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Abstract

Traditional reinforcement learning (RL) assumes the agents make decisions based
on Markov decision processes (MDPs) with one-step transition models. In many
real-world applications, such as energy management and stock investment, agents
can access multi-step predictions of future states, which provide additional ad-
vantages for decision making. However, multi-step predictions are inherently
high-dimensional: naively embedding these predictions into an MDP leads to an
exponential blow-up in state space and the curse of dimensionality. Moreover,
existing RL theory provides few tools to analyze prediction-augmented MDPs, as it
typically works on one-step transition kernels and cannot accommodate multi-step
predictions with errors or partial action-coverage. We address these challenges
with three key innovations: First, we propose the Bayesian value function to char-
acterize the optimal prediction-aware policy tractably. Second, we develop a novel
BellmanJensen Gap analysis on the Bayesian value function, which enables charac-
terizing the value of imperfect predictions. Third, we introduce BOLA (Bayesian
Offline Learning with Online Adaptation), a two-stage model-based RL algorithm
that separates offline Bayesian value learning from lightweight online adaptation
to real-time predictions. We prove that BOLA remains sample-efficient even under
imperfect predictions. We validate our theory and algorithm on synthetic MDPs
and a real-world wind energy storage control problem.

1 Introduction

Reinforcement Learning (RL) [1] has emerged as a powerful framework for sequential decision-
making, achieving remarkable success across diverse domains [2–5]. Classical RL formulates
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decision-making as a Markov Decision Process (MDP), where an agent seeks to maximize expected
cumulative rewards in a stochastic environment. A central premise of this framework is that once
the agent has accurately captured the environment model (e.g., the transition dynamics), it can,
in principle, compute an optimal policy. In model-based RL, this involves explicitly learning the
transition kernel and reward function to solve the optimal policy [6]. Even in model-free RL, agents
implicitly learn the environment through value function or policy learning [7].

However, in many real-world applications, agents can access even richer information: the prediction
of future transition realizations. Rather than relying solely on expected transition dynamics, these
realization-level predictions specify exact future states, which can reduce or even eliminate the
environments inherent stochasticity and enable more effective decision-making. For example, in
financial markets, accurate multi-step price forecasts can substantially improve trading strategies
[8], while in energy systems, reliable predictions of renewable energy generation allow the system
operators to schedule the power generation sources more efficiently [9].

Despite their potential, incorporating multi-step transition predictions into MDPs faces three key
challenges. First, the predictions over a multi-step horizon are inherently high-dimensional: augment-
ing the state with these predictions expands the state space exponentially, making standard solutions
computationally intractable (see Section 3 for more details). Second, even if the augmented MDP
can be solved, existing theory lacks formal tools to quantify the benefits of multi-step transition
predictions, particularly when they are inaccurate or only cover a subset of actions. Third, in the
absence of strong assumptions on function approximation [1, 10–13], RL’s sample complexity scales
at least linearly with the size of the stateaction space [14, 15], and the exponential state expansion
also induces an exponential blow-up in the required samples [16]. Addressing these challenges is
essential for the rigorous integration of transition predictions into RL. See Appendix A for a detailed
literature review.

To overcome these challenges, our contributions can be summarized as follows:

Tractable Optimal Policy for MDPs with Transition Predictions. We introduce a low-dimensional
Bayesian value function that integrates multi-step transition predictions into the value evaluation,
which enables a tractable characterization of the optimal prediction-aware policy.

Characterization of the Value of Imperfect Predictions using Bellman-Jensen Gap. We introduce
the Bellman-Jensen Gap framework, a novel analytical tool that decomposes the advantage of multi-
step predictions into a recursive sum of local Jensen gaps in the Bayesian value function. Building on
this framework, we characterize the value of imperfect predictions and show how it can close the
performance gap to the offline optimal policy in Theorem 4.1.

Prediction-Aware Algorithm with Improved Sample Complexity. We propose BOLA, a two-stage
model-based RL algorithm that combines offline Bayesian value estimation with online integration of
real-time predictions. We prove that BOLA avoids the exponential sample complexity and, given
high-quality predictions, is more sample efficient than classical model-based RL [14, 15]. Our
analysis relies on tailored error-decomposition and telescoping bounds to control multi-step transition
errors.

The remainder of this paper proceeds as follows. Section 2 formalizes the prediction-augmented
MDP framework. Based on this formulation, Section 3 introduces a tractable Bayesian value function
to characterize the optimal policy, circumventing the curse of dimensionality. Subsequently, Section
4 establishes the Bellman-Jensen Gap to theoretically quantify the value of imperfect predictions.
This analysis directly motivates Section 5, where we present the BOLA algorithm with provable
sample efficiency guarantees. Section 6 then provides empirical validation on a wind energy storage
problem. Finally, Section 7 concludes with a discussion of limitations and future work. Complete
proofs and additional details are included in the appendices.

2 Markov Decision Processes with Transition Predictions

In this section, we formally introduce the framework for MDPs augmented with transition predictions.

We begin by introducing the definition of a discounted infinite-horizon MDP, which is specified by
the tuple M = (S,A, P, r, γ). Here, S and A are the finite state and action spaces, respectively; P
is the transition kernel, i.e., P (· | s, a) denotes the distribution of the next state given that action a
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is taken at state s; r : S × A → [0, 1] is the reward function; and γ ∈ (0, 1) is the discount factor.
Since we focus on finite MDPs, assuming bounded rewards is without loss of generality. The model
parameters of the MDP (i.e., the transition kernel P and the reward function r) are unknown to the
agent, but the agent can interact with the environment by observing the current state, selecting actions,
and receiving the resulting next state and reward.

2.1 MDPs with Transition Predictions

We extend the classical MDP framework by incorporating imperfect predictions of future transition
dynamics. Formally, consider an MDP with transition predictions characterized by the tuple Mp =
(S,A, P, r, γ,K,A−, ε), where (K,A−, ε) capture the prediction structure. Specifically, K denotes
the finite prediction horizon; A− ⊆ A specifies the subset of actions for which transition outcomes
can be predicted; and ε quantifies the associated prediction errors.

We first consider an ideal case that the prediction is accurate. At discrete time steps t =
0,K, 2K, . . ., the agent receives a batch of predicted transitions for the next K steps, denoted
as σ∗ = (σ∗

1 , σ
∗
2 , . . . , σ

∗
K), and each σ∗

k is a binary matrix of size |S||A−| × |S|, where each row
corresponds to a (s, a) pair with a ∈ A− and is a one-hot vector indicating the predicted next state.

Given an accurate one-step transition prediction σ∗
k, the conditional transition probabilities depend on

whether the action taken falls within the predictable action subset A−. This subset captures actions
for which reliable prediction models are available, allowing the agent to exploit future information.
In contrast, actions outside A− must rely solely on the underlying transition dynamics P (s′|s, a) of
the environment. Accordingly, the conditional transition model with predictions is:

P (s′ | s, a, σk) =

{
σ∗
k((s, a), s

′), ∀a ∈ A−, s, s′ ∈ S,
P (s′ | s, a), ∀a /∈ A−, s, s′ ∈ S. (1)

To preserve the Markov property of the underlying MDP, we impose two natural conditions on each
onestep prediction matrix σ∗

k within the K-step forecast:

• Independence and stationarity. Each σ∗
k is drawn i.i.d. from a fixed distribution. This ensures

that every predicted transition remains stationary with respect to the transition kernel. Also, the
prediction depends only on the current stateaction pair and not on any prior history.

• Consistency. In expectation, the accurate prediction exactly recovers the true transition kernel:

Eσ∗
k∼Pσ∗

[
σ∗
k((s, a), s

′)
]
= P (s′ | s, a), ∀ k ≤ K, a ∈ A−, s, s′ ∈ S. (2)

However, exact prediction is not always attainable in practice. Thus, we assume the agent only
receives inaccurate predictions denoted as σ = (σ1, σ2, . . . , σK) ∈ QK , where QK denotes the
space of inaccurate prediction σ, and each σk ∈ [0, 1]

|S||A−|×|S| is a stochastic matrix indicating
predicted transition probabilities for the state-action pairs at step k in the future. Each prediction σk

may differ from the true future transition σ∗
k due to prediction error. We model this discrepancy as

σk = σ∗
k + εk, k = 1, . . . ,K, where εk is a random error matrix drawn from a distribution fεk|σ∗

k
.

This formulation captures a broad class of imperfect predictions, allowing us to study how finite-
horizon, partial, and inaccurate forecasts can be leveraged for improved decision-making in MDPs.

Remark: Our model differs fundamentally from prior work such as [17, 18], which treats predictions
as noisy estimates of the transition kernel and aims only to match standard MDP performance.
In contrast, we model ideal predictions as concrete, one-hot realizations with certain consistency
property in Eq. (2), enabling us to leverage realization-level information to surpass classic MDP
performance. Furthermore, unlike these methods, we explicitly address partial action predictability,
an open challenge identified in [17].

2.2 Decision-Making and Optimization Objectives

We adopt a fixed-horizon planning protocol [19], where the agent makes decisions at discrete time
points t = 0,K, 2K, . . . . At each decision point, after observing the current state st and receiving the
prediction batch σ, the agent selects an action sequence a = (a0, . . . , aK−1) ∈ AK according to a
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policy π : S×QK → ∆(AK), where QK denotes the prediction space and ∆(AK) denotes the prob-
ability simplex over K-step action sequences. This setting models how agents dynamically plan deci-
sions over a finite prediction horizon. The agent seeks to maximize the expected cumulative reward
by selecting an optimal policy, defined as π∗ = argmaxπ Eπ [

∑∞
t=0 γ

tr(st, at) | s0 = s,σ0 = σ]
for all s ∈ S,σ ∈ QK .

3 Bayesian Value Function and Prediction-Aware Optimal Policy

In this section, we develop a tractable formulation for decision-making with multi-step imperfect
transition predictions.

Motivation: A straightforward strategy for using predictions is to treat (s,σ) as the new state and
solve a standard MDP over this extended state space. However, this approach quickly becomes
intractable. A K-step prediction σ = (σ1, . . . , σK) consists of K transition matrices, each of size
|S||A| × |S|, resulting in an exponentially large state space size of at least |S|K|S||A|. Moreover,
since σ is typically noisy and continuous, its support can be uncountably infinite. As a result, the
augmented value function must satisfy an infinite-dimensional Bellman equation, making classical
solutions impractical even for K = 1.

In summary, while predictions have the potential to improve performance, naively augmenting the
state space with raw prediction vectors leads to intractable computation. To address this issue, we
next introduce a Bayesian value function that enables a tractable, prediction-aware characterization
of the optimal policy.

3.1 Bayesian Value Function and Optimal Policy Structure

To avoid explicit state augmentation, we instead formulate a Bayesian value function defined over the
original state space. The key idea is to take an expectation over the prediction distribution, thereby
shifting the complexity into an outer integral while preserving a tractable structure. Formally, we
define the Bayesian value function as:

V Bayes,π
K,A−,ε (s) := Eσ

[
Eπ

[∑∞

t=0
γtr(st, at)

∣∣∣ s0 = s,σ0 = σ
]]

. (3)

This Bayesian value function represents the expected cumulative reward when each decision is made
after drawing a K-step prediction σ. We call it Bayesian because we marginalize over the distribution
of σ, thereby accounting for forecast uncertainty in the value estimate. Importantly, the policy can
condition on the realized σ, yet the value function itself remains defined solely over the original
state space. This preserves tractability by avoiding an explicit statespace augmentation. The optimal
Bayesian value is then:

V Bayes,∗
K,A−,ε (s) = max

π
V Bayes,π
K,A−,ε (s), ∀ s ∈ S. (4)

By constructing an auxiliary MDP that incorporates the predictions and linking it with the optimal
Bayesian value function, we derive the corresponding Bellman optimality equation (see Appendix B
for the proof).
Theorem 3.1 (Bellman Optimality Equation for Bayesian Value Function). The optimal Bayesian
value function V Bayes,∗

K,A−,ε is the unique solution to the following fixed-point equation:

V Bayes,∗
K,A−,ε (s) = Eσ

[
max
a

(∑K−1

t=0
γt
(∑

st
P (st|s,a0:t−1,σ1:t)r(st, at)

)
+γK

∑
sK

P (sK |s,a,σ)V Bayes,∗
K,A−,ε (sK)

)]
, ∀ s ∈ S. (5)

Here in Eq. (5), a0:t−1 = (a0, . . . , at−1) and σ1:t = (σ1, . . . , σt) denote the sequences of actions
and predictions, respectively, and P (st|s0,a0:t−1,σ1:t) is the multi-step transition probability from
initial state s0 to state st after t steps under the sequences of actions and predictions a0:t−1 and σ1:t,
which satisfies the following recursive relation:

P (st|s0,a0:t−1,σ1:t) =
∑

st−1∈S
P (st|st−1, at−1, σt)P (st−1|s0,a0:t−2,σ1:t−1),∀ t. (6)
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The recursive form in Eq. (5) captures how predictions guide near-term planning over horizon K,
with long-term value rolled into V Bayes,∗

K,A−,ε (sK). Importantly, the corresponding Bellman operator is a
contraction mapping with parameter γK under the infinity norm, which guarantees the existence and
uniqueness of the solution and enables efficient fixed-point computation.

The optimal Bayesian value function directly yields the optimal policy, as characterized below. The
proof is provided in Appendix C.
Corollary 3.1 (Optimal Policy with Bayesian Value Function and Transition Predictions). The
optimal policy π∗(· | s,σ) with K-step transition predictions σ satisfies:

{a ∈ AK |π∗(a | s,σ) > 0}

⊆ arg max
a∈AK

(
K−1∑
t=0

γt
∑
st

P (st|s,a0:t−1,σ1:t)r(st, at) + γK
∑
sK

P (sK |s,a,σ)V Bayes,∗
K,A−,ε (sK)

)
∀ s ∈ S,σ ∈ QK . (7)

This result shows that the optimal prediction-aware policy can be computed via a finite-horizon
planning over σ, followed by terminal reward using the Bayesian value function V Bayes,∗

K,A−,ε . In effect,
we have reduced the original infinite-horizon problem with high-dimensional predictions to a special
form of fixedhorizon planning [19], which is tractable without explicitly augmenting the state space.

4 Analyzing the Value of Predictions

In this section, we examine how access to transition predictions improves decision-making in MDPs.
Classical MDPs face a structural limitation: their value functions involve deeply nested max-over-E
operations, which force agents to commit to fixed policies based on expected dynamics. We show
that transition predictions alleviate this limitation by enabling a localized reordering of the max and
E operators, allowing actions to adapt to realized transitions. We use a Bellman-Jensen Gap analysis
on the Bayesian value function to characterize the value of predictions.

4.1 Bellman-Jensen Gap

We introduce the Bellman-Jensen Gap by comparing the following value functions.

Bellman Expansion of Optimal Value Function. By recursively applying the Bellman optimality
equation for classical discounted MDPs, the value function can be expressed in the following nested
form [20]:

V ∗
MDP(s0) = max

a0

[
r(s0, a0) + γEσ∗

1

[
max
a1

[
r(s1, a1) + γEσ∗

2

[
max
a2

[r(s2, a2) + · · · ]
]]]]

, (8)

where σ∗
t denotes the transition realization of st at time t. Each expectation Eσ∗

t
is equivalent to

taking the expectation over the next state st ∼ P (· | st−1, at−1), corresponding to the transition
dynamics governed by σ∗

t . This formulation results in a deeply nested max-over-E structure, where
the agent must choose an action that is optimal in expectation, without the ability to anticipate and
adapt to future information.

In contrast, if the agent had access to perfect predictions of future transitions, it could defer action
selection until those transitions are known, which allows a localized reordering of the max and E
operators. We use a one-step prediction case to illustrate it:

Operator Reordering with One-Step Prediction. Recall the Bayesian value function with K = 1,
which can be expanded into the following recursive form:

V Bayes,∗
K=1,A,0(s0)=Eσ∗

1

[
max
a0

[
r(s0, a0)+γEσ∗

2

[
max
a1

[r(s1, a1)+· · · ]
]]]

. (9)

Observe that, with one-step prediction, each Eσ∗
t

operator is moved to the outer side of the neigh-
borhood maxat−1

operator. Intuitively, it provides the agent the ability to make decisions according
to the transition prediction σ∗

t at time t. Mathematically, this localized reordering creates a local
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Jensen gap by exploiting Jensen’s inequality due to Eσ[maxa f(s, a;σ)] ≥ maxa Eσ[f(s, a;σ)],
where discrete maximization is a convex function, and f(s, a;σ) denotes the expected return under
state s with action a and prediction σ. Since the Bayesian value function contains infinitely many
such operator reordering in a recursive manner, we term it as the Bellman-Jensen Gap.

Maximal Bellman-Jensen Gap with Infinite-Step Prediction. Such Bellman-Jensen Gaps reach the
maximum when the prediction horizon is infinite. Formally, let V Bayes,∗

off ∈ R|S| denote the offline
optimal Bayesian value function, where the agent has exact knowledge of all future transitions:

V Bayes,∗
off (s0) =Eσ∗

1
Eσ∗

2
· · ·
[
max
a0

[
r(s0, a0)+γmax

a1

[
r(s1, a1)+γmax

a2

[r(s2, a2)+· · · ]
]]]

= lim
k→∞

Eσ∗
1:k

[
max
a0:k−1

[∑k−1

t=0
γtr(st, at)

]]
, (10)

where σ∗
1:k is the sequence of realized transition kernels and a0:k−1 is the action sequence over

horizon k. The existence of the limit is shown in Appendix D.

Observe that, with infinitely long accurate prediction, all Eσ∗ operators appear outside of any maxa
operator, which indicates that the agent can make the decision with full information of all future
information, yielding the maximal Bellman-Jensen Gap defined as follows:
Definition 4.1 (Maximal Bellman-Jensen Gap). For any state s ∈ S , we define the Maximal Bellman-
Jensen Gap as ∆(s) := V Bayes,∗

off (s)− V ∗
MDP(s), which quantifies the greatest possible performance

gain from knowing exact future transitions.

The maximal Bellman-Jensen Gap characterizes the fundamental benefit that predictive information
can offer in MDPs. It upper-bounds the value of any prediction by capturing the intrinsic benefits
of operator reordering in the value function. Note that, this analytical framework naturally extends
to other types of predictions. For example, by redefining σ to represent the prediction on reward
realizations, the same Bellman-Jensen Gap analysis applies.

4.2 Closing the BellmanJensen Gap with Imperfect Predictions

We now leverage the BellmanJensen gap framework to analyze how imperfect predictions narrow the
performance gap to the offline oracle. In particular, we derive explicit bounds on the suboptimality of
a policy that uses finite-horizon, inaccurate, and partial action-coverage predictions.

The following theorem provides a finite-horizon performance bound that decomposes the suboptimal-
ity into three interpretable components, each capturing a distinct structural limitation. The proof is
provided in Appendix E.
Theorem 4.1 (Bellman-Jensen Performance Bound). Given any prediction with horizon K ≥ 1,
predictable action set A− ⊆ A and prediction errors ε, the performance gap between the prediction-
aware policy and the offline optimal policy satisfies:

max
s∈S

(
V Bayes,∗
off (s)− V Bayes,∗

K,A−,ε (s)
)
≤

C1γ
K
√

K log |A|
(1− γ)

6
5 (1− γ2K)︸ ︷︷ ︸

A1:loss due to finite prediction window

+

K∑
j=1

γj

(1− γ)(1− γK)
εj︸ ︷︷ ︸

A2:loss due to prediction error

+ C2

∑∞

t=1
γt
√

log(|A|t+1 − |A−|t+1 + 1)θ2max︸ ︷︷ ︸
A3:loss due to partial action predictability

,

where C1 and C2 are absolute constants, εj denotes the prediction error at step j, defined as the
Wasserstein-1 distance between the predicted and true transition distributions; parameter θ2max =
maxs,a0:t,t σ

2(r(st, at|s0 = s,a0:t)) captures the variability of the reward, and σ(·) denotes the
sub-Gaussian parameter.

Interpretation. Theorem 4.1 shows that the performance gap decomposes into three terms. The first
term A1 quantifies the performance loss due to the finite prediction horizon K. The factor γK reflects
that the benefit of predictions decreases exponentially with the horizon length, implying that even
short-term predictions can capture significant potential improvement. When K −→ ∞, this loss term
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diminishes. The (1− γ)6/5 exponent arises from a refined dyadic horizon decomposition argument
controlling the dependence on the discount factor (see Lemmas E.2 and E.3 for details). The term√
log |A| shows the number of actions slightly increases this gap, as a larger action space makes it

statistically harder to identify the optimal action under uncertainty.

The second term A2 captures the impact of prediction errors and disappears as the predicted transitions
become accurate. Notably, it highlights that errors in subsequent steps have progressively smaller
effects on overall performance, aligning with practical intuition. When εj = ε for all j, we have
A2 = O(ε/(1− γ)2), which is independent of K, indicating that this term is primarily governed by
the average prediction error, rather than the length of the prediction horizon.

The third term A3 arises from partial action predictability and vanishes when all actions are pre-
dictable (i.e., A− = A). It is scaled by

√
θ2max, indicating that greater reward uncertainty am-

plifies the Bellman-Jensen Gap. When A− = ∅, this term will not blow up and simplifies to
O(
√
log |A|θ2max(1− γ)−

3
2 ).

Corollary 4.1. Given any prediction horizon K ≥ 1, if the predictions are perfectly accurate with
εj = 0 for all 1 ≤ j ≤ K, and all actions are predictable with A− = A, then the maximal
performance gap satisfies maxs∈S(V

Bayes,∗
off (s)− V Bayes,∗

K,A−,ε (s)) ≤ O(γK
√
K).

This result demonstrates that sufficiently accurate predictive informationeven over a finite horizoncan
dramatically reduce the fundamental Bellman-Jensen Gap, bringing the agents performance signif-
icantly closer to the offline oracle benchmark. It characterizes the theoretical upper bound on the
improvement that predictive signals can offer, revealing an exponential decay in the gap with horizon
length K, up to a sublinear

√
K correction term.

5 BOLA: Bayesian Offline Learning with Online Adaptation

Building on the theoretical understanding of the prediction-aware policy, in this section, we present a
practical model-based algorithm for implementing the prediction-aware optimal policy.

The key insight from Theorem 3.1 and Corollary 3.1 is that optimal decisions can be achieved by
combining short-horizon planning with a precomputed Bayesian value as the terminal function, which
can effectively leverage predictive information without explicitly expanding the state space. This
motivates the design of BOLA, a two-stage approach that cleanly separates offline learning from
online adaptation to predictions.

5.1 BOLA Algorithm Overview

We propose BOLA (Bayesian Offline Learning with Online Adaptation), a model-based reinforcement
learning algorithm designed to exploit transition predictions for efficient decision-making. BOLA
decomposes learning and planning into two stages: (1) Offline Stage: Estimate the Bayesian value
function V Bayes,∗

K,A−,ε (s) from samples by solving the Bellman equation in Eq. (5), and (2) Online
Stage: At each decision point, observe real-time transition predictions σ and compute the optimal
short-horizon action sequence using Eq. (7).

Offline Bayesian Value Function Learning. To implement the prediction-aware Bellman operator
from Eq. (5), we adopt a model-based learning approach inspired by classical MDPs. Specifically,
we estimate the key quantities required to compute the Bayesian value function V Bayes,∗

K,A−,ε (s) via value
iteration. These include: (1) the reward function r(s, a), (2) the distribution over K-step transition
predictions P (σ), and (3) the multi-step transition kernel P (s′ | s,a,σ).
Importantly, the recursive structure in Eq. (6) allows us to avoid estimating the full K-step transition
model directly. Instead, it suffices to estimate one-step transition probabilities P (s′ | s, a, σ) for
predictable actions a ∈ A−, and standard MDP transitions P (s′ | s, a) for actions a /∈ A−.

We assume access to a generative model [21, 22]. For each state-action pair (s, a) with a /∈ A−, the
generative model allows us to generate N1 independent next-state samples, denoted by {si(s,a)}

N1
i=1.
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For estimating the prediction distribution, we assume there exists a prediction oracle defined as
follows:
Assumption 5.1 (Prediction Oracle). The agent has access to a prediction oracle Opred that, upon
query, returns independent samples σi ∼ P (σ), where σi = (σi

1, . . . , σ
i
K) represents a K-step

transition prediction vector drawn from the underlying distribution P (σ).

Under this assumption, we draw N2 independent prediction samples from the oracle, denoted by
{σi = (σi

1, . . . , σ
i
K)}N2

i=1, which are then used to estimate P (σ) via empirical frequencies.

Using these samples, we estimate the relevant probabilities by empirical frequency:

P̂ (s′ | s, a) = 1

N1

∑N1

i=1
1(si(s,a) = s′), ∀a ∈ A \ A−, (11)

P̂ (σ) =
1

N2

∑N2

i=1
1(σi = σ), ∀σ ∈ QK . (12)

The reward function r(s, a) is obtained by sampling from each state-action pair (s, a) once.

With all model components estimated, we apply value iteration on the prediction-augmented Bellman
operator in Eq. (5) to compute an approximate Bayesian value function V̂ Bayes,∗

K,A−,ε . The contraction
property of the Bellman operator ensures that this fixed-point iteration converges.

Online Adaptation. At each decision point, BOLA receives a K-step transition prediction vector σ =
(σ1, . . . , σK). Given the current state s, BOLA first evaluates the multi-step transition probabilities
by incorporating the prediction σ, and then solves the optimal action sequence through Eq. (7) using
the precomputed Bayesian value function V̂ Bayes,∗

K,A−,ε .

This scheme enables real-time adaptation without solving high-dimensional value functions online. By
combining offline long-term terminal value estimation with short-horizon prediction-aware planning
[23], BOLA avoids state space augmentation and maintains computational tractability. Algorithm 1
summarizes the BOLA procedure.

Algorithm 1 BOLA: Bayesian Offline Learning with Online Adaptation

1: Sample N1 times from each (s, a) ∈ S ×A \ A− and get samples {si(s,a)}
N1
i=1;

2: Sample N2 empirical predictions {σi}N2
i=1 from the prediction oracle Opred;

3: Estimate transition model P̂ (s′ | s, a) and distribution P̂ (σ) according to Eq. (11)-(12);
4: Solve the estimated Bayesian value function V̂ Bayes,∗

K,A−,ε using value iteration;
5: for each decision timestep do
6: Observe the current state s and the transition prediction σ;
7: for t = 1 to K do
8: Compute the transition probabilities P (st | s,a0:t−1,σ1:t) using Eq. (6);
9: end for

10: Determine the optimal policy π∗(· | s,σ) by solving Eq. (7);
11: end for

5.2 Sample Complexity Guarantees

This section presents the sample complexity guarantees of Algorithm 1, more specifically, the learning
of the Bayesian value function. The proof of the following theorem is presented in Appendix F.
Theorem 5.1. For any given MDP, any confidence level δ ∈ (0, 1), any desired accuracy level
ε ∈ (0, 1

1−γ ), a tradeoff parameter α ∈ (0, 1), and prediction horizon K ≥ 1, let D1 be the number
of samples drawn from the generative model, and D2 be the number of samples drawn from the
prediction oracle Opred. If

D1 =
C1|S|(|A| − |A−|) log (K|S|(|A| − |A−|)/δ)

(1− γ)4(1− α)2ε2
+ |S||A|,

D2 =
C2 log (4|S|/δ)

(1− γ)2(1− γK)2α2ε2
,
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where C1, C2 are absolute constants, then with probability at least 1− δ, the learned Bayesian value
function satisfies

max
s

|V̂ Bayes,∗
K,A−,ε (s)− V Bayes,∗

K,A−,ε (s)| ≤ ε. (13)

Theorem 5.1 quantifies the sample complexity of BOLA, explicitly capturing the interplay between
environment sampling and predictive adaptation. In particular, BOLAs total sample requirements
decompose into two distinct regimes:

Environmentinteraction samples D1. The first requirement D1, arising from direct environment
interactions, scales with |A| − |A−|, the number of unpredictable actions. This leads to a sample
complexity which is strictly smaller than the classical dependence of O(|S||A|ε−2) [14, 24], since
increased predictability reduces the environment sampling burden. In the extreme case where all
actions in the prediction horizon are predictable (A− = A), the dominant term of D1 vanishes
altogether (except for the reward function learning cost |S||A|), as the predictive model fully specifies
the transition dynamics within the prediction horizon.

Prediction Oracle Samples D2. The second term D2 represents the samples required from the
predictive model, which exhibits a distinct scaling behavior: as the prediction horizon K grows, the
required number of samples decreases due to the stronger contraction factor γK in the Bayesian
Bellman equation. When K ≥ O(log( 1γ )), this term improves to (1− γ)−2, which is lower than that
in model-based RL [15]. This highlights that when predictions are both comprehensive and with long
enough horizon, BOLA can achieve lower sample complexity than classical MDP approaches.

Trade-off between the Two Sample Sources. Together, these two sampling regimes reveal a trade-
off parameterized by α: increasing α (more environment interaction) raises the environment sample
requirement D1 to O((1 − α)−2), while reducing the required number of samples D2 from the
prediction oracle. One can choose a reasonable α to trade off the sample requirements.

6 Numerical Studies

Although our emphasis is on theory and finitesample guarantees, we provide a small-scale empirical
case study to demonstrate practical relevance. Specifically, we evaluate BOLA on a windfarm storage
control task, where the operator minimizes energy imbalance penalties by charging or discharging a
battery based on wind mismatch, price signals, and current state of charge (see Figure 1 for the setup,
Appendix G for more details, and Appendix H for additional experiments).

Specifically, Figure 2(a) illustrates the cumulative cost reduction achieved by BOLA under different
prediction horizons, compared against a baseline MDP policy without prediction. As the prediction
horizon K increases from 1 to 4, the cost reduction consistently improves, confirming that longer
foresight enables the agent to better anticipate upcoming mismatches and price fluctuations. Notably,
the largest marginal improvement occurs at K = 1, indicating that even a short look-ahead can
significantly enhance decision-making performance. Figure 2(b) illustrates the robustness of BOLA
under increasing levels of relative prediction error. As the prediction error increases, the performance
of all methods declines approximately linearly, which aligns with our theoretical analysis. Notably,
longer prediction horizons yield greater cost savings under perfect or low-noise forecasts but also
exhibit greater sensitivity to prediction errors. In contrast, shorter horizons are more stable and

Power Supply
!𝑤! 𝑤! − 𝑣!"

𝑣!#

𝑣!"

Energy Storage System

Power Grid Wind Farm

Required
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Figure 1: Wind Farm Storage Control
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Figure 2: Storage Control Performance. (a) Cumulative cost reduction for different prediction
horizons: longer prediction horizon yields greater savings over the no-prediction baseline. (b)
Robustness to prediction noise: cost savings decline roughly linearly with error, yet all predictive
policies outperform the baseline even at 30% noise.

degrade more gradually as noise increases. Nevertheless, all prediction-based policies consistently
outperform the no-prediction baseline, even when the relative error reaches 30%.

7 Conclusion

In this work, we study the theoretical value of transition predictions in sequential decision-making.
We propose a prediction-augmented MDP framework, characterize the benefit of predictions via the
Bellman-Jensen Gap, and develop a tractable model-based RL algorithm with sample complexity
guarantees. A natural future direction is to extend our results to the model-free setting.

Limitations and Future Directions. In prediction-augmented MDP, we consider fixed-horizon
planning where the agent receives a K-step prediction and plans a K-step sequence of actions. For
sequential decision-making problems with predictions, another popular framework is called the
receding-horizon control, where the agent receives a K-step prediction but only plans a single-step
action instead of a sequence of K actions. Intuitively, using receding-horizon control could be
more beneficial to the agent than fixed-horizon planning, since the agent does not have to commit
to a sequence of actions and can adaptively choose actions based on the new realizations of the
states and the predictions. Further investigating the advantage of prediction-augmented MDPs with
receding-horizon control is among the future directions of this work. On the theoretical side, we have
established the first upper bounds on BOLAs sample complexity, but it remains open whether these
can be tightened or matched by lower bounds. In particular, refined variance-based techniques (e.g.,
refined concentration for the multi-step Bayesian operator) may yield stronger guarantees.
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• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
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impacts of the work performed?
Answer: [Yes]
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• The answer NA means that there is no societal impact of the work performed.
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misuse of the technology.
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(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: This work does not involve releasing pretrained models or sensitive datasets, and
thus no additional safeguards for high-risk model or data release are applicable.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
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Answer: [Yes]
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• The authors should cite the original paper that produced the code package or dataset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of service of
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some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
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13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provided the code and data.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with human
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labor should be paid at least the minimum wage in the country of the data collector.
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Answer: [NA]
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• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
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• We recognize that the procedures for this may vary significantly between institutions and
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Appendices

A Related Literature

Classical Model-Based RL and Sample Complexity. Our work builds on the modelbased RL
paradigm, which separates learning into model estimation and policy planning. Classical model-
based RL for finite MDPs has been extensively studied and achieves minimax-optimal sample
complexity guarantees [14, 25–29]. Recent extensions of sample complexity analyses cover broader
classes of problems, including average-reward MDPs [30], constrained MDPs [31], and partially
observable MDPs (POMDPs) [32–34]. In contrast, we tackle a new settingMDPs augmented with
multistep transition predictionsand establish the first finitesample guarantees (Theorem 5.1) under
both environment and prediction sampling. Notably, when the prediction horizon satisfies K =
Ω(log(1/γ)), the stronger contraction factor γK leads to a strictly lower sample complexity than
the classical bound [14, 15], highlighting how predictive information can fundamentally accelerate
learning.

RL with Look-ahead Prediction and Planning. Integrating multi-step look-ahead forecasts into
reinforcement learning has driven strong empirical gains. Related work ranges from Bayes-Adaptive
methods [35–37] and look-ahead Q-learning [38, 39] to policy-iteration variants [40, 41] and real-
time dynamic programming [42]. However, these methods focus primarily on empirical gains
and offer little theoretical support on some key points: they neither quantify the value added by
multi-step predictions nor guarantee robustness when forecasts are noisy or partial, and they do not
address the sample complexity of learning with such predictions. We fill these gaps by introducing
the BellmanJensen framework, which is the first to deliver rigorous performance and robustness
guarantees for multi-step, imperfect transition predictions in RL. We also propose BOLA, which
comes with finite-sample complexity bounds for RL with transition predictions.

MDPs with Predictions. Recent work has explored integrating predictions into MDPs in several
ways. Some methods leverage Q-value predictions to to speed up learning or refine suboptimal
policies [43, 44]. There are also some more related work focusing on incorporating estimates of
the transition kernel to boost performance in nonstationary environment [17] or improve sample
efficiency [18]. However, these approaches target matching the performance of an idealized MDP
with perfect models. By contrast, we use realizationbased, multistep transition forecasts to surpass
the inherent limits of classical online MDP solutions, driving performance closer to the offlineoptimal
benchmark even under imperfect and partial predictions (Theorem 4.1).

Online Optimization and Control with Predictions. Leveraging predictive information is a com-
mon strategy in broader online optimization and control contexts, notably within Online Convex
Optimization (OCO) and Model Predictive Control (MPC). For example, recent studies [45–47]
demonstrate exponentially decaying regret when leveraging predictions in Smoothed Online Convex
Optimization (SOCO). Lin et al. [48] have identified conditions under which predictions significantly
enhance performance in general online optimization settings. Similarly, prediction-driven improve-
ments have been established in linear-quadratic control frameworks, yielding exponential regret
reduction [49, 50], and have been successfully extended to MPC settings, even with time-varying
constraints [51, 52]. Mercier et al. [53] investigate prediction in a general online optimization setting,
offering useful insights, while leaving open questions on the formal analysis on the value of prediction
and on broader prediction settings. Compared to this extensive literature on deterministic or structured
linear settings, prediction-augmented stochastic models such as MDPs have received relatively limited
attention due to their inherent complexity and lack of closed-form solutions. Our work addresses
this gap by providing rigorous theoretical foundations, clear sample complexity characterizations,
and practical algorithms that effectively integrate predictive realizations into sequential stochastic
decision-making.
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B Proof of Theorem 3.1

The proof is divided into 3 steps. First, we construct an auxiliary MDP M̃ and show that its optimal
policy π̃∗ is the same as the optimal policy π∗ of the prediction-augmented MDP. Then, we show that
the optimal value function satisfies our proposed Bellman equation of the prediction-augmented MDP.
Finally, we show that the Bellman operator associated with our Bellman equation is a contraction
mapping, which implies that it has a unique fixed point solution.

Step 1: Construction of the Auxiliary MDP M̃ . In a prediction-augmented MDP, the agent
essentially makes decisions based on both the current state s and the received prediction σ. Therefore,
we can incorporate the prediction into the state and define an auxiliary MDP based on it. Specifically,
let M̃ = (S̃, Ã, r̃, P̃ , γ̃) be an MDP with state space S̃ , action space Ã, reward function r̃, transition
kernel P̃ , and discount factor γ. The state space S̃ is the product space of the state space of
the original MDP and the domain of the prediction σ, i.e., s̃ = (s,σ) ∈ S̃ := S × Q, where
σ = (σ1, σ2, ..., σK). The action space Ã is the K-product space of the action space of the original
MDP, i.e., a = (a0, a1, · · · , aK−1) ∈ Ã := AK . For any s̃ ∈ S̃ and a ∈ Ã, the reward function
r̃(·, ·) is defined to be the K-step expected discounted reward of the original MDP, that is,

r̃(s̃,a) = E
[∑K−1

t=0
γtr(st, at)

]
,

where s0 = s and st ∼ P (· | s,a0:t−1,σ1:t) for all t ≥ 1. For any (s̃ = (s,σ),a) and s̃′ = (s′,σ′),
the transition probability P̃ (s̃′|s̃,a) is defined as

P̃ (s̃′|s̃,a) = P (s′,σ′|s,σ,a) = P (s′|s,a,σ)P (σ′).

Finally, the discount factor of the auxiliary MDP satisfies γ̃ = γK .

For the policy π : S̃ × Ã −→ ∆(Ã) (where ∆(Ã) denotes the probability simplex on Ã). The
corresponding value function Ṽ π of the auxiliary MDP is defined as

Ṽ π(s̃) = Eπ

[∑∞

t=0
γtr̃(s̃t,at)

∣∣∣ s̃0 = s̃
]
, ∀ s̃ ∈ S̃.

The auxiliary MDP is with an infinite state space and a finite action space. The Bellman optimality
equation remains valid provided the bounded rewards, the measurable transition kernel, and a discount
factor γ̃ ∈ [0, 1). These conditions ensure the Bellman operator is a γ̃-contraction on the space of
bounded measurable functions [54, 55].

Therefore, the optimal value function Ṽ ∗ is the unique solution to the following Bellman optimality
equation:

Ṽ ∗(s̃) = max
a∈Ã

(
r̃(s̃,a) + γK

∫
s̃∈S̃

P̃ (ds̃′|s̃,a)Ṽ ∗(s̃′)

)
. (14)

In addition, any policy π̃∗ satisfying

{a ∈ Ã | π̃∗(a | s̃) > 0} ⊆ argmaxa∈Ã

(
r̃(s̃,a) + γK

∫
s̃∈S̃

P̃ (ds̃′|s̃,a)Ṽ ∗(s̃′)

)
(15)

for all s̃ = (s,σ) is an optimal policy.

Since the auxiliary MDP has the same problem structure (state, action, transition, reward) as the
prediction-augmented MDP, an optimal policy π̃∗ of the auxiliary MDP is also an optimal policy π∗

of the prediction-augmented MDP.

Step 2: Establishing the Bellman Equation. Recall from Section 3.1 that we defined the Bayesian
value function V Bayes,π(s) = Eσ[V

π
K,A−,ε(s,σ)] = Eσ[Ṽ

π(s̃)], where s̃ = (s,σ). Using the
previous identity in Eq. (14), we have that under the optimal policy π∗,

V Bayes,∗
K,A−,ε (s) = Eσ

[
max
a∈Ã

(
r̃(s̃,a) + γK

∫
s̃∈S̃

P̃ (ds̃′|s̃,a)Ṽ ∗(s̃′)

)]
= Eσ

[
max
a∈Ã

[∑K−1

t=0
γt
(∑

st
P (st|s,a0:t−1,σ1:t)r(st, at)

)
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+ γK

∫
s̃∈S̃

P̃ (ds̃′|s̃,a)Ṽ ∗(s̃′)

]
. (16)

For the term
∫
s̃∈S̃ P̃ (ds̃′|s̃,a)Ṽ ∗(s̃′), we use the independence between prediction σ and state s and

get: ∫
s̃∈S̃

P̃ (ds̃′|s̃,a)Ṽ ∗(s̃′) =
∑

s′∈S

∫
σ′∈Q

P (s′|s,a,σ)P (dσ′)Ṽ ∗(s′,σ′)

=
∑

s′∈S
P (s′|s,a,σ)

∫
σ′∈Q

P (dσ′)Ṽ ∗(s′,σ′)

=
∑

s′∈S
P (s′|s,a,σ)Eσ′ [Ṽ ∗(s′,σ′)]

=
∑

s′∈S
P (s′|s,a,σ)Eσ′ [V ∗

K,A−,ε(s
′,σ′)]

=
∑

s′∈S
P (s′|s,a,σ)V Bayes,∗

K,A−,ε (s
′). (17)

Combining the previous two equations, we finally have:

V Bayes,∗
K,A−,ε (s) = Eσ

[
max
a∈Ã

[∑K−1

t=0
γt
(∑

st
P (st|s,a0:t−1,σ1:t)r(st, at)

)
+ γK

∑
s′∈S

P (s′|s,a,σ)V Bayes,∗
K,A−,ε (s

′)
]
. (18)

for all s ∈ S . This leads to the Bellman optimality equation in Eq. (5).

Step 3: The Uniqueness of the Solution to the Bayesian Bellman Equation. It is easy to verify
that our Bellman equation is a fixed-point equation with a contractive fixed-point operator, where
the contraction factor is γK . Therefore, by the Banach fixed-point theorem [56], the solution to our
Bellman equation is unique.

C Proof of the Corollary 3.1

This is a direct corollary of Theorem 3.1. Recall that, the optimal policy π∗ is consistent with the
optimal policy of the auxiliary MDP M̃ defined in Section B. Hence, combining Eq. (15) and Eq.
(17) yields the optimal policy:

{a ∈ AK | π∗(a | s,σ) > 0} ⊆ arg max
a∈AK

(
K−1∑
t=0

γt

(∑
st

P (st|s,a0:t−1,σ1:t)r(st, at)

)
+ γK

∑
sK

P (sK |s,a,σ)V Bayes,∗
K,A−,ε (sK)

)
, ∀ s ∈ S,σ ∈ Q,

D Proof of the Existence of V Bayes,∗
off (s)

For any state s ∈ S and k ≥ 1, we define the following truncated optimal value function with k-step
accurate transition prediction σ∗

1:k:

V ∗
off,k(s) = Eσ∗

1:k

(
max
a0:k−1

(∑k−1

t=0
γtr(st, at|s0 = s,σ∗

1:t+1)

))
.

We now show the sequence {V ∗
off,k(s)}k is (1) monotonically increasing with k and (2) bounded.

For monotonically increasing, since V ∗
off,k+1(s) can be represented by:

V ∗
off,k+1(s) = Eσ∗

1:k+1

(
max
a0:k

(∑k

t=0
γtr(st, at|s0 = s,σ∗

1:t+1)

))
≥ Eσ∗

1:k+1

(
max
a0:k−1

(∑k−1

t=0
γtr(st, at|s0 = s,σ∗

1:t+1)

)
+min

ak

γkr(sk, ak|s0 = s, σ∗
k+1)

)
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≥ Eσ∗
1:k+1

(
max
a0:k−1

(∑k−1

t=0
γtr(st, at|s0 = s,σ∗

1:t+1)

))
= V ∗

off,k(s),

where the last inequality is due to r(s, a) ≥ 0 for any state-action pair (s, a).

For the bounded property, it is clear that V ∗
off,k(s) ≤

∑k−1
t=0 γt ≤ 1

1−γ for any k. Hence, the sequence

{V ∗
off,k(s)}k is monotonically increasing and bounded, implying V Bayes,∗

off (s) = limk→∞ V ∗
off,k(s)

exists for any s. This concludes our proof.

E Proof of Theorem 4.1

Let V Bayes,∗
∞,A−,0(s) := limk→∞ V Bayes,∗

k,A−,0 (s) for all s ∈ S. The following lemma verifies that

V Bayes,∗
∞,A−,0(s) is indeed well-defined.

Lemma E.1 (Proof in Appendix E.1). limk→∞ V Bayes,∗
k,A−,0 (s) exists and is unique.

To bound the difference between V Bayes,∗
off (s) and V Bayes,∗

K,A−,ε (s), we perform the following decomposi-
tion:

V Bayes,∗
off (s)− V Bayes,∗

K,A−,ε (s) =V Bayes,∗
∞,A−,0(s)− V Bayes,∗

K,A−,0(s)︸ ︷︷ ︸
T1

+V Bayes,∗
off (s)− V Bayes,∗

∞,A−,0(s)︸ ︷︷ ︸
T2

+ V Bayes,∗
K,A−,0(s)− V Bayes,∗

K,A−,ε (s)︸ ︷︷ ︸
T3

,∀s ∈ S. (19)

Here, T1 denotes the loss incurred by the finite prediction window K, T2 captures the loss stemming
from partial action predictability, and T3 accounts for the error introduced by prediction errors. We
bound these three terms as follows.

Step 1: Bounding the Term T1 using Dyadic Horizon Decomposition. We begin by analyzing
the Bellman-Jensen Gap due to the finite prediction horizon K. Since the value function sequence
{V Bayes,∗

K,A−,0(s)} converges as k → ∞, any subsequence must also converge to the same limit. There-
fore, for any s ∈ S , we make a dyadic horizon decomposition as follows:

V Bayes,∗
∞,A−,0(s)− V Bayes,∗

K,A−,0(s) = lim
k→∞

(
V Bayes,∗
k,A−,0 (s)− V Bayes,∗

K,A−,0(s)
)

= lim
k→∞

(
V Bayes,∗
K·2k,A−,0

(s)− V Bayes,∗
K,A−,0(s)

)
= lim

k→∞

(
k−1∑
i=0

(
V Bayes,∗
K·2i+1,A−,0(s)− V Bayes,∗

K·2i,A−,0(s)
))

. (20)

Based on this decomposition, we only need to provide an upper bound to the value function gap when
doubling the prediction window, which is stated in the following lemma.
Lemma E.2 (Proof in Appendix E.2). For any prediction window K ≥ 1, we have

max
s∈S

(
V Bayes,∗
2K,A−,0(s)− V Bayes,∗

K,A−,0(s)
)
≤

γK
√
CK log |A|

(1− γ)(1− γ2K)
, (21)

where C is an absolute constant.

By repeatedly using Lemma E.2, we have the following lemma that bounds the term T1 in Eq. (19).
Lemma E.3 (Proof in Appendix E.3). There exists an absolute constant C0 > 0 such that the
following inequality holds for all K ≥ C0:

T1 ≤
C1γ

K
√

K log |A|
(1− γ)

6
5 (1− γ2K)

,

where C1 is an absolute constant.
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Step 2: Bounding the term T2. For any s ∈ S, V Bayes,∗
off (s) and V Bayes,∗

∞,A−,0(s) are based on full
prediction σ∗ and partial one σ with predictable action a ∈ A−, satisfying:

V Bayes,∗
off (s) = lim

k→∞
Eσ∗

1:k

(
max
a0:k−1

(∑k−1

t=0
γtr(st, at|s0 = s,σ∗

1:t+1)

))
,

V Bayes,∗
∞,A−,0(s) = lim

k→∞
Eσ∗

1:k

(
max
a0:k−1

(∑k−1

t=0
γtr(st, at|s0 = s,σ1:t+1)

))
.

Therefore, we have

V Bayes,∗
off (s)− V Bayes,∗

∞,A−,0(s) = lim
k→∞

Eσ∗
1:k

(
max
a0:k−1

(∑k−1

t=0
γtr(st, at|s0 = s,σ∗

1:t+1)

−
∑k−1

t=0
γtr(st, at|s0 = s,σ1:t+1)

))
.

The following lemma further bounds the Bellman-Jensen Gap due to partial action-coverage.
Lemma E.4 (Proof in Appendix E.4). For any predictable action set A− ⊆ A, we have:

max
s

(
V Bayes,∗
off (s)− V Bayes,∗

∞,A−,0(s)
)
≤ C2

∑∞

t=1
γt
√
log(|A|t+1 − |A−|t+1 + 1)θ2max,

where C2 is an absolute constant, θ2max = maxs,a0:t,t σ
2(r(st, at|s0 = s,a0:t)), where σ(·) denotes

the sub-Gaussian parameter. Parameter θ2max then captures the variability of the reward.

Step 3: Bounding the Term T3. T3 captures the value decay due to prediction errors. We
Lemma E.5 (Proof in Appendix E.5). For any prediction horizon K and predictable action set A−,
we have:

max
s∈S

(V Bayes,∗
K,A−,0(s)− V Bayes,∗

K,A−,ε (s)) ≤
K∑
j=1

γj

(1− γ)(1− γK)
εj , (22)

where εj := W
(d)
1

(
P∗
j , P̂j

)
denotes the Wasserstein1 distance between the distributions P∗

j , P̂j of the
j-step predictive model under accurate and inaccurate prediction σ∗

j and σ̂j , respectively, measured
with respect to the base metric d(σj , σ

′
j) = W1(σj , σ

′
j), i.e., the Wasserstein1 distance between

single-step predictive distributions.

Step 4: Putting pieces together. Our last step is to combine the bounds we obtained for the terms
T1, T2 and T3 to get the final results:

max
s

(
V ∗
off(s)− V ∗

+K(s)
)
≤

C1γ
K
√

K log |A|
(1− γ)

6
5 (1− γ2K)

+

K∑
j=1

γj

(1− γ)(1− γK)
εj

+ C2

∑∞

t=1
γt
√
log(|A|t+1 − |A−|t+1 + 1)θ2max.

This concludes the proof.

E.1 Proof of Lemma E.1

First of all, since we work with bounded rewards, it is easy to see that V Bayes,∗
k,A−,0 (s) ≤ 1/(1− γ) for

any k ≥ 0 and s ∈ S . Next, we show that {V Bayes,∗
k,A−,0 (s)}k≥1 is a Cauchy sequence, which implies its

convergence [57].

Recall the Bellman equation for V Bayes,∗
k+1,A−,0:

V Bayes,∗
k+1,A−,0(s) = Eσ1:k+1

[
max
a

(
k∑

t=0

γt

(∑
st

P (st|s,a0:t−1,σ1:t)r(st, at)

)

+ γk+1
∑
sk+1

P (sk+1|s,a,σ)V Bayes,∗
k+1,A−,0(sk+1)


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for any s ∈ S and k ≥ 0. Therefore, we can truncate the tail term and have

V Bayes,∗
k+1,A−,0(s) ≤ Eσ1:k

[
max
a

(
k∑

t=0

γt

(∑
st

P (st|s,a0:t−1,σ1:t)r(st, at)

))]
︸ ︷︷ ︸

:=V
Bayes,∗
k,A−,0

(s)

+
γk+1

1− γ
.

In addition, since the residual is positive, we have V Bayes,∗
k+1,A−,0(s)− V

Bayes,∗
k,A−,0(s) ≥ 0. Together, they

imply ∣∣∣V Bayes,∗
k+1,A−,0(s)− V

Bayes,∗
k,A−,0(s)

∣∣∣ ≤ γk

1− γ
. (23)

Similarly, we have

V Bayes,∗
k,A−,0 (s)

= Eσ

[
max
a

(
k−1∑
t=0

γt

(∑
st

P (st|s,a0:t−1,σ1:t)r(st, at)

)
+ γk

∑
sK

P (sK |s,a,σ)V ∗
+k(sK)

)]

≤ Eσ

[
max
a

(
k∑

t=0

γt
∑
st

P (st|s,a0:t,σ1:t+1)r(st, at)

)]
+

γk

1− γ

= V
Bayes,∗
k,A−,0(s) +

γk

1− γ

and V Bayes,∗
k,A−,0 (s)− V

Bayes,∗
k,A−,0(s) ≥ −γk. Together, they imply∣∣∣V Bayes,∗

k,A−,0 (s)− V
Bayes,∗
k,A−,0(s)

∣∣∣ ≤ γk

1− γ
,∀s ∈ S. (24)

Combining Eq. (23) and (24), we have by triangle inequality that∣∣∣V Bayes,∗
k+1,A−,0(s)− V Bayes,∗

k,A−,0 (s)
∣∣∣ ≤ ∣∣∣V Bayes,∗

k+1,A−,0(s)− V
Bayes,∗
k,A−,0(s)

∣∣∣+ ∣∣∣V Bayes,∗
k,A−,0(s)− V Bayes,∗

k,A−,0 (s)
∣∣∣

≤ 2γk

1− γ
, ∀ k ≥ 1.

Now, for any ε > 0, choosing k such that 2γk

(1−γ)2 ≤ ε, then, for any m,n ≥ k (assuming without loss
of generality that m ≥ n), we have∣∣∣V Bayes,∗

m,A−,0(s)− V Bayes,∗
n,A−,0

∣∣∣ ≤ m−n−1∑
i=0

∣∣∣V Bayes,∗
n+i+1,A−,0 − V Bayes,∗

n+i,A−,0(s)
∣∣∣

≤
m−n−1∑

i=0

2γk+i

1− γ

≤ 2γk

(1− γ)2

≤ ε.

Therefore, for any s ∈ S , {V ∗
+k(s)}k≥0 is a Cauchy sequence.

E.2 Proof of Lemma E.2

To bound the value improvement from doubling the prediction window, we use a sub-Gaussian
moment-generating function bound combined with a tailored Jensen-based analysis. For simplicity
of presentation, we define an auxiliary Q-function, denoted by Q̃∗

+K(s,a,σ). Specifically, for all
s ∈ S , a ∈ AK , and σ ∈ QK ,

Q̃∗
K(s,a,σ) =

K−1∑
t=0

γt

(∑
st

P (st|s,a0:t−1,σ1:t)r(st, at)

)
+ γK

∑
sK

P (sK |s,a,σ)V Bayes,∗
K,A−,0(sK).
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Thus, for any s ∈ S and K ≥ 1, we have

V Bayes,∗
2K,A−,0(s)− V Bayes,∗

K,A−,0(s)

= Eσ1:2K
[max

a
Q̃∗

2K(s,a0:2K−1,σ1:2K)]− Eσ1:K
[max

a
Q̃∗

K(s,a0:K−1,σ1:K)]

=

∫
Q2K

max
a

Q̃∗
2K(s,a0:2K−1,σ1:2K)P (dσ1:2K)

−
∫
QK

max
a

Q̃∗
K(s,a0:K−1,σ1:K)P (dσ1:K)

=

∫
σ1:K∈QK

∫
σK+1:2K∈QK

max
a

Q̃∗
2K(s,a0:2K−1,σ1:2K)P (dσ1:K)P (dσK1:2K)

−
∫
QK

max
a

Q̃∗
K(s,a0:K−1,σ1:K)P (dσ1:K)

=

∫
σ1:K∈QK

(∫
σK+1:2K∈QK

(
max
a

Q̃∗
2K(s,a0:2K−1,σ1:2K)

−max
a

Q̃∗
K(s,a0:K−1,σ1:K)

)
P (dσK+1:2K)

)
P (dσ1:K). (25)

This treatment allows us to focus on the value improvement from additional transition predic-
tion of σK+1:2K . For any σ1:2K ∈ Q2K , we bound the term maxa Q̃∗

2K(s,a0:2K−1,σ1:2K) −
maxa Q̃∗

K(s,a0:K−1,σ1:K) as follows:

max
a

Q̃∗
2K(s,a0:2K−1,σ1:2K)−max

a
Q̃∗

K(s,a0:K−1,σ1:K)

= max
a0:2K−1

(
2K−1∑
t=0

γt

(∑
st

P (st|s,a0:t−1,σ1:t)r(st, at)

)
+γ2K

∑
s2K

P (s2K |s,a0:2K−1,σ1:2K)V Bayes,∗
2K,A−,0(s2K)

)

− max
a0:K−1

(
K−1∑
t=0

γt

(∑
st

P (st|s,a0:t−1,σ1:t)r(st, at)

)
+γK

∑
sK

P (sK |s,a0:K−1,σ1:K)V Bayes,∗
K,A−,0(sK))

)

= max
a0:2K−1

(
2K−1∑
t=0

γt

(∑
st

P (st|s,a0:t−1,σ1:t)r(st, at)

)
+γ2K

∑
s2K

P (s2K |s,a0:2K−1,σ1:2K)V Bayes,∗
2K,A−,0(s2K)

)

− max
a0:2K−1

(
2K−1∑
t=0

γt

(∑
st

P (st|s,a0:t−1,σ1:t)r(st, at)

)
+γ2K

∑
s2K

P (s2K |s,a0:2K−1,σ1:2K)V Bayes,∗
K,A−,0(s2K)

)

+ max
a0:2K−1

(
2K−1∑
t=0

γt

(∑
st

P (st|s,a0:t−1,σ1:t)r(st, at)

)
+γ2K

∑
s2K

P (s2K |s,a0:2K−1,σ1:2K)V Bayes,∗
K,A−,0(s2K)

)

− max
a0:K−1

(
K−1∑
t=0

γt

(∑
st

P (st|s,a0:t−1,σ1:t)r(st, at)

)
+γK

∑
sK

P (sK |s,a0:K−1,σ1:K)V Bayes,∗
K,A−,0(sK))

)
.

(26)

Applying the max-difference inequality on Eq. (26), we can conclude:

max
a

Q̃∗
2K(s,a0:2K−1,σ1:2K)−max

a
Q̃∗

K(s,a0:K−1,σ1:K)

≤γ2K max
s

(V Bayes,∗
2K,A−,0(s)− V Bayes,∗

K,A−,0(s))

+ γK max
a0:2K−1

(
2K−1∑
t=K

γt−K

(∑
st

P (st|aK:t,σK+1:t+1, sK)r(st, at)

)
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+γK
∑
s2K

P (s2K |a0:2K−1,σ1:2K)V Bayes,∗
K,A−,0(s2K)−

∑
sK

P (sK |s,a0:K−1,σ1:K)V Bayes,∗
K,A−,0(sK)

)
.

(27)

Combining Eq. (25) and (27), and take the maximal on states s on both sides, we have a simplified
bound in a trajectory-wise reward form:

max
s

(
V Bayes,∗
2K,A−,0(s)− V Bayes,∗

K,A−,0(s)
)
≤ γK

1− γ2K
max

s
EσK+1:2K

[
max

aK:2K−1

(P s(σK+1:2K)− P s)V
∗
s

]
,

(28)

where V ∗
s ∈ R(|S||A|)K is a trajectory-wise reward vector, defined as:

V ∗
s(sK+1, sK+2, ..., s2K , aK , aK+1, ..., a2K−1) =

2K−1∑
t=K

γt−Kr(st, at) + γKV Bayes,∗
K,A−,0(s2K).

The matrix P s(σK+1:2K) ∈ R|A|K×(|S||A|)K , with each entry denote the probability of visiting
a state-action trajectory (sK+1, sK+2, ..., s2K , aK , aK , ..., a2K−1) given initial state s, the action
vector aK:2K−1 and transition σK+1:2K . The matrix P s(σK+1:2K) = EσK+1:2K [P s(σK+1:2K)].

Let Xs,aK+1:2K ,σK+1:2K
= (P s(σK+1:2K) − P s)V

∗
s|aK:2K−1

, which denotes the aK:2K−1-th
entry of the vector (P s(σK+1:2K) − P s)V

∗
s . We can verify that Xs,aK+1:2K ,σK+1:2K

is the cu-
mulative discounted reward, whose absolute value is bounded by 1

1−γ . For simplicity, we denote
Xs,aK+1:2K ,σK+1:2K

by Xs,a,σ . Therefore, Xs,a,σ is a sub-Gaussian random variable, which implies

Eσ(e
λXs,a,σ ) ≤ e

θ2s,a,Kλ2

2 , ∀a ∈ AK ,

Where θ2s,a,K denotes the sub-Gaussian parameter [58] of Xs,a,σ . Therefore, using Jensen’s inequal-
ity and the monotonicity of exponential functions, we have for all λ:

eλEσ(maxa∈AK Xs,a,σ) ≤ Eσ(maxa∈AK eλXs,a,σ ) ≤
∑

a∈AK

E(eλXs,a,σ ) ≤
∑

a∈AK

e
θ2s,a,Kλ2

2 .

Taking the logarithm on both sides of the previous inequality, we have

Eσ

(
max
a∈AK

Xs,a,σ

)
≤

log

(∑
a∈AK e

θ2s,a,Kλ2

2

)
λ

≤
log

(
|A|Ke

maxa θ2s,a,Kλ2

2

)
λ

=
K log |A|+ maxa θ2

s,a,Kλ2

2

λ
. (29)

By choosing λ =

√
2K log |A|

maxa θ2
s,a,K

in Eq. (29), we have

EσK+1:2K

[
max

aK:2K−1

(P s(σK+1:2K)− P s)V
∗
s

]
≤

K log |A|+
maxa θ2

s,a,K · 2K log |A|
maxa θ2

s,a,K

2√
2K log |A|

maxa θ2
s,a,K

=
√
2Kmax

a
θ2s,a,K log |A|. (30)

Substituting Eq. (30) into Eq. (28) yields:

max
s

(
V Bayes,∗
2K,A−,0(s)− V Bayes,∗

K,A−,0(s)
)
≤

γK
√
2Kmaxs,a θ2s,a,K log |A|

1− γ2K
, ∀ s ∈ S,K ≥ 1. (31)
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Due to the boundedness of the reward function, the sub-Gaussian maxs,a θ2s,a,K of trajectory can be
upper bounded by:

max
s,a

θ2s,a,K ≤ C(1− γ)−2, (32)

where C is an absolute constant.

Combining (32) and (31) yields our result.

E.3 Proof of Lemma E.3

Using Lemma E.2 in Eq. (20) and , we have:

V Bayes,∗
∞,A−,0(s)− V Bayes,∗

K,A−,0(s) = lim
k→∞

(∑k−1

i=0
(V Bayes,∗

K·2i+1,A−,0 − V Bayes,∗
K·2i,A−,0)

)
≤ lim

k→∞

(∑k−1

i=0

γK·2i
√

CK · 2i log |A|
(1− γ)(1− γ2K·2i)

)

=
∑∞

i=0

γK·2i
√
CK · 2i log |A|

(1− γ)(1− γ2K·2i)

≤
√

CK log |A|
(1− γ)(1− γ2K)

∞∑
i=0

(
γK·2i

√
2i
)
. (33)

Next, we focus on bounding the term
∑∞

i=0(γ
K·2i

√
2i). Denote ai = γK·2i

√
2i. Consider the index

i∗ = 7
20 log2(

1
1−γ ), for any i ≥ i∗, we notice that:

γK·2i = (γ2i)K ≤
(
γ

1
1−γ

) 7
20 ·K ≤

(
γ

1
1−γ

) 7
20 ≤ e−7/20, ∀γ ∈ [0, 1).

Hence, for any i ≥ i∗, we have:

ai+1 = γK2i+1√
2i+1 = γK·2i · γK·2i ·

√
2i+1 ≤ e−7/20 ·

√
2γK·2i

√
2i ≤ 997

1000
ai.

Summing ai from i = di∗e to infinity yields that:

∑∞

i=di∗e
ai ≤

∑∞

i=di∗e

(
997

1000

)i−di∗e

ai ≤
1000

3
ai∗ ≤ 1000

3
γK

√
2i∗ ≤ 1000γK

3(1− γ)
7
40

.

For the sum of ai from i = 0 to di∗e − 1, we have:∑di∗e−1

i=0
ai =

∑di∗e−1

i=0
γK·2i

√
2i ≤ γK

∑di∗e−1

i=0

√
2i ≤ 8γK

√
2i∗ ≤ 8γK

(1− γ)
7
40

.

Then the desired sum satisfies:∑∞

i=0
ai ≤

∑di∗e−1

i=0
ai +

∑∞

i=di∗e
ai ≤

1024γK

3(1− γ)
7
40

.

Hence, we can conclude that:

max
s

(
V ∗
+∞(s)− V ∗

+K(s)
)
≤

C1γ
K
√
K log |A|

(1− γ)
47
40 (1− γ2K)

≤
C1γ

K
√

K log |A|
(1− γ)

6
5 (1− γ2K)

,

where C1 is an absolute constant.
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E.4 Proof of Lemma E.4

The desired gap satisfies:

V Bayes,∗
off (s)− V Bayes,∗

∞,A−,0(s) = lim
k→∞

Eσ∗
1:k

(
max
a0:k−1

(∑k−1

t=0
γtr(st, at|s0 = s,σ∗

1:t)

)
− max

a0:k−1

(∑k−1

t=0
γtr(st, at|s0 = s,σ1:t)

))
≤ lim

k→∞
Eσ∗

1:k

(
max
a0:k−1

(∑k−1

t=0
γt(r(st, at|σ∗

1:t)− r(st, at|σ1:t))

))
≤ lim

k→∞

∑k−1

t=0
Eσ∗

1:t

(
max
a0:t

γt(r(st, at|σ∗
1:t)− r(st, at|σ1:t))

)
︸ ︷︷ ︸

Qt

,

where the last inequality follows by exchanging the limit and expectation with the finite summation.
Then we only need to bound each Qt separately. Specifically, for each Qt, it can be rewritten into:

Qt =Eσ∗
1:t

(
max
a0:t

γt(r(st, at|σ∗
1:t)− r(st, at|σ1:t))

)
=γtEσ∗

1:t

(
max
a0:t

(r(st, at|σ∗
1:t)− r(st, at|σ1:t))

)
=γtEσ∗

1:t

(
max
a0:t

(∑
st

(P (st|σ∗
1:t,a0:t−1)− P (st|σ1:t,a0:t−1)) r(st, at)

))

=γtEσ∗
1:t

(
max
a0:t

(P s,σ∗
1:t

− P s,σ1:t
)r

)
, (34)

where r ∈ R|S||A| denotes the reward vector, with the (s, a)-th entry equal to r(s, a); P s,σ∗
1:t

∈
R|A|t+1×|S||A| and P s,σ1:t

∈ R|A|t+1×|S||A| denote the random transition probability matrices from
the initial state s to the state-action pair (st, at) under the action sequence a0:t, specified by the
transition predictions σ∗

1:t and σ1:t, respectively.

Note that P s,σ1:t differs from P s,σ∗
1:t

only due to partial predictability. We can observe that the form
in Eq. (34) is with the similar form as Eq. (28) in Appendix E.2. We can follow the same routine
in the proof to Lemma E.2 in Appendix E.2 to handle Eq. (34). We can verify that for any action
sequence a0:t ∈ (A−)t+1, the corresponding rows of P s,σ1:t

and P s,σ∗
1:t

are identical. Formally,
for all σ∗

1:t, we have [
(P s,σ∗

1:t
− P s,σ1:t) r

]
a0:t

= 0, ∀a0:t ∈ (A−)t+1. (35)

Hence, under any fixed t, the two t-step kernels Poff,1:t and P+,1:t agree on every row corresponding
to an action sequence in (A−)t+1. Since there are |A−|t+1 such sequences, the number of remaining
mismatched rows is |A|t+1 − |A−|t+1. Adding the trivial all-zero case yields at most |A|t+1 −
|A−|t+1 + 1 distinct nonzero differences between the two kernels.

Applying Lemma E.2 to each such mismatched row, we obtain for all t ≥ 1:

Qt ≤ γt C2

√
θ2max ln(|A|t+1 − |A−|t+1 + 1

)
, (36)

where C2 is an absolute constant and θ2max = maxs,a0:t,t σ
2(r(st, at|s0 = s,a0:t)), where σ(·)

denotes the sub-Gaussian parameter. Parameter θ2max indicates the maximal variance of the reward.

Summing over t = 1, 2, . . . for Eq. (36) then gives

max
s∈S

(
V Bayes,∗
off (s)− V Bayes,∗

∞,A−,0(s)
)

≤ C2

∞∑
t=1

γt
√
θ2max ln(|A|t+1 − |A−|t+1 + 1

)
.

This completes the proof.
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E.5 Proof of Lemma E.5

For clarity of presentation, for any Bayesian value function V Bayes ∈ R|S| and K-step transition
prediction σ ∈ QK , we define:

R(s, V Bayes,σ) =max
a

(
K−1∑
t=0

γt

(∑
st

P (st|s,a0:t−1,σ1:t)r(st, at)

)

+ γK
∑
sK

P (sK |s,a0:K−1,σ)V
Bayes(sK)

)
. (37)

Applying the Bayesian Bellman equation on T3, we have:

V Bayes,∗
K,A−,0(s)− V Bayes,∗

K,A−,ε (s) = Eσ∼P∗
1:K

[
R(s, V Bayes,∗

K,A−,0 ,σ)
]
− Eσ∼P̂1:K

[
R(s, V Bayes,∗

K,A−,ε ,σ)
]

=Eσ∼P∗
1:K

[
R(s, V Bayes,∗

K,A−,0 ,σ)
]
− Eσ∼P̂1:K

[
R(s, V Bayes,∗

K,A−,0 ,σ)
]

+ Eσ∼P̂1:K

[
R(s, V Bayes,∗

K,A−,0 ,σ)
]
− Eσ∼P̂1:K

[
R(s, V Bayes,∗

K,A−,ε ,σ)
]
,

where P∗
1:K and P̂1:K denote the distributions of accurate and inaccurate K-step transition prediction

σ.

Taking the absolute value on both sides and selecting the state s that maximizes it yields:

max
s

|V Bayes,∗
K,A−,0(s)− V Bayes,∗

K,A−,ε (s)| ≤max
s

∣∣∣Eσ∼P∗
1:K

[
R(s, V Bayes,∗

K,A−,0 ,σ)
]
− Eσ∼P̂1:K

[
R(s, V Bayes,∗

K,A−,0 ,σ)
]∣∣∣ ,

+ γK max
s

|V Bayes,∗
K,A−,0(s)− V Bayes,∗

K,A−,ε (s)|

≤
maxs

∣∣∣Eσ∼P∗
1:K

[
R(s, V Bayes,∗

K,A−,0 ,σ)
]
− Eσ∼P̂1:K

[
R(s, V Bayes,∗

K,A−,0 ,σ)
]∣∣∣

1− γK
.

Now we focus on
∣∣∣Eσ∼P∗

1:K

[
R(s, V Bayes,∗

K,A−,0 ,σ)
]
− Eσ∼P̂1:K

[
R(s, V Bayes,∗

K,A−,0 ,σ)
]∣∣∣. The difference

in this term comes from the prediction errors, which we use the Kantorovich-Rubinstein inequality to
bound:
Lemma E.6 (Kantorovich-Rubinstein Inequality [59]). Let (X , d) be a Polish metric space, and
let µ, ν be two probability measures over X . Let f : X → R be a measurable function that is
L-Lipschitz with respect to d, i.e.,

|f(x)− f(y)| ≤ L · d(x, y), ∀x, y ∈ X .

Then the difference in expectations satisfies

|Eµ[f ]− Eν [f ]| ≤ L ·W1(µ, ν),

where W1(µ, ν) is the Wasserstein-1 distance defined by

W1(µ, ν) := inf
γ∈Π(µ,ν)

∫
X×X

d(x, y) dγ(x, y),

and Π(µ, ν) denotes the set of all couplings (joint distributions) with marginals µ and ν.

We first show the perturbation sensitivity. A perturbation in σj changes only the terms involving {st}
for t ≥ j. Its impact on the reward-sum

∑K−1
t=j γt r(st, at) is bounded by

∑K−1
t=j γt ≤ γj−γK

1−γ ,

while its impact on the terminal term γKV Bayes,∗
K,A−,0(sK) is γK maxs |V Bayes,∗

K,A−,0(s)| ≤
γK

1−γ . Hence, for
each j,

∣∣R(s, V Bayes,∗
K,A−,0 ,σ)−R(s, V Bayes,∗

K,A−,0 ,σ
′)
∣∣ ≤

K∑
j=1

(γj − γK

1− γ
+

γK

1− γ

)
W1(σj , σ

′
j) =

K∑
j=1

γjW1(σj , σ
′
j)

1− γ
.
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Hence, we introduce the distance metric d
(
σ,σ′) =

∑K
j=1

γjW1(σj ,σ
′
j)

1−γ . Under d, the above

inequality simply says
∣∣R(s, V Bayes,∗

K,A−,0 ,σ)−R(s, V Bayes,∗
K,A−,0 ,σ

′)
∣∣ ≤ d(σ,σ′), and R is 1-Lipschitz.

By the KantorovichRubinstein inequality in Lemma E.6, for two measures P∗
1:K , P̂1:K on the product

space,∣∣∣Eσ∼P∗
1:K

[
R(s, V Bayes,∗

K,A−,0 ,σ)
]
− Eσ∼P̂1:K

[
R(s, V Bayes,∗

K,A−,0 ,σ)
]∣∣∣ ≤ W

(d)
1

(
P∗
1:K , P̂1:K

)
.

Since P∗
1:K =

⊗K
j=1 P∗

j and P̂1:K =
⊗K

j=1 P̂j , where P∗
j and P̂j denote the distribution of σj

when prediction is accurate and inaccurate, respectively. One checks:

W
(d)
1

(
P∗
1:K , P̂1:K

)
≤

K∑
j=1

γj

1− γ
W

(d)
1 (P∗

j , P̂j) =

K∑
j=1

γj

1− γ
εj .

Thus, we have:

max
s

|V Bayes,∗
K,A−,0(s)− V Bayes,∗

K,A−,ε (s)| ≤
K∑
j=1

γj

(1− γ)(1− γK)
εj . (38)

F Proof of Theorem 5.1

Based on the proposed algorithm, the required sample amounts D1 and D2 satisfy:

D1 = N1|S|(|A| − |A−|) + |S||A|, D2 = N2. (39)

The first term D1 represents the sample complexity of estimating the environment model. The term
N1|S|(|A| − |A−|) denotes the learning cost transition kernel P̂ (s′|s, a) for s ∈ S and a ∈ A \ A−,
where |S|(|A| − |A−|) denotes the number of sampled entries, and N1 denotes the number of times
each entry is sampled. Learning the cost function only requires to sample each state action pair
once with |S||A| samples. The second term D1 directly equals the number of samples N2 from the
prediction oracle.

We need to determine appropriate values for N1 and N2 to ensure that the estimation error of V̂ Bayes,∗
K,A−,ε

is smaller than ε.

Let’s first analyze the structure of the error. For any state s ∈ S , the estimate Bayesian value function
V̂ Bayes,∗
K,A−,ε (s) satisfies:

V̂ Bayes,∗
K,A−,ε (s) =

∫
σ1:K∈QK

P̂ (dσ1:K)max
a

(
K−1∑
t=0

γt

(∑
st

P̂ (st|s,a0:t−1,σ1:t)r(st, at)

)

+γK
∑
sK

P̂ (sK |s,a,σ)V̂ Bayes,∗
K,A−,ε (sK)

)
, (40)

where the estimated multi-step transition kernel P̂ (st|s,a0:t−1,σ1:t) satisfies the following recursive
condition:

P̂ (st|s,a0:t−1,σ1:t) =
∑
st−1

P̂ (st|st−1, at−1, σt)P̂t−1(st−1|s,a0:t−2,σ1:t−1),∀t ≤ K.

And P̂ (st|st−1, at−1, σt) satisfies:

P̂ (st|st−1, at−1, σt) =

{
σt((st−1, at−1), st), a ∈ A−,

P̂ (st|st−1, at−1), a /∈ A−.
(41)

We can see that, any term P̂ (st|s,a0:t−1,σ1:t) presents finite-sample error only caused by the
estimation error of P̂ (st′ |st′−1, at′−1) with t′ ≤ t. And the Bayesian value function estimation
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V̂ Bayes,∗
K,A−,ε (s) is influenced by the estimation errors of both P̂ (st|st−1, at−1) and P̂ (σ). To highlight

such dependence, we define an auxiliary value function V (Pσ, P(s,a), V
Bayes, s) as

V (Pσ, P(s,a), V
Bayes, s)

=

∫
σ1:K∈QK

Pσ(dσ1:K)max
a

(
K−1∑
t=0

γt

(∑
st

P(s,a)(st|s,a0:t−1,σ1:t)r(st, at)

)

+γK
∑
sK

P(s,a)(sK |s,a,σ)V Bayes(sK)

)
, s0 = s. (42)

Hence, V̂ Bayes,∗
K,A−,ε (s) can be denoted by V̂ Bayes,∗

K,A−,ε (s) = V (P̂ (σ), P̂ (s′|s, a), V̂ Bayes,∗
K,A−,ε , s) to show the

dependence on estimated probabilities and Bayesian value function. So the true Bayesian value
function V Bayes,∗

K,A−,ε (s) = V (P (σ), P (s′|s, a), V Bayes,∗
K,A−,ε , s).

Hence, for any state s ∈ S , the maximal estimation error can be decomposed by:

max
s

|V̂ Bayes,∗
K,A−,ε (s)− V Bayes,∗

K,A−,ε (s)|

=max
s

∣∣∣V (P̂ (σ), P̂ (s′|s, a), V̂ Bayes,∗
K,A−,ε , s)− V (P (σ), P (s′|s, a), V Bayes,∗

K,A−,ε , s)
∣∣∣

≤max
s

∣∣∣V (P̂ (σ), P̂ (s′|s, a), V̂ Bayes,∗
K,A−,ε , s)− V (P̂ (σ), P̂ (s′|s, a), V Bayes,∗

K,A−,ε , s)
∣∣∣︸ ︷︷ ︸

T21

+max
s

∣∣∣V (P̂ (σ), P̂ (s′|s, a), V Bayes,∗
K,A−,ε , s)− V (P (σ), P̂ (s′|s, a), V Bayes,∗

K,A−,ε , s)
∣∣∣︸ ︷︷ ︸

T22

+max
s

∣∣∣V (P (σ), P̂ (s′|s, a), V Bayes,∗
K,A−,ε , s)− V (P (σ), P (s′|s, a), V Bayes,∗

K,A−,ε , s)
∣∣∣︸ ︷︷ ︸

T23

.

Here, T21 captures the bias in the estimated Bayesian value function, T22 quantifies the error from
imperfect predictiondistribution estimation, and T23 reflects the error in onestep transition kernel
estimation.

The remaining hurdle is to bound the terms T21, T22 and T23, respectively. Lemmas F.1, F.2 and F.3
provide the desired bounds as follows:
Lemma F.1 (Proof in Appendix F.1). For any state s, the term T21 satisfies:

T21 ≤ γK max
s

|V̂ Bayes,∗
K,A−,ε (s)− V Bayes,∗

K,A−,ε (s)|. (43)

Lemma F.2 (Proof in Appendix F.2). With probability at least 1− δ, the term T22 satisfies:

T22 ≤ 1

1− γ

√
log (2|S|/δ)

2N2
. (44)

Lemma F.3 (Proof in Appendix F.3). With probability at least 1− δ, the term T23 satisfies:

T23 ≤ γ(1− γK)

(1− γ)2

√
log (2K2|S|(|A| − |A−|)/δ)

2N1
. (45)

Combining the results in Eq. (43), (44), (45) yields that, with probability at least 1− δ

max
s

∣∣∣V̂ Bayes,∗
K,A−,ε (s)−V Bayes,∗

K,A−,ε (s)
∣∣∣ ≤ 1

1−γ

√
log(4|S|/δ)

2N2
+ γ(1−γK)

(1−γ)2

√
log(1+4K2|S|(|A|−|A−|)/δ)

2N1

(1− γK)

≤

√
log(4|S|/δ)

2N2

(1− γ)(1− γK)
+

√
log(1+4K2|S|(|A|−|A−|)/δ)

2N1

(1− γ)2
.

33



Letting

√
log(4|S|/δ)

2N2

(1−γ)(1−γK)
= αε and

√
log

(
1+4K2|S|(|A|−|A−|)/δ

)
2N1

(1−γ)2 = (1− α)ε yields that:

N1 =
2log

(
1 + 4K2|S|(|A| − |A−|)/δ

)
(1− γ)4(1− α)2ε2

, (46)

N2 =
2 log (4|S|/δ)

(1− γ)2(1− γK)2α2ε2
. (47)

Injecting Eq. (46) and (47) into Eq. (39) and combining the constants yields our result.

F.1 Proof of Lemma F.1

For any fixed state s, the only difference between the two expressions in T21 lies in their terminal
Bayesian value function. Hence, by the γKcontraction property of the Bayesian Bellman operator,
we immediately obtain:

max
s

∣∣∣V (P̂ (σ), P̂ (s′|s, a), V̂ Bayes,∗
K,A−,ε , s)− V (P̂ (σ), P̂ (s′|s, a), V Bayes,∗

K,A−,ε , s)
∣∣∣

=max
s0

∣∣∣∣∣
∫
σ1:K∈QK

P̂ (dσ1:K)max
a

(
K−1∑
t=0

γt

(∑
st

P̂ (st|s,a0:t−1,σ1:t)r(st, at)

)

+γK
∑
sK

P̂ (sK |s,a,σ)V̂ Bayes,∗
K,A−,ε (sK))

)

−
∫
σ1:K∈QK

P̂ (dσ1:K)max
a

(
K−1∑
t=0

γt

(∑
st

P̂ (st|s,a0:t−1,σ1:t)r(st, at)

)

+γK
∑
sK

P̂ (sK |s,a,σ)V Bayes,∗
K,A−,ε (sK))

)∣∣∣∣∣
≤
∫
σ1:K∈QK

P̂ (dσ1:K)max
s,a

∣∣∣∣∣γK
∑
sK

P̂ (sK |s,a,σ)(V Bayes,∗
K,A−,ε (sK)− V Bayes,∗

K,A−,ε (sK))

∣∣∣∣∣
≤γK max

s
|V̂ Bayes,∗

K,A−,ε (s)− V Bayes,∗
K,A−,ε (s)|.

This concludes our proof.

F.2 Proof of Lemma F.2

We denote X(σ, s) as the cumulative reward from state s with K-step transition prediction σ:

X(σ, s) = max
a

(
K−1∑
t=0

γt

(∑
st

P̂ (st|s,a0:t−1,σ1:t)r(st, at)

)
+γK

∑
sK

P̂ (sK|s,a,σ)V Bayes,∗
K,A−,ε (sK))

)
,

where s0 = s. Note that, for any state s, P̂ (st|s,a0:t−1,σ1:t) and V Bayes,∗
K,A−,ε (sK), X(σ, s) is bounded

with 0 ≤ X(σ, s) ≤ 1
1−γ . Hence, for any state s ∈ S , we have:

V (P̂ (σ),P̂ (s′|s, a),V Bayes,∗
K,A−,ε , s)−V (P (σ),P̂ (s′|s, a),V Bayes,∗

K,A−,ε , s)

=

∫
σ1:K∈QK

P̂ (dσ1:K)X(σ, s)−
∫
σ1:K∈QK

P (dσ1:K)X(σ, s)

=

∫
σ1:K∈QK

(P̂ (dσ1:K)− P (dσ1:K))X(σ, s). (48)

To bound the distribution estimation error. We reformulate Eq. (48) into a finite-sample Hoeffding
form. Specifically, we define X(s) =

∫
σ1:K∈QK

P (dσ1:K)X(σ, s) and Xi = X(σi, s). Then, we
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have: ∫
σ1:K∈QK

(P̂ (dσ1:K)− P (dσ1:K))X(σ, s) =
∑N2

i=1
Xi(s)−X(s),

where Eσ(X
i(s)) = X(s) for all s. Applying the Hoeffding’s inequality yields:

P

(∣∣∣∣ 1

N2

∑N2

i=1
Xi(s)−X(s)

∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2N2ε

2

( 1
(1−γ) )

2

)
= 2 exp

(
−2(1− γ)2N2ε

2
)
,

where the first inequality holds because 0 ≤ Xi(s) ≤ 1
(1−γ) for all i. Letting the RHS probability

term be δ
|S| , we apply the union bound across all different states s ∈ S yields:

T22 = max
s

∣∣∣∣∑N2

i=1
Xi(s)−X(s)

∣∣∣∣ ≤
√

log (2|S|/δ)
2(1− γ)2N2

.

F.3 Proof of Lemma F.3

This proof focuses on bounding how errors from inaccurate single-step transition kernels propagate
to the long-term cumulative reward. The key idea is to decompose the total cumulative error into
multiple time-dependent components and bound each individually.

Step 1: Decompose the estimation error of P̂ (st|s,a0:t−1,σ1:t):

For any estimation P̂ (st|s,a0:t−1,σ1:t), the term T23 is upper bounded by:

T23 ≤max
s,σ

∣∣∣∣∣max
a

(
K−1∑
t=0

γt

(∑
st

P̂ (st|s,a0:t−1,σ1:t)r(st, at)

)
+γK

∑
sK

P̂ (sK |s,a,σ)V Bayes,∗
K,A−,ε (sK)

)

−max
a

(
K−1∑
t=0

γt

(∑
st

P (st|s,a0:t−1,σ1:t)r(st, at)

)
+γK

∑
sK

P (sK |s,a,σ)V Bayes,∗
K,A−,ε (sK)

)∣∣∣∣∣
≤max

s,σ,a

∣∣∣∣∣
(

K−1∑
t=0

γt

(∑
st

P̂ (st|s,a0:t−1,σ1:t)r(st, at)

)
+γK

∑
sK

P̂ (sK |s,a,σ)V Bayes,∗
K,A−,ε (sK)

)

−

(
K−1∑
t=0

γt

(∑
st

P (st|s,a0:t−1,σ1:t)r(st, at)

)
+γK

∑
sK

P (sK |s,a,σ)V Bayes,∗
K,A−,ε (sK)

)∣∣∣∣∣
=max

s,σ,a

∣∣∣∣∣
K−1∑
t=1

γt

(∑
st

(P̂ (st|s,a0:t−1,σ1:t)− Pt(st|s,a0:t−1,σ1:t))r(st, at)

)

+γK
∑
sK

(P̂ (sK |s,a,σ)− PK(sK |s,a,σ))V Bayes,∗
K,A−,ε (sK)

∣∣∣∣∣ ,
≤

K−1∑
t=1

γt max
s,σ,a

∣∣∣∣∣∑
st

(P̂ (st|s,a0:t−1,σ1:t)− Pt(st|s,a0:t−1,σ1:t))r(st, at)

∣∣∣∣∣︸ ︷︷ ︸
∆t

+ γK max
s,σ,a

∣∣∣∣∣∑
sK

(P̂ (sK |s,a,σ)− PK(sK |s,a,σ))V Bayes,∗
K,A−,ε (sK)

∣∣∣∣∣︸ ︷︷ ︸
∆K

.

Now we have

T23 ≤
∑K−1

t=1
γt∆t + γK∆K . (49)
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Specifically, for any t, initial state s, the action sequence a0:k−1 and prediction σ1:K , ∆t can be
represented as the following product form:

∆t = (P0 · P̂0:1 · ... · P̂t−1:t − P0 · P0:1 · ... · Pt−1:t) · rsmax, (50)

where vector P0 ∈ R1×|S| denotes the initial state s with the s-th entry equals 1 and the other
entries equal 0, rsmax ∈ R|S|×1 denotes the vector of reward with the s-th entry equals maxa r(s, a).
Matrices P̂i:i+1 ∈ R|S|×|S| and Pi:i+1 ∈ R|S|×|S| denote the estimated and real state transition
probabilities from state si to state si+1 with given action ai.

Hence, ∆t can be further decomposed by one-step errors as follows:

∆t = (P0 · P̂0:1 · ... · P̂t−1:t − P0 · P0:1 · ... · Pt−1:t) · rsmax

= P0 · (P̂0:1 · ... · P̂t−1:t − P0 · P0:1 · ... · Pt−1:t) · rsmax

=
∑t

i=1

(
P0 ·

(∏i−1

j=0
P̂j:j+1

∏t−1

k=i
Pk,k+1 −

∏i−2

j=0
P̂j:j+1

∏t−1

k=i−1
Pk,k+1

)
· rsmax

)
=
∑t

i=1

(
P0 ·

(∏i−2

j=0
P̂j:j+1(P̂i−1:i − Pi−1:i)

∏t−1

k=i
Pk,k+1

)
· rsmax

)
︸ ︷︷ ︸

∆t,i

. (51)

Similarly, the terminal value error ∆K can be decomposed as:

∆K = (P0 · P̂0:1 · ... · P̂t−1:t − P0 · P0:1 · ... · Pt−1:t) · V̂ Bayes,∗
K,A−,ε (s

K)

=
∑t

i=1

(
P0 ·

(∏i−2

j=0
P̂j:j+1

(
P̂i−1:i − Pi−1:i

)∏t−1

k=i
Pk,k+1

)
· V̂ Bayes,∗

K,A−,ε

)
︸ ︷︷ ︸

∆K,i

. (52)

Combining Eq. (51), (52) with Eq. (49), (50), we can decompose total error T23 into:

T23 ≤
∑K−1

t=1
γt
∑t

i=1
∆t,i + γK

∑t

i=1
∆K,i. (53)

Step 2: Bound individual error terms ∆t,i and ∆K:

We can show the concentration behavior of |∆t,i| as follows

|∆t,i| ≤
∣∣∣∣(P0 ·

(∏i−2

j=0
P̂j:j+1(P̂i−1:i − Pi−1:i)

∏t−1

k=i
Pk,k+1

)
· rsmax

)∣∣∣∣
≤
∣∣∣∣P0 ·

(∏i−2

j=0
P̂j:j+1

)∣∣∣∣ ∣∣∣∣(P̂i−1:i − Pi−1:i

)(∏t−1

k=i
Pk,k+1 · rsmax

)∣∣∣∣
≤
∣∣∣∣(P̂i−1:i − Pi−1:i

)(∏t−1

k=i
Pk,k+1 · rsmax

)∣∣∣∣
=
∣∣∣(P̂i−1:i − Pi−1:i

)
rst,smax

∣∣∣ ,
where rst,smax =

∏t−1
k=i Pk,k+1 · rsmax ∈ R|S| denotes the expected reward vector from state st, which

satisfies |rst,smax|∞ ≤ 1 for any t.

With N1 samples on each substate-action pair (s, a), we can directly bound
(
P̂i−1:i − Pi−1:i

)
rst,smax

by the Hoeffding’s inequality:

P (|∆t,i| ≥ ε) ≤ 2 exp
(
−2N1ε

2
)
,

We need to ensure |∆t,i| ≥ ε for any (s, a) with s ∈ S and a ∈ A\A−, thus, we take 2 exp
(
− 2ε2

N1

)
=

δ
|S|(|A|−|A−|) and yields that, with probability at least 1− δ,

|∆t,i| ≤

√
log (2|S|(|A| − |A−|)/δ)

2N1
,∀t, i. (54)
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Following exactly the same routine, since V̂ Bayes,∗
K,A−,ε (s) ∈ [0, 1

1−γ ], we have that, with probability at
least 1− δ, ∆K,i satisfies:

∣∣∆K,i

∣∣ ≤ 1

1− γ

√
log (2|S|(|A| − |A−|)/δ)

2N1
,∀t, i. (55)

Step 3: Combine the pieces: Now it is enough to bound ∆. Let the probability δ in Eq. (54)-(55) be
δ

K2 , we have that, with probability at least 1− δ,

|∆| ≤
∑K−1

t=1
γt
∑t

i=1
|∆t,i|+ γK

∑t

i=1
|∆K,i|

≤
∑K−1

t=1
γt
∑t

i=1

√
log (2K2|S|(|A| − |A−|)/δ)

2N1

+ γK
∑t

i=1

1

1− γ

√
log (2K2|S|(|A| − |A−|)/δ)

2N1

≤

√
log (2K2|S|(|A| − |A−|)/δ)

2N1

(∑K−1

t=1
tγt +

KγK

1− γ

)

≤γ(1− γK)

(1− γ)2

√
log (2K2|S|(|A| − |A−|)/δ)

2N1
.

This concludes our proof.

G Detailed Model of Wind-Farm Storage Control

We consider a windfarm operator that must deliver a precommitted power schedule to the grid while
managing the uncertainty of realtime wind generation. To avoid costly imbalances, the farm uses a
battery storage system: when actual output exceeds the commitment, excess energy is stored; when
output falls short, the storage discharges to make up the difference. The operators goal is to minimize
cumulative penalty costs for over or underdelivery by choosing charge/discharge actions based on
observed prices, the current stateofcharge, and shortterm forecasts of wind generation.

Below, we formalize this sequential decision problem as an MDP.

G.1 MDP Formulation for WindFarm Storage Control

We model sequential storage control as an MDP (S,A,P, r, γ) with:

• State: st = (pt,∆t,SoCt), where pt is the (identical) penalty price, ∆t is the generation mismatch
between generated wind power wt and required wind power ŵt, and SoCt is the storages state of
charge.

• Action: at = (v+t , v
−
t ), denoting charge/discharge amounts subject to v+t v

−
t = 0, capacity, and

generation constraints.

• Transition: the state transition probabilities satisfy:

P (st+1 | st, at) = P (pt+1 | pt)P (∆t+1 | ∆t)1{SoCt+1 = SoCt + η+v+t − η−v−t }.

• Reward: the reward function is the negative penalty defined as:

r(st, at) = −
[
pt max(∆t − v+t , 0) + pt max(v−t −∆t, 0)

]
.

The dynamics of the storage control problem is visualized in Figure 3.
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Figure 4: Prediction Helps More in Low-Value States. (a): The expected return at a low-value state
increases significantly with prediction horizon K (b): The return at a high-value state also improves
with K, but the marginal gain is much smaller.

G.2 Parameter Settings

In the numerical study, we utilized the California aggregate wind power generation dataset from
CAISO [60] containing predicted and real wind power generation data with a 5-minute resolution
spanning from January 2020 to December 2020. The penalty price equals the average electricity
price of CASIO [60] with the matching resolution and periods. We set C = 10 kWh, γ = 0.95. The
discretization levels of p, ∆w and SoC are set to be 10, 10, 21, respectively. The action set includes
9 discretized choices ranging from charging 2 KWh to discharging 2 KWh. The other parameters
follow [61].

H Additional Experiments

In this section, we conduct experiments to validate our theoretical findings. In particular, we
demonstrate the advantage of Algorithm 1 for MDPs with transition predictions, compared with
model-based RL for classical MDPs. For each experiment, we randomly generate 20 MDPs with
|S| = 10 and |A| = 5, and present the average performance of both approaches.

We first verify how predictions improve expected returns over standard MDPs, as predicted by our
theoretical analysis in Section 4.2. Specifically, we examine two representative statesone with the
lowest value and one with the highest value under the standard MDP value function. Figure 4(a)
illustrates how incorporating transition predictions enhances the value functions of these two states.
Even with a short prediction horizon K = 1, we observe notable improvements over the MDP
baseline. As K increases, the improvements also increase and tend to converge, which aligns with
our theoretical findings. Interestingly, we find that low-value states benefit more from predictions
than high-value states. In particular, for the low-value state, the expected return improves by 5.43%
with K = 4. In contrast, the corresponding gain for the high-value state is 2.75%. This is intuitive
because predictions help guide the agent toward transitions that reach higher-value regions, offering
more substantial gains for states with lower initial value.
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Figure 5: Sample Efficiency of Learning with Predictions. (a): Convergence of (Bayesian) value
function estimation error; (b): Policy performance measured by expected return. BOLA with
predictions achieves similar convergence and consistently higher performance across varying sample
sizes compared to classical model-based RL.

Figure 5 compares the learning efficiency of BOLA with K = 1 and standard model-based RL. In
Figure 5(a), BOLA exhibits a faster decay in the value estimation error with fewer environment
samples, indicating its sample efficiency is no worse than vanilla MDPs even with K = 1. In Figure
5(b), we observe that BOLA consistently outperforms the model-based RL baseline. Notably, once
the number of samples exceeds a small threshold 500, the policy learned via BOLA yields higher
expected return than what is maximally achievable by any MDP policy without predictive information.
This highlights the fundamental advantage of incorporating predictions, which enables agents to
surpass the conventional performance ceiling imposed by standard MDP frameworks.

I Extension to Splitable State Modeling

Our model can be extended to Markov Decision Processes (MDPs) with splittable states, which
naturally generalize to settings with predictable trajectories. A key feature of this extension is
the decomposition of each state s ∈ S into two independent components, represented as a pair
s = (sm, sd), where sm ∈ Sm is the Markovian substate, and sd ∈ Sd is the dependent substate,
with S = Sm × Sd.

This modeling approach provides a natural way to incorporate exogenous or independently fore-
castable time seriessuch as demand, weather, or price signalsinto the decision-making process.
Specifically, these predictable sequences can be encoded in the Markovian substate sm, allowing the
agent to plan adaptively using trajectory-level predictions without enlarging the core Markov state
space. The two substates are formally defined below.

Markovian Substates. The first type of substates, denoted by sm, is used to capture externally
evolving states that do not depend on the agent’s action, with several important real-world examples
to be discussed in Section I.1. State transitions with respect to sm are Markovian such that they only
depend on the previous substate. Formally, its transition kernel satisfies

P (smt+1 | st, at) = P (smt+1|smt ), ∀ st+1, st ∈ S, and a ∈ A. (56)

Dependent Substates. The transition of this substate, denoted by sd, depends on both past substate
and action (like in classical MDPs). The state transitions with respect to s are

P
(
sdt+1 | st, at

)
= P

(
sdt+1 | sdt , a

)
, ∀ st+1, st ∈ S, and a ∈ A. (57)

The Markovian substate and the dependent substate are assumed to have independent transitions,
i.e., for any st = (smt , sdt ) ∈ S, a ∈ A, the overall transition probability P (st+1 | st, at) satisfies
P (st+1 | st, at) = P (smt+1 | smt )P (sdt+1 | sdt , at)2. Unlike Markovian substates, a dependent sub-
state depends on both past action and substate, making it harder to predict. Next, we introduce the
prediction model of the prediction-augmented MDPs considered in this work.

2Without the predictive model P , the MDP model with Markovian and dependent substates is essentially a
special case of the factored MDP [62].
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Let P = (K,A−,σ) denote the prediction model that provides the predictions to the future states,
where K is the length of the prediction window, A− ⊆ A is a predictable action set, and σ denotes
the transition prediction. Specifically, given t = 0,K, 2K, . . ., let st = (smt , sdt ) be the current
state of the environment. Before taking actions, the agent receives a probablistic prediction of
the transition σ = (σ1, σ2, · · · , σK) for the next K steps, where different σk’s are independent
and sampled from an unknown probability distribution P (σk). For each k ∈ {1, 2, · · · ,K}, σk

captures the transitions from state st+k−1 to state st+k, and is of the form σk = (σm
k , σd

k), where
σm
k ∈ [0, 1]|S|×|S| is an |S| × |S|-dimensional matrix representing the transition prediction of the

Markovian substate and σd
k ∈ [0, 1]|S||A−|×|S| is an |S||A−| by |S| matrix representing the transition

prediction of the dependent substate. Given a prediction σ = (σm, σd), the transition probabilities
satisfy the following.

Fully Predictable Markovian Substates. For Markovian substates, we have

P
(
smt+1|smt , σt+1

)
= σm

t+1

(
smt , smt+1

)
, (58)

where σm(smt , smt+1) is the (smt , smt+1)-th entry of the matrix σm.

Partially Predictable Dependent Substates. We consider a general setting that allows for partially
predictable states and actions. In particular, given a set of predictable actions A−, we have

P
(
sdt+1|sdt , at, σd

t+1

)
=

{
σd
t+1((s

d
t , at), s

d
t+1), if a ∈ A−,

P
(
sdt+1|sdt , at

)
, if a /∈ A−.

(59)

where σd
t+1((s

d
t , at), s

d
t+1) denotes the entry located in the (sdt , at)-th row and the sdt+1-th column of

the matrix σd
t+1.

I.1 Illustrative Examples

Extending classic MDPs, the prediction-augmented MDP model introduced in Section 2.1 naturally
fits real-world scenarios with Markovian states. Examples include stock prices in stock market
trading [8], outdoor temperatures in building thermal control [63], wind speeds in unmanned aerial
vehicle (UAV) control [64], electricity prices in storage control [65], and grid electricity demands in
power system economic dispatch [66].

Table 1: Real-world examples that instantiate the prediction-augmented MDP model (see Section
2.1).

Action Markovian Substate
predictable

Dependent Substate
partially predictable

Stock Investment Buy/sell stocks Stock price N/A
VPP Operation Energy consumption Renewable generation Electricity price
Building HVAC Control Heating/cooling N/A Indoor/outside temperature
Storage Control Charge/discharge Energy mismatch Battery SoC
UAV Control DC motor force Wind direction/speed UAV position/attitude

Stock Investment. Consider the stock investment problem for a retail investor [8]. The market stock
prices are action-independent unknown time series if the trading volume is high. With relatively
accurate stock price predictions, the revenue from the investment can be significantly improved.

Virtual Power Plant operation. Another example is the virtual power plant (VPP) operation problem
[67], where the agent sequentially decides the energy consumption of a large-scale VPP to minimize
total electricity costs. In this scenario, the renewable generation within the VPP depends solely on
its previous state and can be effectively predicted. Conversely, the real-time electricity price in the
electricity market depends on both its previous state and the VPP’s energy consumption actions. The
electricity price is partially predictable: when the VPP’s energy consumption is low, its impact on
market prices is minimal and predictable. However, when energy consumption is very high, the VPP
becomes a market price-maker, causing market prices to fluctuate wildly and become unpredictable.

Building HVAC Control. Besides, many online decision-making problems related to sustainability
exhibit predictable structures aligning with our model. For example, the control of heating, ventila-
tion, and air conditioning (HVAC) systems relies on temperature predictions [68], battery storage
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management depends on energy predictions [69]. Similar predictable components exist for the task
of controlling battery storage systems.

In Table 1, we summarize the key features of real-world scenarios with Markovian substates and
partially predictable dependent substates, which present challenges for modeling with classic MDPs.
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