calls are
needed, corresponding to 50 sampling steps. For GenAI-Bench, training is done for 500 such epochs,
whereas for T2I-Compbench++, training is done for 800 epochs. With this setup, in Tables 17 and 18,
we compare the sampling/compute requirements for DDPO and GRAFT/P-GRAFT. In particular,
note that GRAFT/P-GRAFT already outperforms DDPO with K = 1,M = 4 despite DDPO being
trained on 10× more samples and 50× more gradient calls.

Additional configurations with base hyperparameters: With the base hyperparameters described
above, we also try augmenting DDPO with KL and EMA as described above. The training curves are
given in Figure 3.

1https://github.com/kvablack/ddpo-pytorch

28

https://github.com/kvablack/ddpo-pytorch

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(a) DDPO+KL (b) DDPO+KL+EMA

Figure 3: Training curves for the three policy-gradient baselines on GenAI Bench (1,600 prompts)
with low value of clipping.

(a) DDPO (b) DDPO+KL (c) DDPO+KL+EMA

Figure 4: Training curves for the three policy-gradient baselines on GenAI Bench (1,600 prompts)
with high value of clipping.

DDPO: We also try additional settings for hyperparameters apart from the oens we have reported
so far. Sampling uses DDIM with T ∈ [40, 50] steps and classifier-free guidance g = 5. Optimiza-
tion uses AdamW with learning rates {2×10−5, 10−5}, batch sizes 8/8 (sampling/training),PPO-
style clipping ϵ ∈ {0.1, 0.2}. Following DDPO, we replay the scheduler to compute per-step
log-probabilities on the same trajectories: ℓt = log pθ(xt−1 | xt, c) and ℓoldt = log pθ0(xt−1 | xt, c).
We use the clipped objective:

LDDPO = −E
[
min

(
rtA, clip(rt, 1−ϵ, 1+ϵ)A

)]
, rt = exp

(
ℓt − ℓoldt

)
, (20)

with a centered batchwise advantage A. Specifically, we experiment with higher clipping range,
ϵ∈{0.1, 0.2} and use a whitened batchwise advantage. ℓt, ℓoldt are obtained by replaying the DDIM
scheduler on the same trajectory.

Result. On 1600 prompts, the learning curve exhibits a short initial rise followed by a sharp collapse
after ∼150 steps (Fig. 4). The setting of 1600 heterogenous prompts induces high variance and
many ratios rt saturate at the clipping boundary, producing low-magnitude effective gradients and
the observed drop in reward.

DDPO+KL: We augment equation 20 with a per-step quadratic penalty to the frozen reference:

LDDPO+KL = LDDPO + β
1

T

T∑
t=1

(
ℓt − ℓoldt

)2
, β ∈ {0.02, 0.005}. (21)

Result. The KL term prevents divergence of the policy and eliminates the reward collapse after the
first few steps. Even with this, average reward improvements remain limited. Larger β contracts the
policy towards the reference, whereas smaller β provides insufficient variance control, yielding small
net gains.

DDPO+KL+EMA (prompt-wise baseline): To mitigate cross-prompt bias, we maintain for each
prompt z, an EMA of reward and variance,

b(z)← (1−α)b(z) + α r, v(z)← (1−α)v(z) + α
(
r − b(z)

)2
,

and employ a whitened advantage inside equation 20: Â = r−b(z)√
v(z)+ε

+ η, η ∼ N (0, σ2).

Result. Training is the most stable among the three variants and exhibits smooth reward trajectories
without collapse, yet the absolute improvement in mean reward is modest relative to the base policy.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

PRDP: We also tried implementing PRDP (Deng et al., 2024) using the PRDP loss function provided
in the appendix of the paper since no official code was provided. However, we did not see any signifi-
cant improvement compared to the baseline despite following the algorithm and hyperparameters
closely. One potential reason for this could be that we use LoRA fine-tuning whereas the original
paper uses full fine-tuning. Further, we rely on gradient checkpointing for the implementation as well
since the backpropogation is through the entire sampling trajectory.

Table 17: Comparison of Sampling Cost and Training Cost for GenAI-Bench

Algorithm Samples generated Samples Trained on Gradient Calls

GRAFT(K = 10,M = 100) 160k 16k 20k
GRAFT (K = 1,M = 4) 6.4k 1.6k 2k

DDPO 16k 16k 100k

Table 18: Comparison of Sampling Cost and Training Cost for T2I-CompBench++

Algorithm Samples generated Samples Trained on Gradient Calls

GRAFT (K = 1,M = 4) 22.4k 5.6k 7k
DDPO 25.6k 25.6k 160k

E.4 COMPUTE FLOPS ANALYSIS OF P-GRAFT

We compare the compute cost of P-GRAFT and DDPO in terms of total UNet FLOPs. Let Fu denote
the cost of one UNet forward pass at 64×64 latent resolution. Following Kaplan et al. (2020), we
approximate a backward training step 2 times of a forward step. So if Fu is the forward step compute,
a forward + backward step will incur 3Fu. We assume a batch size of 1 for both algorithms for
standardization.

For P prompts, M samples per prompt, top-K retained, T diffusion steps, Esft epochs. For the
implementation we use the standard stable diffusion training script that only samples a single timestep
t ∈ [0, T] during training:

FP-GRAFT = P M T︸ ︷︷ ︸
sampling

Fu + Esft P K︸ ︷︷ ︸
training

3Fu,

FDDPO = Eddpo Ngen T︸ ︷︷ ︸
trajectories

·(1 + 3)Fu

GenAI-Bench configuration. We use P=1600, M=100, K=10, T=40, Esft=10 for P-GRAFT;
Trajectories generated per epoch Ngen=128, and Number of Epochs Eddpo=50 for DDPO

Table 19: FLOPs in units of forward pass Fu for GenAI-Bench.

Algorithm Sampling Training Total

P-GRAFT (K=10, M=100) 6.40M 0.48M 6.88M
P-GRAFT (K=1, M=4) 0.256M 0.048M 0.304M
DDPO (E=50, Ngen=128) 0.256M 0.768M 1.024M

Discussion. P-GRAFT’s total compute is dominated by sample generation, while backpropagation
is confined to fine-tuning on the selected top-K samples. In contrast, DDPO backpropagates through
all T denoising steps online for every sample, creating a sequential bottleneck. Consequently,
despite DDPO’s nominal FLOPs appearing comparable or lower in our regime, its wall-clock time
is substantially longer due to stepwise backward passes that are less parallelizable. Moreover, as
shown in Table 2, P-GRAFT achieves higher rewards under the reported budgets; and in the compute-
matched case (K=1; Table 6), P-GRAFT still outperforms DDPO, indicating that gains come from
improved optimization and not just additional training compute.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

E.5 QUALITATIVE EXAMPLES

E.5.1 GENAI-BENCH

Prompt: Three flowers in the meadow, with only the red rose blooming; the others are not open.

SDv2 DDPO GRAFT P-GRAFT

Prompt: In the yoga room, all the mats are red.

SDv2 DDPO GRAFT P-GRAFT

Prompt: Three policemen working together to direct traffic at a busy intersection.

SDv2 DDPO GRAFT P-GRAFT

Prompt: There is an apple and two bananas on the table, neither of which is bigger than the apple.

SDv2 DDPO GRAFT P-GRAFT

Figure 5: Qualitative examples on GENAI-BENCH. All results are reported for the same seed across
different algorithms.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

E.5.2 T2I-COMPBENCH++

Prompt: a cubic dice and a cylindrical pencil holder

SDv2 DDPO GRAFT P-GRAFT

Prompt: a bee on the bottom of a airplane

SDv2 DDPO GRAFT P-GRAFT

Prompt: a green bench and a blue bowl

SDv2 DDPO GRAFT P-GRAFT

Prompt: a green acorn and a brown leaf

SDv2 DDPO GRAFT P-GRAFT

Figure 6: Qualitative examples on T2I-COMPBENCH. All results are reported for the same seed
across different algorithms.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

F LAYOUT AND MOLECULE GENERATION

F.1 INTERLEAVED GIBBS DIFFUSION (IGD)

Fine-tuning for both layout generation and molecule generation are done using models pre-trained
using the Interleaved Gibbs Diffusion (IGD) (Anil et al., 2025) framework. IGD performs well
for discrete-continuous generation tasks with strong constraints between variables - and hence is
particularly useful for tasks like layout generation and molecule generation. Further, IGD offers a
generalizable framework which can be used for both tasks - while other discrete-continuous diffusion
frameworks exist, they are specialized to a particular task, often using domain specific adaptations.

On a high-level, IGD interleaves diffusion for discrete and continuous elements using Gibbs-style
noising and denoising. Essentially, discrete elements are noised using flipping and trained using a
binary classification loss. Continuous elements use typical DDPM-style noising and training. While
the exact forward and reverse processes are different from DDPM-style processes which we have
considered in the main text, the key results follow empirically and theoretically.

F.2 LAYOUT GENERATION

Problem Formulation: A layout is defined as a set of N elements {ei}Ni=1. Each element ei is
represented by a discrete category ti ∈ N and a continuous bounding box vector pi ∈ R4. Following
(Anil et al., 2025), we use the parameterization pi = [xi, yi, li, wi]

⊤, where (xi, yi) represents the
upper-left corner of the bounding box, and (li, wi) its length and width, respectively. Unconditional
generation represents generation with no explicit conditioning for the elements, whereas Class-
Conditional generation indicates generations conditioned on element categories.

Implementation Details: For pre-training, we follow the exact strategy used in (Anil et al., 2025).
Fine-tuning is also done with the same hyperparameters used for pre-training. Since the data and
model sizes are significantly smaller compared to images, each round of rejection sampling is done on
32768 samples, of which the top 50% samples are selected. For each sampling round, 10000 training
iterations are performed with a training batch size of 4096. The results reported in Table 3 are for 20
such sampling rounds. FID computation is done by comparing against the test split of PubLayNet.

F.3 MOLECULE GENERATION

Problem Formulation: The task of molecule generation involves synthesizing molecules given a
dataset of molecules. A molecule consists of n atoms denoted by {zi,pi}ni=1, where zi ∈ N is the
atom’s atomic number and pi ∈ R3 is the position. A diffusion model is trained to generate such
molecules. In this work, we take such a pre-trained model, and try to increase the fraction of stable
molecules, as deemed by RDKit.

Implementation Details: For pre-training, we follow the exact strategy used in (Anil et al., 2025).
Fine-tuning is also done with the same hyperparameters used for pre-training. Since the data and
model sizes are significantly smaller compared to images, each round of rejection sampling is done
on 32768 samples. We select all stable molecules, but with the de-duplication strategy described
in Section 3 - we find that this is crucial to maintain diversity of generated molecules. For each
sampling round, 10000 training iterations are performed with a training batch size of 4096. The 1×
in Table 4 corresponds to 10 such sampling rounds - 9× therefore corresponds to 90 sampling rounds.

Uniqueness of Generated Molecules: To demonstrate that the fine-tuned models still generate
diverse molecules, and do not collapse to generating a few stable molecules, we report the uniqueness
metric computed across the generated molecules below. From Table 20, it is clear that the fine-tuned
models still generate diverse samples since the uniqueness of the generated molecules remain close
to the pre-trained model. Uniqueness is as determined by RDKit.

Effect of de-duplication We also try out an ablation where we use GRAFT, but without the de-
duplication - i.e., we train on all stable molecules irrespective of whether they are unique or not. The
results are shown in Figure 7 - without de-duplication, it can be seen that though stability is recovered,

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 20: Uniqueness of generated molecules

Model Mol: Stability Uniqueness

Baseline 90.50±0.15 95.60±0.10

GRAFT 90.76±0.20 96.04±0.46

P-GRAFT(0.5N) 90.46±0.27 95.70±0.28

P-GRAFT(0.25N) 92.61±0.13 95.32±0.07

(a) Molecule Stability (b) Molecule Uniqueness

Figure 7: Molecule Stability and Uniqueness without De-duplication

uniqueness is lost, indicating that the model produces only a small subset of molecules it was initially
able to produce.

Fine-Tuning without Predictor-Corrector: IGD makes use of a version of predictor-corrector
method (Lezama et al., 2022; Zhao et al., 2024; Campbell et al., 2022; Gat et al., 2024) termed
ReDeNoise at inference-time to further improve generations. The results reported so far make use of
this predictor-corrector. While ReDeNoise improves performance significantly, it comes at the cost
of higher inference-time compute. We report results of the baseline and fine-tuned version without
ReDeNoise in Table 21. Both GRAFT and P-GRAFT still show improvement over the baseline, even
without ReDeNoise.

Table 21: Results for Molecule Generation without ReDeNoise

Model Mol: Stability Sampling Steps

Baseline 84.00 -
GRAFT 87.13 9×

P-GRAFT (0.5N) 84.57 1×
P-GRAFT (0.25N) 88.36 1×

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

G INVERSE NOISE CORRECTION

G.1 IMPLEMENTATION DETAILS

The pre-trained models, corresponding to TRAIN_FLOW function in Algorithm 3, are trained using
the NSCNpp architecture and hyperparameters from the official codebase of Song et al. (2020b) with
minor changes which we describe below. The noise corrector model is also trained with the same
architecture except that the number of channels are reduced from the original 128 to 64 channels
- this leads to a reduction in parameter count by ≈ 4×. For the pre-trained model, we train with
num_scales = 2000, positional embeddings and a batch size of 128. For the noise corrector model,
we use the same hyperparameters except for num_scales = 1000. FID with 50000 samples is
used to measure the performance, as is standard in the literature. Note that a separate noise corrector
model is trained for each choice of η in Algorithm 3, i.e., for the results reported in Table 5, separate
noise corrector models are trained for pre-trained steps of 100 and 200.

CelebA-HQ: For the baseline pre-trained flow model, we use the checkpoint after 330k iterations,
since this gave the lowest FID. For noise corrector model training, we use this checkpoint to generate
the inverted noise dataset and train on it for 150k iterations.

LSUN-Church: For the baseline pre-trained flow model, we use the checkpoint after 350k iterations,
since this gave the lowest FID. For noise corrector model training, we use this checkpoint to generate
the inverted noise dataset and train on it for 55k iterations. Note that Backward Euler (Algorithm 6)
suffered from numerical instability, which we hypothesize is due to plain backgrounds, when done on
LSUN-Church. To alleviate this issue, we perturb the images with a small Gaussian noise N (0, σ2I),
with σ = 10−3.

G.2 FLOPS COMPARISON

We present a comparison of the exact FLOPs used for inference:

1 6.5 41

6

8

10

12

14

FLOPs (×1012)

FI
D

Inverse Corrected
Pre-trained

LDM-4

(a) Celeb HQ

1 2 8 9

4

6

8

FLOPs (×1012)

FI
D

Inverse Corrected
Pre-trained

LDM-8

(b) LSUN Church

Figure 8: FLOPs vs FID: The inverse corrected model achieves better FID despite incurring lower
FLOPs. Corresponding LDM models have been added for both datasets for reference.

35

	Introduction
	Preliminaries
	GRAFT: Generalized Rejection sAmpling Fine Tuning
	Partial-GRAFT for Diffusion Models
	A Bias-Variance Tradeoff Justification for P-GRAFT

	Inverse Noise Correction for Flow Models
	Experiments
	Text-to-Image Generation
	Layout and Molecule Generation
	Image Generation with Inverse Noise Correction

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Related Work
	ODE Solver Algorithms
	GRAFT: Algorithm
	Proofs
	Lemma 3.2
	Instantiations of GRAFT
	Top-K out of M sampling
	Preference Rewards

	Lemma 4.2
	Proof of Lemma 4.3
	Proof of Theorem 4.4
	Proof of Lemma 5.1
	Proof of Lemma 5.2
	Theoretical Justification for Inverse Noise Correction
	Proof of Theorem D.2

	Text-to-Image Generation
	Ablations
	Different choices of K and M
	Conditional Variance of Reward for Text-to-Image Generation
	Effect of LoRA Rank
	Reverse Stitching

	Implementation Details
	Policy Gradient Algorithms
	Compute FLOPs Analysis of P-GRAFT
	Qualitative Examples
	GenAI-Bench
	T2I-CompBench++

	Layout and Molecule Generation
	Interleaved Gibbs Diffusion (IGD)
	Layout Generation
	Molecule Generation

	Inverse Noise Correction
	Implementation Details
	FLOPs Comparison

