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Abstract

In the rapidly evolving field of Machine Learning (ML), Federated Learning (FL) emerges as
an innovative approach for training models across distributed devices without centralizing
raw data. However, FL faces significant challenges due to the heterogeneous nature of client
devices, leading to non-IID data distributions and various resource constraints. Moreover,
the inherent bandwidth limitations in decentralized settings necessitate the efficient use of
both network and energy resources. Energy-efficient clients not only reduce the frequency
of battery charging but also minimize data transmissions, thereby resulting in lower overall
energy consumption during model training. This reduction in energy usage not only im-
proves network efficiency but also contributes to environmental sustainability. To address
these challenges, we introduce a novel solution, Pareto Contextual Zooming for Federated
Learning (PCZFL), which treats the client selection problem in FL as a multi-objective ban-
dit problem. Our method focuses on optimizing both global accuracy and energy efficiency
in parallel. By dynamically adjusting client selection based on real-time accuracy and en-
ergy context, the proposed solution ensures effective participation while minimizing energy
consumption. In addition, we provide theoretical analysis on both the regret bound and
time complexity of our method. Extensive experiments demonstrate that PCZFL notice-
ably outperforms current state-of-the-art methods, offering a robust solution that balances
the competing demands of accuracy and energy efficiency in FL deployments.

1 Introduction

The increasing integration of Federated Learning (FL) (McMahan et al., 2016) within the Internet of Things
(IoT) landscape marks a significant shift in decentralized data processing. Developed to tackle the inherent
challenges of traditional centralized learning models, FL enables a multitude of devices, such as IoT sensors
and smartphones, to collaboratively train a global model while keeping all personal data localized. This
method effectively addresses several critical issues (Dubey & Kumar, 2025): it enhances data security by
adhering to privacy regulations that restrict data sharing; it leverages the computational power of massive
scale of heterogeneity devices; it reduces bandwidth usage by minimizing data transmission, requiring only
the exchange of model updates between the client devices and a central server. Such model updates are
conducted over finite communication rounds, where the server aggregates clients’ local model parameters to
obtain an improved global model.

Despite its advantages, FL also faces several challenges that can impact the efficiency and effectiveness of
the training process. One significant challenge in FL is managing the limited bandwidth when the size of the
participating clients is large (Zhang et al., 2023). Strategically selecting a subset of clients to participate in
model training, without compromising overall model performance, is a promising solution to address resource
contention on networks. As such, prioritizing devices based on their connectivity and data capabilities
becomes crucial. Another challenge FL faces is the variability in both the quantity and quality of datasets
across devices, which often leads to significantly different local models (Lu et al., 2024). This disparity
requires a methodical selection process to ensure that the data contributing to model training are relevant
and of high quality.

1



Under review as submission to TMLR

While addressing these challenges, this paper specifically focuses on two fundamental objectives: maximizing
global model performance and minimizing energy consumption in parallel. Maximizing global performance
ensures that the federated model performs well across diverse datasets, which is essential for the practical
applicability of FL (Mora et al., 2024). Minimizing total energy consumption from all clients yields substan-
tial benefits (Tang et al., 2024). Beyond just extending device battery life, choosing clients that consume less
energy to participate in FL also reduce the overall energy consumption, thereby reducing the operational
costs and enhancing the sustainability of network infrastructures.

In this paper, we present a novel context-aware client selection mechanism that employs a multi-objective
optimization framework, significantly enhancing client selection beyond current state-of-the-art methods.
The key contributions are summarized as follows:

Novel Contextual-Aware Multi-Objective Multi-armed Bandit Client Selection Framework:
We introduce Pareto Contextual Zooming for Federated Learning (PCZFL), a novel approach adapted from
foundational concepts in the Multi-Armed Bandit (MAB) literature (Turgay et al., 2018). Our proposed
framework is specifically designed to optimize client selection by balancing multiple dimensions, such as
accuracy and energy efficiency, and with theoretical justifications. In comparative evaluations, PCZFL
demonstrates superior performance over existing state-of-the-art methods across these metrics.

Contextual Information Storage and Utilization: Our framework continuously monitors and adapts
to the dynamic contexts of clients by organizing them into structured groups based on their contextual
similarities. This approach not only preserves historical context but also facilitates the tracking of evolving
patterns in client performance.

Extensive Experimental Studies: We conducted extensive experiments to evaluate both accuracy and
energy outcomes throughout the entire training process under varying levels of uncertainty coefficient. The
experimental results clearly demonstrate that our method significantly surpasses existing state-of-the-art
approaches, achieving superior performance in both accuracy and energy efficiency.

2 Related Work

Effective client selection in FL enhances model convergence, minimizes communication costs, and ensures
diverse data representation. Cho et al. (2022) propose the Power-of-Choice strategy, using local loss as
a contribution score to prioritize clients, enhancing FL speed and accuracy, yet the accuracy of local loss
estimates and their sole focus could limit broader client contributions. Lastly, Balakrishnan et al. (2022)
introduce a strategy to select a diverse subset of clients by maximizing a submodular facility location function
over gradient space, improving convergence, fairness, and efficiency. However, this approach’s pursuit of
diversity could occasionally reduce efficiency and the computational demands for evaluating submodular
functions and updating gradients pose challenges in large-scale systems.

While diverse strategies have been explored for optimizing client selection in FL, another significant line of
research involves the use of Multi-Armed Bandit (MAB) frameworks, which provide a dynamic mechanism
to address the complexities of client variability and the optimization of multiple performance metrics. Lai
et al. (2021) prioritize clients with the most useful data and quickest training capabilities to improve time-to-
accuracy performance significantly and enhance final model accuracy. However, Oort does not account for the
contextual information of each client, which could lead to slower global model convergence and adaptability
issues in dynamic FL environments. Similarly, Ami et al. (2023) employ a bandit-based approach to client
selection, focusing on minimizing latency and improving model generalization. By using a weighted sum
to combine these objectives within the Upper Confidence Bound framework, BSFL effectively balances the
trade-off between quick training iterations and the quality of the global model. While this method integrates
multiple performance aspects, its adaptability to changing network conditions and client states could be
enhanced by incorporating contextual data that reflects real-time performance variations. Taking a different
approach, Jung et al. (2022) introduce a Pareto optimality-based approach to handle the trade-offs between
resource efficiency and model convergence in mobile networks. By prioritizing clients that provide the best
compromise between resource consumption and training effectiveness, the approach aims to enhance both
the speed and the quality of the learning process. However, while this method efficiently balances between
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competing objectives, it does not incorporate real-time contextual data, which could further optimize client
selection based on dynamic network conditions. Ma et al. (2024) introduce a context-aware algorithm that
leverages a combinatorial contextual neural bandit framework that emphasizes the enhanced extraction of
contextual information from clients, evaluated against a universally standardized dataset, in order to produce
a more insightful contextual representation tailored for federated settings. Nunes et al. (2024) address the
dual challenges of time efficiency and energy conservation in client selection processes by introducing two
innovative algorithms: Minimal Makespan and Energy Consumption FL Schedule (MEC) and Minimal
Energy Consumption and Makespan FL Schedule under Time Constraint (ECMTC). While it adds an extra
step to calculate the optimal number of clients for selection, it also introduces significant computational
overhead and it may only be limited to the aspect of time and energy and not adaptive to other potential
dimensions of factors.

3 Background & Problem Formulation

Our framework is based on an FL architecture that involves N clients, where each client i ∈ {1, 2, . . . , N} has
a unique dataset Di , using which the FL system train individual models and synthesizes a comprehensive
global model suitable for tasks. In each iteration t = 1, 2, . . . , T of the FL process, the server sends the global
model parameters wt to a subset of clients selected for training. These clients use their specific dataset Di

to refine the model using methods such as stochastic gradient descent (SGD), resulting in updated model
parameters w

(i)
t+1 which are then sent back to the server and aggregated to form the revised global model

wt+1.

In this work, we formulate the problem of client selection as a contextual MAB problem, where we treat
the server as the gambler, aiming to maximize the utility, while the selection of the clients becomes choos-
ing an arm from the slot machines, and each arm offers a distinct reward (or utility) upon being “pulled".
However, unlike traditional MAB problems, our scenario involves multiple objectives that need simultaneous
optimization. Specifically, the server aims to improve the accuracy of the global model while minimizing the
total accumulated energy consumption throughout the training process. Each client’s potential contribution
to these objectives is only partially known at the start and becomes more apparent through ongoing inter-
actions. By employing a multi-objective MAB-based approach (Turgay et al., 2018), we effectively navigate
the decision-making process in this partially known environment, enabling the server to make more informed
and strategic choices over time.

At the beginning of round t, the system observes a context Xt from a context space X = RN×dr , where
dr is the number of objectives we care about. For instance, dr = 2 when we have accuracy and energy
efficiency as our objectives. The system then selects an arm/client yt from the set of one-hot vectors
Y = {y : y ∈ {0, 1}N ,

∑N
i=1 yi = 1}, indicating which client would be picked for training. It is preferable

for the server to pick multiple clients for stable training in each round, so our algorithm will do so once it
identifies the Pareto front (discussed later). Upon selecting the clients, the system receives a dr-dimensional
reward vector rt = [r1

t , . . . , rdr
t ], where ri

t represents the reward from the i-th objective in round t. Define
µy(X) ∈ Rdr to be the vector of the underlying expected rewards when y is selected given context X.
We assume that the reward vector rt obtained from the selected yt satisfies rt = µyt

(Xt) + κt, with κt

being a dr-dimensional noise vector. This noise process for each objective is assumed to have a marginal
distribution that is conditionally 1-sub-Gaussian: E[eλκi

t | y1:t, X1:t, κ1:t−1] ≤ exp(λ2/2) for any λ ∈ R,
where b1:t = (b1, . . . , bt).

Finally, we assume that the expected reward is Lipschitz w.r.t. the context vector:
Assumption 1. Let i ∈ {1, . . . , dr}, X, X ′ ∈ X and y, y′ ∈ Y. We assume that, for some 0 < C <∞ :∣∣µi

y(X)− µi
y′(X ′)

∣∣ ≤ ∥X⊤y −X ′⊤y′)∥2 ≤ C (1)

This assumption allows us to upper bound the reward distance using the Euclidean distance in Rdr , which
is critical to obtain the regret bound theoretically. In the following, we refer to (Rdr , ∥ · ∥2) the similarity
space.
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In FL, where multiple objectives such as model accuracy and energy efficiency must be balanced across
decentralized devices, Pareto optimality provides a fundamental framework for client selection, indicating
that one cannot improve its performance without compromising another.
Definition 1 (Pareto Optimality). 1. y is weakly dominated by y′ under context X, denoted by µy(X) ⪯

µy′(X), if µi
v(X) ≤ µi

v′(X),∀i ∈ {1, . . . , dr}.
2. y is dominated by y′ under context X, denoted by µy(X) ≺ µy′(X), if it is weakly dominated and ∃i ∈
{1, . . . , dr} for which µi

y(X) < µi
y′(X).

3. y and y′ are incomparable under context X, denoted by µy(X) ∥ µy′(X), if neither dominates the other.
4. y is Pareto optimal under context X if no other y′ dominates it under the same context. The set of Pareto

optimal y for a specific context X forms the Pareto front.

Identifying the Pareto front is crucial for selecting effective clients and maintaining training stability, but
it is also challenging in high-dimensional spaces with multiple objectives. To address this, we rely on the
contextual zooming algorithm (Slivkins, 2011; Turgay et al., 2018), which adaptively “zooming in” the
critical regions in the similarity space. It involves grouping selections based on their contextual similarities,
creating what are referred to as “balls”. By adaptively pooling observations from clients who share similar
contexts, we effectively mitigate the issues associated with sparse data and reduce the computational burden
by decreasing the number of direct comparisons required, as Pareto optimality is applied to these grouped
entities rather than individuals.
Definition 2 (Domain of a Ball). Given a set of balls B in Rdr , the domain of a ball B at time t is defined
as:

domt(B) := B \

 ⋃
B′∈B:r(B′)<r(B)

B′

 (2)

where r(B) indicates the radius of the ball B, and the union encompasses all balls B′ within B that have a
smaller radius than B.

A numerical toy example is presented in Figures 1 and 2, which depict the balls in the similarity space defined
by local model accuracy and energy score (in percentage), the latter being 1 − energy consumption. This
transformation was applied to ensure that higher values on both axes represent better results, aligning the
direction of improvement across dimensions. The domain of each ball is visually delineated with dashed lines
within its boundary. Note that the domain of Ball a excludes Ball d, which will be important to determine
which domain a client falls into later.

Energy consumption computation. In managing the operational efficiency of FL systems, it is critical
to account for energy consumption. Following the existing methodologies (Zhou et al., 2023; Zheng et al.,
2021), we compute the energy consumption for each client i, with the assumption that the energy does not
change throughout the FL training.

4 Pareto Contextual Zooming for FL

We introduce a new client selection mechanism for FL, termed PCZFL, which leverages the concept of
Pareto contextual zooming (Turgay et al., 2018). Our algorithm aims to identify clients proximal to the
Pareto front by adaptively partitioning similarity space. In the subsequent sections, we will begin with a
detailed conceptualization of PCZFL, followed by a numerical example that illustrates the procedure.

4.1 Context Extraction of PCZFL

To enhance the context extraction for each client, we use a validation dataset maintained on the server side.
This dataset is utilized to evaluate the clients’ models, akin to conducting an “interview” for each client.
This approach builds upon an existing work where the concept of an interview dataset was used to extract
context effectively (Ma et al., 2024). Specifically, the server assesses the models against this standardized
dataset, and the resulting accuracy provides critical contextual information for each client. It is important
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to note that the clients do not have access to this dataset, ensuring that the server’s evaluation remains
objective and unbiased.

In our framework, the context for each client i at round t is represented by two key metrics: the accuracy
At,i of the client’s local model on the interview dataset, and the total energy consumption Et,i:

xt,i = [At,i, Et,i] (3)

For clients selected in the current round, their context vectors are freshly computed using Equation 3. Clients
not selected retain their context from previous rounds, specifically from the most recent round in which they
participated. These context vectors then inform the subsequent steps of our algorithm. The complete context
information at round t is then Xt, a matrix stacking xt,i.

4.2 Algorithm Description of PCZFL

Figure 1: Selection process at time t. Let B represent the ball of perspective and B′ denote any ball within the set
of relevance balls, which may include B itself.

Figure 2: Selection process at time t + 1

Algorithm 1 delineates the procedural details of PCZFL. This algorithm adaptively partitions the similarity
space in a non-uniform manner based on the clients chosen in each round of FL. The partitioned space
comprises a set of active balls, denoted by B, which encapsulates the contextual information and rewards
observed in previous rounds. Importantly, the composition of B may vary with each FL round. Each active
ball B ∈ B is characterized by a radius r(B), a center and a domain dom(B) as defined in Definition 2. The
dynamic nature of these balls allows for a flexible and responsive adaptation to the evolving landscape of
client performance and relevance. An illustration of some balls at time t and t + 1 can be found in Figure
1 and 2. Intuitively speaking, these balls group similar clients so that one can infer future contexts from
historical contexts.
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Initially, PCZFL is configured with the total number of training epochs T . An initial ball B0 is created to
cover the entire similarity space, centered at an arbitrarily chosen point. At the beginning of each FL epoch,
PCZFL observes the context Xt and identifies the set of relevant balls containing this context, denoted by

R̂(Xt) := {B ∈ B : X⊤
t y ∈ domt(B) for some y ∈ Y}.

As depicted in Figure 1, Balls a, b, and c are relevant since there is at least a client’s context (C1, C2 or C3)
falls in it, while Ball d is irrelevant in this round since there is no client falls into its domain. It is important
to mention that the composition of relevant balls may shift as the FL rounds progress due to the dynamic
nature of each round’s context. Hence, as illustrated in Figure 2, by time t + 1, Balls c, e, and d become the
new set of relevant balls.

In a dynamic FL environment characterized by heterogeneous and evolving client attributes, employing the
principle of “optimism in the face of uncertainty” is particularly advantageous (Guo et al., 2024). This
principle, akin to assuming the most favorable conditions in MAB problems, inflates the reward estimates,
thereby creating an upper confidence bound (UCB) for the expected reward. In the PCZFL framework,
we leverage the UCB as a crucial component to assess and identify the most promising “balls" within the
similarity space. Additionally, it is essential to compare and adjust the UCB of each ball against others in
the similarity space to ensure the system avoids selecting locally optimal solutions that may not be globally
efficient.

The UCB for each ball B with respective to the i-th objective is calculated as follows:

gi,UCB
B := µ̂i

B + uB + r(B), i ∈ {1, ..., dr} where (4)

• µ̂i
B represents the sample mean reward for ball B.

• uB =
√

2AB/NB denotes the sample uncertainty where AB is (1 + 2 log(2
√

2drT
3
2 /δ)) and NB is the

number of times ball B has been selected. This term quantifies the uncertainty about the mean estimate
with δ ∈ (0, 1) being the confidence level. In theory, AB is specifically chosen to achieve a high probability
regret bound but in the experiment, we treat it as a hyper-parameter. The uncertainly of a ball decreases
as we observe more reward for it.

• r(B) represents the radius of ball B, which encapsulates the contextual uncertainty due to the variability
of contexts within ball B. This radius remains constant for each ball throughout the FL rounds.

The UCB scores are shown in the middle subplots of Figure 1, where each color corresponds to a term in
(4). We can see that Ball c has a smaller radius (green) than Balls a and b. The sample mean reward (blue)
and uncertainty (gray) are calculated according to the historical rewards and counts.

Similar to Turgay et al. (2018), PCZFL determines the Pareto front based on a proxy, which we call the
significance score for each ball B with respective to the i-th objective computed as:

gi
B := r(B) + min

B′∈B

(
gi,UCB

B′ + D(B′, B)
)
, i ∈ {1, ..., dr} (5)

where D(B′, B) represents the distance between the centers of B′, a neighbour ball of B, and B in the
similarity space. This equation not only considers the inherent qualities and uncertainties of ball B but also
relates these qualities to those of other balls, ensuring a comparison that promotes the selection of balls
which are non-dominated on the Pareto front. Theoretically, this significance score offers a way to relate to
the expected reward, leading to a meaningful regret bound (Turgay et al., 2018).

Upon computing the significance scores for the set of relevant balls, PCZFL delineates the Pareto front
within R̂(Xt) by using gB := [g1

B , ..., gdr

B ] as a proxy for expected rewards, defined as follows:

Â∗
t := {B ∈ R̂(Xt) : gB ⊀ gB′ ,∀B′ ∈ R̂(Xt)}

Â∗
t captures the balls that are not dominated by any other balls. To stabilize training, instead of selecting

one single client, here we choose all clients covered by Â∗
t to conduct local training. The local models from

these selected clients are then aggregated to form the global model.
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These calculations are illustrated on the right subplots in Figure 1, where each color represents a term in (5).
It is important to note that the significance score is derived from a minimization. Consequently, the distance
D(B′, B) may be zero if B′ is determined by the argmin as being equal to B. In the left plot, balls outlined
in red are determined to be on the Pareto front, while the contextual points highlighted in yellow indicate
that the corresponding clients (C2 and C3) have been selected for local model upload in FL aggregation.

After observing the rewards from the selected clients, the algorithm proceeds to update estimates and counts
for (4) of all the balls from the Pareto front corresponding to the selected clients. Finally, PCZFL adopts
a contextual zooming strategy for each chosen ball B̂ ∈ B, which dynamically partitions the context space
based on historical context arrivals and corresponding rewards. Specifically, if the sample uncertainty for a
selected ball becomes lower than the ball’s radius in a given FL round, a new ball B′ is created with half the
radius of B and a center corresponding to the contextual point of ball B. Intuitively, since the uncertainty
becomes small enough, one may want to “zoom in” and have a more refined view of this specific area of the
similarity space. Accordingly, the domain space that covers of all the balls are updated. In addition, the
sample mean µ̂j

B̂
and the count of occurrences for B̂ ∈ Â∗

t are also updated. It is important to highlight that
the hyper-parameter AB fulfills dual roles. Firstly, as demonstrated in Equation (4), AB balances between
the sample mean µ̂B and the sample uncertainty uB . Secondly, AB also dictates the rate at which new
balls are generated, as specified in line 12 of Algorithm 1. As in the running example in Figure 2, Ball e
emerges as a new ball and centered around the contextual point of client C2 from the previous round (as in
Figure 1). This generation occurs because the uncertainty of Ball b is low enough to trigger ball generation.
Furthermore, Ball e supersedes Ball b at time t + 1 for the selection of relevant balls because C2’s new
position falls within the domain of Ball e.

Algorithm 1 PCZFL
1: Input: Number of epochs T , initial model w0
2: Output: Final model wT

3: Initialize: A collection set B = {B0} of “active balls” where B0 covers the whole similarity space,
counters NB = 0 and estimates µ̂i

B = 0,∀B ∈ B,∀i ∈ {1, . . . , dr}
4: for each epoch 1 ≤ t ≤ T do
5: Observe Xt

6: R̂(Xt)←{B∈B :X⊤
t y ∈ domt(B) for some y∈Y}

7: Â∗
t ← {B ∈ R̂(Xt) : gB ⊀ gB′ ,∀B′ ∈ R̂(Xt)}

8: Select all clients from
⋃

B∈Â∗
t

domt(B) to conduct local training
9: Aggregate the models to form wt

10: Observe the rewards ri
t, ∀i ∈ {1, . . . , dr}

11: for chosen ball B̂ do
12: if uB̂ ≤ r(B̂) then
13: Create a new ball B′ whose center is its corresponding contextual point and radius is r(B′) =

r(B̂)/2
14: B ← B ∪B′, µ̂i

B′ = Center(B′),∀i, NB′ = 0
15: Update domt(B)
16: end if
17: µ̂i

B̂
← (µ̂i

B̂
NB̂ + ri

t)/(NB̂ + 1), ∀i
18: NB̂ ← NB̂ + 1
19: end for
20: end for

4.3 Theoretical Analysis

Regret Analysis. Since PCZFL extends the PCZ algorithm (Turgay et al., 2018) to the FL client selection
setting, we follow the same regret analysis framework as presented in Turgay et al. (2018). The abstract
distance metric D in Assumption 1 of Turgay et al. (2018) is now replaced by the Euclidean distance due
to our meticulously designed context and arm domains X ,Y (i.e., D

(
(X, y), (X ′, y′)

)
= ∥X⊤y −X ′⊤y′∥2).

These design choices ensure that the Lipschitz condition remains valid throughout the proofs of Turgay
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et al. (2018) up to constant factors. As a result, our algorithm achieves the sub-lienar regret bound given
by Theorem 1 and Corollary 1 of Turgay et al. (2018), which means that with high probability, the Pareto
regret is Õ

(
T (1+dz)/(2+dz)), where dz is the Pareto zooming dimension.

Time Complexity Analysis. The time complexity of the PCZFL algorithm in each round stems from the
computation cost incurred by each client, as well as the overhead associated with the client selection proce-
dure. Assuming each basic operation requires one time unit, the complexity of each individual component
is detailed as follows:

1. Obtaining Contextual Information and True Reward Calculation: Each client derives its accu-
racy context by assessing its locally trained model’s per-class losses on the interview dataset. Let Nsel de-
note the number of selected clients per FL round. This step incurs a time complexity of O

(
Nsel×(M +E)

)
,

where M represents the time units spent evaluating the model’s loss and E represents the time units spent
calculating energy consumption. The same procedure is then used to compute the true reward.

2. Pareto Front Calculation: The computational complexity of this operation increases as the number of
balls increases. According to Kung et al. (1975), this complexity can be expressed as: b× log b if dr ≤ 3
or b× (log b)dr−2 if dr > 3, where b represents the number of balls considered, and dr denotes the number
of dimensions of the objective. Note that since at most one sub-ball can be generated per round, the total
number of balls b is bounded by the number of rounds T .

3. Client Selection: All clients from balls on the Pareto front are included directly in the federated
averaging process. The selection process does not add any computational complexity beyond identifying
the number of balls on the Pareto front, which is Õ(b) assuming that no additional processing is performed
on the client list.

Given that the dimension dr in the work is 2, the total time complexity in one round is

O(Nsel ∗ (M + E) + T log T ).

5 Empirical Evaluation

In this section, we present our experimental results for PCZFL, comparing it against several baseline ap-
proaches. To ensure consistent comparisons across different baselines, the same seeds was used for all
experiments. We averaged the results over three runs to improve the reliability of our findings. We evaluate
our methods using global accuracy and total energy consumption, comparing them to the baselines. For
these metrics, higher global accuracy and lower energy consumption are considered better. During the early
stages of the FL process, it is critical to have sufficient exploration to know enough about the clients. This
initial phase guarantees that the global model incorporates a diverse set of local updates, reflecting a broad
spectrum of the data distribution. Drawing on key findings from foundational research (Yan et al., 2022),
we let all clients to participate in the first 20 epochs, recognizing this period as vital for establishing a robust
model and is consistently applied across all baselines.

5.1 Model Setup

We use PyTorch to implement the local models for the clients. The local models are built as convolutional
neural networks (CNNs) for image data. The detailed local model architecture closely follows the design
specified in Ma et al. (2024). Our experiments were conducted on multiple virtual machines, each configured
with high-performance GPUs, including Nvidia Titan V, RTX 3060, and RTX 4090 models, all operating
under Ubuntu 22.04.

5.2 Data Preparation

In conducting the experiments, we utilize CIFAR-10 (Krizhevsky, 2009), a fundamental dataset in the
machine learning and computer vision research community, known for its extensive use in benchmarking
ML algorithms. It comprises 60,000 32x32 color images, evenly distributed across 10 classes, each of which
containing 6,000 images. We derive the interview dataset by extracting 20% from the test dataset, which
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comprises 10,000 samples, while the training dataset includes 50,000 samples. The remaining 80% of the
test dataset, not used for the interview, serves as the test data.

5.3 Baselines for Comparison

In our study, we benchmark our method against five distinct approaches: AFL (Goetz et al., 2019), DivFL
(Balakrishnan et al., 2022), Power-of-choice (Pow-d) (Cho et al., 2022), LSH and NCCB (Pan et al., 2023).
AFL improves the selection process by introducing a value function that evaluates the utility of each client’s
data in relation to the current model. This assessment adjusts the probability of a client’s inclusion in
training, aiming to reduce the number of iterations required to achieve predefined accuracy levels by 20-70%
without compromising the model’s performance. DivFL enhances the diversity of client selection reducing the
variability introduced by selecting subsets, which could slow the learning trajectory. It employs submodular
maximization of a facility location function defined on the gradient space to achieve this, thereby promoting
faster convergence and fairness among participants. Pow-d strategy selects clients that show higher local
losses, which can speed up the convergence on errors. LSH serves as a simplified version of the NCCB
approach. It replicates NCCB’s method for extracting context by applying Simhash to local training datasets
but omits the clustering algorithm, which is a key component of the full NCCB method. We then extend
the LSH approach to encompass the full NCCB method by implementing k-means clustering with Hamming
distance as the metric to evaluate hash values. To adapt these baselines, we have modified their original
utility scores by replacing them with a weighted average of validated accuracy and energy consumption.
These revised utility scores are then utilized to proceed with client selection.

5.4 Energy Setting

In our setting, it is assumed that each client has a random but fixed level of energy consumption per
round throughout the training process. This setting provides a controlled environment by removing the
fluctuations in energy consumption on each client during each training period, and allows us to isolate the
effects of algorithmic changes without being confounded with fluctuating energy usage.

5.5 Experiments and Result Analysis

In our experiment, we employ a Dirichlet-mapped data distribution to partition client data, renowned for its
effective representation of non-i.i.d. datasets. This method is also ideal for simulating practical environments
in real-world heterogeneous networks (Mayhoub & Shami, 2023).

5.5.1 Behavior of PCZFL on the Similarity Space

In our experiment setup, we use a total of 30 clients. It is important to note that in PCZFL, the number of
clients selected per FL epoch is dynamic and determined by Pareto optimality, resulting in variability in the
selection across different rounds. To align this aspect with all other baseline methods, we set the number
of selected clients to match the average selection rate of PCZFL throughout the training period, which is
approximately 5 clients per FL epoch.

Figure 3 visualizes the evolution of our algorithm in the similarity space at epochs 0, 50 and 200. Each
green point represents a client with two metrics: local model accuracy (evaluated in a held-out validation
dataset) and an energy score, defined as (1− the normalized energy consumption) in the current FL round.
This formulation ensures that both axes follow a consistent interpretation - higher values reflect better
performance. At epoch 0, prior to any training, all client models are randomly initialized, resulting in
validation accuracies clustered around the untrained baseline of approximately 0.1 accuracy. Meanwhile, to
avoid skewed distributions in energy scores, we uniformly sample the energy score from [0.5, 1], producing a
compact cluster of points in the top-left region of the space. The only related ball (blue circle) in the beginning
of training is the uninformed one, including all possible clients in the entire space. As training progresses to
epoch 50, there is a noticeable spread in the client points along the accuracy axis. This spread indicates a
divergence in model performances as individual clients learn from their distinct data distributions. Smaller,
more defined clusters begin to emerge (highlighted by blue balls), encompassing localized groups of similar
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models. The red balls identify clients on the Pareto front, those achieve a good trade-off between accuracy
and energy efficiency. By epoch 200, these clusters become more distinct and compact, some containing
only a single client, indicating highly specialized models. The Pareto front (red circles) now encompasses
diverse trade-offs, reflecting the system’s ability to discover multiple effective strategies for balancing model
performance and energy usage.

@Epoch 0 @Epoch 50 @Epoch 200

Figure 3: Evolution of Balls at Different Epochs

5.5.2 Comparative Analysis against Baselines

Figure 4 demonstrates the global accuracy comparison of PCZFL against the baselines. It is evident that
PCZFL achieves superior global accuracy relative to the other approaches. Conversely, LSH consistently
shows lower global accuracy, not only in comparison to PCZFL but also relative to other baseline models
throughout the training epochs. This lower performance may be attributed to LSH’s inability to capture
sufficiently enriched context information within this experimental setting. However, its successor, NCCB,
demonstrates higher global accuracy with the implementation of its inherited clustering algorithm, indicating
a notable improvement. It is important to mention that the significant drop observed around epoch 20 is
linked to the initial period setting, which mandates the participation of all clients. The sudden reduction in
the number of participating clients from 30 to 5 likely causes a drop in global accuracy, as there is less data
contributing to the overall training process.

Figure 5 presents a comparative analysis of accumulated energy consumption over the training rounds.
As depicted, PCZFL not only outperforms all baseline models in terms of global accuracy but also exhibits
significantly lower energy consumption. NCCB ranks second, offering a commendable balance between global
accuracy and energy efficiency. The remaining four baselines show similar trends, with Pow-d recording the
highest accumulated energy consumption.

Figure 4: Global Accuracy Comparison Figure 5: Accumulated Energy Consumption
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5.5.3 Ablation Study on the Uncertainty Coefficient

The coefficient of sample uncertainty, AB , is a critical hyperparameter in PCZFL, significantly influencing
the exploration aspect of our client selection mechanism and the rate at which new balls are formed as
training progresses (see line 12 of Algorithm 1).

Figures 6 and 7 showcase the global accuracy and accumulated energy consumption for various uncertainty
coefficients. From Figure 6, it’s evident that the variance in global accuracy among different coefficients is
minimal, though smaller coefficients seem to provide a marginal benefit. This slight advantage indicates that
lower uncertainty coefficients contribute positively, albeit subtly, to model performance. Conversely, Figure
7 reveals a more pronounced trend in energy consumption. As the uncertainty coefficient increases, not only
does the energy consumption escalate, but also the variability in accumulated energy usage across distinct
training runs becomes more pronounced. The rationale for these observations is twofold: 1. A smaller
uncertainty coefficient reduces the influence of sample uncertainty in the UCB score computation, favoring
the sample mean and contextual uncertainty. This coefficient choice aligns with our experimental setup,
where accuracy and energy conditions remain stable across FL epochs; 2. Lower coefficients also imply a
quicker rate of creating new balls in the similarity space, facilitating faster convergence. This is particularly
advantageous in our experimental setting, where the dynamics within the accuracy and energy landscape
are relatively stable, thus not necessitating frequent adjustments based on dramatic shifts in the context.

Figure 6: Global Accuracy for different coefficient un-
certainties

Figure 7: Energy Consumption for different coefficient un-
certainties

6 Conclusion

Our PCZFL approach represents a significant advancement in addressing the dual challenges of efficiency
and effectiveness with FL. By striking a balance between model accuracy and energy consumption, PCZFL
not only aligns with the practical demands of modern distributed computing environments but also promotes
sustainability in ML deployments.

For future work, we plan to revise our approach by considering a more flexible arm set Y such as the probabil-
ity simplex so that one can directly map an arm to the combining coefficients of the clients. Furthermore, we
aim to investigate the adaptability of PCZFL in scenarios involving volatile clients (Shi et al., 2022), whose
participation is irregular and unpredictable due to factors like device availability, network connectivity, or
energy constraints. Understanding how PCZFL can maintain its robustness and performance in the face of
such volatility will be crucial to enhance its practicality and reliability in real-world federated networks.
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