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ABSTRACT

It has been reported that deep learning models are extremely vulnerable to small
but intentionally chosen perturbations of their input. In particular, a deep net-
work, despite its near-optimal accuracy on the clean images, often mis-classifies
an image with a worst-case but humanly imperceptible perturbation (so-called ad-
versarial examples). To tackle this problem, a great amount of research has been
done to study the training procedure of a network to improve its robustness. How-
ever, most of the research so far has focused on the case of supervised learning.
With the increasing popularity of self-supervised learning methods, it is also im-
portant to study and improve the robustness of their resulting representation on
downstream tasks. In this paper, we study the problem of robust representation
learning with unlabeled data in a task-agnostic manner. Specifically, we first de-
rive an upper bound on the adversarial loss of a prediction model (which is based
on the learned representation) on any downstream task, using its loss on the clean
data and a robustness regularizer. Importantly, the regularizer is task-independent,
thus we propose to minimize it directly during the representation learning phase to
make the downstream prediction model more robust. Extensive experiments show
that our method results in a robust model for downstream tasks without any su-
pervised adversarial training, and achieves preferable adversarial performance
compared to relevant baselines.

1 INTRODUCTION

Deep learning has achieved state-of-the-art performance in many tasks such as image classification,
object detection, and natural language processing. Instead of having to select handcrafted features
and representations of the input as in classical machine learning, deep learning has the ability to
automatically learn a meaningful representation with deep networks and gradient descent. However,
the success of deep learning often relies on the availability of a large amount of labeled data,
which is expensive in practice. Self-supervised learning (Chen et al., 2020b; Grill et al., 2020;
Chen & He, 2021; Zbontar et al., 2021) has gained interest as a solution to the above problem
due to its ability to learn from unlabeled data. However, although the representation learned
via self-supervised learning is often meaningful for downstream tasks, the resulting prediction
model usually lacks adversarial robustness. Therefore, it is important to improve the robustness
of these representations, and study how this robustness can be translated to robust downstream
classifiers, even at the expense of some accuracy drops on clean images. Currently, most existing
adversarial training methods (Madry et al., 2017; Zhang et al., 2019) require labels and/or the
prediction task. Furthermore, for computational reasons, we do not want to re-do the expensive
adversarial training for the downstream tasks (this is also in the spirit of self-supervised learning);
therefore, the (theoretical) transferability of a robust representation among different tasks is also
crucial. However, this transferability aspect of robustness has not been well-studied. For example,
(Kim et al., 2020) proposes a framework for adversarial contrastive learning, which enforces the
robustness of the representation network by finding worst-case adversaries that maximize the
contrastive loss, followed by minimizing that loss with respect to the network parameters. However,
it is not clear how this robustness can be transferred to a downstream task.

In this paper, we develop a task-independent robust representation learning method to tackle the
above issue. Intuitively, if we could enforce the representation z of an input x to be close to that of
its neighbors in the adversarial ball (for example, a l∞ ball around x with radius ϵ), then it would
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Figure 1: Illustration of our proposed regularizer. This concept figure illustrates the (probabilistic) repre-
sentation space, with each circle representing (the distribution of) the representation of an image. Non-filled
circles depict the (probabilistic) representations of natural images and filled circles depict that of their adver-
sarial examples. We use the KL divergence to pull the representations of an image and its adversarial images
closer, which improves the bound of the adversarial loss on a downstream task.

Figure 2: Visualization of the probablistic representation of our method. Each color corresponds to a single
image. For each image x, we sample 20 z’s from the probabilistic representation distribution pθ(z|x) (hence
the clusters of points). The left figure is for the original images and the right figure is for the unsupervised ad-
versaries. Our method enforces the representation distribution of an image to be close to that of its adversaries,
making the downstream models more robust.

make the downstream model more robust (Figure 1). In particular, any adversarial example xadv of
x produced by an attack (assumed to be of the same strength ϵ) on the downstream task is within this
adversarial ball, thus its representation would be close to that of x, making it harder for the task’s
decision boundary to separate them. However, there are some challenges when applying this idea
naively. One might think that we can find a worst-case adversarial example xu adv (unsupervised
adversary, as opposed to the typical supervised adversary xadv) with the largest distance to x in the
representation space (based on some distance metrics), and minimize that distance with respect to the
network’s parameters. This, however, is problematic for a typical deterministic representation net-
work, since it is not trivial how to define the distance on the representation space (for example, using
the l2 distance between the representations would not help since the model can “cheat” by making
the norm of the representation smaller, which can be easily compensated by making the weights
of the next fully connected layer bigger). Fortunately, in this paper, we observe that with a proba-
bilistic representation network pθ(z|x), we can define the “closeness” of the representations by the
KL divergence, which allows for creating adversarial examples during unsupervised/self-supervised
learning via an inner maximization of the KL term (KL[pθ(z|x)|pθ(z|xu adv)]). Visualization of the
representation distribution of an image and its adversarial example of our method can be found in
Figure 2. We also show that this leads to a robustness regularizer for unsupervised learning that is
provably transferable to downstream tasks (more details in the Approach section). Note that this
idea can also be thought of as enforcing a low Lipschitzness of the representation network. How-
ever, as mentioned above, a typical norm-based (e.g., l1 and l2) Lipschitzness in the representation
space is not meaningful (due to the aforementioned “cheat”), whereas using KL divergence solves
the problem and also leads to a theoretical guarantee on the downstream robustness.

In this work, we first propose an upper bound of the adversarial loss of a model for a certain pre-
diction task based on its loss on the clean data and a robustness regularizer. The regularizer, which
is based on the KL divergence as described above, only depends on the representation mapping
and is independent of the task. Therefore, we can minimize this regularizer term during the rep-
resentation learning phase (of an unsupervised or self-supervised method), so that the robustness
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will be transferred directly to a prediction model when the representation is used for a downstream
task. Our method can be straightforwardly applied to any representation learning method, including
unsupervised learning (e.g., VAE) or any self-supervised learning model.

Our contributions in this work are threefold:

• We derive an upper bound on the adversarial loss of a prediction model on a certain task,
based on a task-independent robustness regularizer.

• We propose to incorporate the above regularizer into existing representation learning frame-
works to improve the adversarial robustness of the representation on downstream tasks.

• We demonstrate the use of our proposed regularizer with existing representation learning
frameworks, and show that the resulting models achieve SOTA results in the unsupervised
robust representation learning task.

2 RELATED WORKS

2.1 ADVERSARIAL TRAINING

It has been shown that neural networks, even with a high classification accuracy, are vulnerable to
small bounded (but intentionally worst-case chosen) adversarial perturbations (Szegedy et al., 2013).
From this observation, many methods have been proposed to alter the typical training procedure of
a neural network to improve its adversarial robustness (hence the name adversarial training). Two
of the most often-used methods are AT (Madry et al., 2017) and TRADES (Zhang et al., 2019),
in which the algorithms try to find a worst-case perturbation of the input (called an adversarial
example) with an inner maximization problem and minimize the loss (or a regularizer) with respect
to that adversarial example. Studying the inner maximization problem is also an active and attractive
research direction, with the aim to develop fast and/or accurate methods to find the adversarial
examples. For example, PGD (Madry et al., 2017) uses multiple steps of projected gradient descent,
which is accurate (and somewhat “gold-standard”) but expensive. For this computational reason,
many one-step algorithms have been proposed, including FGSM (Goodfellow et al., 2014), RS-
FGSM (Wong et al., 2020) and GradAlign (Andriushchenko & Flammarion, 2020), with varying
levels of success. These adversarial defense/attack methods are relevant to our work since we also
need to solve an inner maximization problem to find (unsupervised) adversarial examples for the
robustness regularizer.

2.2 SELF-SUPERVISED LEARNING

As mentioned earlier, self-supervised learning has received great interest due to its ability to learn
from unlabeled data, which reduces the need for expensive annotations of images. Self-supervised
learning is based on a user-defined pretext task, which can be as simple as to predict the rotation
angle of an image or more complex such as to solve a Jigsaw puzzle (Noroozi & Favaro, 2016).
Recently, a popular and successful self-supervised learning paradigm is to learn representations that
are invariant under different augmentations (also referred to as ‘distortions’) of an image (Chen et al.,
2020b; Zbontar et al., 2021; Chen & He, 2021). The idea of this learning paradigm is to maximize
the similarity between representations of two augmentations of an image, while avoiding network
collapse (to a trivial and meaningless solution such as a constant function) by different objective
functions. Since our proposed robustness regularizer is task-independent, it can be straightforwardly
applied to most of these self-supervised learning methods.

2.3 ROBUSTNESS WITH UNLABELED DATA

Recently, the field of unsupervised robust representation learning has gained increasing interest, with
the goal to leverage unlabeled data and learn a robust and meaningful representation for downstream
tasks. One of the main baselines to our work is RoCL (Kim et al., 2020), which applies adversarial
training directly on the contrastive loss in SimCLR. However, it is not clear if a representation
that is robust to the contrastive loss will be robust to the prediction loss of a downstream task.
Some other methods (Jiang et al., 2020; Hendrycks et al., 2019) perform adversarial training on
a self-supervised task to aid the adversarial training of the main task (not to replace), which are
less related to our work. Similarly, (Alayrac et al., 2019) utilizes unlabeled data to help train a
robust classifier in a semi-supervised manner; however, note that this method needs to know the
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prediction task before or during the semi-supervised training (since the method is label-free but still
task-dependent), thus less relevant to our setting. Meanwhile, (Awasthi et al., 2021) propose an
algorithm to improve the robustness of PCA. However, PCA is not a common component of modern
deep learning architectures/pipelines, thus its practicality might be limited. (Naseer et al., 2020) is
also a method for unsupervised robustness; however, it needs an additional purifier network during
both training and inference, which can be expensive, and it is not widely applicable to all self-
supervised learning methods. Unlike (Chen et al., 2020a), we show that robustness can be achieved
even with standard (not adversarial) fine-tuning, and our method outperforms it significantly in this
training setting (which is our focus).

3 APPROACH

3.1 PROBLEM STATEMENT

Assume that we have a distribution p(x) of data (e.g., images), with x ∈ X as the input. We are
interested in the problem of robust representation learning, where we want to learn a representation
z of x with the mapping pθ(z|x), parameterized by θ; so that z is meaningful for downstream tasks
(to be defined below), and that any classifier (based on z) of the downstream tasks should be robust
against adversarial attacks. For computational reasons, we do not want to re-do the adversarial train-
ing, and desire that the robustness transfer directly to the downstream tasks. The representation z
can be probabilistic (e.g., pθ(z|x) = N (z;µθ(x), σθ(x))) or deterministic (i.e., pθ(z|x) = δgθ(x)(z)
with a deterministic function gθ). In this paper, we will especially consider a probabilistic represen-
tation mapping. In practice, the representation can be learn by unsupervised learning methods (e.g.,
VAE) or self-supervised learning methods (with a pretext task).
Remark 1. A note on the choice of the representation distribution pθ(z|x).

As mentioned earlier, in this paper, we especially consider a probabilistic representation map-
ping. Specifically, we use a Gaussian distribution in all of our experiments, e.g., pθ(z|x) =
N (z;µθ(x), σθ(x)). This is just a design choice that is simple and works well in practice, and
our work is not limited by this choice of the distribution. We can use almost any other distribution
(with a known parameterization trick to allow for backpropagation). Also, note that the Gaussian
representation network is a generalized version of a deterministic network (it becomes a determin-
istic network when σθ(x) → 0 ∀x); therefore, this network choice is not at all restricted when
compared to a typical deterministic network.

Any downstream task T is defined by a conditional distribution pT (y|x) where y ∈ Y is the label.
The joint data distribution of this task is pT (x, y) = p(x)pT (y|x). With the representation mapping
pθ(z|x) learned in advance, we want to learn a classifier p̂T (y|z) (parameterized by ωT , which we
will omit for notation simplicity) for the task T . This is often called an output head that classifies y
given z.
The predictive distribution of y given x for this task T is:

Epθ(z|x)[p̂T (y|z)] (1)

(for a deterministic representation mapping, Eq. 1 simplifies into p̂T (y|z = gθ(x)))
Remark 2. On the inference complexity of a probabilistic representation.

Using a probabilistic representation, we need to sample multiple z from pθ(z|x) to estimate Eq. 1
with Monte Carlo sampling during test time. However, this is not a big issue for the representation
learning framework, since we only need to run the representation network pθ(z|x) (which is usually
deep) once to get a distribution of z. After sampling multiple z from that distribution, we only need
to rerun the classifier p̂T (y|z), which is usually a small network (e.g., often contains one or a few
fully-connected layers). Furthermore, we can also run p̂T (y|z) (a small network) in parallel for
multiple z to reduce inference time if necessary.

During training of the downstream task T , a single z is sampled per input x from the learned rep-
resentation mapping pθ(z|x); and the output head p̂T (y|z) is trained via minimizing the following
training objective:

EpT (x,y)

[
Epθ(z|x)[− log p̂T (y|z)]

]
(2)

With common choices of the predictive distribution p̂T (y|z), the quantity − log p̂T (y|z) is often
non-negative. For example, with a categorical predictive distribution in a classification problem, this
term is the cross-entropy loss; whereas with a Gaussian predictive distribution (with a fixed variance)
in a regression problem, the above term becomes the squared error loss (with an additive constant).
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Note also that the objective in Eq. 2 is an upper bound of the true loss for task T
EpT (x,y)

[
− logEpθ(z|x)[p̂T (y|z)]

]
(due to Jensen’s inequality), where − logEpθ(z|x)[p̂T (y|z)] is the

loss of a datapoint (x, y).

Now we formally define the adversarial robustness of the network on the downstream task. Denote
A(x) to be the set of adversarial examples of x. This set is different for different kinds of adversarial
attack; for example, with an l∞ attack, A(x) is the l∞-ball around x with a predefined radius of ϵ.
The adversarial loss of the task T is:

EpT (x,y)

[
max

xadv∈A(x)
− logEpθ(z|xadv)[p̂T (y|z)]

]
(3)

Intuitively, this means that an attacker seeks to find an adversarial example xadv of each input x that
maximizes the loss w.r.t. its label y; and we, as the defender, want to minimize that loss. In the
next subsections, we will discuss how we can minimize this adversarial loss, even in a task-agnostic
manner during the representation learning phase.

3.2 A BOUND ON THE ADVERSARIAL LOSS

We first propose a bound on the adversarial loss based on the downstream training objective and a
robustness regularizer:
Proposition 1. Assuming that ∀x, pθ(z|x) has the same support set Z (e.g., pθ(z|x) is Gaussian);
and that − log p̂T (y|z) ≤ M ∀z ∈ Z, y ∈ Y 1, we have:

EpT (x,y)

[
max

xadv∈A(x)
− logEpθ(z|xadv)[p̂T (y|z)]

]
≤ EpT (x,y)

[
Epθ(z|x)[− log p̂T (y|z)]

]
+

M√
2

√
Ep(x)

[
max

xu adv∈A(x)
KL[pθ(z|x)|pθ(z|xu adv)]

]
(4)

Proof. provided in Appendix B.

The first term EpT (x,y)

[
Epθ(z|x)[− log p̂T (y|z)]

]
is the downstream training loss in Eq. 2, and will

be minimized during the training of the output head p̂T (y|z) for task T (assuming that the learned
representation is sufficiently meaningful for this task).

We call the second term Ep(x)

[
maxxu adv∈A(x) KL[pθ(z|x)|pθ(z|xu adv)]

]
a robustness regularizer.

Since we do not want to perform adversarial training for the downstream tasks, we want to min-
imize this term during the representation learning phase. Since this term is label-free and task-
independent, if we minimize it during the representation learning phase, it will transfer directly to
the downstream task and help minimize the bound in Eq. 4. This will be discussed further in Subsec-
tion 3.3. Recall that we use the Gaussian distribution of the per-image representation network, i.e.,
pθ(z|x) = N (z;µθ(x), σθ(x)), so this KL term can be computed analytically (and exactly). Also
note that, as discussed in Remark 1, the Gaussian representation is a generalized version of a typical
deterministic representation, so it is sufficiently expressive for typical Deep Learning problems.

Due to the page limit, we include additional discussions about our bound in Appendix A, including
1) a comparison between our bound (task-agnostic robustness regularizer) and TRADES (Zhang
et al., 2019) (task-dependent robustness regularizer); and 2) a trade-off between clean accuracy and
adversarial robustness presented in our bound.

3.3 APPLICATIONS AND USE CASES

In this subsection, we will discuss the use of our robustness regularizer
Ep(x)

[
maxxu adv∈A(x) KL[pθ(z|x)|pθ(z|xu adv)]

]
. Although this term can be used directly

in a supervised learning setting, a far more exiting application is to minimize it during the

1In the classification problem, we can enforce this quite easily by augmenting the output softmax of the
classifier p̂T (y|z) so that each class probability is always at least exp (−M). For example, if we choose
M = 3 ⇒ exp (−M) ≈ 0.05, and if the output softmax is (p1, p2, ..., pC), we can augment it into (p1 ·K +
0.05, p2 ·K +0.05, ..., pC ·K +0.05), where K = 1− 0.05 ·C and C is the number of classes. This ensures
the bound for the loss of a datapoint, while retaining the output prediction class.
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representation learning phase (of an unsupervised or self-supervised method). As mentioned earlier,
since this term is task-independent, if we minimize it during the representation learning phase, it
will transfer directly to downtream tasks, improving the model’s adversarial robustness on these
tasks (see Eq. 4). We name our regularizer Urkle (Unsupervised Robustness with KL divergencE).
In this subsection, we demonstrate some example scenarios to learn a meaningful (and robust)
representation, namely with unsupervised learning (via VAE) and self-supervised learning (with
any pretext task).

3.3.1 WITH VAE

In VAE (Kingma & Welling, 2013), we have an encoder pθ(z|x) (which also acts as our representa-
tion mapping), a decoder qϕ(x|z), and a prior p(z), the objective of VAE (negative ELBO) is:

Ep(x)

[
Epθ(z|x)[− log qϕ(x|z)]

]
+ Ep(x) [KL[pθ(z|x)|p(z)]] (5)

Here we add our robustness regularizer to learn a robust encoder pθ(z|x), leading to the below
objective:

Ep(x)

[
Epθ(z|x)[− log qϕ(x|z)]

]
+ βV AEEp(x) [KL[pθ(z|x)|p(z)]]

+βrobustEp(x)

[
max

xu adv∈A(x)
KL[pθ(z|x)|pθ(z|xu adv)]

]
(6)

Note that we also add a coefficient βV AE for the VAE’s regularizer Ep(x) [KL[pθ(z|x)|p(z)]] (similar
to β-VAE (Higgins et al., 2016)). We use a small value of βV AE in practice since we found that this
term might hinder the expressiveness of the representation pθ(z|x).
All three expectation terms in Eq 6 can be estimated with a minibatch of input x’s. For
each input x, we find the unsupervised adversary xu adv by the inner maximization problem of
maxxu adv∈A(x) KL[pθ(z|x)|pθ(z|xu adv)] with, for example, the PGD algorithm. The objective
in Eq 6 is minimized with respect to θ and ϕ (thus it will learn an encoder pθ(z|x) such that the
representation of an input is close to that of its adversaries).

3.3.2 WITH A SELF-SUPERVISED LEARNING TASK

Let’s assume we have a pretext task designed to learn a meaningful representation of x. Since
self-supervised tasks and their loss functions are diverse, we will refer to the loss function as
Lssl(p(x), pθ(z|x), ϕ) in general, where pθ(z|x) is a representation mapping used to solve the task
(e.g., might be used for a pretext classification task, to solve a jigsaw puzzle, or to minimize the
contrastive loss in the contrastive learning framework) and ϕ is any additional parameters (apart
from θ) used for this self-supervised task (e.g., parameters of the projector in SimCLR (Chen et al.,
2020b), parameters of the output head of some pretext classification task).

Similarly, we can also add the robustness regularizer term here to to learn a robust representation
mapping pθ(z|x), leading to the following objective:

Lssl(p(x), pθ(z|x), ϕ) + βrobustEp(x)

[
max

xu adv∈A(x)
KL[pθ(z|x)|pθ(z|xu adv)]

]
(7)

Demonstration with SimCLR (Chen et al., 2020b): We re-emphasize that our proposed robust-
ness regularizer can be applied to almost all unsupervised and self-supervised representation learn-
ing methods. However, since our main baseline (Kim et al., 2020) is built upon SimCLR, we also
use SimCLR (with a slight adaptation of using a probabilistic representation network) in our experi-
ments for a fair comparison (note that we conjecture using more recent and advanced self-supervised
learning methods (Zbontar et al., 2021; Grill et al., 2020) will likely improve further the performance
of our model). We demonstrate the resulting method here in details.

First of all, SimCLR (and other contrastive learning methods) learns from two augmentations of each
image. Let denote a minibatch of data as {(x1,1, x1,2), (x2,1, x2,2), ..., (xb,1, xb,2)}, where xi,1 and
xi,2 are two augmented version of a same original image xi, and are called positive examples of each
other. The goal of contrastive learning is to encourage the representation to be similar among the
positive images. For each x we sample a single z from the network pθ(z|x) to make the minibatch
of representation {(z1,1, z1,2), (z2,1, z2,2), ..., (zb,1, zb,2)}. Then the loss function of SimCLR is:

ℓSimCLR = ℓNT Xent((z1,1, z1,2), (z2,1, z2,2), ..., (zb,1, zb,2)) (8)
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where ℓNT Xent is the so-called “normalized temperature-scaled cross entropy” loss function that
takes input as a batch of tuples t1, t2, ..., tb, with each ti is a tuple of representations from a set of
positive images (in the case above each tuple would be of length 2). Specifically:

ℓNT Xent(t1, t2, ..., tb) =

b∑
i=1

∑
z,z′∈ti,z ̸=z′

exp(sim(z, z′)/τ)∑
j ̸=i

∑
z′′∈tj

exp(sim(z, z′′)/τ)
(9)

where sim(z, z′) is the cosine similarity between z and z′ (we also often project the representation
z to a lower dimensional space before calculating the cosine similarity), and τ is the temperature
(often set to 0.5).

To implement our regularizer, we find the unsupervised adversaries
{(xu adv

1,1 , xu adv
1,2 ), ..., (xu adv

b,1 , xu adv
b,2 )} of {(x1,1, x1,2), ..., (xb,1, xb,2)} that maximize:

1

2b

b∑
i=1

2∑
k=1

max
xu adv
i,k ∈A(xi,k)

KL[pθ(z|xi,k))|pθ(z|xu adv
i,k ))] (10)

Following (Kim et al., 2020), we also use PGD to solve this inner maximization problem.

Let ℓUrkle be the value of the above maximum, i.e.:

ℓUrkle =
1

2b

b∑
i=1

2∑
k=1

KL[pθ(z|xi,k))|pθ(z|xu adv
i,k ))] (11)

with {xu adv
i,k } found above.

Now we can add the regularizer ℓUrkle directly to the original loss function ℓSimCLR. However, we
note that xu adv

i,1 and xu adv
i,2 can also be treated as positive images of xi,1 and xi,2; therefore, we also

include them when compute the NT Xent loss. The final loss function of our model as:

ℓNT Xent((zi,1, zi,2, z
u adv
i,1 , zu adv

i,2 )bi=1) + βrobustℓUrkle (12)

where zu adv
i,k ∼ pθ(z|xu adv

i,k ) ∀i ∈ 1, b, k ∈ {1, 2} , ℓNT Xent is calculated as in Eq 9 (in this case
each tuple is of length 4), and βrobust is a hyperparameter.

4 EXPERIMENTS

We conduct extensive experiments to validate our method. In this section, we describe these experi-
ments in details. For more information regarding the experimental settings and the baselines, please
refer Appendix C.4.

4.1 DATASETS

We perform the experiments on the MNIST (LeCun & Cortes, 2010), CIFAR10, CIFAR100
(Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009) datasets. For descriptions of these
datasets, please refer to Appendix C.1.

4.2 EXPERIMENTAL SETTINGS

Within each experiment, we use the same network as the representation network for all models.
Since our representation network is probabilistic, it only differs from the other deterministic net-
works in the last layer. In particular, for a representation of size dz , the last layer’s dimension of
a deterministic representation network is dz , while that of a probabilistic network is 2 · dz (dz for
µ and dz for σ2). Also, although our method can be used for any adversarial attack (e.g., l1 or l2),
we consider the l∞ adversaries in this experiments section. This is because l∞ is one of the most
common adversarial attacks, and it is also used in our main baseline (Kim et al., 2020). Following
(Kim et al., 2020), we use the PGD attack/defense for both training and testing. In Appendix C.2,
we also test the trained model with more advanced attacks such as AutoAttack (Croce & Hein, 2020)
or C&W attack (Carlini & Wagner, 2017).

With VAE: We test the effectiveness of our robustness regularizer when used with VAE (as de-
scribed in Section 3.3.1) with the MNIST dataset. The main baseline we consider in this experiment
is AE (auto-encoder) with a TRADES-like regularizer. This is because the reconstruction in AE can
be viewed as a prediction task, so we can use the regularizer in TRADES to force the reconstruction
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Table 1: MNIST with l∞ adversaries. Training and testing ϵ are set to 0.1. Our method outperforms the
baseline AE+TRADES, while approaching the robustness similar to supervised adversarial training methods.

Models Clean Acc Adversarial Acc

Standard Training 99.3±0.1 1.0±0.3
AT 99.0±0.1 98.5±0.2

TRADES 99.1±0.1 98.3±0.1

AE + TRADES 99.1±0.1 96.6±0.4
VAE + Urkle (ours) 99.1±0.1 98.0±0.1

Table 2: CIFAR10: Results of supervised and self-supervised methods trained with l∞ adversaries and
ϵ = 8/255 (when applicable). Our method (SimCLR+Urkle) significantly outperforms the baseline RoCL,

especially with unseen (and stronger) attack ϵ = 16/255.

CIFAR10

Fully Labeled Data 5000 Labeled Data 1000 Labeled Data

Model Clean 8/255 16/255 Clean 8/255 16/255 Clean 8/255 16/255

Standard Training 92.82 0.00 0.00 79.09 0.00 0.00 60.39 0.00 0.00
AT 81.63 44.50 14.47 64.97 24.52 6.69 50.03 15.26 3.91

TRADES 77.03 48.01 22.55 63.14 25.97 7.78 48.32 15.92 3.97

SimCLR 91.25 0.63 0.15 84.31 0.84 0.12 82.15 0.55 0.11
RoCL 83.71 40.27 9.55 78.82 36.93 9.90 76.49 34.44 8.96

SimCLR+Urkle (ours) 82.31 42.56 14.29 77.47 38.76 12.94 74.82 37.56 12.22

of an image to be similar to the reconstruction of its adversaries (more details of this baseline in Ap-
pendix C.3). To make the comparison fair for AE (that has no built-in regularizer), we set βV AE = 0
in our experiment, although we note that slightly increasing this value leads to even better represen-
tation. Apart from this baseline, we also include supervised learning models (Standard Training,
AT (Madry et al., 2017) and TRADES (Zhang et al., 2019)) for reference. For this experiment, we
consider the l∞ perturbation with ϵ = 0.1. For this “toy” experiment, we use a simple convolutional
neural network with four 3×3 convolutional layers (followed by an average pooling layer) as the
representation network.

With Self-Supervised Learning: For the more challenging real-world datasets (CIFAR10, CI-
FAR100, ImageNet), learning generative features of images with VAE is difficult, so we use self-
supervised learning methods (SimCLR) to validate our robustness regularizer. In this experiment, we
consider RoCL (Kim et al., 2020) as our main baseline. We also include supervised learning models
(Standard Training, AT (Madry et al., 2017) and TRADES (Zhang et al., 2019)) for reference.

Following most existing works on self-supervised learning (Chen et al., 2020b; Zbontar et al., 2021;
Kim et al., 2020), we train each self-supervised model with 1000 epochs (except for ImageNet,
where we use 200 epochs for computational reasons). Similar to (Kim et al., 2020), we consider
the l∞ attack and defense. Following standard in the adversarial robustness literature, we set the
training perturbation radius as ϵ = 8/255 for CIFAR10/CIFAR100 and ϵ = 2/255 for ImageNet.

For CIFAR10 and CIFAR100, we use ResNet18 (He et al., 2016) as the backbone network with a
batchsize of 1024. As for ImageNet, we use a batchsize of 4096 with a ResNet50 network. For all
experiments, we use a starting learning rate of 1.2 and perform Cosine annealing on the learning
rate over the course of training.

4.3 RESULTS

4.3.1 WITH VAE

Table 1 shows the results of our model and the baselines. MNIST is a relatively easy dataset, so most
methods perform reasonably well. Noticeably, our model (VAE+Urkle) outperforms AE+TRADES
by 1.4%, and approaches the performance of supervised adversarial training methods.

4.3.2 WITH SELF-SUPERVISED LEARNING (SIMCLR):

CIFAR10 and CIFAR100: As aforementioned, in the CIFAR10 and CIFAR100 experiments, we
train all models (except for Standard Training and SimCLR) with ϵ = 8/255. We evaluate these
models against l∞ adversarial attack with strength ϵ = 8/255 and ϵ = 16/255. Table 2 and Table 3
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Table 3: CIFAR100: Results of supervised and self-supervised methods trained with l∞ adversaries and
ϵ = 8/255 (when applicable). Our method (SimCLR+Urkle) significantly outperforms the baseline RoCL.

CIFAR100

Fully Labeled Data 5000 Labeled Data 1000 Labeled Data

Model Clean 8/255 16/255 Clean 8/255 16/255 Clean 8/255 16/255

Standard Training 70.34 0.00 0.00 26.59 0.00 0.00 12.14 0.00 0.00
AT 52.87 19.46 6.80 21.05 5.30 1.52 12.46 3.26 0.95

TRADES 56.96 18.54 4.48 20.35 6.41 1.63 13.78 3.19 1.32

SimCLR 58.79 0.47 0.00 53.23 0.46 0.12 44.16 0.57 0.26
RoCL 52.19 19.31 4.30 40.60 17.86 3.25 30.23 12.83 3.01

SimCLR+Urkle (ours) 53.81 21.82 6.63 42.66 20.34 6.06 32.12 14.40 5.71

Table 4: ImageNet with l∞ adversaries and ϵ = 2/255.

Models Clean Acc Adversarial Acc

RoCL 52.46 23.19
SimCLR + Urkle (ours) 51.19 25.69

show that our method (SimCLR+Urkle) clearly outperforms RoCL (with a slight trade-off of clean
accuracy in some experiments), indicating the effectiveness of our robustness regularizer. Especially,
our method is more robust against unseen attack strength (ϵ=16/255).

As discussed earlier (more details in Appendix A), there is a trade-off between the clean accu-
racy and adversarial robustness in our model (as well as other adversarial training methods such as
TRADES), resulting in a slightly lower (around 1%) clean accuracy of our model when compared
to RoCL. However, our model outperforms RoCL significantly in terms of adversarial robustness
(especially for ϵ = 16/255, which is an unseen attack strength). We find that this is reasonable
and the improved robustness is well worth the trade-off. Note that a similar trend can be observed
for TRADES and AT, where TRADES achieves lower clean accuracy but much better adversarial
robustness when compared to AT.

ImageNet: Preliminary result on the ImageNet dataset (Table 4) also indicates that our method
outperforms RoCL on this large scale dataset.

Experimental Results with limited numbers of labels: To take advantage of the unsupervised
nature of our method, we also conduct experiments when the number of labeled images is limited.
To re-emphasize, we train our SSL model and the unsupervised robustness regularizer without any
labels, and the limited number of labels are only used for the training of the task-specific output
head p̂(y|z) (without adversarial training). Table 2 and Table 3 report the results for CIFAR10 and
CIFAR100 with 5000 and 1000 labels. It can be clearly seen that supervised adversarial training
methods fail to learn a robust model with such a few available labels. Among the unsupervised
robust representation learning methods, our model also significantly outperforms the baseline RoCL
in these scenarios.

5 CONCLUSION

To conclude, in this paper, we develop a task-agnostic unsupervised robust representation learning
method. The core idea behind our method is to minimize a task-independent robustness regular-
izer that enforces the representation of an image to be close to that of its adversarial examples.
This is motivated by our theoretical result that, for a model using the learned representation for a
downstream task, its adversarial loss is bounded by the loss on clean image plus the above task-
independent regularizer. Our regularizer can be straightforwardly applied to almost any existing
representation learning method (with only an adaptation to a probabilistic representation). Our work
studies the problem of unsupervised robust representation learning in a principled way, and shows
that the robustness can be theoretically transferred to the downstream tasks. We demonstrate our
proposed regularizer with several unsupervised/self-supervised methods (from VAE to SimCLR),
and conduct extensive experiments on MNIST, CIFAR10, CIFAR100 and ImageNet to validate our
method. Experimental results suggest that our proposed method (when used with SimCLR) achieves
SOTA performance on the unsupervised robust representation learning task.
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A ADDITIONAL DISCUSSION

Comparison between our bound and TRADES (Zhang et al., 2019):

• The bound in TRADES only works for the case of binary classification, while our bound
works for the general case of supervised learning (including multi-class classification and
regression).

• Our robustness regularizer is label-free and task-independent. Therefore, we can minimize
it in the representation learning phase (with unsupervised or self-supervised tasks), and it
will transfer directly to the downstream tasks. On the other hand, the robustness regularizer
in TRADES is task-dependent, thus minimizing the term for a pretext task does not nec-
essarily transfer to the downstream task. Furthermore, TRADES’s robustness regularizer
requires a predictive distribution of a task to compute, and this might not be applicable to
many self-supervised learning methods where there is no prediction task (e.g., contrastive
learning). These arguments are also true for almost all existing robustness methods.

Trade-off between Clean Accuracy and Adversarial Robustness The trade-off between a
model’s performance on clean input and adversarial input has been well observed in practice (Zhang
et al., 2019); and this phenomenon can also be explained with our bound. Minimizing the first term
in Eq. 4 will help the model’s performance on clean input, while minimizing the second term in-
crease the model’s robustness against adversarial input; and there is an inherent trade-off between
them. Minimizing the second term Ep(x)

[
maxxu adv∈A(x) KL[pθ(z|x)|pθ(z|xu adv)]

]
too much will

compress the representation, hurting its expressiveness and separability among classes. For exam-
ple, consider the l2 defense with radius ϵ (A(x) will be the l2-ball around x with radius ϵ). The
above regularizer encourages the representation distribution of an input x to be similar to that of
its neighbours in the l2-ball. Now, if there exist two inputs x1 and x2 from different classes such
that ϵ < ||x1 − x2||2 < 2ϵ, then these two points do not belong to the other’s adversarial set. Let
x′ = (x1 + x2)/2, it follows that ||x1 − x′||2 = ||x2 − x′||2 = ||x1 − x2||2/2 < ϵ, meaning
x′ ∈ A(x1) and x′ ∈ A(x2). Note that minimizing the regularizer term too much will encourage
the representation distribution of both x1 and x2 to be similar to that of x′; and the classifier might
fail to separate the two datapoints. Therefore, it might hurt the expressiveness and separability of
the representation, especially for the inputs around the decision boundary.

B PROOFS

B.1 PROPOSITION 1

Proof.

Let a(x) = argmaxxadv∈A(x) − logEpθ(z|xadv)[p̂T (y|z)] ∀x ∈ X . We need to prove that:

EpT (x,y)

[
− logEpθ(z|a(x))[p̂T (y|z)]

]
≤ EpT (x,y)

[
Epθ(z|x)[− log p̂T (y|z)]

]
+

M√
2

√
Ep(x)

[
max

xu adv∈A(x)
KL[pθ(z|x)|pθ(z|xu adv)]

]
(13)

Due to Jensen Inequality, we have:

EpT (x,y)

[
− logEpθ(z|a(x))[p̂T (y|z)]

]
≤ EpT (x,y)

[
Epθ(z|a(x))[− log p̂T (y|z)]

]
(14)

Therefore, we only need to prove that:

EpT (x,y)

[
Epθ(z|a(x))[− log p̂T (y|z)]

]
− EpT (x,y)

[
Epθ(z|x)[− log p̂T (y|z)]

]
≤M√

2

√
Ep(x)

[
max

xu adv∈A(x)
KL[pθ(z|x)|pθ(z|xu adv)]

]
(15)

12



Under review as a conference paper at ICLR 2023

We have:

EpT (x,y)

[
Epθ(z|a(x))[− log p̂T (y|z)]

]
− EpT (x,y)

[
Epθ(z|x)[− log p̂T (y|z)]

]
(16)

=EpT (x,y)

[∫
Z
pθ(z|a(x))[− log p̂T (y|z)]dz −

∫
Z
pθ(z|x)[− log p̂T (y|z)]dz

]
(17)

=EpT (x,y)

[∫
Z
− log p̂T (y|z) [pθ(z|a(x))− pθ(z|x)] dz

]
(18)

For all x, let A(x) = {z ∈ Z|pθ(z|a(x)) − pθ(z|x) ≥ 0} and B(x) = {z ∈ Z|pθ(z|a(x)) −
pθ(z|x) < 0}, then:

EpT (x,y)

[∫
Z
− log p̂T (y|z) [pθ(z|a(x))− pθ(z|x)] dz

]
(19)

=EpT (x,y)

[∫
A(x)

− log p̂T (y|z) [pθ(z|a(x))− pθ(z|x)] dz

+

∫
B(x)

− log p̂T (y|z) [pθ(z|a(x))− pθ(z|x)] dz

]
(20)

≤EpT (x,y)

[∫
A(x)

− log p̂T (y|z) [pθ(z|a(x))− pθ(z|x)] dz

]
(21)

(since − log p̂T (y|z) is a non-negative quantity)

≤EpT (x,y)

[∫
A(x)

M [pθ(z|a(x))− pθ(z|x)] dz

]
(22)

=MEpT (x,y)

[∫
A(x)

|pθ(z|a(x))− pθ(z|x)| dz

]
(23)

We have: ∫
Z
[pθ(z|a(x))− pθ(z|x)] dz = 0 (24)

⇒
∫
A(x)

[pθ(z|a(x))− pθ(z|x)] dz +
∫
B(x)

[pθ(z|a(x))− pθ(z|x)] dz = 0 (25)

⇒
∫
A(x)

|pθ(z|a(x))− pθ(z|x)| dz =

∫
B(x)

|pθ(z|a(x))− pθ(z|x)| dz (26)

⇒
∫
A(x)

|pθ(z|a(x))− pθ(z|x)| dz =
1

2

∫
Z
|pθ(z|a(x))− pθ(z|x)| dz (27)

Due to the Pinsker’s Inequality we have:

1

2

∫
Z
|pθ(z|a(x))− pθ(z|x)| dz

≤1

2

√
2

∫
Z
pθ(z|x) log

pθ(z|x)
pθ(z|a(x))

dz (28)

=
1√
2

√
KL[pθ(z|x)|pθ(z|a(x))] (29)
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Therefore:

MEpT (x,y)

[∫
A(x)

|pθ(z|a(x))− pθ(z|x)| dz

]
(30)

≤M√
2
EpT (x,y)

[√
KL[pθ(z|x)|pθ(z|a(x))]

]
(31)

=
M√
2
Ep(x)

[√
KL[pθ(z|x)|pθ(z|a(x))]

]
(32)

≤M√
2

√
Ep(x) [KL[pθ(z|x)|pθ(z|a(x))]] (33)

≤M√
2

√
Ep(x)

[
max

xu adv∈A(x)
KL[pθ(z|x)|pθ(z|xu adv)]

]
(34)

We conclude our proof.

C EXPERIMENTS

C.1 DATASETS

MNIST (LeCun & Cortes, 2010) contains 70000 images of hand-written digits with the classifica-
tion task of 10 digits.
CIFAR10 (Krizhevsky et al., 2009) consists of 60000 images of size 32x32, and over ten classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.
CIFAR100 (Krizhevsky et al., 2009) Similar to CIFAR10, CIFAR100 also consists of 60000 im-
ages with the size 32x32. The task is classification with 100 different classes.
ImageNet (Deng et al., 2009) is a large scale real-world computer vision dataset, which consists
of 1000 classes. To the best of our knowledge, this dataset has not been considered by previous
adversarial self-supervised learning methods.

C.2 ADDITIONAL EXPERIMENTS

In this section, we also test the robustness of the learned self-supervised representation on unseen
types of attacks. Specifically, we test them on 1) C&W attack (Carlini & Wagner, 2017), which we
follow the exact same evaluation setting as (Kim et al., 2020) and 2) AutoAttack (Croce & Hein,
2020) which is a stronger attack. For this ablation study, we use the CIFAR10 datasets with the
trained Resnet18 models.

Table 5: CIFAR10 Different attack types on CIFAR10 with backbone Resnet18

Models C&W Attack AutoAttack

RoCL 77.35 35.15
SimCLR + Urkle (ours) 80.49 37.52

Table 5 shows that both the unsupervised robustness methods are relatively robust against unseen
attacks. For the stronger AutoAttack, our method still outperforms RoCL by a similar margin. Note
that the accuracies of both methods drop by about 5% for AutoAttack (when compared to PGD),
which is quite standard in the robustness literature.

C.3 DETAILS ON THE BASELINE AE+TRADES

Here we describe the baseline AE+TRADES, which we use in the VAE experiment, in more detail.
In particular, an autoencoder (AE) consists of an encoder gθ and a decoder hϕ. The encoder g
transforms the input x to a representation z (often lower dimensional), i.e., z = gθ(x); while the
decoder h tries to reconstruct the original input from the representation, i.e., x̂ = hϕ(z). Using the
mean squared (l2) distance for the reconstruction, the objective of AE is:
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Ep(x)[||x− hϕ(gθ(x))||22] (35)

Since the reconstruction h ◦ g can be treated as a prediction task (predicting the original x), we
can use a TRADES-like regularizer to make the model more robust, and thus the encoder is also
more robust. Specially, we can enforce the reconstruction of an image to be similar to that of its
adversaries. The final objective is:

Ep(x)[||x− hϕ(gθ(x))||22]
+ βEp(x)[ max

xadv∈A(x)
||hϕ(gθ(x

adv))− hϕ(gθ(x))||22] (36)

Note that we can only use this baseline with AE (not VAE) because the TRADES regularizer only
works straightforwardly with a deterministic model / prediction.

C.4 EXPERIMENTAL SETTINGS

C.4.1 WITH VAE

For the VAE MNIST experiment, the encoder (representation network) is a simple convolutional net-
work with 4 3x3 convolutional layers (with the last layer has 128 channels so that the representation
has 128 dimension), followed by an average pooling layer.

With AE and VAE, the decoder consists of 4 ConvTranspose2d layers, mirroring the encoder.

The classifier (from a representation to the prediction label) is a composition of 3 fully connected
layers (with batchnorm and ReLU activation in-between).

C.4.2 WITH SIMCLR

For a ResNet18 backbone network, we set the representation dimension to 512, while that for a
ResNet50 backbone is 2048. We set the initial learning rate to 1.2 and do Cosine annealing to 0.
Other experiment details have been presented in the main paper. In addition, please also refer to our
code for more details.

15


	Introduction
	Related Works
	Adversarial Training
	Self-Supervised Learning
	Robustness with unlabeled data

	Approach
	Problem statement
	A bound on the adversarial loss
	Applications and Use Cases
	With VAE
	With a self-supervised learning task


	Experiments
	Datasets
	Experimental Settings
	Results
	With VAE
	With Self-Supervised Learning (SimCLR):


	Conclusion
	Additional Discussion
	Proofs
	Proposition 1

	Experiments
	Datasets
	Additional Experiments
	Details on the baseline AE+TRADES
	Experimental Settings
	With VAE
	With SimCLR



