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Abstract
To bridge the gap between empirical success and
theoretical understanding in transfer reinforce-
ment learning (RL), we study a principled ap-
proach with provable performance guarantees.
We introduce a novel composite MDP framework
where high-dimensional transition dynamics are
modeled as the sum of a low-rank component rep-
resenting shared structure and a sparse component
capturing task-specific variations. This relaxes the
common assumption of purely low-rank transi-
tion models, allowing for more realistic scenarios
where tasks share core dynamics but maintain
individual variations. We introduce UCB-TQL
(Upper Confidence Bound Transfer Q-Learning),
designed for transfer RL scenarios where multiple
tasks share core linear MDP dynamics but diverge
along sparse dimensions. When applying UCB-
TQL to a target task after training on a source task
with sufficient trajectories, we achieve a regret
bound of Õ(

√
eH5N) that scales independently

of the ambient dimension. Here, N represents the
number of trajectories in the target task, while e
quantifies the sparse differences between tasks.
This result demonstrates substantial improvement
over single task RL by effectively leveraging their
structural similarities. Our theoretical analysis
provides rigorous guarantees for how UCB-TQL
simultaneously exploits shared dynamics while
adapting to task-specific variations.

1. Introduction
Transfer reinforcement learning (RL) has emerged as a
promising solution to the fundamental challenge of sample
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inefficiency in RL. By leveraging knowledge from related
tasks, transfer learning aims to accelerate policy learning
and improve performance in new environments without re-
quiring extensive data collection. This approach has shown
empirical success across various domains, from robotics to
game playing, yet theoretical understanding of how transfer
provably benefits RL remains limited.

Consider autonomous vehicle training as an illustrative ex-
ample: core driving dynamics – including vehicle physics,
road rules, and basic navigation – remain consistent across
different driving scenarios. However, specific environments
(urban vs. highway driving, varying weather conditions, dif-
ferent traffic patterns) introduce distinct variations to these
core dynamics. This naturally suggests modeling transition
dynamics as a combination of shared low-rank structure
capturing common elements, plus sparse components repre-
senting scenario-specific variations.

We propose a composite MDP framework that formalizes
this intuition: transition dynamics are modeled as the sum
of a low-rank component representing shared structure and
a sparse component capturing task-specific deviations. This
structure appears in many real-world applications beyond
autonomous driving – robotic manipulation with different
objects, game playing across varying environments, and
resource management under changing constraints all exhibit
similar patterns of core shared dynamics with sparse task-
specific variations.

Our approach extends existing work in several important
directions. Prior transfer and multi-task RL research has
primarily focused on pure low-rank MDPs (Agarwal et al.,
2023; Lu et al., 2021; Cheng et al., 2022) or made direct
assumptions about value or reward function similarity (Ca-
landriello et al., 2014; Du et al., 2024; Chen et al., 2024;
Chai et al., 2025). While sparsity has been studied in the
context of value function coefficients, theoretical analysis
of sparse transition structures – particularly in combina-
tion with low-rank components – remains unexplored. This
gap is significant because transition dynamics often more
directly capture task similarity than value functions.

We begin by addressing single-task learning within this com-
posite structure, introducing a variant of UCB-Q-learning
tailored specifically for composite MDPs, which may in-
volve a high-dimensional ambient space. In contrast to
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previous work, we consider the high-dimensional setting
where the feature dimensions p, q ≫ number of trajectories
N , and the transition core M∗ is no longer a low-rank ma-
trix. This departure from low-rank structures makes existing
algorithms designed for linear MDPs inapplicable. Simi-
larly, methods built for low-rank MDPs fail in our context
due to the absence of low-rank assumptions in M∗.

Our work provides the first theoretical guarantees for this
setting, demonstrating how the algorithm successfully learns
both shared and task-specific components. These results
extend and complement the existing body of work on low-
rank MDPs by explicitly handling structured deviations
from low-rank assumptions (Du et al., 2019b; Lattimore
et al., 2020). Unlike the approach in (Foster et al., 2021),
which introduced a Decision-Estimation Coefficient (DEC)
to characterize the statistical complexity of decision-making
across various scenarios, our framework relies on distinct
structural assumptions. This necessitates the development
of new techniques, as discussed in detail in Section 3.3.

Building on this foundation, we propose UCB-TQL (Upper
Confidence Bound Transfer Q-Learning) for transfer learn-
ing in composite MDPs. UCB-TQL strategically exploits
shared dynamics while efficiently adapting to task-specific
variations. Our theoretical analysis demonstrates that UCB-
TQL achieves dimension-independent regret bounds that
explicitly capture dependencies on both rank and sparsity,
showing how structural similarities enable efficient knowl-
edge transfer. In particular, we construct a novel confidence
region (CR) for the sparse difference, thereby reducing the
target sample complexity in the online learning process, as
discussed in detail in Section 4.3.

Our primary contributions are as follows.

• A novel composite MDP model that combines low-
rank shared structure with sparse task-specific compo-
nents, while allowing high-dimensional feature spaces.
This framework better captures real-world task rela-
tionships and provides a foundation for future work in
multi-task and meta-learning settings.

• The first theoretical guarantees for single-task RL un-
der the high-dimensional composite transition struc-
ture, demonstrating how algorithms can effectively
learn and utilize both shared and task-specific com-
ponents.

• A transfer Q-learning algorithm with provable regret
bounds that explicitly characterize how structural simi-
larities enable efficient knowledge transfer across tasks.

This work represents a significant step toward bridging the
gap between empirical success of transfer RL and theo-
retical understanding by providing a rigorous analysis of

how structural similarities in transition dynamics enable effi-
cient knowledge transfer. Our results suggest new directions
for developing practical algorithms that can systematically
leverage shared structure while accounting for task-specific
variations.

1.1. Related Work

Transfer RL. (Agarwal et al., 2023) studied transfer via
shared representations between source and target tasks.
With generative access to source tasks, they showed that
learned representations enable fast convergence to near-
optimal policies in target tasks, matching performance as
if ground truth features were known. (Cheng et al., 2022)
proposed REFUEL for multitask representation learning in
low-rank MDPs. They proved that learning shared repre-
sentations across multiple tasks is more sample-efficient
than individual task learning, provided enough tasks are
available. Their analysis covers both online and offline
downstream learning with shared representations. (Chen
et al., 2022; 2024; Chai et al., 2025) analyzed transfer Q-
learning without transition model assumptions, focusing
instead on reward function similarity and transition density.
These works established convergence guarantees for both
backward and iterative Q-learning approaches.

Our work differs by studying transition models with low-
rank plus sparse structures. This setting presents unique
challenges beyond purely low-rank models, as we must
identify and leverage an unknown low-rank space while
also accounting for sparse deviations.

Single task RL under structured MDPs. Single-task RL
under structured MDPs has evolved through several key
advances: Linear MDPs with known representations were
initially studied by (Yang & Wang, 2020), leading to prov-
ably efficient online algorithms (Sun et al., 2019; Jin et al.,
2020; Zanette et al., 2020; Neu & Pike-Burke, 2020; Cai
et al., 2020; Wang et al., 2021).

Low-rank MDPs extend this by requiring representation
learning. Major developments include FLAMBE (Agarwal
et al., 2020) for explore-then-commit transition estimation,
and REP-UCB (Uehara et al., 2022) for balancing represen-
tation learning with exploration. Recent work has expanded
to nonstationary settings (Cheng et al., 2023) and model-
free approaches like MOFFLE (Modi et al., 2024). Related
structured models include block MDPs (Du et al., 2019a;
Misra et al., 2020; Zhang et al., 2022), low Bellman rank
(Jiang et al., 2017), low witness rank (Sun et al., 2019),
bilinear classes (Du et al., 2021), and low Bellman eluder
dimension (Jin et al., 2021).

Our work introduces the composite MDPs with high-
dimensional feature space and low-rank plus sparse transi-
tion, extending beyond pure low-rank models. We provide
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the first theoretical guarantees for UCB Q-learning under
this composite structure.

Multitask RL and Meta RL. Research in multitask and
meta-RL has evolved through several key theoretical ad-
vances. Early work by (Calandriello et al., 2014) examined
multitask RL with linear Q-functions sharing sparse support,
establishing sample complexity bounds that scale with the
sparsity rather than ambient dimension. (Hu et al., 2021) ex-
tended this framework by studying weight vectors spanning
low-dimensional spaces, showing that sample efficiency
improves when the rank is much smaller than both the am-
bient dimension and number of tasks. (Arora et al., 2020)
demonstrated how representation learning reduces sample
complexity in imitation learning settings, providing theo-
retical guarantees for learning shared structure across tasks.
(Lu et al., 2022) further developed this direction by ana-
lyzing multitask RL with low Bellman error and unknown
representations, establishing bounds that improve with task
similarity.

Task distribution approaches offered another perspective.
(Brunskill & Li, 2013) proved sample complexity benefits
when tasks are independently sampled from a finite MDP
set, while (Pacchiano et al., 2022) and (Müller & Pacchi-
ano, 2022) extended these results to meta-RL for linear
mixture MDPs, showing how learned structure transfers to
new tasks. In parallel, research on shared representations
by (D’Eramo et al., 2020) established faster convergence
rates for value iteration under common structure, and (Lu
et al., 2021) proved substantial sample efficiency gains in
the low-rank MDP setting. (Zhang et al., 2025) propose
a cross-market multi-task dynamic pricing framework that
achieves minimax-optimal regret bounds for both linear and
nonparametric utilities under structured preference shifts.

Our composite MDP structure advances this line of work
by explicitly modeling deviations from low-rank similar-
ity through a sparse component. This framework captures
more realistic scenarios where tasks share core structure
but maintain individual variations, opening new theoretical
directions for multitask and meta-learning approaches.

2. Problem Formulation
Episodic MDPs. We consider an episodic Markov decision
process (MDP) with finite horizon. It is defined by a tuple
M = (S,A,P, r, µ,H), where S denotes the state space,
A represents the action space, H is the finite time horizon,
r : S × A → [0, 1] the reward function, P is the state
transition probability, and µ is the initial state distribution.
Let [H] denote the index set {1, 2, · · · , H}. A policy π :
S × [H] → A maps each state-stage pair to an action that
the agent takes in the episode.

For each stage h ∈ [H], the value function V πh : S →

R evaluates the expected cumulative reward from fol-
lowing policy π starting from state s at time h, de-
fined as V πh (s) = E

[∑H
h′=h rh′(sh′ , π(sh′)) | sh = s

]
,

and V πH+1(s) = 0, while the action-value function
Qπh : S × A → R evaluates the value of taking
action a in state s at time h, given by Qπh(s, a) =

rh(s, a)+E
[∑H

h′=h+1 rh′(sh′ , π(sh′)) | sh = s, ah = a
]

and QπH(s, a) = rh(s, a). The Bellman equation for V πh
and Qπh can be expressed as V πh (s) = Qπh(s, πh(s)) and

Qπh(s, a) = rh(s, a) + [PV πh+1](s, a),

where [PVh+1](s, a) :=
∑
s′ P(s′|s, a)Vh+1(s

′)1. The
Bellman optimally equations for the optimal value func-
tion and action-value function are as follows:

V ∗
h (s) = max

a∈A

{
rh(s, a) + [PV ∗

h+1](s, a)
}
,

Q∗
h(s, a) = rh(s, a) + [PV ∗

h+1](s, a),

with V ∗
H+1(s) = 0 and Q∗

H(s, a) = rH(s, a).

The cumulative regret quantifies the performance discrep-
ancy of an agent over episodes. Given an initial state s0 ∼ µ,
for the nth episode, the regret is the value difference of
the optimal policy V ∗(s0) and the agent’s chosen policy
V πn(s0) which based on its experience up to the begin-
ning of the nth episode and applied throughout the episode.
Accumulating over N episodes, it is defined as:

Regret(N) =

N∑
n=1

Eµ [V ∗(s0)− V πn(s0).]

The agent aims to learn a sequence of policies (π1, . . . , πN )
to minimize the cumulative regret. If the reward function
has a linear feature representation, any additional regret
from an unknown reward becomes a lower-order term and
does not affect the regret’s overall magnitude. For clarity
of presentation, we assume the agent knows the reward
function and focus primarily on estimating the transition
probability.

Composite MDPs. Let ϕ(·) ∈ Rp and ψ(·) ∈ Rq be feature
functions where p and q can be large. Consider probabil-
ity transitions P(s′|s, a) that can be fully embedded in the
feature space via a core matrix M∗:

P(s′|s, a) = ϕ(s, a)⊤ ·M∗ · ψ(s′).

Since feature dimensions p and q can be large, we need not
know the exact feature functions - we can include many
possible features to span the space. What matters is learning
the structure of M∗ from data.

1Here P is a function operator mapping from a function S 7→
R to a function S × A 7→ R. One can think of that as a matrix
with dimension SA and S in the tabular case.
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To capture how transition dynamics combine shared core
elements with scenario-specific variations, we impose the
following structured assumption on the transition matrix.

Definition 2.1 (Composite MDPs). A probability transition
model P : S × A → ∆(A) can be fully embedded in the
feature space characterized by two given feature functions
ϕ(·) ∈ Rp and ψ(·) ∈ Rq where both p and q can be large.
The core matrix of the transition model decomposes as:

P(s′|s, a) = ϕ(s, a)⊤ · (L∗ + S∗) · ψ(s′),

where L∗ is a low-rank incoherent matrix and S∗ is a sparse
matrix.

Remark 2.2 (Distinction from linear and low-rank models).
The composite MDP model generalizes both linear MDPs
and low-rank MDPs. Linear MDPs assume a fixed linear
transition structure with known feature maps, while low-
rank MDPs drop the need for known features but restrict the
transition matrix to be entirely low-rank under some feature
representation. In contrast, our composite MDP assumes
an unknown feature-based factorization for a low-rank core
as in the low-rank MDP, but augments it with an additional
sparse component. This hybrid structure captures more
complex transition dynamics and task-specific deviations
than either linear or low-rank models alone, marking a clear
departure from those classical assumptions.
Remark 2.3 (Distinction from classical low-rank settings).
Our framework explicitly tackles high-dimensional feature
spaces, in contrast to the classical low-rank MDP literature
that typically assumes moderate dimensionality (Yang &
Wang, 2020; Agarwal et al., 2020). We consider regimes
where the feature dimensions (p and q) are significantly
larger than the number of trajectories (p, q ≫ N ), and cru-
cially, the shared transition core M∗ is not constrained to
be low-rank. This departure renders existing algorithms for
linear or low-rank MDPs inapplicable, since those methods
rely on a strictly low-rank structure or low feature com-
plexity. The high-dimensional composite setting therefore
demands new estimation techniques that can leverage the
mixed low-rank and sparse structure to achieve efficient
learning.
Remark 2.4 (Relation to prior models). The composite MDP
shares a structural philosophy with certain prior models –
notably the linear mixture MDP frameworks studied by
(Yang & Wang, 2019) and (Ayoub et al., 2020) – in that
transitions are factorized via feature maps. Our model
can be written in the form of (Yang & Wang, 2019) as
P(s′ | s, a) = ϕ(s, a)⊤α(s′) with α(s′) := (L∗+S∗)ψ(s′).
This reduces to (Yang & Wang, 2019) when S∗ = 0. Simi-
larly, our model matches the linear factored MDP in (Ayoub
et al., 2020) via a Kronecker formulation: P(s′ | s, a) =
(ϕ(s, a) ⊗ ψ(s′))⊤ vec(L∗ + S∗). While structurally re-
lated, a key difference lies in estimation. Our setting allows
p, q ≫ N , and our estimator achieves minimax-optimal

error rates that do not scale with d = max(p, q). In con-
trast, (Yang & Wang, 2019; Ayoub et al., 2020) assume
low-dimensional or identifiable parameter spaces and are
not suitable for high-dimensional regimes. In addition, our
structured assumption is especially crucial in transfer RL,
enabling effective knowledge sharing viaL∗ while capturing
task-specific deviations via S∗.

3. Single-Task UCB-Q-Learning under
High-Dimensional Composite MDPs

This section introduces UCB-Q-Learning for composite
MDPs with a high-dimensional feature space. Specifi-
cally, we consider the setting where the feature dimensions
p, q ≫ N , and the transition core M∗ is no longer a low-
rank matrix. As a result, existing algorithms designed for
linear MDPs are not applicable. Likewise, methods tailored
for low-rank MDPs fail in our setting due to the absence of a
low-rank structure in M∗. To address the challenges arising
from our relaxed dimensionality constraints and the more
complex MDP structure, novel algorithmic approaches are
required.

For any tuples (si,h, ai,h) from episode i and stage h: We
define ϕi,h = ϕ(si,h, ai,h), ψi,h = ψ(si,h), and Kψ :=∑
s′∈S ψ(s

′)ψ(s′)⊤. Our estimator is based on the follow-
ing population-level equation at each stage h,

E
[
ψ⊤
i,hK

−1
ψ | si,h, ai,h

]
=
∑
s′

P(s′|si,h, ai,h)ψ(s′)⊤K−1
ψ

=
∑
s′

ϕ⊤i,h(L
∗ + S∗)ψ(s′)ψ(s′)⊤K−1

ψ

= ϕ⊤i,h(L
∗ + S∗). (1)

This motivates us to use the sample-level counterpart of
(1) to estimate L∗ and S∗ in a composite MDP. However,
both L∗ and S∗ are unknown. To recover the low-rank and
sparse components, additional assumptions are required to
ensure that the low-rank part can be separated from the
sparse component. Below, we elaborate on the incoherence
assumption and sufficient sparsity conditions.

Assumption 3.1. LetL∗ = U∗Σ∗V ∗T be the singular value
decomposition (SVD) of L∗. Let µ be the incoherence
parameter (a constant > 1) and r be the rank of L∗ We
assume that:
(i) (Incoherence.) ∥U∗∥2,∞, ∥V ∗∥2,∞ ≤

√
µr
p , where the

2-to-infinity norm ∥ · ∥2,∞ denotes the maximum ℓ2-norm
of the rows of a matrix.
(ii) (Sufficient sparsity.) Matrix S∗ contains at most s non-
zero entries, where s ≤ s := max{p,q}

4CSµr3
, for some constant

CS .

Remark 3.2 (Incoherence condition). The incoherence con-
dition ensures that the singular vectors of a low-rank matrix
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are not overly concentrated in any single direction or entry,
a property that is crucial for matrix completion (Candes &
Recht, 2012). In our setting, it also facilitates the separation
of the sparse component from the low-rank matrix. When
r and µ are treated as constants, the maximum permissible
sparsity level scales linearly with p. Moreover, as shown in
(Candès & Tao, 2010), the incoherence condition holds for
a broad class of random matrices.

We consider the online learning setting and propose to es-
timate L∗ and S∗ in the composite MDP by optimizing
the following hard-constrained least-square objective for
each episode n ∈ [N ] with collected tuples (si,h, ai,h) from
previous episode i ∈ [n] and stage h ∈ [H]:

(L̂n, Ŝn) ∈ argmin
L,S∈Rp×q

∑
i∈[n],h∈[H]

∥ψ⊤
i,hK

−1
ψ − ϕ⊤i,h(L+ S)∥22

s.t. L = UΣV T , ∥U∥2,∞ ≤
√
µr

p
,

∥V ∥2,∞ ≤
√
µr

q
, ∥S∥0 ≤ s

(2)
Remark 3.3 (Computational Efficiency of Kψ). When |S|
is large or infinite, we can computeKψ using a Monte Carlo
approximation: K̂ψ = 1

m

∑m
i=1 ψ(si)ψ(si)

⊤, si ∼
Unif(S). This is a standard approach in randomized nu-
merical linear algebra (Drineas & Mahoney, 2016) and is
computed only once before online learning. Our method
is thus comparable in efficiency to (Yang & Wang, 2019),
which stores empirical covariances, but we use Kψ to build
confidence regions specific to our model.

3.1. UCB-Q Learning for High-Dimensional Composite
MDPs

Since the transition dynamics P are typically unknown, we
must leverage observed data to approximate the underlying
model parameters. To balance the exploration-exploitation
trade-off, we adopt the optimism-in-the-face-of-uncertainty
principle by employing an Upper Confidence Bound (UCB)-
based algorithm. We begin by constructing the confidence
region:

Bn = {(L, S) |
∥∥∥L− L̂n

∥∥∥2
F
+
∥∥∥S − Ŝn

∥∥∥2
F
≤ βn} (3)

where L̂n and Ŝn are estimated by (2),

βn =
CβH log(dNH)

n

(
r(CϕC

′
ψ)

2 + sC2
ϕψ

)
, (4)

d = max{p, q} and Cϕ, Cψ, C ′
ψ, Cϕψ are positive parame-

ters defined in the regularity Assumption 3.4, Cβ is a uni-
versal constant. The optimistic value functions are given

Algorithm 1 UCB-Q Learning for HD Composite MDPs
Input: Total number of episodes N , feature function
ϕ ∈ Rp, ψ ∈ Rq .
for episode n = 1, 2, . . . , N do

Construct confidence region in (3)
Calculate Qn,h(s, a) in (5)
for stage h = 1, 2, . . . ,H do

Take action an,h = argmaxa∈AQn,h (sn,h, a)
Observe next state sn,h+1

end for
Learn transition core estimator L̂n, Ŝn using (2).

end for

by:

Qn,h(s, a) = r(s, a) + max
L,S∈Bn

ϕ(s, a)⊤(L+ S)Ψ⊤Vn,h+1,

(5)

Qn,H+1(s, a) = 0,

where Vn,h(s) = Π[0,H] [maxaQn,h(s, a)], with Π[0,H]

truncating values to [0, H]. Here, Ψ ∈ |S| × q is feature
matrix, where each row represents the q-dimensional feature
vector corresponding to a unique state in the state space S.
The algorithm is summarized in Algorithm 2.

3.2. Regret Analysis for UCB-Q-Learning under
High-Dimensional Composite MDPs

For the regret analysis, we impose certain regularity condi-
tions on the features as outlined below.

Assumption 3.4. Let Ψ be a matrix with rows as ψ(s)⊤.
Let Cϕ, Cψ, C ′

ψ, Cϕψ be positive parameters such that

(i) ∀(s, a), ∥ϕ(s, a)∥2 ≤ Cϕ, ∥ϕ(s, a)∥∞ ≤ C ′
ϕ;

(ii) ∥Ψ∥2,∞ ≤ Cψ;

(iii) ∀s′, ∥ψ(s′)⊤K−1
ψ ∥2 ≤ C ′

ψ;

(iv) ∀(s, a, s′), ∥ϕ(s, a)⊤ψ(s′)K−1
ψ ∥max ≤ Cϕψ .

Lemma 3.5 (Transition Estimation Error). For composite
MDPs in Definition 2.1, under Assumption 3.1 and 3.4, the
estimator obtained by solving program (2) at the end of
nth-episode satisfies, with probability at least 1− 1/(n2H),
that, ∥∥∥L̂N − L∗

∥∥∥2
F
+
∥∥∥ŜN − S∗

∥∥∥2
F
≤ βn,

where βn is defined in (4).

Remark 3.6. Our method handles the high-dimensional set-
ting by explicitly exploiting the low-rank-plus-sparse struc-
ture of the transition core matrix M∗ = L∗ + S∗, where L∗

is of low-rank r << d and S∗ is of sparsity s << d. This
structure enables consistent estimation in regimes where
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p, q ≫ N , and is key to our theoretical guarantees. This
error bound is minimax optimal with respect to n.

Theorem 3.7 (Single-Task Regret Upper Bound). For com-
posite MDPs in Definition 2.1, under Assumption 3.1 and
3.4, let Regret(NH) be the accumulative regret of a total of
N episodes using the UCB-Q-Learning in Algorithm 2. We
have that

Regret(NH) ≤ CϕCψH
2
N∑
n=1

√
2βn + 1

≲ Creg
√
NH5

where d = max{p, q} and

Creg := CϕCψ

√
Cβ

(
r(CϕC ′

ψ)
2 + sC2

ϕψ

)
log(dNH).

Remark 3.8. This regret bound achieves optimal scaling
with respect to both the number of trajectories N and ambi-
ent dimension d, matching previous results in reinforcement
learning (Yang & Wang, 2020; Jin et al., 2020). In Section
4, we demonstrate that transfer learning can substantially
reduce both the dependence on ambient dimension d and the
scaling withN by effectively utilizing additional trajectories
from a source task.

3.3. Challenge and Proof Sketch under the Composite
Structure

By optimality condition of (2), it holds that∑
i<n,h≤H

∥ψ⊤
i,hK

−1
ψ − ϕ⊤i,h(L̂+ Ŝ)∥22

≤
∑

i<n,h≤H

∥ψ⊤
i,hK

−1
ψ − ϕ⊤i,h(L

∗ + S∗)∥22

Expanding the inequality, we have∑
i<n,h≤H

∥ϕ⊤i,h(L̂− L∗)∥2 + ∥ϕ⊤i,h(Ŝ − S∗)∥22 ≤

2
∑

i<n,h≤H

⟨ϕ⊤i,h(L∗ + S∗ − L̂− Ŝ), ψ⊤
i,hK

−1
ψ − ϕ⊤i,hM

∗⟩

− 2
∑

i<n,h≤H

⟨ϕ⊤i,h(L̂− L∗), ϕ⊤i,h(Ŝ − S∗)⟩

Establishing Theorem 3.7 presents several challenges and
requires new techniques. First, deriving a high-probability
error bound for L̂ and Ŝ is nontrivial due to the presence of
cross terms at the end of the inequality. To address this, we
adapt the separation lemma from (Chai & Fan, 2024), which
provides a way to control these cross terms effectively.

Second, ensuring the strong convexity of the linear operator
is challenging due to high correlations across stages. To

overcome this, we enforce the strong convexity property by
incorporating a restart mechanism for each trajectory.

Thirdly, we must bound the error term∑n−1
i=1

∑H
h=1 ϕi,h

(
ψ⊤
i,hK

−1
ψ − ϕ⊤i,hM

∗
)

. Since this
term forms a martingale difference sequence, we apply
matrix concentration techniques to control it effectively.

4. Transition Transfer under Composite MDPs
In this section, we consider transfer learning with target task
M∗(1) and source task M∗(0). The transition probabilities
of the target and source tasks are, respectively,

P(0)(s′|s, a) = ϕ(s, a)⊤M∗(0)ψ(s′), and

P(1)(s′|s, a) = ϕ(s, a)⊤M∗(1)ψ(s′),
(6)

where the core transition matrices M (1) and M (0) are dif-
ferent.

We propose modeling task similarity through their transition
dynamics: similar tasks share a common low-rank structure
capturing core dynamics, while differing only in sparse
directions that represent task-specific variations.

Assumption 4.1 (Transition Similarity). Consider the target
and source tasks characterized by transition model (6). The
target and source tasks are different in that their core transi-
tion matrices M∗(1) ̸=M∗(0). However, their similarity is
defined by:

M∗(0) = L∗ + S∗(0), and M∗(1) = L∗ + S∗(1), (7)

where both tasks share the same low-rank component L∗,
∥S∗(0)∥0 = s0, ∥S∗(1)∥0 = s1 are task-specific sparse
components, two tasks are similar in the sense that their dif-
ference D∗ = S(1) − S(0), called the “sparsity difference”,
is very sparse: ∥D∗∥0 = e≪ max{s0, s1}.

We have N0 episodes for the source task and N1 = N
episodes for the target task. In practice, N0 ≫ N and we
would like to use the source task to enhance the performance
of the target task. Since our primary focus is on the target
data, we don’t make specific data generating assumptions on
the source data which can be both batch data or generated
from certain online process.

For notation brevity, we use i and h to index episodes and
time steps of the source task, with i ∈ [N0] and h ∈ [H]. For
the target task, we use j and h to index its episodes and time
steps, with j ∈ [N ] and h ∈ [H]. We denote the following
state-action-station transition triplet: (si,h, ai,h, s′i,h) from
the target task and (sj,h, aj,h, s

′
j,h) from the source task.

The associated features are

ϕ
(0)
i,h := ϕ(si,h, ai,h) ∈ Rp, ψ

(0)
i,h := ψ(s′i,h) ∈ Rq,

ϕ
(1)
j,h := ϕ(sj,h, aj,h) ∈ Rp, ψ

(1)
j,h := ψ(s′j,h) ∈ Rq.

(8)
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Let Kψ :=
∑
s′∈S ψ(s

′)ψ(s′)⊤. We have, at each step h
for the target task,

E
[
ϕ
(1)
i,hψ

(1)⊤
i,h K−1

ψ | si,h, ai,h
]
=
(
ϕ
(1)
i,hϕ

(1)⊤
i,h

)
(L∗+S∗(0)).

Similarly, we have for the source task,

E
[
ϕ
(0)
j,hψ

(0)⊤
j,h K−1

ψ | sj,h, aj,h
]
=
(
ϕ
(0)
j,hϕ

(0)⊤
j,h

)
(L∗+S∗(1)).

4.1. UCB Transfer Q-Learning for High-Dimensional
Composite MDPs

Now we introduce the UCB Transfer Q-Learning (UCB-
TQL) for HD Composite MDPs. The algorithm is summa-
rized in Algorithm 2. We first introduce the optimization-
based estimator in the following two steps, then proceed to
construct the confidence region.

STEP I. Estimate the low-rank and sparse components of
the source task by solving2

(L̂, Ŝ(0)) ∈ argmin
L,S∈Rp×q

∑
i≤N0,h≤H

∥∥∥ψ(0)⊤
i,h K−1

ψ − ϕ
(0)⊤
i,h (L+ S)

∥∥∥2
2

s.t. L = UΣV T , ∥U∥2,∞ ≤
√
µr

p
,

∥V ∥2,∞ ≤
√
µr

q
, ∥S∥0 ≤ s0.

(9)

STEP II. Use target data to correct the bias of the sparse
part in an online fashion.

D̂n ∈ argmin
D∈Rp×q

∑
j<n,h≤H

∥∥∥ψ(1)⊤
j,h K−1

ψ − ϕ
(1)⊤
j,h (L̂+ Ŝ(0) +D)

∥∥∥2
2

s.t. ∥D∥0 ≤ e
(10)

Then the target estimator for n episode is given by

(L̂n, Ŝ
(1)
n ) = (L̂, Ŝ(0) + D̂n). (11)

To construct the confidence region, suppose at the first stage,
we established ∥L∗ − L̂∥2F + ∥S∗(0) − Ŝ(0)∥2F ≤ βN0 with
probability at least 1− 1/(2N2H), where we slightly abuse
notation by again referring to βN0

as the confidence radius
at initial stage of target learning. When the source samples
come from the online UCB algorithm as described in Section
3, we have

βN0
=
CβH log(dN0H)

N0

(
r(CϕC

′
ψ)

2 + sC2
ϕψ

)
, (12)

d = max{p, q} and Cϕ, Cψ, C ′
ψ, Cϕψ are positive param-

eters defined in the regularity Assumption 3.4, Cβ is a un
iversal constant.

2Note that for simplicity, we assume the sparsity s0 appearing
in the constraint is known. It can be replaced by an upper bound
on s0.

Algorithm 2 UCB-TQL for Composite MDPs
Input: N0 episodes of source data, feature function ϕ ∈
Rp, ψ ∈ Rq , number of episodes N of the target task.
Calculate pilot transition core estimators L̂, Ŝ(0) using
(9).
for episode n = 1, 2, . . . , N do

Construct confidence region (13).
Calculate Qn,h(s, a) in (14).
for stage h = 1, 2, . . . ,H do

Take action an,h = argmaxa∈AQn,h (sn,h, a)
Observe sn,h+1 from target domain M(1)

end for
Learn transition core estimator using (11).

end for

The online confidence region at step n is then constructed
as

B̃n =

{
(L, S,D) : ∥L− L̂

(0)∥2
F + ∥S −D − Ŝ

(0)∥2
F ≤ βN0

,

∥D − D̂n∥2
F ≤ β

(1)
n , ∥D∥0 ≤ e

}
.

(13)
where we incorporate D in the decision variables to put
direct restriction on the sparsity of sparse difference.

Similarly, the optimistic value functions are calculated as
follows.

Qn,h(s, a) = r(s, a) + max
L,S∈B̃n

ϕ(s, a)⊤(L+ S)Ψ⊤Vn,h+1,

(14)

Qn,H+1(s, a) = 0,

Remark 4.2 (Extensions). We focus on sparsity-constrained
optimization, which can be extended to a Lasso-type L1

penalty for improved computational efficiency. For brevity,
we omit these details here.

4.2. Regret Analysis of UCB-TQL

The following assumption is in parallel to Assumption 3.1.

Assumption 4.3. Consider transfer RL setting with tran-
sition similarity defined in Assumption 4.1. Recall that
L∗ = U∗Σ∗V ∗. We assume that ∥U∗∥2,∞, ∥V ∗∥2,∞ ≤√

µr
p and that the sparsity of S∗(0) and S∗(1) satisfies

max{s0, s1} ≤ s := max{p,q}
4CSµr3

, for some constant CS .

The following theorem demonstrates the provable benefits
of UCB-TQL for the target RL task.

Lemma 4.4 (Estimation Error). Let N0 denotes the number
of episodes from the source task. Under Assumption 3.4, 4.1,
and 4.3, the estimator at the end of nth-episode satisfies
with probability at least 1− 1/(n2H) that,∥∥∥L̂n − L∗

∥∥∥2
F
+
∥∥∥Ŝn − S∗(0)

∥∥∥2
F
≤ βN0

+
eC2

ϕψH log (dnH)

n
,

7
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where βN0
is the initial confidence radius defined in (12).

Remark 4.5. The estimation error bound is minimax optimal
with respect to N0, n, and d. We extend these existing
results in the contexts of regression and matrix completion
(Chai & Fan, 2024) to the settings of reinforcement learning
and transfer learning.

Theorem 4.6 (Regret upper bound for UCB-TQL). Let
N0 and N denotes the number of episodes from the source
and target tasks, respectively. Let Regret(NH) be the ac-
cumulative regret of a total of N target episodes using the
UCB-TQL in Algorithm 2. Under Assumption 3.4, 4.1, and
4.3, it holds that

Regret(NH) ≲ C ′
regN/

√
N0+

C ′
ϕCψH

2
√
eC2

ϕψNH log (dNH)

where s = max{s0, s1} and

C
′
reg :=

(
Cϕ + C

′
ϕ

√
e
)
Cψ

√
CβH5 log(dN0H)

(
r(CϕC′

ψ)
2 + sC2

ϕψ

)
.

(15)

Remark 4.7. Note that the first term represents the rate at
which the source is learned, while the second term accounts
for correcting the bias of the sparse component.

When the source sample size N0 is sufficiently larger than
the target sample size, the regret is dominated by the sec-
ond term. Specifically, when N0 ≍ N2, the regret bound
simplifies to Õ(

√
eH5N) , which scales independently of

the ambient dimension. Since e ≪ d, this represents a
significant improvement over the result in (Yang & Wang,
2020).

We also characterize the phase transition. Specifically, when
N0 ≥ N(rC2

ϕ + s), neglecting the logarithm terms, the
regret bound becomes dominated by the second term, corre-
sponding to estimation of the sparse difference.

4.3. Challenges and Proof Sketch of UCB-TQL with
High-Dimensional Composite MDPs.

A natural way to construct the confidence region is

Bn =

{
(L, S) |

∥∥∥L− L̂n

∥∥∥2
F
+
∥∥∥S − Ŝn

∥∥∥2
F
≤ β(1)

n

}
(16)

where β(1)
n := βN0 +

eC2
ϕψH log(dNH)

n .

However, this confidence region is not tight in that we are
not fully utilizing the sparse difference D. To be more

specific, plugging the value of β(1)
n in (19), we have

Regret(NH) ≲ CϕCψH

N∑
n=1

√
β
(1)
n + 1

≲ CϕCψH
(
N
√
βN0

+√
eC2

ϕψ NH log
(
dNH

))
.

In contrast to (16), we employ a more fine-grained confi-
dence region (13), where we directly restrict the sparsity of
the sparse difference D to be bounded, leading to improved
rates.

In particular, we have (L∗, S∗(0), D∗) ∈ B̃n, indicating this
CR is valid. To bound the one-step error, let (L̃, S̃, D̃) =
argmaxL,S∈B̃n ϕ(s, a)

⊤(L+ S)Ψ⊤Vn,h+1, it holds that

Qn,h(sn,h, an,h)− (r(sn,h, an,h) + [PhVn,h+1](sn,h, an,h))

≤
∥∥∥ϕ⊤n,h(L̃− L∗)

∥∥∥
2

∥∥Ψ⊤Vn,h+1

∥∥
2
+∥∥∥ϕ⊤n,h (S̃ − D̃ − S∗ +D∗

)∥∥∥
2

∥∥Ψ⊤Vn,h+1

∥∥
2
+∣∣∣ϕ⊤n,h (D̃ −D∗

)
Ψ⊤Vn,h+1

∣∣∣
(17)

The first two terms can be bounded similar to single-task
case. From the constraint in the optimization problem (9)
and Assumption 4.3, we have ∥D̃n∥0 ≤ e, ∥D∗∥0 ≤ e,
implying ∥D̃n −D∗∥0 ≤ 2e. This observation facilitates
a tight bound on the third term. Combining these one-step
error bounds then yields the final regret bound in (19).

5. Discussion
When employing low-rank and sparse structures as the core
for transition probabilities, several directions for future ex-
ploration emerge. Firstly, alternative sparse structures, such
as row sparsity, column sparsity, or group sparsity, could be
further investigated to understand their impact on learning
dynamics and efficiency. These alternative formulations
may offer more nuanced or efficient ways to capture the
underlying patterns in transition dynamics across different
domains.

Secondly, our analysis reveals that the regret bounds of
the UBC-TQL algorithm are significantly influenced by the
error bounds derived from matrix recovery. Since the Up-
per Confidence Bound (UCB) is determined by the error
bounds of matrix recovery, the regret bound is largely dic-
tated by these errors. An extension goal is to achieve the
current levels of regret under more relaxed assumptions.
This could involve developing new theoretical frameworks
or algorithms that either provide tighter error bounds or
leverage additional structure in the transition dynamics that
has not been fully exploited.
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Supplemental Materials

Notation We use [h] = {1, 2, . . . , h} for integers from 1 to h. In this paper, vectors are assumed to be column vectors. For
a vector v ∈ Rp, the norms ∥v∥1, ∥v∥2, and ∥v∥∞ represent the 1-norm, Euclidean norm(or 2-norm), and infinity norm,
respectively. For a matrix M ∈ Rp×q, we use the following notation for norms: ∥M∥0 denotes the number of non-zero
elements, ∥M∥1 =

∑p
i=1

∑q
j=1 |Mij | is the sum of the absolute values of all elements, and ∥M∥max = maxi,j |Mij | is the

maximum absolute value among elements. The Frobenius norm is ∥M∥F =
√

Tr(M⊤M) =
√∑d1

j=1

∑d2
k=1M

2
jk, which

is also equivalent to
√∑

j σj(M)2, where σj(M) are the singular values of M . The nuclear norm is ∥M∥∗ =
∑
j σj(M),

and the operator norm is ∥M∥op = maxj σj(M). Moreover, the 2− to−∞ norm is defined as ∥M∥2,∞ = maxd1j=1 ∥Mj,:∥2
For two matrices, ⟨L, S⟩ represents the Euclidean inner product. We use an = O(bn) or an ≲ bn if there exists some C > 0

such that an ≤ Cbn. Õ(·) is similarly defined, neglecting logarithmic factors. Constants c, C, c0, · · · may vary from line to
line.

A. Regret Analysis of the Single-Task UCB-Q-Learning with Composite MDP Structures
We present below the proof of Theorem 3.7. The proof of Lemma 3.5 emerges as an intermediate step along the way.

Proof of Theorem 3.7. We first sketch the proof as follows. First of all, we define the “good event” that the ground truth
transition core matrix before episode n lies in the confidence region as En, i.e., (L∗, S∗) ∈ Bn′ for any n′ ≤ n − 1. We
assume En holds first and use concentration to prove that En holds with high probability later. We denote En = 1En .

1. Under En, prove Qn,h ≥ Q∗
h using induction.

2. Bound Qn,h(sn,h, an,h)− [r(sn,h, an,h) + P (·|sn,h, an,h)TVn,h+1].

3. Bound the total regret by one-step errors derived in Step 2.

We elaborate each step in the sequel.

A.1. Upper confidence bound

Lemma A.1. Given any state-action pair (s, a) ∈ S ×A , for each episode n and decision step h, we have:

Qn,h(s, a) ≥ Q∗
h(s, a).

Proof. We use induction. At h = H , we have Qn,H = Q∗
H(s, a) = r(s, a). Assuming the argument is true for 1 < h′ ≤ H ,

it naturally extends to h = h′ − 1 that Vn,h(s) ≥ V ∗
h (s), and hence

Qn,h(s, a) = r(s, a) + max
L,S∈Bn

ϕ(s, a)⊤(L+ S)Ψ⊤Vn,h+1

≥ r(s, a) + ϕ(s, a)⊤(L∗ + S∗)Ψ⊤Vn,h+1

≥ r(s, a) + [PV ∗
h+1](s, a) = Q∗

h(s, a).

A.2. One-step bound

Lemma A.2. For any h ∈ [H] and n ∈ [N ], we have

Qn,h(sn,h, an,h)− (r(sn,h, an,h) + [PhVn,h+1](sn,h, an,h)) ≤ CϕCψH
√
2βn.

Proof. Let (L̃, S̃) = argmaxL,S∈Bn ϕ(s, a)
⊤(L+ S)Ψ⊤Vn,h+1, it holds that

Qn,h(sn,h, an,h)− (r(sn,h, an,h) + [PhVn,h+1](sn,h, an,h)) =ϕ
⊤
n,h

[(
L̃+ S̃

)
−M∗

]
Ψ⊤Vn,h+1

=ϕ⊤n,h

[
(L̃− L∗) +

(
S̃ − S∗

)]
Ψ⊤Vn,h+1.
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Applying Hölder’s inequality, the triangle inequality, and Cauchy-Schwarz inequality, we deduce the following results:

Qn,h(sn,h, an,h)− (r(sn,h, an,h) + [PhVn,h+1](sn,h, an,h))

≤
∥∥∥ϕ⊤n,h(L̃− L∗)

∥∥∥
2

∥∥Ψ⊤Vn,h+1

∥∥
2
+
∥∥∥ϕ⊤n,h (S̃ − S∗

)∥∥∥
2

∥∥Ψ⊤Vn,h+1

∥∥
2

≤ H
(
Cψ

∥∥∥ϕ⊤n,h(L̃− L∗)
∥∥∥
2
+ Cψ

∥∥∥ϕ⊤n,h (S̃ − S∗
)∥∥∥

2

)
≤ H

(
Cψ ∥ϕn,h∥2

∥∥∥L̃− L∗
∥∥∥
F
+ Cψ ∥ϕn,h∥2

∥∥∥S̃ − S∗
∥∥∥
F

)
≤ CϕCψH

(∥∥∥L̃− L∗
∥∥∥
F
+
∥∥∥S̃ − S∗

∥∥∥
F

)
≤ CϕCψH

√
2βn.

(18)

A.3. Regret decomposition

We bound the regret by the sum of one-step errors. To set the stage, let Fn,h be defined as the σ-field generated by all the
random variables up until episode n, step h, essentially fixing the sequence s1,1, a1,1, s1,2, a1,2, . . . , sn,h, an,h. To proceed,
let

δn,h := (Vn,h − V πnh )(sn,h), γn,h := Qn,h(sn,h, an,h)− (r(sn,h, an,h) + [PhVn,h+1](sn,h, an,h)) .

And hence

Regret(NH) = E

(
N∑
n=1

[V ∗(s0)− V πn(s0)]

)

≤ E

(
N∑
n=1

(Vn,1 − V πn1 )(s0)

)
=

N∑
n=1

E(δn,1).

We have
E(δn,1) = E(δn,1En + (1− En)δn,1) ≤ E(δn,1En) +HP[En = 0]

and

E (δn,1En | Fn,1) = (Vn,1 − V πn1 ) (sn,1)En

≤Qn,1 (sn,1, an,1)− V πn1 (sn,1)

=γn,1 + (r (sn,1, an,1) + [PVn,2] (sn,1, an,1))− V πn1 (sn,1)

≤γn,1 + E ((Vn,2 − V πn2 ) (sn,2)En | Fn,1) ≤ · · ·

≤
H∑
h=1

E(γn,h | Fn,1)

≤CϕCψH2
√
2βn.

Therefore, we establish the regret bound with high probability that

Regret(NH) ≤ CϕCψH
2
N∑
n=1

√
2βn +NHP[EN = 0], (19)

where we use En ⊆ En′ with n > n′.

A.4. Confidence region

In this subsection, we validate the confidence region. Recall the CR is defined in (3).

13
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Denote Xn =


ϕ⊤1,1
· · ·
ϕ⊤1,H
· · ·

ϕ⊤n−1,H

and Yn =


ψ⊤
1,1K

−1
ψ

· · ·
ψ⊤
1,HK−1

ψ

· · ·
ψ⊤
n−1,HK−1

ψ

, we have the observational model as follows:

Yn = Xn(L
∗ + S∗) +Wn

where Wn = Yn −Xn(L
∗ + S∗).

In view of (Chai & Fan, 2024), we need the observation model to satisfy the restricted strong convexity condition in order
for the low-rank part and sparse part to be separated.

λmin

(
X⊤
n Xn

n− 1

)
≥ c1. (20)

We will later give specific cases in which this inequality holds. In the sequel, we bound ∥X⊤
nWn∥2 and ∥X⊤

nWn∥max.

In fact, we can express X⊤
nWn as

X⊤
nWn =

n−1∑
i=1

H∑
h=1

ϕi,h

(
ψ⊤
i,hK

−1
ψ − ϕ⊤i,hM

∗
)
.

Note that E
[
ψ⊤
i,hK

−1
ψ − ϕ⊤i,hM

∗|Fi,h
]

= 0, and X⊤
nWn is a sum of martingale differences. Let Zi,h =

ϕi,h

(
ψ⊤
i,hK

−1
ψ − ϕ⊤i,hM

∗
)

, we have that

∥Zi,h∥2 = ∥ϕi,h∥ · ∥ψ⊤
i,hK

−1
ψ − ϕ⊤i,hM

∗∥

= ∥ϕi,h∥ ·
(
∥ψ⊤

i,hK
−1
ψ ∥+ ∥ϕ⊤i,hM∗∥

)
≤ 2CϕC

′
ψ,

where we used ∥ϕ⊤i,hM∗∥ =
∥∥∥E [ψ⊤

i,hK
−1
ψ |Fi,h

] ∥∥∥ ≤ C ′
ψ .

On the other hand, ∥∥∥ n−1∑
i=1

H∑
h=1

E[Z⊤
i,hZi,h|Fi,h]

∥∥∥ ≤ 4nH(CϕC
′
ψ)

2

and ∥∥∥ n−1∑
i=1

H∑
h=1

E[Zi,hZ⊤
i,h|Fi,h]

∥∥∥ ≤ 4nH(CϕC
′
ψ)

2.

By Matrix Freedman inequality (Corollary 1.3 in (Tropp, 2011)), we have with probability at least 1− δ that

∥X⊤
nWn∥2 ≲ CϕC

′
ψ log

(
d

δ

)
+ CϕC

′
ψ

√
nH log

(
d

δ

)
.

Similarly, each entry of X⊤
nWn is the sum of martingale differences, almost surely bounded by 2Cϕψ, and we have by

Azuma-Hoeffding’s inequality and a union bound over d2 entries that, with probability at least 1− δ,

∥X⊤
nWn∥max = max

i,j
|[X⊤

nWn]ij | ≲ Cϕψ

√
nH log

(
d

δ

)
.

Confidence Region

14
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By the optimality condition, we have

∥Yn −Xn(L̂n + Ŝn)∥2F ≤ ∥Yn −Xn(L
∗ + S∗)∥2F .

Expanding on both sides yields

∥Xn(∆L +∆S)∥2F ≤ 2⟨Wn, Xn(∆L +∆S)⟩
= 2⟨X⊤

nWn,∆L +∆S⟩
≤ 2∥X⊤

nWn∥2∥∆L∥∗ + 2∥X⊤
nWn∥max∥∆S∥1

≤ 2⟨X⊤
nWn,∆L +∆S⟩

≤ 2
√
2r∥X⊤

nWn∥2∥∆L∥F + 2
√
2s∥X⊤

nWn∥max∥∆S∥F ,

where we denote ∆L := L̂n − L∗ and ∆S := Ŝn − S∗.

On the other hand, by (20) and separation lemma in (Chai & Fan, 2024), we have that

∥Xn(∆L +∆S)∥2F ≥ c1(n− 1)∥∆L +∆S∥2F

≥ c1(n− 1)

2

(
∥∆L∥2F + ∥∆S∥2F

)
.

Putting together, we have

∥∆L∥2F + ∥∆S∥2F ≤ 4

c1(n− 1)

√
2r∥X⊤

nWn∥2∥∆L∥F +
√
2s∥X⊤

nWn∥max∥∆S∥F

≤ 4

c1(n− 1)

√
2r∥X⊤

nWn∥22 + 2s∥X⊤
nWn∥2max ·

√
∥∆L∥2F + ∥∆S∥2F

which implies that

∥∆L∥2F + ∥∆S∥2F ≤ 32

c21(n− 1)2
(
r∥X⊤

nWn∥22 + s∥X⊤
nWn∥2max

)
.

Plugging in the aforementioned bounds of ∥X⊤
nWn∥2 and ∥X⊤

nWn∥max, we deduce that Bn is a valid δ-confidence region
if we take

βn =
Cβ
n2
(
r(CϕC

′
ψ)

2nH log(d/δ) + sC2
ϕψnH log(d/δ)

)
=
CβH log(d/δ)

n

(
r(CϕC

′
ψ)

2 + sC2
ϕψ

)
(21)

for some large enough Cβ . In particular, we take δ = 1/(N2H) in the above display, then by the union bound, P(EN =
0) ≤ N · 1

N2H = 1
NH .

Combining the definition of βn with (19), we obtain that

Regret(NH) ≤ CϕCψH
2
N∑
n=1

√
2βn + 1

≲ Creg
√
NH5,

where Creg := CϕCψ

√
Cβ

(
r(CϕC ′

ψ)
2 + sC2

ϕψ

)
log(dNH).

As a byproduct, we have that by the end of the N episode, with probability at least 1− 1/(N2H),∥∥∥L− L̂N

∥∥∥2
F
+
∥∥∥S − ŜN

∥∥∥2
F
≤ βN .
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A.5. Discussion on Condition (20)

Now we provide an example where Condition (20) holds. At a high level, ϕi,h may be highly correlated, across different
steps and episodes. Nonetheless, note that each episodes starts at independent initial states, hence providing diversity to the
linear operator Xn. In fact, Condition (20) holds when ϕ(s, a) depends mainly on s and a adds a perturbation effect. To be
more concrete, consider the following lemma as an example.

Lemma A.3. Suppose there exists some function ϕ such that ∥ϕ(s, a)− ϕ(s)∥2 ≤ η. And

λmin

(
Eµ[ϕ(s)ϕ(s)⊤]

)
≥ cmin.

If η(2Cϕ + η) ≤ cmin

4 and n ≥ Ced for some constant Ce, then with probability at least 1− 2e−cen, Condition (20) holds
with c1 = cmin/4.

Proof. Denote Eµ[ϕ(s)ϕ(s)⊤] by Σµ. As |ϕ(s)⊤v| ≤ ∥ϕ(s)∥ ≤ Cϕ for any v ∈ Sd, we have that ϕ(s) is subGaussian with
variance proxy (C − ϕ/2)2. By (5.25) in (Vershynin, 2010), there exists some constants Ce, ce such that with probability at
least 1− 2e−cen,

1

n− 1

n−1∑
i=1

ϕ(si,1)ϕ(si,1)
⊤ ⪰ 1

2
Σµ ⪰ cmin

2
I

as long as n ≥ Ced.

Let ∆ = 1
n−1

∑n−1
i=1 ϕ(si,1)ϕ(si,1)

⊤ − 1
n−1

∑n−1
i=1 ϕi,1ϕ

⊤
i,1, we have for any v ∈ Sd that

v⊤∆v =
1

n− 1

n−1∑
i=1

(
[ϕ(si,1)

⊤v]2 − [ϕ⊤i,1v]
2
)

≤ 1

n− 1

n−1∑
i=1

∥∥∥ϕ(si,1)− ϕi,1

∥∥∥ · ∥∥∥ϕ(si,1) + ϕi,1

∥∥∥
≤ η(2Cϕ + η).

Hence ∥∆∥ ≤ η(2Cϕ + η) ≤ cmin

4 . It follows that

1

n− 1

n−1∑
i=1

ϕi,1ϕ
⊤
i,1 ⪰ cmin

4
I.

To conclude, note that

1

n− 1

n−1∑
i=1

H∑
h=1

ϕi,hϕ
⊤
i,h ⪰ 1

n− 1

n−1∑
i=1

ϕi,1ϕ
⊤
i,1 ⪰ cmin

4
I.

Remark A.4. The condition n ≥ Ced requires a warm start. For n ≤ Ced, one can use a fixed policy to generate samples.
This will not affect the total regret as long as dH is neglegible compared to

√
NH5.

B. Regret Analysis for UCB-TQL under Composite MDPs
In this section, we provide proof for Theorem 4.6. The pipeline is similar to the single-task setting.

We start by constructing the confidence region. To that end, again denote Denote X(1)
n =


ϕ
(1)⊤
1,1

· · ·
ϕ
(1)⊤
1,H

· · ·
ϕ
(1)⊤
n−1,H

and Y
(1)
n =

16
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ψ
(1)⊤
1,1 K−1

ψ

· · ·
ψ
(1)⊤
1,H K−1

ψ

· · ·
ψ
(1)⊤
n−1,HK−1

ψ

, we have the observational model as follows:

Y (1)
n = X(1)

n (L∗ + S∗(0) +D∗) +Wn

where Wn := Y
(1)
n −X

(1)
n (L∗ + S∗(0) +D∗).

By the optimality condition, we have

∥Y (1)
n −X(1)

n (L̂+ Ŝ(0) − D̂n)∥2F ≤ ∥Y (1)
n −X(1)

n (L∗ + S∗(0) +D∗)∥2F .

After some calculation, we obtain

∥X(1)
n (D̂n −D∗)∥2F ≤ 2

〈
Y (1)
n −X(1)

n (L̂+ Ŝ(0) −D∗), X(1)
n (D̂n −D∗)

〉
= 2
〈
X(1)⊤
n

(
Wn +X(1)

n (L∗ − L̂+ S∗(0) − Ŝ(0))
)
, D̂n −D∗

〉
≤ 2
∥∥∥X(1)⊤

n Wn

∥∥∥
∞

∥∥∥D̂n −D∗
∥∥∥
1
+ 2
∥∥∥X(1)⊤

n X(1)
n (L∗ − L̂+ S∗(0) − Ŝ(0))

∥∥∥
F

∥∥∥D̂n −D∗
∥∥∥
F

≤ 2
√
2e
∥∥∥X(1)⊤

n Wn

∥∥∥
max

∥∥∥D̂n −D∗
∥∥∥
F
+ 2
∥∥∥X(1)⊤

n X(1)
n (L∗ − L̂+ S∗(0) − Ŝ(0))

∥∥∥
F

∥∥∥D̂n −D∗
∥∥∥
F
.

We have, similar as before, with probability at least 1− δ,

∥X(1)⊤
n Wn

∥∥∥
max

≲ Cϕψ

√
nH log

(
d

δ

)
.

If

λmin

(
X

(1)⊤
n X

(1)
n

n− 1

)
≥ c1,

λmax

(
X

(1)⊤
n X

(1)
n

n− 1

)
≤ C1,

then it holds that

∥D̂n −D∗∥2F ≲
eC2

ϕψH log
(
d
δ

)
n

+ ∥L∗ − L̂∥2F + ∥S∗(0) − Ŝ(0)∥2F .

Suppose at the first stage, we established ∥L∗ − L̂∥2F + ∥S∗(0) − Ŝ(0)∥2F ≤ βN0
with probability at least 1− 1/(2N2H),

where

βN0
=
CβH log(d/δ)

N0

(
r(CϕC

′
ψ)

2 + sC2
ϕψ

)
,

as in (21).

Naive CR Recall that we can construct a naive confidence region as

Bn =

{
(L, S) |

∥∥∥L− L̂n

∥∥∥2
F
+
∥∥∥S − Ŝn

∥∥∥2
F
≤ β(1)

n

}
where β(1)

n := βN0 +
eC2

ϕψH log(dNH)

n .
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When using this confidence region to construct optimistic value functions, we can plug the value of β(1)
n into (19). It follows

that

Regret(NH) ≲ CϕCψH
2
N∑
n=1

√
β
(1)
n + 1

≲ CϕCψH
2
(
N
√
βN0

+
√
eC2

ϕψNH log (dNH)
)
.

Remark B.1. When N0 ≫ N , this bound is dominated by the second term, which depends on Cϕ.

Tight CR As illustrated in the proof sketch, we can achieve better rate by constructing a more fine-grained confidence
region as

B̃n =

{
(L, S,D) |

∥∥∥L− L̂(0)
∥∥∥2
F
+
∥∥∥S −D − Ŝ(0)

∥∥∥2
F
≤ βN0

,
∥∥∥D − D̂n

∥∥∥2
F
≤ β(1)

n , ∥D∥0 ≤ e

}
.

It is straightforward to show that (L∗, S∗(0), D∗) ∈ B̃n. We then carry out a more refined one-step analysis, similar in the
vein of Section 3.2.2. In particular, let (L̃, S̃, D̃) = argmaxL,S∈B̃n ϕ(s, a)

⊤(L+ S)Ψ⊤Vn,h+1, it holds that

Qn,h(sn,h, an,h)− (r(sn,h, an,h) + [PhVn,h+1](sn,h, an,h))

≤
∥∥∥ϕ⊤n,h(L̃− L∗)

∥∥∥
2

∥∥Ψ⊤Vn,h+1

∥∥
2
+
∥∥∥ϕ⊤n,h (S̃ − D̃ − S∗ +D∗

)∥∥∥
2

∥∥Ψ⊤Vn,h+1

∥∥
2
+
∣∣∣ϕ⊤n,h (D̃ −D∗

)
Ψ⊤Vn,h+1

∣∣∣
≤ H

(
Cψ

∥∥∥ϕ⊤n,h(L̃− L∗)
∥∥∥
2
+ Cψ

∥∥∥ϕ⊤n,h (S̃ − D̃ − S∗ +D∗
)∥∥∥

2

)
+
√
2eHC ′

ϕCψ

∥∥∥D̃ −D∗
∥∥∥
F

≤ H
(
Cψ ∥ϕn,h∥2

∥∥∥L̃− L∗
∥∥∥
F
+ Cψ ∥ϕn,h∥2

∥∥∥S̃ − D̃ − S∗ +D∗
∥∥∥
F

)
+

√
2eHC ′

ϕCψ

∥∥∥D̃ −D∗
∥∥∥
F

≤ CϕCψH
(∥∥∥L̃− L∗

∥∥∥
F
+
∥∥∥S̃ − D̃ − S∗ +D∗

∥∥∥
F

)
+
√
2eHC ′

ϕCψ

∥∥∥D̃ −D∗
∥∥∥
F

≤ CϕCψH
√
2βN0

+ C ′
ϕCψH

√
4β

(1)
n e,

(22)
where the sparsity constraint on D is used in bound the third term in the second line. Combined with the one-step error in
the regret decomposition (19), we obtain that

Regret(NH) ≲ CϕCψH
2
N∑
n=1

√
βN0

+ C ′
ϕCψH

2
N∑
n=1

√
4β

(1)
n e

≲
(
Cϕ + C ′

ϕ

√
e
)
CψH

2N
√
βN0

+ C ′
ϕCψH

2
√
eC2

ϕψNH log (dNH).

Plugging the definition of βN0
completes the proof.

Remark B.2. When N0 ≫ N , this bound is dominated by the second term, which does not depend on Cϕ, but rather on C ′
ϕ.

It is tighter than the rate of naive CR approach as Cϕ ≥ C ′
ϕ.
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