
MobileQuant: Mobile-friendly Quantization for On-device Language
Models

Anonymous ACL submission

Abstract

Large language models (LLMs) have revolu-001
tionized language processing, delivering out-002
standing results across multiple applications.003
However, deploying LLMs on edge devices004
poses several challenges with respect to mem-005
ory, energy, and compute costs, limiting their006
widespread use in devices such as mobile007
phones. A promising solution is to reduce the008
number of bits used to represent weights and009
activations. While existing works have found010
partial success at quantizing LLMs to lower011
bitwidths, e.g. 4-bit weights, quantizing ac-012
tivations beyond 16 bits often leads to large013
computational overheads due to poor on-device014
quantization support, or a considerable accu-015
racy drop. Yet, 8-bit activations are very attrac-016
tive for on-device deployment as they would017
enable LLMs to fully exploit mobile-friendly018
hardware, e.g. Neural Processing Units (NPUs).019
In this work, we make a first attempt to facili-020
tate the on-device deployment of LLMs using021
integer-only quantization. We first investigate022
the limitations of existing quantization meth-023
ods for on-device deployment, with a special024
focus on activation quantization. We then ad-025
dress these limitations by introducing a simple026
post-training quantization method, named Mo-027
bileQuant, that extends previous weight equiv-028
alent transformation works by jointly optimiz-029
ing the weight transformation and activation030
range parameters in an end-to-end manner. Mo-031
bileQuant demonstrates superior capabilities032
over existing methods by 1) achieving near-033
lossless quantization on a wide range of LLM034
benchmarks, 2) reducing latency and energy035
consumption by 20%-50% compared to current036
on-device quantization strategies, 3) requiring037
limited compute budget, 4) being compatible038
with mobile-friendly compute units, e.g. NPU.039

1 Introduction040

Large language models (LLMs) have markedly ad-041

vanced language processing capabilities, paving042

the way for expansive applications in artificial in- 043

telligence. However, the deployment of LLMs is 044

costly in terms of memory, computation, and en- 045

ergy, which can be prohibitive on edge devices like 046

mobile phones. A standard approach to facilitate 047

running these models on edge devices is to quantize 048

them, representing weights and activations with 049

fewer bits, thereby mitigating these costs. 050

Existing LLM quantization works can be 051

grouped into two categories: weight-only quanti- 052

zation and weight-activation quantization. Weight- 053

only quantization approaches (Frantar et al., 2023; 054

Lin et al., 2024) convert model weights into low- 055

bitwidth integers, most commonly 4-bit, and main- 056

tain the activations in 16-bit floating-point. Weight- 057

only quantization often preserves accuracy while 058

significantly reducing the model storage footprint. 059

In addition, weight-only quantization can result in 060

minor gains in inference latency due to the reduc- 061

tion in memory access overheads. However, these 062

approaches still suffer from high energy consump- 063

tion and high latency, as computation is performed 064

in floating point. Costly on-the-fly weight dequan- 065

tization is also required during inference. Instead, 066

weight-activation quantization approaches forgo 067

the need for on-the-fly dequantization by quantiz- 068

ing both weights and activations, and potentially 069

utilizing efficient fixed-point operators. Despite its 070

efficiency benefits, quantizing activations typically 071

degrades accuracy, especially in the case where 072

static per-tensor quantization parameters are ap- 073

plied. To counteract this accuracy drop, previous 074

works include quantizing activations for certain ex- 075

pensive operations (Xiao et al., 2023), e.g. matrix 076

multiplication, or employing dynamic per-token 077

quantization (Shao et al., 2024; Liu et al., 2023; 078

Ashkboos et al., 2024; Liu et al., 2024), which is 079

often slow on Graphic Processing Units (GPUs) 080

and, most importantly, lacks hardware support on 081

edge devices. Notably, none of these methods sup- 082

port lossless 8-bit (int8) per-tensor quantization 083

1

for the activations, or fully leverage low-precision084

fixed-point engines, such as the Digital Signal Pro-085

cessor (DSP), or dedicated Neural Processing Unit086

(NPU) (Qualcomm, 2024; Google, 2021), com-087

monly found in mobile devices (Mahurin, 2023).088

Towards on-device quantization for LLMs, we in-089

troduce MobileQuant, a post-training quantization090

approach that not only effectively handles the con-091

ventional accuracy and efficiency challenges of092

quantization but is also seamlessly supported by093

existing mobile hardware. To achieve this, Mobile-094

Quant consists of three simple yet effective method-095

ological extensions, motivated by the shortcomings096

of existing state-of-the-art works when deployed on097

device, and building on top of these works. These098

extensions include: 1) applying weight equivalent099

transformation on all possible layers, 2), learning100

the optimal quantization range for activations, 3)101

jointly optimizing all weight transformation and102

range parameters in an end-to-end manner. As103

such, MobileQuant applies a combination of per-104

tensor and per-channel weight quantization at 4-bit105

or 8-bit and per-tensor activation quantization at106

8-bit or 16-bit, utilizing fixed-point integer repre-107

sentations for all operations.108

The benefits of MobileQuant over previous109

works are multifold. Firstly, MobileQuant enables110

the quantization of the weights to either 4-bit or111

8-bit and the activations to 8-bit integers, except112

for non-linearities like softmax and normalization,113

with minimal impact on performance. Mobile-114

Quant, hence, maximizes the potential of equiva-115

lent transformation-based methods (Nagel et al.,116

2019; Xiao et al., 2023; Lin et al., 2024; Shao117

et al., 2024) that achieve linear-invariant weight118

equalization. Deploying LLMs on device using119

MobileQuant results in a significant reduction in in-120

ference speed and energy usage as the latency and121

energy consumption of multiply-accumulate opera-122

tions correlate directly with the bit-widths. Besides123

substantial gains during inference, we also show124

that MobileQuant’s end-to-end optimization ben-125

efits from more calibration samples and extended126

training samples through our ablation study. In127

contrast, previous works that adopt closed-form128

solutions (Nagel et al., 2019), search-based op-129

timization (Lin et al., 2024), and block-wise er-130

ror minimization (Shao et al., 2024; Liu et al.,131

2024) struggle to scale with the number of sam-132

ples and training steps. Lastly, in comparison with133

other learnable-based quantization methods such134

as Quantization Aware Training (QAT) (Liu et al.,135

2023; Bondarenko et al., 2023), MobileQuant re- 136

tains the model generalizability as the model re- 137

mains mathematically equivalent to its unquantized 138

variant. Our contributions are summarized as fol- 139

lows: 140

1. We introduce a post-training quantization ap- 141

proach for large language models (LLMs) that 142

is supported by current mobile hardware im- 143

plementations (i.e. DSP, NPU), thus being 144

directly deployable on real edge devices. 145

2. Our method improves upon prior works 146

through simple yet effective methodological 147

extensions that enable us to effectively quan- 148

tize most activations to a lower bitwidth (i.e. 149

8-bit) with near-lossless performance. 150

3. We conduct a comprehensive on-device eval- 151

uation of model accuracy, inference latency, 152

and energy consumption. Our results indi- 153

cate that our method reduces both inference 154

latency and energy usage by 20%-50% while 155

still maintaining accuracy compared to mod- 156

els using 16-bit activations. 157

2 Related Work 158

2.1 Post-training Quantization (PTQ) 159

Previous research in post-training quantization for 160

LLMs can be categorized into three main groups: 161

Weight-only Quantization focuses on compress- 162

ing the model weights to reduce storage require- 163

ments and memory transfer overheads. Represen- 164

tative works (Frantar et al., 2023; Lin et al., 2024; 165

Shao et al., 2024; Liu et al., 2024) generally achieve 166

performance comparable to full-precision models 167

and maintain similar inference speeds on GPUs. 168

However, these methods dequantize weights to 16- 169

bit values on the fly, resulting in high-precision 170

floating-point computations and hence leading to 171

high inference latency and energy consumption, 172

particularly on edge devices such as mobile phones. 173

Weight-activation Quantization extends quantiza- 174

tion to both model weights and activations, aiming 175

to further reduce computational overhead. How- 176

ever, as indicated in prior works (Dettmers et al., 177

2022; Xiao et al., 2023), activations have dynamic 178

ranges across different data distributions and are 179

hence more challenging to quantize compared to 180

weights. As a result, quantizing activations to a 181

lower bit-width often results in a significant per- 182

formance decline. Leading solutions either retain 183

2

some compute-intensive matrix multiplications in184

full precision (Dettmers et al., 2022; Xiao et al.,185

2023) or utilize dynamic per-token activation quan-186

tization, which lacks hardware support on mobile187

platforms. In contrast, our approach quantizes all188

linear operations and is compatible with current189

hardware support on edge devices.190

Learning to Round. Notable works like (Nagel191

et al., 2020; Lee et al., 2023) also focus on weight-192

only quantization but introduce techniques for193

learning optimal weight rounding. The key ar-194

gument is that the conventional round-to-nearest195

method is suboptimal, as it does not account for the196

interdependencies among adjacent weights. Our197

work is orthogonal with this research and can hence198

be integrated with these techniques.199

2.2 Quantization Aware Training (QAT)200

Quantization aware training (QAT) involves retrain-201

ing or fine-tuning full-precision models using dif-202

ferentiable quantizers. Recent research (Liu et al.,203

2023; Bondarenko et al., 2023) has shown that204

QAT outperforms PTQ methods, particularly with205

in-domain training data. However, QAT requires206

extensive training, which is often impractical for207

LLMs. Additionally, QAT may be vulnerable to208

domain shifts if the data used for pretraining is un-209

available. In contrast, our approach is zero-shot,210

only requiring a minimal set of calibration samples211

and a limited compute budget. Once trained, our212

model remains mathematically equivalent to the213

original model when unquantized, enhancing its214

adaptability to various downstream tasks.215

3 Preliminaries216

3.1 Mobile-friendly Design Choices217

Quantization methods are differentiated by several218

main design choices, with varying levels of hard-219

ware support. In this section, we first list these220

design choices and then highlight the limitations of221

existing works with respect to these choices.222

Support for mobile-friendly bitwidth: int8-int8223

operations are widely supported and most often224

optimized for, while int4-int16 and int8-int16 are225

typically supported although often slower than int8-226

int8.227

Quantization groups: Quantizing using per-tensor228

and per-channel statistics is widely supported while229

using per-token statistics is not.230

Dynamic vs static: Static quantization statistics231

that do not depend on the input data, typically com-232

puted on a holdout calibration set, are widely sup- 233

ported. Dynamic quantization, on the other hand, 234

requires online calibration from the input data and 235

is not widely supported. 236

State-of-the-art quantization methods demon- 237

strate strong performance on a server use case (i.e. 238

high-end GPU). However, they either utilize on-the- 239

fly dequantization and 16-bit floating point opera- 240

tions (Frantar et al., 2023; Lin et al., 2024), which 241

are computationally inefficient, or dynamic per- 242

token quantization (Xiao et al., 2023; Shao et al., 243

2024), which, as previously mentioned, has no sup- 244

port on edge devices. 245

We, instead, consider design choices that are 246

widely supported and optimized on modern edge 247

devices (e.g. Mobile NPUs), namely i) fixed-point 248

weight and activation quantization with integer 249

arithmetic operations, and ii) per-tensor/channel 250

quantization with static pre-computed ranges. Our 251

objective is hence to improve existing state-of-the- 252

art approaches such as SmoothQuant (Xiao et al., 253

2023) and OmniQuant (Shao et al., 2024) while 254

staying within the limits of hardware support on 255

device. 256

3.2 Weight Equivalent Transformation 257

Prior efforts on LLM quantization (Dettmers et al., 258

2022; Xiao et al., 2023) observed that activations 259

are harder to quantize compared to the model 260

weights due to the outlier channel dimensions 261

with diverse min-max ranges. As an example, 262

given a fully connected layer Y = XW, W ∈ 263

RN×M ,X ∈ RN ,Y ∈ RM , specific channel di- 264

mensions {i : 0 ≤ i < N} in X may have a wide 265

min-max range across different data samples, caus- 266

ing substantial quantization errors. To counteract 267

this, previous methods proposed a weight equiva- 268

lent transform defined by a scaling vector S ∈ RN : 269

Y = XW = (XS−1) · (SW) = X̂Ŵ (1) 270

The goal is to find the optimal scaling vec- 271

tor S such that both X̂ and Ŵ are easier to 272

quantize compared to the original X and W. 273

SmoothQuant (Xiao et al., 2023) reparameterized S 274

as si =
max(|Xi|)α

max(|Wi|)(1−α)), 0 ≤ i < N , and searched 275

for the hyper-parameter α. The obtained S is sim- 276

ilar to the closed-form solution derived in (Nagel 277

et al., 2019). OmniQuant (Shao et al., 2024) ex- 278

tended SmoothQuant (Xiao et al., 2023) by learning 279

S, together with the weight clipping parameters via 280

3

𝑋𝑋1 = 𝑋𝑋0𝐴𝐴
𝑋𝑋1

𝑋𝑋0 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑋𝑋)
𝑋𝑋0 �𝑋𝑋1 = 𝑋𝑋0 (𝐴𝐴𝑺𝑺𝟎𝟎−𝟏𝟏) �𝑋𝑋2 = �𝑋𝑋1(𝑺𝑺𝟎𝟎𝑊𝑊1𝑺𝑺𝟏𝟏−𝟏𝟏) 𝑌𝑌 = �𝑋𝑋2 (𝑺𝑺𝟏𝟏𝑊𝑊2)

�𝑋𝑋1 �𝑋𝑋2

𝑋𝑋0 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑋𝑋)
𝑋𝑋0 𝑋𝑋2 = 𝑋𝑋1𝑊𝑊1 𝑌𝑌 = 𝑋𝑋2𝑊𝑊2

X ∈ ℝ𝑁𝑁, A ∈ ℝ𝑁𝑁, 𝐒𝐒 ∈ ℝ𝑁𝑁, W ∈ ℝ𝑁𝑁×𝑁𝑁Weight Equalization Transformation

𝑋𝑋2

Figure 1: Weight equalization transformation proposed in (Nagel et al., 2019; Xiao et al., 2023; Shao et al.,
2024). In this example, we use three consecutive layers: one normalization layer, e.g. LayerNorm (Ba et al.,
2016)/RMSNorm (Zhang and Sennrich, 2019), and two linear layers, and assume the activations of all layers have
the same hidden dimension N . Here A ∈ RN refers to the affinity transformation of the normalization layer. The
goal of weight transformation is to learn the scaling vector S such that the resulting weight matrices (i.e. S0W1S

−1
1

and S1W2) and activations X̄ , are easier to quantize. S is hence the only learnable parameters. Note that the new
model is mathematically equivalent to the original model when unquantized.

block-wise error minimization. Here, both S and281

S−1 can be fused to the adjacent linear layers, mak-282

ing the transformation mathematically equivalent283

to the original models. Figure 1 provides an illus-284

tration of the transformation among consecutive285

linear layers.286

4 MobileQuant: Towards Mobile-friendly287

Quantization288

4.1 Challenges for Mobile-friendly289

Quantization290

The weight equivalent transformation approaches291

used in SmoothQuant and OmniQuant, as de-292

scribed in Section 3.2, demonstrate strong perfor-293

mance on GPU-like hardware. However, they do294

not work out of the box for edge devices. Specif-295

ically, two challenges remain: i) the weight trans-296

formations cannot propagate beyond non-linear297

operators, e.g. Softmax, RMSNorm (Zhang and298

Sennrich, 2019), LayerNorm (Ba et al., 2016),299

SiLU/GELU (Hendrycks and Gimpel, 2016). To300

counteract this, we apply weight transformations301

on all consecutive layers with linear components,302

e.g. between linear layers or affine transformations303

in the normalization layers, while keeping the non-304

linear activations in 16-bit integers; ii) with the305

weight transformation, the distribution of the ac-306

tivations shifts accordingly. This causes essential307

difficulty for learning-based approaches like Omni-308

Quant (Shao et al., 2024), when the min-max range309

for the activations changes after each training iter-310

ation. OmniQuant (Shao et al., 2024) proposed to311

bypass the issue with dynamic per-token quantiza-312

tion, which has no hardware support on-device.313

4.2 Learning the Per-tensor Range of the 314

Activations 315

Given the distribution of the activations shifts ac- 316

cordingly with the weight transformation, the ideal 317

solution is to re-estimate the activation ranges 318

across the training set after each training iteration. 319

However, doing so is computationally prohibited. 320

Hence, we propose to learn the activation range 321

jointly with the weight transformation. Given an 322

activation tensor X, instead of learning the min 323

and max values fmin(X), fmax(X) directly, we 324

leverage the correlation between fmin, fmax and 325

the scale and offset parameters, α, β ∈ R, for quan- 326

tization. With the targeted bit-width bw, quantizing 327

X can be formulated as: 328

qmax = 2bw − 1, α =
fmax − fmin

qmax
, β =

fmin

α
(2) 329

Xint = min(max(ste(
X

α
)− β, 0), qmax) (3) 330

Here, Xint refers to the quantized tensor of 331

X, ste refers to straight-through estimator. We 332

can therefore learn fmin = αβ and fmax = 333

αqmax +αβ indirectly by learning α and β, which 334

are computationally more stable. 335

4.3 End-to-end Optimization vs Layer-wise 336

Optimization 337

To learn the equivalent transformation, previous 338

works either resort to closed-form solutions (Nagel 339

et al., 2019), search-based methods (Xiao et al., 340

2023; Lin et al., 2024), or layer-wise error mini- 341

mization (Shao et al., 2024). These solutions re- 342

quire limited training budget, but, as shown in Sec- 343

4

WikiText (↓)
TinyLLaMA StableLM-2 Gemma
1.1B 1.6B 2B

FP16 14.88 28.41 17.96

W8A8

SmoothQuant-Static 160.52 565.55 9242.60
SmoothQuant-Edge 22.29 70.21 36.03
OmniQuant-Static 49.09 210.24 7.48E+08
OmniQuant-Edge 16.00 30.72 20.77

W4A8

OmniQuant-Static 98.43 160.02 1.04E+03
OmniQuant-Edge 18.29 37.00 24.69

Table 1: Adapting quantization SOTA to the on-
device setting. OmniQuant and SmoothQuant are not
fully supported for on-device deployment. We intro-
duce mobile-friendly variants. Evaluation: perplexity
on WikiText (Merity et al., 2016). We adopt the “Edge”
variants as strong on-device baselines.

tion. 5.4, lead to sub-optimal performance. Particu-344

larly, given the restricted form of supervision, we345

show that these methods cannot scale with more346

training samples or iterations. We, instead, pro-347

pose to jointly optimize all the training param-348

eters, including the weight equalization parame-349

ters S, weight clipping parameters used in Omni-350

Quant (Shao et al., 2024), and the range parameters351

α, β for all layers in an end-to-end manner. Com-352

pared to previous PTQ approaches, which strug-353

gle with more training samples and epochs, we354

demonstrate that our holistic optimization approach355

consistently improves the performance with larger356

training settings for different LLM architectures.357

Compared to QAT, our method preserves model358

generalizability and does not overfit to specific cal-359

ibration samples, achieving near-lossless zero-shot360

performance.361

5 Experiments362

5.1 Setup363

We perform experiments by training and simulating364

the quantization on GPUs and further evaluate the365

on-device performance on a Samsung Galaxy S24,366

with the Snapdragon 8 Gen 3 HTP as the compute367

unit. All models were trained on two A100 GPUs,368

with a maximum sequence length of 2048.369

Architectures: MobileQuant focuses on370

lightweight LLMs that are suitable to be deployed371

on mobile devices. Hence, we experiment with372

representative pretrained models with different373

architectures: TinyLlaMA-1.1B-Chat-v1.0 (Zhang374

et al., 2024), StableLM-2-1.6B (Bellagente et al.,375

2024), and Gemma-2B (Google, 2024).376

377

Quantization details. MobileQuant use a subset 378

of the Pile (Gao et al., 2020) dataset as the calibra- 379

tion set. We explore two quantization settings: i) 380

W8A8: 8-bit weight quantization with per-tensor 381

statistics except for the last linear projection in each 382

MLP block (e.g. down_proj in LLaMA-like (Tou- 383

vron et al., 2023) models) which uses per-channel 384

statistics, and 8-bit per-tensor quantization for the 385

activations, except those linked to non-linear oper- 386

ators. ii) W4A8: 4-bit per-channel quantization for 387

model weights, and 8-bit per-tensor quantization, 388

likewise excluding non-linear operators. 389

We consider asymmetric quantization for both set- 390

tings, which can utilize the full quantized range. 391

We also provide extra experiments on symmetric 392

per-channel W4A8 quantization in the supplemen- 393

tal material, which is better supported by the cur- 394

rent on-device toolchain we use. 395

Evaluation datasets. We evaluate our quanti- 396

zation approach in a zero-shot setting on repre- 397

sentative tasks from the Language Model Evalu- 398

ation Harness benchmark (Harness) (Gao et al., 399

2023) including WikiText (Merity et al., 2016), 400

AI2 Reasoning Challenge (arc_challenge) (Clark 401

et al., 2018), Hellaswag (Zellers et al., 2019), and 402

MMLU (Hendrycks et al., 2021). 403

5.2 On-device Baselines 404

In this section, we extend state-of-the-art 405

weight-activation quantization methods, 406

SmoothQuant (Xiao et al., 2023) and Omni- 407

Quant (Shao et al., 2024) on device and use 408

them as baselines. As these approaches utilize 409

dynamic per-token quantization for the activation, 410

which is not supported on edge devices, we 411

modify these methods to work on device by 412

using static per-tensor activation quantization, 413

referring to these variants as OmniQuant-Static 414

and SmoothQuant-Static respectively. Note that, 415

for SmoothQuant, we only include evaluations on 416

W8A8, which is the default setting used in the 417

original work. 418

As shown in Table 1, both “Static” variants suffer 419

from large performance degradation when evalu- 420

ated on WikiText (Merity et al., 2016). We fur- 421

ther observe that the performance drop is mainly 422

caused by quantizing the activations for the last 423

linear layer in each MLP head (i.e. down_proj 424

in LLaMA-like (Touvron et al., 2023) models). 425

To further alleviate this issue, we introduce an 426

extra weight equalization transformation between 427

5

#Samples #Epochs
TinyLlaMA-1.1B StableLM-2-1.6B Gemma-2B

Block-wise End-to-end Block-wise End-to-end Block-wise End-to-end

128 20 18.1 19.1 35.2 38.9 23.6 30.5
128 60 17.9 17.2 36.6 34.7 24.2 25.2
128 120 18.2 17.0 36.9 34.0 24.0 24.0
256 60 18.0 16.9 35.2 33.9 24.9 23.6
1024 60 17.9 16.7 35.4 32.9 23.9 22.7

Table 2: End-to-end range optimization: Perplexity on WikiText for OmniQuant-Edge W4A8 setting with
block-wise vs end-to-end range optimization. Best overall performance is in bold, best block-wise performance
is underlined. Compared to block-wise, end-to-end optimization benefits from larger training settings with more
samples/iterations, leading to better performance.

consecutive linear layers in each MLP head (i.e.428

S between the up_proj and down_proj layers429

in TinyLLaMA (Zhang et al., 2024)). The new430

models, which we termed SmoothQuant-Edge and431

OmniQuant-Edge respectively, significantly allevi-432

ate the performance degradation. For the remain-433

der of this section, we use these adapted models as434

strong on-device baselines.435

WikiText (↓)
TinyLLaMA StableLM-2 Gemma
1.1B 1.6B 2B

FP16 14.88 28.41 17.96

W8A8

OmniQuant-Edge 16.00 30.72 20.77
OmniQuant-Edge w ARL 15.77 29.75 20.05

W4A8

OmniQuant-Edge 18.29 37.00 24.69
OmniQuant-Edge w ARL 18.06 35.15 23.56

Table 3: Activation range learning (ARL): Perplexity
on WikiText for OmniQuant-Edge with/without ARL
for W8A8 and W4A8 settings. The performance gains
are larger on models with larger quantization errors.

5.3 Impact of Activation Range Learning436

Table 1 shows that the learning-based approach,437

OmniQuant (Shao et al., 2024), outperforms the438

search-based method, SmoothQuant (Xiao et al.,439

2023), for all models by a notable margin. How-440

ever, learning to transform the weights with fixed441

activation ranges is suboptimal, as the activation442

ranges shift after each training iteration. We fur-443

ther evaluate the impact of incorporating activation444

range learning (ARL), described in Section. 4.2,445

into OmniQuant (Shao et al., 2024). In other words,446

we learn the per-tensor scale and offset parameters,447

together with the weight transformation via block-448

wise error minimization.449

Table 3 demonstrates that activation range learn-450

ing (ARL) consistently improves the performance451

for all LLM models across all settings. The gains452

are larger for quantized models exhibiting a larger453

performance gap compared to the FP16 models. 454

Notably, these models require more training steps 455

to mitigate the quantization errors, leading to larger 456

range shifts for the activation. 457

5.4 Impact of End-to-End Optimization 458

In the previous section, we show that incorporat- 459

ing ARL into our baselines results in consistent 460

improvements. Nonetheless, there is still a notable 461

performance gap between the quantized models 462

and the FP16 models, especially under the W4A8 463

setting. In order to reduce this gap, we attempt to 464

improve the performance by scaling up the perfor- 465

mance, namely increasing the number of calibra- 466

tion samples and the number of training epochs. 467

However, Table 2 shows that the performance of 468

all considered models saturate as we scale the train- 469

ing up using the block-wise approach proposed 470

in OmniQuant (Shao et al., 2024). We therefore 471

conjecture that the optimization is hindered by the 472

block-wise error minimization objective that pro- 473

vides limited global supervision. To verify this, we 474

use our end-to-end training pipeline and jointly op- 475

timize all trainable parameters of the whole model, 476

namely the weight transformation, clipping, and 477

activation range learning parameters. 478

As shown in Table 2, our end-to-end trained 479

models demonstrate consistent improvements with 480

more training samples and iterations, only under- 481

performing the blockwise optimized models in the 482

smallest setting of 128 samples and 20 training 483

epochs when the models were undertrained. We 484

currently train the models with up to 1024 samples 485

for 60 epochs but posit that the models could be 486

further improved with more diverse samples and 487

larger training settings. 488

5.5 Harness Benchmark Results 489

Following previous approaches (Xiao et al., 2023; 490

Shao et al., 2024; Liu et al., 2023), we perform 491

zero-shot evaluations on representative tasks from 492

6

WikiText ↓ ARC-Challenge ↑ HellaSwag ↑ MMLU ↑

W8A8

TinyLlaMA-1.1B

FP16 14.9 33 60 25
SmoothQuant-Edge 22.3 29.7 53.6 24.2
OmniQuant-Edge 16.0 32.5 58.9 25.0
MobileQuant 15.5 (-0.5) 32.6 (+0.1) 59.3 (+0.4) 25.5 (+0.5)

StableLM-2-1.6B

FP16 28.4 39 65 32
SmoothQuant-Edge 70.2 34.5 56.3 25.8
OmniQuant-Edge 30.7 36.4 63.2 26.4
MobileQuant 29.7 (-1.0) 37.5 (+1.1) 63.8 (+0.6) 28.7 (+2.3)

Gemma-2B

FP16 18.0 23 42 28
SmoothQuant-Edge 36.0 23.2 39.1 24.3
OmniQuant-Edge 20.8 21.6 38.8 25.7
MobileQuant 19.2 (-1.6) 21.4 (-1.8) 40.9 (+1.8) 26.8 (+1.1)

W4A8

TinyLlaMA-1.1B
FP16 14.9 33 60 25
OmniQuant-Edge 18.3 31.9 56.6 25.2
MobileQuant 16.7 (-1.6) 30.7 (-1.2) 57.4 (+0.8) 25.7 (+0.5)

StableLM-2-1.6B
FP16 28.4 39 65 32
OmniQuant-Edge 37.0 36.7 60.3 24.9
MobileQuant 32.9 (-4.1) 37.6 (+0.9) 60.9 (+0.6) 27.2 (+2.3)

Gemma-2B
FP16 18.0 23 42 28
OmniQuant-Edge 24.7 21.1 38.4 26.0
MobileQuant 22.7 (-2.0) 23.8 (+2.7) 37.7 (-0.7) 24.4 (-1.6)

Table 4: Comparisons with existing state-of-the-art methods on Harness: Best performance is bold, second-best
underlined. We indicate the gain/drop of our approach vs the next strongest on-device baseline. Our method, Mo-
bileQuant, demonstrates consistent improvements across models, quantization configurations, and tasks, achieving
best performance in most cases.

TinyLlaMA-1.1B WikiText ↓ Lambada ↑

FP16 14.9 82.9
W8A16 15.2 82.9
MobileQuant W8A8 15.6 82.4
full W8A8 8e5 1.3

Table 5: On-device accuracy of the quantized
TinyLLaMA-1.1B-Chat-v1.0 on WikiText and LAM-
BADA. Models run on a Snapdragon 8 Gen 3 HTP
processor.

the Harness benchmark (Gao et al., 2023). Table 4493

shows that, in addition to the WikiText perplexity,494

our method also improves the quantization perfor-495

mance for the common sense reasoning tasks in496

general, without using any in-domain data. The497

improvements are consistent for most benchmarks498

and we believe that the performance of our method499

could be further improved with in-domain data, es-500

pecially for benchmarks with a large domain shift501

relative to our calibration set (i.e. Pile (Gao et al.,502

2020)).503

5.6 On-device Evaluation504

On-device Setup. We further deploy the quan-505

tized LLM model on a mobile device and provide506

evaluations on the accuracy, latency, memory us- 507

age, and power consumption. Specifically, we eval- 508

uate the W8A8 quantized TinyLLaMA-1.1B-Chat- 509

v1.0 (Zhang et al., 2024) model on a Samsung 510

Galaxy S24, using the Snapdragon 8 Gen 3 HTP 511

as the compute unit. We evaluate the model un- 512

der three different quantization settings: 1) W8A16, 513

which keeps activations as 16-bit; Note that the 514

matrix multiplication for the self-attention compu- 515

tation is still between 8-bit and 16-bit unsigned 516

integer activations to avoid potential overflowing, 517

2) full W8A8, keeps all activations in 8-bit, and 4) 518

our proposed MobileQuant for W8A8. 519

On-device Accuracy. We compute the accuracy 520

of the quantized models on two tasks: i) Wiki- 521

Text (Merity et al., 2016) from Harness (Gao et al., 522

2023), as we used in our previous evaluations and 523

ii) LAMBADA (Paperno et al., 2016), which pre- 524

dicts the last token of a sentence given the previ- 525

ous context. Following SmoothQuant (Xiao et al., 526

2023), we use the first 1000 samples from LAM- 527

BADA for this task. Table 5 shows that using 16-bit 528

activations (i.e. W8A16) achieves lossless perfor- 529

mance. However, quantizing all activations into 530

8-bit leads to near-zero performance, highlighting 531

7

Seq. Length Method Avg. lat. (ms) Avg. energy (mJ) Peak mem. (MiB)

Prompt Encoding

256
W8A16 510 1000 1019
MobileQuant (W8A8) 276 490 1011
full W8A8 89 183 1006

Autoregressive Generation

1024
W8A16 54 69 1007
MobileQuant (W8A8) 46 61 1005
full W8A8 42 61 1003

2048
W8A16 119 165 1010
MobileQuant (W8A8) 95 110 1007
full W8A8 94 106 1006

Table 6: On-device execution cost. Measurements of latency, energy and memory are computed under sustained
execution (30 minutes). Values are reported per single forward pass.

the difficulty of activation quantization. Our W8A8532

MobileQuant model achieves near-lossless perfor-533

mance in both tasks, approaching the performance534

of the FP16 model.535

On-device Latency. We provide the on-device536

latency evaluation by running the quantized model537

in two modes: i) prompt encoding with a context538

length of 256, ii) auto-regressive generation with539

a maximum sequence length of 1024 and 2048.540

Table 6 shows that, for prompt encoding, using541

lower-bitwidth activations is critical to reducing542

the inference latency, as some of the operations,543

e.g. self-attention (batched matrix multiplication),544

are compute-intensive. Our model demonstrates545

significant advantages over the full W8A16 solu-546

tion, reducing the latency by 40%. However, there547

is still a large gap between MobileQuant and the548

full W8A8 model, indicating the improvement mar-549

gin. For auto-regressive generation, the latency550

gaps are smaller. We posit that the auto-regressive551

generation is not as compute-bound as prompt en-552

coding, especially for lightweight models, but in-553

stead is partially memory access-bound. Our so-554

lution demonstrates a 20% latency reduction com-555

pared to W8A16, achieving the same latency as556

the full W8A8 model. We include a video demo557

that showcases the auto-regressive generation of558

the quantized model on device in the supplemental559

material. In general, the advantage of low-bitwidth560

activations correlates strongly with the scale of the561

computation. Hence, we aim to extend the latency562

evaluation to larger models in our future research.563

On-device Energy and Memory. Apart from la-564

tency, energy consumption is another important565

aspect of on-device execution, which is often over-566

looked by quantization research. To measure the en-567

ergy requirements of different models, we run them568

on a number of identical mobile phones as used be- 569

fore continuously for 30 minutes. The phones are 570

connected to the testing host machine via WiFi 571

using an internal network without access to the 572

internet, to avoid any undesired network activity. 573

The phones are also not being charged and their 574

screens are turned off. All phones begin each test 575

at the same battery level and the final energy of run- 576

ning a model is calculated as the ratio of the total 577

battery discharged over the duration of a test, mi- 578

nus reference discharge of a phone not running any 579

model, divided by the number of times the model 580

was run. We repeat measurements for different 581

models 3 times, rotating the phones each time, and 582

report the average. We also report peak memory 583

required to run a model as the peak resident mem- 584

ory recorded for the benchmarking process by the 585

Linux Kernel (the so-called Virtual Memory High 586

Water Mark). From Table 6, the energy consump- 587

tion of each model aligns well with the latency. 588

Compared to W8A16, MobileQuant reduces 50% 589

of the power usage for prompt encoding and 35% 590

for autoregressive generation. The peak memory 591

usage for all models are similar as it is dominated 592

by the model weight. 593

6 Conclusion 594

We revisited LLM quantization from the perspec- 595

tive of deployment on edge devices such as mobile 596

phones. We examined the limitations of current 597

state-of-the-art models for on-device deployment 598

and present MobileQuant, the first framework to 599

facilitate compute-, and energy-efficient quantized 600

LLMs with minimal performance loss. Mobile- 601

Quant is drop-in compatible with today’s edge de- 602

vice hardware and low-level runtimes. 603

8

Limitations604

The work explores reducing the overhead of on-605

device deployment for Large Language Models by606

hardware-friendly quantization. Our current study607

focuses on established pretrained LLMs with 1 to 2608

billion parameters, which limits the overall capac-609

ity of the quantized models. Also, the quantized610

models inherit the error of the pretrained models,611

e.g. hallucination, which may be corrected by ex-612

tra guard models (Inan et al., 2023). For now, we613

demonstrate the efficiency and effectiveness of Mo-614

bileQuant on specific high-end mobile phones. We615

plan to extend our research to more LLMs with616

different architectures, model sizes, capacities, as617

well as more edge devices in the future.618

References619

Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-620
ian L. Croci, Bo Li, Martin Jaggi, Dan Alistarh,621
Torsten Hoefler, and James Hensman. 2024. QuaRot:622
Outlier-free 4-bit inference in rotated llms. Preprint,623
arXiv:2404.00456.624

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E.625
Hinton. 2016. Layer normalization. Preprint,626
arXiv:1607.06450.627

Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy628
Phung, Maksym Zhuravinskyi, Reshinth Adithyan,629
James Baicoianu, Ben Brooks, Nathan Cooper,630
Ashish Datta, et al. 2024. Stable LM 2 1.6 b technical631
report. Preprint, arXiv:2402.17834.632

Yelysei Bondarenko, Markus Nagel, and Tijmen633
Blankevoort. 2023. Quantizable transformers: Re-634
moving outliers by helping attention heads do noth-635
ing. In Advances on Neural Information Processing636
Systems.637

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,638
Ashish Sabharwal, Carissa Schoenick, and Oyvind639
Tafjord. 2018. Think you have solved question an-640
swering? try ARC, the AI2 reasoning challenge.641
Preprint, arXiv:1803.05457.642

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke643
Zettlemoyer. 2022. LLM.int8(): 8-bit matrix multi-644
plication for transformers at scale. In Advances on645
Neural Information Processing Systems.646

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and647
Dan Alistarh. 2023. GPTQ: Accurate post-training648
compression for generative pretrained transformers.649
In International Conference on Learning Representa-650
tions.651

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-652
ing, Travis Hoppe, Charles Foster, Jason Phang,653
Horace He, Anish Thite, Noa Nabeshima, Shawn654

Presser, and Connor Leahy. 2020. The Pile: An 655
800GB dataset of diverse text for language modeling. 656
Preprint, arXiv:2101.00027. 657

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 658
Sid Black, Anthony DiPofi, Charles Foster, Laurence 659
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 660
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 661
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 662
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 663
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 664
2023. A framework for few-shot language model 665
evaluation. 666

Google. 2021. Edge tpu. https://cloud.google. 667
com/edge-tpu. 668

Google. 2024. Gemma: Open models based 669
on Gemini research and technology. Preprint, 670
arXiv:2403.08295. 671

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 672
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 673
2021. Measuring massive multitask language un- 674
derstanding. International Conference on Learning 675
Representations. 676

Dan Hendrycks and Kevin Gimpel. 2016. Bridging non- 677
linearities and stochastic regularizers with gaussian 678
error linear units. Preprint, arXiv:1606.08415. 679

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi 680
Rungta, Krithika Iyer, Yuning Mao, Michael 681
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, 682
and Madian Khabsa. 2023. Llama guard: LLM- 683
based input-output safeguard for human-AI conver- 684
sations. Preprint, arXiv:2312.06674. 685

Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and 686
Dongsoo Lee. 2023. FlexRound: Learnable round- 687
ing based on element-wise division for post-training 688
quantization. In International Conference on Ma- 689
chine Learning. 690

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei- 691
Ming Chen, Wei-Chen Wang, Guangxuan Xiao, 692
Xingyu Dang, Chuang Gan, and Song Han. 2024. 693
AWQ: Activation-aware weight quantization for llm 694
compression and acceleration. In Conference on Ma- 695
chine Learning and Systems. 696

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, 697
Jianfei Cai, and Bohan Zhuang. 2024. Qllm: Accu- 698
rate and efficient low-bitwidth quantization for large 699
language models. In The Twelfth International Con- 700
ference on Learning Representations. 701

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie 702
Chang, Pierre Stock, Yashar Mehdad, Yangyang 703
Shi, Raghuraman Krishnamoorthi, and Vikas Chan- 704
dra. 2023. LLM-QAT: Data-free quantization aware 705
training for large language models. arXiv preprint 706
arXiv:2307.06281. 707

E. Mahurin. 2023. Qualocmm® hexagon™ NPU. In 708
IEEE Hot Chips Symposium, pages 1–19. IEEE Com- 709
puter Society. 710

9

https://arxiv.org/abs/2404.00456
https://arxiv.org/abs/2404.00456
https://arxiv.org/abs/2404.00456
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2402.17834
https://arxiv.org/abs/2402.17834
https://arxiv.org/abs/2402.17834
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://cloud.google.com/edge-tpu
https://cloud.google.com/edge-tpu
https://cloud.google.com/edge-tpu
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2312.06674
https://arxiv.org/abs/2312.06674
https://arxiv.org/abs/2312.06674
https://arxiv.org/abs/2312.06674
https://arxiv.org/abs/2312.06674
https://doi.org/10.1109/HCS59251.2023.10254715

Stephen Merity, Caiming Xiong, James Bradbury, and711
Richard Socher. 2016. Pointer sentinel mixture mod-712
els. CoRR, abs/1609.07843.713

Markus Nagel, Rana Ali Amjad, Mart Van Baalen,714
Christos Louizos, and Tijmen Blankevoort. 2020. Up715
or down? Adaptive rounding for post-training quan-716
tization. In International Conference on Machine717
Learning.718

Markus Nagel, Mart van Baalen, Tijmen Blankevoort,719
and Max Welling. 2019. Data-free quantization720
through weight equalization and bias correction. In721
IEEE International Conference on Computer Vision.722

Denis Paperno, Germán Kruszewski, Angeliki Lazari-723
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro724
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel725
Fernández. 2016. The LAMBADA dataset: Word726
prediction requiring a broad discourse context. In727
Annual Meeting of the Association for Computational728
Linguistics.729

Qualcomm. 2024. Unlocking on-device generative730
ai with an npu and heterogeneous comput-731
ing. https://www.qualcomm.com/content/732
dam/qcomm-martech/dm-assets/documents/733
Unlocking-on-device-generative-AI-with-an-NPU-and-heterogeneous-computing.734
pdf.735

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng736
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng737
Gao, Yu Qiao, and Ping Luo. 2024. OmniQuant:738
Omnidirectionally calibrated quantization for large739
language models. In International Conference on740
Learning Representations.741

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier742
Martinet, Marie-Anne Lachaux, Timothée Lacroix,743
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal744
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard745
Grave, and Guillaume Lample. 2023. LLaMA: Open746
and efficient foundation language models. Preprint,747
arXiv:2302.13971.748

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,749
Julien Demouth, and Song Han. 2023. SmoothQuant:750
Accurate and efficient post-training quantization for751
large language models. In International Conference752
on Machine Learning.753

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali754
Farhadi, and Yejin Choi. 2019. HellaSwag: Can755
a machine really finish your sentence? In Annual756
Meeting of the Association for Computational Lin-757
guistics.758

Biao Zhang and Rico Sennrich. 2019. Root mean square759
layer normalization. In Advances on Neural Informa-760
tion Processing Systems.761

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and762
Wei Lu. 2024. TinyLlama: An open-source small763
language model. Preprint, arXiv:2401.02385.764

10

https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/Unlocking-on-device-generative-AI-with-an-NPU-and-heterogeneous-computing.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/Unlocking-on-device-generative-AI-with-an-NPU-and-heterogeneous-computing.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/Unlocking-on-device-generative-AI-with-an-NPU-and-heterogeneous-computing.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/Unlocking-on-device-generative-AI-with-an-NPU-and-heterogeneous-computing.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/Unlocking-on-device-generative-AI-with-an-NPU-and-heterogeneous-computing.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/Unlocking-on-device-generative-AI-with-an-NPU-and-heterogeneous-computing.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/Unlocking-on-device-generative-AI-with-an-NPU-and-heterogeneous-computing.pdf
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385

A Appendix: On-device Experiments for765

W4A8766

In this appendix, we provide further on-device eval-767

uation for W4A8. The current on-device toolchains768

we use support only symmetric per-channel weight769

quantization. This, however, typically leads to per-770

formance degradation as the full quantization range771

may not be fully utilized if the weights are biased772

toward positive or negative. Here we first present773

extra W4A8 results with symmetric per-channel774

quantization. We then include on-device latency775

evaluation showcasing the advantages of using 4-776

bit integer representation for the weights.777

A.1 Symmetric vs Asymmetric W4A8778

Quantization779

We train extra W4A8 models with symmetric per-780

channel quantization. Table 7 presents the perfor-781

mance of symmetric per-channel W4A8 models on782

Wikitext (Gao et al., 2023), confirming the perfor-783

mance degradation compared to the asymmetric784

counterparts.785

WikiText (↓)
TinyLLaMA StableLM-2 Gemma
1.1B 1.6B 2B

FP16 14.88 28.41 17.96

MobileQuant-Asym 16.7 32.9 22.7
MobileQuant-Sym 17.9 35.9 24.6

Table 7: Evaluation of symmetric vs asymmetric W4A8
per-channel quantization on Wikitext (Gao et al., 2023).

Method TinyLlaMA-1.1B Gemma-2B

Prompt Encoding (Seq. Length 256)

W8A16 510 1191
MobileQuant (W8A8) 276 752
full W8A8 89 311

W4A16 320 617
MobileQuant (W4A8) 239 460
full W4A8 89 98

Autoregressive Gen. (Context Length 1024)

W8A16 54 78
MobileQuant (W8A8) 46 60
full W8A8 42 59

W4A16 50 56
MobileQuant (W4A8) 38 40
full W4A8 40 40

Table 8: On-device latency (ms) for TinyLlaMA-
1.1B (Zhang et al., 2024) and Gemma-2B (Google,
2024) across different settings.

A.2 On-device Latency for Symmetric W4A8 786

models 787

We further evaluate the on-device latency of the 788

W4A8 models with symmetric quantization. Ta- 789

ble8 shows that, compared to W8A8, the W4A8 790

models demonstrate improved inference speed for 791

both prompt encoding and autoregressive genera- 792

tion. For larger models like Gemma-2B, the im- 793

provements are more significant, i.e. reducing the 794

latency of prompt encoding and autoregressive gen- 795

eration by 39% and 33%. Here, TinyLLaMA-1.1B 796

achieves the same inference speed, i.e. 40 ms per 797

token (25 tok/s). We conjecture that, in this setting, 798

the autoregressive generation for these models is 799

likely memory-bound. We plan to further investi- 800

gate the performance bottleneck in future research. 801

11

	Introduction
	Related Work
	Post-training Quantization (PTQ)
	Quantization Aware Training (QAT)

	Preliminaries
	Mobile-friendly Design Choices
	Weight Equivalent Transformation

	MobileQuant: Towards Mobile-friendly Quantization
	Challenges for Mobile-friendly Quantization
	Learning the Per-tensor Range of the Activations
	End-to-end Optimization vs Layer-wise Optimization

	Experiments
	Setup
	On-device Baselines
	Impact of Activation Range Learning
	Impact of End-to-End Optimization
	Harness Benchmark Results
	On-device Evaluation

	Conclusion
	Appendix: On-device Experiments for W4A8
	Symmetric vs Asymmetric W4A8 Quantization
	On-device Latency for Symmetric W4A8 models

