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Abstract

Implicit neural representations (INRs) have recently emerged as a powerful tool that
provides an accurate and resolution-independent encoding of data. Their robustness
as general approximators has been shown in a wide variety of data sources, with
applications on image, sound, and 3D scene representation. Howeyver, little attention
has been given to leveraging these architectures for the representation and analysis
of time series data. In this paper, we analyze the representation of time series
using INRs, comparing different activation functions in terms of reconstruction
accuracy and training convergence speed. Secondly, we propose a hypernetwork
architecture that leverages INRs to learn a compressed latent representation of an
entire time series dataset. We introduce an FFT-based loss to guide training so that
all frequencies are preserved in the time series. We show that this network can be
used to encode time series as INRs, and their embeddings can be interpolated to
generate new time series from existing ones. We evaluate our generative method
by using it for data augmentation, and show that it is competitive against current
state-of-the-art approaches for augmentation of time series.

1 Introduction

Modeling time series data has been a key topic of research for many years, constituting a crucial
component of applications in a wide variety of areas such as climate modeling, medicine, biology,
retail and finance [21]]. Traditional methods for time series modeling have relied on parametric
models informed by expert knowledge. However, the development of modern machine learning
methods has provided purely data-driven techniques to learn temporal relationships. In particular,
neural network-based methods have gained popularity in recent times, with applications on a wide
range of tasks, such as time series classification [17]], clustering [25] 2], segmentation [29} 43]],
anomaly detection [11} 40, [16]], upsampling [28. [7], imputation [23] 24} 8], forecasting [21} 37]] and
synthesis [[1} 141} 20]. In particular, the generation of time series data for augmentation has remained
as an open problem, and is currently gaining interest due to the large number of potential applications
such as in medical and financial datasets, where data cannot be shared, either for privacy reasons or
for proprietary restrictions [19} 120, 4} [12].

In recent years, implicit neural representations (INRs) have gained popularity as an accurate and
flexible method to parameterize signals, such as from image, video, audio and 3D scene data [32] [27].
Conventional methods for data encoding often rely on discrete representations, such as data grids,
which are limited by their spatial resolution and present inherent discretization artifacts. In contrast,
implicit neural representations encode data in terms of continuous functional relationships between
signals, and thus are uncoupled to spatial resolution. In practical terms, INRs provide a new data
representation framework that is resolution-independent, with many potential applications on time
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series data, where irregularly sampled and missing data are common occurrences [14]. However,
there are currently no works exploring the suitability of INRs on time series representation and
analysis.

In this work, we propose an implicit neural representation for univariate and multivariate time series
data. We compare the performance of different activation functions in terms of reconstruction accuracy
and training convergence. Finally, we combine these representations with a hypernetwork architecture,
in order to learn a prior over the space of time series. The training of our hypernetwork takes into
account the accurate reconstruction of both the time series signals and their respective power spectra.
This motivates us to propose a Fourier-based loss that proves to be crucial in guiding the learning
process. The advantage of employing such a Fourier-based loss is that it allows our hypernetwork
to preserve all frequencies in the time series representation. In Section[4.2] we leverage the latent
embeddings learned by the hypernetwork for the synthesis of new time series by interpolation, and
show that our method performs competitively against recent state-of-the-art methods for time series
augmentation.

2 Related Work

Implicit Neural Representations Implicit Neural Representations (INRs) provide a continuous
representation of multidimensional data, by encoding a functional relationship between input co-
ordinates and signal values, avoiding possible discretization artifacts. They have recently gained
popularity in visual computing [26} 27] due to the key development of positional encodings [36] and
periodic activations (SIREN [32]), which have proven to be critical for the learning of high-frequency
details. Whilst INRs have been shown to produce accurate reconstructions in a wide variety of data
sources, such as video, images and audio [32} (10} 30], few works have leveraged them for time series
representation [[18,|39]], and none have focused on generation.

Hypernetworks Hypernetworks are neural network architectures that are trained to predict the
parameters of secondary networks, referred to as Hyponetworks [[15,131]]. In the last few years, some
works have leveraged different hypernetwork architectures for the prediction of INR weights, in
order to learn priors over image data [34] and 3D scene data [22] 33} [35]. [32] leverage a set encoder
and a hypernetwork decoder to learn a prior over SIRENs encoding image data, and apply it for
image in-painting. Our HyperTime architecture detailed in Section [3|uses a similar encoder-decoder
structure, however we apply these architectures for time series generation via interpolation of learned
embeddings.

Time Series Generation Synthesis of time series data using deep generative models has been
previously studied in the literature. Examples include the TimeGAN architecture [42], as well as
QuantGAN [38]]. More recently, [[13] proposed TimeVAE as a variational autoencoder alternative
to GAN-based time series generation. [[1] introduced Fourier Flows, a normalizing flow model for
time series data that leverages the frequency domain representation, which is currently considered
together with TimeGAN as state-of-the-art for time series generation. In the last few years, multiple
methods have used INRs for data generation, with applications on image synthesis [9} [34]], super-
resolution [10]] and panorama synthesis [3]]. However, there are currently no applications of INRs on
the generation of time series data.

3 Formulation

In this Section we describe the network architectures that we use to encode time series data (Subsec-
tion3.1)), and the hypernetwork architecture (HyperTime) leveraged for prior learning and new data
generation (Subsection [3.2).

3.1 Time Series Representation

In Figure[T|we present a diagram of the INR used for univariate time series. The network is composed
of fully-connected layers of dimensions 1 x 60 x 60 x 60 x 1, with sine activations (SIREN [32])):

¢i (Xi) = sin(wOWixi —+ bz) (1)

where ¢; corresponds to the i* layer of the network. A general factor wy multiplying the network
weights determines the order of magnitude of the frequencies that will be used to encode the signal.



Input and output of the INR are uni-dimensional, and
correspond to the time coordinate ¢ and the time series
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The architecture from Figure[I]can be modified to encode  Figure 1: Diagram of the implicit neural
multivariate time series, by simply increasing the number representation (INR) for univariate time
of neurons of the output layer to match the number of series. Neurons with a black border use
channels of the signal. Due to weight-sharing, this adds a  sine activations.

potential for data compression of the time series.

3.2 Time Series Generation with HyperTime

In Figure[2] we display a diagram of the HyperTime architecture, which allows us to leverage INRs to
learn priors over the space of time series. The Set Encoder (green network), composed of SIREN
layers [32] with dimensions 2 x 128 x 128 x 40, takes as input a pair of values, corresponding to the
time-coordinate ¢ and the time series signal f(¢). Each pair of input values is thus encoded into a full
40-values embedding and fed to the HyperNet decoder (blue network), composed of fully-connected
layers with ReLU activations (MLP), with dimensions 40 x 128 x 7500. The output of the HyperNet
is a one-dimensional 7500-values embedding that contains the network weights of an INR which
encodes the time series data from the input. The INR architecture used within HyperTime is the same
described in the previous section, and illustrated in Figure[T} Following previous works [31]], in order
to avoid ambiguities we refer to these predicted INRs as HypoNets.

HyperTime SIREN Weights GT Time-Series

Pred Time-Series £Rcc

Lopr 1 I

GT Spectrum

{t, f(t)}

Figure 2: Diagram of HyperTime architecture. Each pair of time-coordinate ¢ and time series f(¢)
is encoded by the Set Encoder. The HyperNet decoder learns to predict HypoNet weights from the
embeddings. During training, the output of the HyperNet is used to build a HypoNet and evaluate it
on in the input time-coordinates. The loss is computed as a difference between f(t) and the output of

the HypoNet f(t).

During the training of HyperTime, we use the weights predicted by the HyperNet decoder to instantiate
a HypoNet and evaluate it on the input time-coordinate ¢, to produce the predicted time series value
f (t). The entire chain of operations is implemented within the same differentiable pipeline, and
hence the training loss can be computed as the difference between the ground truth time series signal
f(t) and the value predicted by the HypoNet f(t). After the training of HyperTime, the Set Encoder
is able to generate latent embeddings Z for entire time series. In Section[4.2] we show that these
embeddings can be interpolated to synthesize new time series signals from known ones, which can be
leveraged for data augmentation (see additional material for a pseudo-code of the procedure).

Loss The training of HyperTime is done by optimizing the following loss, which contains an MSE
reconstruction term Ly and two regularization terms Lyeighis and Liaent, for the network weights and
the latent embeddings respectively:
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In addition, we introduce a Fourier-based loss Lgpr that focuses on the accurate reconstruction of the
power spectrum of the ground truth signal (see Supplement for more details):

Lrrr = %Z HFFT[f(t)]i — FFT[f(t)]:]|. 3)

In Section@ we show that Lgpy is crucial for the accurate reconstruction of the time series signals.

4 Experiments
4.1 Reconstruction

Table 1: Comparison using MSE of implicit networks using different activation functions on different
univariate and multivariate time series from the UCR dataset.

Sine ReLU Tanh Sigmoid

Univariate
Crop 5.1e-06 5.4e-03 2.8e-02 5.1e-01
NonlnvasiveFetalECGThorax1  2.3e-05 2.8e-02 5.7e-02  8.1e-02
PhalangesOutlinesCorrect 7.5e-06 19e-02 1.4e-01 3.3e-01
FordA 9.2e-06 1.4e-01 1.5e-01 1.5e-01
Multivariate
Cricket 1.6e-04 4.2e-03 5.1e-03  1.6e-02
DuckDuckGeese 9.1e-05 8.0e-04 8.7e-04 9.1e-04
MotorImagery 1.7e-03 1.1e-02 1.1e-02  1.8e-02
PhonemeSpectra 1.1e-06 6.0e-03 1.6e-02  1.8e-02
We start by showing that encoding time series using NoninasiveFetalECGThorax1
SIRENS leads to a better reconstruction error than using w0
implicit networks with other activations. We use univari- 107

ate and multivariate time series datasets from the UCR
archive [SJF_] We selected datasets with different character-
istics, either short length time series or long, or in the case
of the multivariate datasets, with many features (in some

MSE (log scale)
S

cases, more features than time series length). We sample 10
300 time series (or the maximum number available) from 1o
each dataset, train a single SIREN for each time series and O 00 4000 600 000 10000 12000

calculate the reconstruction error. For comparison we train

implicit networks using ReLU, Tanh and Sigmoid activa- Figure 3: Comparison of MSE loss for
tions. As a sample case, we show in Figure [3| the losses implicit networks using different activa-
and we observe that sine activations converge much faster, tion functions.

and to lower error values, than other activation functions.

A summary of results can be found in Table[T} where we observe that the MSE error is at least an
order of magnitude lower for sine activations, with respect to other activation layers.

4.2 Time Series Generation

To evaluate the utility of learning a prior over the space of implicit functions, we use the set encoder
network and the hypernetwork to generate new time series. We do so by projecting time series into
the latent vector of the HyperTime network and interpolating the latent vector. This is similar to
training an autoencoder and interpolating the latent space, but the output of the decoder of HyperTime
are the weights of the SIREN networks.

We follow the experimental set up proposed in [[1] for the evaluation, were the performance of the
synthetic data is evaluated using a predictive score (MAE) that corresponds to the prediction accuracy
of an off-the-shelf neural network trained on the synthetic data and tested on the real data.

'The datasets can be downloaded from the project’s website: www.timeseriesclassification.com [6]
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Additionally, to measure the quality Table 2: Performance scores for data generated with Hyper-
of the synthetic data, we use the pre- Time and for all baselines.

cision and recall averaged over all
time steps, which are then combined
into a single F-score. We use the  PCA

Crop NonInv  Phalanges  Energy  Stock

MAE 0.050  0.019 0.050 0.007  0.110
same datasets as before, and we add  p; sepr 0.999  0.999 0.999 0998  0.999
two datasets that were used in Fourier -

. HyperTime (Ours)

Flows [1] and TimeGAN [42], Google g 0.040  0.005 0.026 0058 0013
stocks data and UCI Energy data. F1 Score 0.999 0.996 0.998 0.999 0.995
We compare our HyperTime model  TimeGaN
with generating data using PCA, with ~ MAE 0.048 0028 0.108 0056 0.73
Fourier Flows and TimeGAN. two FI Score 0831 0914 0.960 0479 0938

2

state-of-the-art methods for time se-  Fourier Flows

. A Tabl h th MAE 0.040 0018 0.056 0.029  0.008
ries generation. Table [2] shows the FI Score 0991  0.990 0.992 0945  0.992

performance scores for all models and
datasets. Additionally, we visualize
the generated samples using t-SNE plots in Figure [d where we can see that the generated data from
HyperTime exhibits the same patterns as the original data. In the case of Fourier Flows, in the UCR
datasets we see that Nonlnv and Phalanges do not show a good agreement.

The synthesis of time series via principal component analysis is performed in a similar fashion as our
HyperTime generation pipeline. We apply PCA to generate a decomposition of time series into a basis
of 40 principal components. The coefficients of these components constitute a latent representation
for each time series of the dataset, and we can interpolate between embeddings of known time series
to synthesize new ones. The main limitation of this procedure, besides its linearity, is that it can only
be applied to datasets of equally sampled time series.

Finally, we analyze the importanc§ of the Table 3: Performance scores for data generated with
Fourier-based loss Lgpr from equation[3Jon  HyperTime, with and without the Fourier-based loss

the training of HyperTime. In Figure BHeft Lper, for two datasets (NonInv, FordA).
we display t-SNE visualizations of time se-

ries synthesized by HyperTime with and with- NonInv ~ FordA
out the use of the FFT loss during training, HyperTime + FFT loss

MAE 0.0053  0.0076
for two datase?s. (Nonlnv and FordA). In bo.th FI Seore 09952 0.9987
cases, the addition of the Lgpr loss results in -
an improved matching between ground truth EZ\PE“T““" (no FFT) 00058 01647

and generated data. However, in the case of FI Score 09960  0.0167
FordA, the addition of this loss becomes cru-
cial to guide the learning process. This is also reflected in the numerical evaluations from Table [3]
which shows steep improvements in performance for the FordA dataset.

A likely explanation for the difficulty of the network to learn meaningful patterns from the data of
this dataset is provided by the right plot in Figure 5] Here we show the standard deviation of the
power spectrum for both datasets, as a function of the frequency. The difference in the distributions
indicates that FordA is composed of spectra that present larger variability, while NonInv’s spectra are
considerably more clustered. Further research on the characteristics of the datasets that benefit the
more from the Lgpy loss should be further investigated, especially focusing on non-stationary time
series.

5 Conclusions

In this paper we explored the use of implicit neural representations for the encoding and analysis
of both univariate and multivariate time series data, and showed that periodic activation layers
outperform traditional activations in terms of reconstruction accuracy and training speed. We
presented HyperTime, a hypernetwork architecture to generate synthetic data which enforces not
only learning an accurate reconstruction over the learned space of time series, but also preserving the
shapes of the power distributions.
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Figure 4: t-SNE visualization on univariate datasets (in rows: Stocks, Energy, Crop, Nonlnv and
Phalanges), using different time series generation methods (in columns: HyperTime, PCA, Fourier
Flows and TimeGAN). Blue corresponds to original data and orange to synthetic data.
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Figure 5: Left: t-SNE visualization of ground truth and generated data on two univariate datasets
(NonInv and FordA), using HyperNet with and without the Fourier-based loss Lgrr (Eq.[3). Right:
Standard deviation of the power spectra for the time series of the same two datasets. FordA shows a
considerably larger number of variations in the distributions of the power spectra, which explains the
difficulty of HyperTime to learn patterns from the data.
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