
The Sharpness Disparity Principle in Transformers
for Accelerating Language Model Pre-Training

Jinbo Wang * 1 Mingze Wang * 1 Zhanpeng Zhou * 2 Junchi Yan 2 Weinan E 1 3 4 Lei Wu 1 3 4

Abstract
Transformers consist of diverse building blocks,
such as embedding layers, normalization layers,
self-attention mechanisms, and point-wise feed-
forward networks. Thus, understanding the dif-
ferences and interactions among these blocks is
important. In this paper, we uncover a clear
sharpness disparity across these blocks, which
emerges early in training and intriguingly per-
sists throughout the training process. Motivated
by this finding, we propose Blockwise Learning
Rate (LR), a strategy that tailors the LR to each
block’s sharpness, accelerating large language
model (LLM) pre-training. By integrating Block-
wise LR into AdamW, we consistently achieve
lower terminal loss and nearly 2× speedup com-
pared to vanilla AdamW. We demonstrate this ac-
celeration across GPT-2 and LLaMA, with model
sizes ranging from 0.12B to 2B and datasets of
OpenWebText, MiniPile, and C4. Finally, we
incorporate Blockwise LR into other optimiz-
ers such as Adam-mini (Zhang et al., 2024c),
a recently proposed memory-efficient variant of
Adam, achieving a combined 2× speedup and
2× memory saving. These results underscore the
potential of exploiting the sharpness disparity to
improve LLM training.

1. Introduction
Transformers (Vaswani et al., 2017) have achieved remark-
able success across fields, including natural language pro-
cessing (Brown et al., 2020), vision (Dosovitskiy et al.,
2020), and scientific computing (Jumper et al., 2021).

*Equal contribution 1School of Mathematical Sciences,
Peking University 2Shanghai Jiao Tong University 3Center
for Machine Learning Research, Peking University 4AI for
Science Institute, Beijing, China. Correspondence to: Lei
Wu <leiwu@math.pku.edu.cn>, Mingze Wang <mingze-
wang@stu.pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

They have become the de facto design in modern AI mod-
els (Team et al., 2023; Achiam et al., 2023; Liu et al., 2024a).

Compared to traditional architectures, e.g., multilayer per-
ceptrons (MLPs), convolutional neural networks (CNNs),
and recurrent neural networks (RNNs), transformers exhibit
distinctive alloy-like characteristics, where diverse types
of blocks synergistically combine to achieve superior perfor-
mance. A transformer at minimum includes self-attention
(further broken down into query-key (QK) and value-output
(VO)) blocks, point-wise feedforward networks (FFN), nor-
malization layers (Norm), and embedding layers (Emb).
Uncovering the distinct properties of these blocks, as well as
the differences and interactions among them, is thus crucial
for gaining a deeper insight into transformer models (Wang
& E, 2024).

In practice, transformers are typically trained using the
AdamW optimizer (Kingma & Ba, 2014; Loshchilov &
Hutter, 2017). Dissecting the alloy-like characteristics of
transformers can provide insights into why Adam outper-
forms stochastic gradient descent (SGD) for transformer
training (Devlin, 2018; Zhang et al., 2020; Pesme & Flam-
marion, 2023; Kunstner et al., 2024; Zhang et al., 2024b) and
even holds promise for unlocking further improvements in
training efficiency (Popel & Bojar, 2018; Xiong et al., 2020;
Zhang et al., 2024c). Particularly, Zhang et al. (2024b) and
Zhang et al. (2024c) observed that unlike MLPs and CNNs,
the Hessian (aka sharpness or curvature) of transformers
exhibits a distinct blockwise heterogeneity. Building on this
insight, Zhang et al. (2024c) successfully reduced Adam’s
memory footprint nearly by half without sacrificing training
efficiency for a variety of LLM and non-LLM training tasks.

Our Contribution. In this work, we aim to explore how
we can leverage the aforementioned alloy-like characteris-
tics of transformers to improve training efficiency. Specifi-
cally, our contributions can be summarized as follows:

• The sharpness disparity principle. Motivated by the
alloy-like characteristics, we examine the sharpness of
transformers at the level of block type. Surprisingly, we
discover a distinct disparity in sharpness across different
block types, summarized as follows:

1

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

S(Emb)≪S(QK)<S(FFN)<S(VO)≪S(Norm) (1)

Here S(•) denotes the average sharpness of block type •
(see Eq.(4) for the calculation details). See Figure 1 (left)
for an illustration of this principle. Intriguingly, this
principle emerges in the early training stage and persists
throughout the subsequent training process, as shown in
Figure 3. These findings are validated through exten-
sive experiments on the training of GPT-2 (Radford et al.,
2019) and LLaMA models (Touvron et al., 2023), span-
ning various model sizes and datasets. We also provide
preliminary theoretical explanations to complement these
empirical observations.

• The Blockwise LR strategy. Inspired by Principle (1),
we propose tuning LRs by block type to accelerate LLM
pre-training. Specifically, we adjust the LRs of blocks
within the same type in proportion to their sharpness,
while keeping the LR of the block type with the high-
est sharpness unchanged. This strategy accelerates the
dynamics along low-sharpness directions without com-
promising training stability, as the latter is governed by
the high-sharpness directions.

The effectiveness of Blockwise LR is extensively vali-
dated in LLM pre-training across both GPT-2 and LLaMA
models, with model sizes ranging from 0.12B to 2B pa-
rameters, and datasets including OpenWebText (Gokaslan
& Cohen, 2019), MiniPile (Kaddour, 2023), and C4 (Raf-
fel et al., 2020). The results can be summarized as follows:

AdamW with Blockwise LR achieves lower terminal loss
and is nearly 2× faster than vanilla AdamW.

See Figure 1 (right) for a quick view of the acceleration
effect achieved by Blockwise LR. Furthermore, we ex-
plore the compatibility of Blockwise LR with other Adam-
based optimizers. Specifically, we integrate our Block-
wise LR into Adam-mini (Zhang et al., 2024c), achieving
both 2× speedup and 2× memory saving.

Remark 1.1. There has been a long-standing effort in deep
learning to accelerate neural network training by adapting
layerwise learning rates, a strategy that has proven effective
in architectures such as MLPs and CNNs (Yang, 2019; Yang
et al., 2022; Everett et al., 2024; Shin et al., 2024). However,
these approaches have not been successfully transferred to
the training of deep transformers. We hypothesize that this
gap stems from transformers’ distinctive alloy-like charac-
teristics: the inherent block-level diversity makes layerwise
learning rate strategies inadequate. To investigate this fur-
ther, we examine layer-level sharpness in Figure 9 and no
clear trends emerge across layers. This suggests that while
sharpness disparity exists at the block-type level, it does not
exhibit a consistent pattern at the layer level.

Iteration 𝑡 = 40000

D
en

si
ty

Iteration 𝑡 = 40000

Avg. Sharpness (Log Scale) Sharpness (Log Scale)
0 25k 50k 75k 100k

num of steps

2.5

2.6

2.7

va
lid

at
io

n
lo

ss

0.059

1.92× speedup

LLaMA (1.1B) on OpenWebText

AdamW (50k)

AdamW (100k)

Blockwise LR (50k)

Figure 1: (left) Sharpness disparity among block types in
a pre-trained GPT-2 (small) on OpenWebText, exhibiting a
clear order relationship as characterized by Principle (1).
(right) For the pre-training of LLaMA (1.1B) on OpenWeb-
Text, incorporating our Blockwise LR strategy into AdamW
results in a lower terminal loss and a 1.92× speedup com-
pared to the well-tuned vanilla AdamW.

2. Related Works
Sharpness structures in transformers. Recent work has
started to investigate blockwise sharpness patterns in trans-
former models through Hessian-based analyses. For exam-
ple, Zhang et al. (2024b) empirically observed the sharpness’
blockwise heterogeneity but did not establish a clear princi-
ple regarding the sharpness disparity among different blocks.
Meanwhile, Ormaniec et al. (2024) provided a Hessian anal-
ysis for a single self-attention (SA) layer, focusing only on
the sharpness disparity between the query-key (QK) and
value-output (VO) blocks within the same layer.

In contrast, we examine sharpness at the block-type level
across the entire transformer architecture, rather than focus-
ing on individual blocks (as in Zhang et al. (2024b)) or a sin-
gle layer (as in Ormaniec et al. (2024)). This coarse-grained
perspective reveals a consistent disparity, as formalized by
Principle (1), which persists throughout most of the training
process—except during the initial steps.

Efficient optimizers for LLM pre-training. AdamW
(Adam with decoupled weight decay) (Loshchilov & Hutter,
2017) has become the default optimizer in LLM pre-training.
Efforts to design more efficient optimizers generally fall into
two main categories: accelerating convergence and reduc-
ing memory footprint. Accelerations have been developed
using techniques such as Nesterov momentum (Xie et al.,
2022), diagonal second-order estimates (Liu et al., 2024b;
Wang et al., 2024), variance reduction (Yuan et al., 2024),
and matrix-based preconditioners (Keller et al., 2024; Vyas
et al., 2024). Memory-efficient optimizers utilize sign-based
methods (Chen et al., 2024), reduced usage of second mo-
ments in Adam (Zhang et al., 2024c), and gradient low-rank
projection (Zhao et al., 2024a). The closest work to our
Blockwise LR is Wang et al. (2024), which also increases
the LR along low-sharpness directions. A detailed compari-
son is deferred to Section 5.

The edge of stability (EoS) phenomenon. Neural network

2

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

training typically occurs at the EoS stage (Wu et al., 2018;
Jastrzebski et al., 2020; Cohen et al., 2021; 2022), where
the optimizer exhibits oscillatory behavior along sharp di-
rections without diverging, while steadily progressing along
flat directions, leading to loss reduction. Several works
(Wen et al., 2024; Song et al., 2024; Cohen et al., 2024;
Wang et al., 2024) have highlighted the crucial role of the
dynamics along flat directions (referred to as river directions
by Wen et al. (2024), bulk directions by Song et al. (2024),
and stable direction in Wang et al. (2024)) in reducing total
loss. Notably, Wen et al. (2024) further demonstrated that
this picture is essential for understanding LLM pre-training.
Building on these insights, our Blockwise LR approach is
designed to accelerate training by amplifying the dynamics
particularly along the flat river directions.

3. Preliminaries
Notations. Let ∥·∥2, ∥·∥F, and Tr(·) denote the spectral
norm, Frobenius norm and trace for matrices, respectively.
Given A ∈ Rm×n, its row-wise vectorization is defined as
vec(A) = (a1,1, · · · , a1,n, · · · , am,1, · · · , am,n) ∈ Rmn.
The Kronecker product and Hadamard product are denoted
by ⊗ and ⊙, respectively. The row-wise mean and co-
variance of A ∈ Rm×n are denoted by Er[A] ∈ Rm×n

and Vr[A] ∈ Rm×n, respectively. Specifically, they
are defined as: for all i ∈ [m], j ∈ [n], (Er[A])i,j =
1
n

∑n
k=1 Ai,k, (Vr[A])i,j =

(
Ai,j − 1

n

∑n
k=1 Ai,k

)2
. We

will use standard big-O notations like O(·), Ω(·), and Θ(·)
to hide problem-independent constants.

Jacobian matrix. Given a vector-valued function: b 7→
a(b) with b ∈ Rn and a(b) ∈ Rm, the Jacobian is de-
fined as ∂a

∂b = (∂ai

∂bj
)i,j ∈ Rm×n. Analogously, for a

matrix-valued function: B 7→ A(B) where B ∈ Rp×q

and A(B) ∈ Rm×n, to avoid directly working with tensors,
the Jacobian is defined as ∂A

∂B := ∂vec(A)
∂vec(B) ∈ Rmn×pq .

3.1. The Transformer Architecture
Given an n-token input sequence X = (x⊤

1 , · · · ,x⊤
n)

⊤ ∈
Rn×d, where d refers to the vocabulary size in LLM and
each xi corresponds to the token’s one-hot encoding, an
L-layer transformer TF processes it as follows.

Embedding layer. First, each input token is embedded into
the latent space through an embedding layer with parameters
WE ∈ Rd×D, bE ∈ R1×D:

x(0)
s = xsWE + bE , s ∈ [n],

where the bias bE is omitted in LLMs such as
nanoGPT (Karpathy, 2022).

L-layer SA-FFN blocks. Then the embedded sequence
X(0) is processed by L-layer SA-FFN blocks, and the
output of the final layer is taken as the output sequence

TF(X) = X(L) ∈ Rn×D. For each layer l ∈ [L], the
computations are as follows:

X(l− 1
2) = X(l−1) + SA(l)(Norm(l−1/2)(X(l−1)));

X(l) = X(l− 1
2) + FFN(l)(Norm(l)(X(l− 1

2))).
(2)

Norm blocks. Here, Norm(v) (v ∈ {l − 1/2, l}) denote
normalization layers (e.g., LayerNorm (Lei Ba et al., 2016)
and RMSNorm (Zhang & Sennrich, 2019)) with learnable
parameters γ(v),β(v) ∈ R1×D. For LayerNorm, the com-
putation for a token x ∈ R1×D is:

Norm(v)(x) =
x− Er[x]

Vr[x]
⊙ γ(v) + β(v).

where the bias β is omitted in LLMs such as nanoGPT.

FFN blocks. FFN(l) denotes a (token-wise) two-layer
FFN of width M , comprising parameters W

(l)
1 ∈

RD×M ,W
(l)
2 ∈ RM×D, and using activation function σ(·)

such as ReLU. For any token x ∈ R1×D, the operation is:

FFN(l)(x) = σ(xW
(l)
1)W

(l)
2 .

SA blocks. SA(l), a multi-head self-attention, has parame-
ters W (l)

Q ,W
(l)
K ,W

(l)
V ,W

(l)
O ∈ RD×D. When applied to a

sequence Z ∈ Rn×D, it operates as:

SA(l)(Z) =

H∑
h=1

SA(l,h)(Z)W
(l,h)
O , SA(l,h)(Z) =

softmax

〈
ZW

(l,h)
Q ,ZW

(l,h)
K

〉
+M√

D/H

(ZW
(l,h)
V

)
,

where H is the head number, and W
(l,h)
Q ,W

(l,h)
K ,W

(l,h)
V ∈

RD×(D/H), W
(l,h)
O ∈ R(D/H)×D are split from

W
(l)
Q ,W

(l)
K ,W

(l)
V , W (l)

O by heads, respectively. The oper-
ator softmax(·) represents the row-wise softmax normaliza-
tion. For the next-token prediction, the mask M ∈ Rn×n

satisfies Mi,j = −∞ if i < j and Mi,j = 0 otherwise.

3.2. Blockwise Sharpness and the Efficient Estimation
Measuring sharpness requires accessing the Hessian matrix,
which is computationally expensive due to the high dimen-
sionality of the parameter space. Consequently, approximate
methods are needed to reduce computational complexity.

Let ℓ(·, ·) denote the cross-entropy loss. For an input data
x ∈ Rdx and label y ∈ Rdy , let the model’s prediction be
f(x;θ) ∈ Rdy . The Fisher (Gauss-Newton) matrix F (θ) is
widely recognized approximation of the Hessian, particu-
larly near minima. Thus, the diagonal Hessian can be esti-
mated as h(θ) = diag(F (θ)), a popular technique in deep
learning optimization (Martens & Grosse, 2015; Grosse &

3

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

Martens, 2016; George et al., 2018; Mi et al., 2022; Liu
et al., 2024b; Wang et al., 2024). Moreover, given an in-
put batch {(xb,yb)}Bb=1, the empirical diagonal Fisher can
be estimated: diag(F̂ (θ)) = 1

B

∑B
b=1 ∇ℓ(f(xb;θ); ŷb)⊙

∇ℓ(f(xb;θ); ŷb), where ŷb ∼ softmax(f(θ;xb)). How-
ever, as noted by Liu et al. (2024b), implementing this
estimator is computationally expensive due to the need to
calculate B single-batch gradients. Liu et al. (2024b) pro-
posed a more convenient estimator diag(F̂eff(θ)), which
only requires the computation of the mini-batch gradi-
ent ∇L̂B(θ) = 1

B

∑B
b=1 ∇ℓ(f(xb;θ); ŷb) with ŷb ∼

softmax(f(xb;θ)):

h(θ) = diag(F̂eff(θ)) = B · ∇L̂B(θ)⊙∇L̂B(θ). (3)

According to Liu et al. (2024b, Section 2), this estimator is
unbiased, i.e., Eŷ[diag(F̂eff(θ))] = Eŷ[diag(F̂ (θ))].

Given a block type • ∈ {Emb,QK,VO,FFN,Norm}, let
θ[•] represent the parameters associated with all blocks of
that type, and let h(θ[•]) denote the corresponding diagonal
Hessian. The average sharpness for each block type can
then be approximated as follows:

S(θ[•]) := Tr(h(θ[•]))
#(θ[•]) =

B
∥∥∥∇θ[•]L̂B(θ)

∥∥∥2
F

#(θ[•]) , (4)

where L̂B corresponds to (3) and #(θ[•]) denotes the num-
ber of parameters associated with the block type •. For
brevity, θ in (4) will be omitted when there is no ambiguity.

Remark 3.1. It is worth noting that in (4), the sharpness
is averaged over all blocks of the same type, which may
be distributed across different layers, rather than being
calculated within each individual block.

4. The Sharpness Disparity Principle
4.1. Main Findings

We first investigate the sharpness disparity across differ-
ent types of building blocks (Emb, QK, VO, FFN, Norm)
in transformer-based LLMs. Specifically, we pre-trained
GPT-2 (Radford et al., 2019) and LLaMA (Touvron et al.,
2023) models on the OpenWebText dataset using default
configurations. Blockwise diagonal Hessians are analyzed
at various checkpoints using the Hessian estimator (3). The
experimental details can be found in Appendix A.1.

In Figures 1 (left) and 2 (left), we report the average sharp-
ness, estimated using (4), of the five typical types of blocks
for GPT-2 and LLaMA, respectively. The results reveal
a clear and consistent sharpness disparity among different
block types, as summarized in Principle (1). Specifically,
Norm layers consistently exhibit the highest sharpness, the
Emb layers are the flattest, and QK layers are relatively
flatter compared to FFN and VO layers. These findings, to

the best of our knowledge, provide the first comprehensive
comparison of sharpness across block types in transformers.

Iteration 𝑡 = 40000

D
en

si
ty

Avg. Sharpness (Log Scale)

Iteration 𝑡 = 40000

Sharpness (Log Scale)

Iteration 𝑡 = 40000

D
en

si
ty

Iteration 𝑡 = 40000

Avg. Sharpness (Log Scale) Sharpness (Log Scale)

Figure 2: (left) The average sharpness for the five typical
block types in a pre-trained LLaMA model (0.25B); (right)
the sharpness distribution across different blocks in a pre-
trained GPT-2 (small) model.

Figure 2 (right) plots the full sharpness distribution for each
block type, whereas Figures 1 (left) and 2 (left) only re-
port mean sharpness values. Evidently, even at the dis-
tribution level, Principle (1) remains valid. Interestingly,
the Emb block exhibits much higher variance compared to
other blocks. This behavior likely stems from the embed-
ding layer’s direct interaction with the entire vocabulary,
where rare tokens result in the wide spread of small sharp-
ness and frequent tokens contribute to large sharpness. A
similar insight has been utilized by Kunstner et al. (2024) to
explain the necessity of Adam in training NLP models.

Furthermore, Figure 3 illustrates the evolution of block-
wise sharpness during the training process. We can see
that Principle (1) is not exclusive to well-trained trans-
formers; instead, it emerges in the early stages of training
and persists consistently throughout the subsequent training
process. This observation underscores the potential of lever-
aging Principle (1) to enhance LLM pre-training; we refer
to Section 5 for further explorations.

Comparison with existing works. Our findings build on
prior work, extending key observations. Zhang et al. (2024b)
noted the block heterogeneity in the Hessian of transformers
but did not establish a clear principle for sharpness distinc-
tions across blocks, as we do with Principle (1). The work
of Ormaniec et al. (2024) is more closely related but focuses
solely on a single self-attention layer (SA), reporting the
relationship S(QK) < S(VO). In contrast, we analyze all
major block types in transformers, including Emb, FFN,
and Norm, thereby offering a more comprehensive principle
that captures the full scope of sharpness disparity.

4.2. Theoretical Insights

To provide theoretical insights into explaining Principle (1),
we derive analytic expressions of S(•) and analyze their
dependence on parameter magnitudes and numbers of each
block. For simplicity, we denote Q(θ) := L̂B(θ), where

4

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

Iteration 𝑡 = 0

Avg. Sharpness (Log Scale)

Iteration 𝑡 = 100

Avg. Sharpness (Log Scale)

Iteration 𝑡 = 1000

Avg. Sharpness (Log Scale)

Iteration 𝑡 = 10000

Avg. Sharpness (Log Scale)

Iteration 𝑡 = 20000

Avg. Sharpness (Log Scale)

(a) Evolution of the average sharpness across different blocks during pre-training GPT-2 (small) on OpenWebText.
Iteration 𝑡 = 0

Avg. Sharpness (Log Scale)

Iteration 𝑡 = 100

Avg. Sharpness (Log Scale)

Iteration 𝑡 = 1000

Avg. Sharpness (Log Scale)

Iteration 𝑡 = 10000

Avg. Sharpness (Log Scale)

Iteration 𝑡 = 20000

Avg. Sharpness (Log Scale)

(b) Evolution of the average sharpness across different blocks during pre-training LLaMA (0.25B) on OpenWebText.

Figure 3: In these experiments, the total training steps are both 50k. Principle (1) emerges during the initial phase (from
iteration 0 to iteration 1k), which accounts for only approximately 2% of the total steps, and persists throughout the
subsequent training process.

L̂B(θ) is defined in (3). Then from (4), we have S(•) =

B ∥∇•Q∥2F /#(•). Without loss of generality, we set B =
1. Our calculations for ∇Q apply to general Q.

Considering blocks across different layers is complicated.
Therefore, we focus on comparisons within the same layer.
Specifically, we examine the following sharpness compar-
isons: (i) FFN vs. Norm within the same layer; (ii) SA
(comprising QK and VO) vs. Norm within the same layer;
and (iii) Emb vs. the adjacent Norm.

Theorem 4.1 (FFN vs. Norm). Consider the l-th layer in
a transformer (2). Omitting the layer index for simplicity,
let Y = X + FFN (Norm (X;γ) ;W1,W2), where FFN
utilizes the (Leaky) ReLU activation σ. Then, the gradients
of Q w.r.t. W1,W2, and γ are:

∂Q
∂W2

=
∂Q
∂Y

(
XNormW1 ⊙

∂A
∂M

)
⊗ Id;

∂Q
∂W1

=
∂Q
∂Y

(
In ⊗W2

⊤
) ∂A
∂M

(XNorm ⊗ IM) ;

∂Q
∂γ

=
∂Q
∂Y

(
In ⊗W2

⊤
) ∂A
∂M

(
In ⊗W1

⊤
)

diag
(
vec(Xstd)

)(
1n×1 ⊗ Id

)
,

where Xstd := X−Er[X]√
Vr[X]

,XNorm := Norm(X;γ) =

Xstd ⊙
(
1n×1 ⊗ γ

)
,A := σ(M),M := XNormW1. Let

Ψ := n
√
D
∥∥ ∂Q
∂Y

∥∥
F

∥∥ ∂A
∂M

∥∥
F ∥W1∥F ∥W2∥F ∥γ∥F. Then,

the blockwise average sharpness can be bounded as:

S(W•) = O
(

Ψ2

D2∥W•∥2F

)
, • ∈ {1, 2};

S(γ) = O
(

Ψ2

D∥γ∥2F

)
,

where the denominators (D2 or D) reflect the number of
parameters in each group.

Theorem 4.1 provides theoretical support for our main find-
ing: S(FFN) is substantially smaller than S(Norm). As
illustrated in Figure 8 (a), during training, ∥γ∥F gradually
decreases, and ∥W•∥F (• ∈ {1, 2}) in FFN layers remains
larger than ∥γ∥F, resulting in D2 ∥W•∥2F ≫ D ∥γ∥2F.

Theorem 4.2 (QK, VO vs. Norm). Consider the (l − 1
2)-

th layer in (2). Omitting the layer index for simplicity,
let Y = X + SA

(
Norm (X;γ) ;WK ,WQ,WV ,WO

)
.

Consider a single-head attention (i.e., H = 1) for sim-
plicity. Then, the gradients of Q w.r.t. different blocks
(WK ,WQ,WV ,WO,γ) are provided in Appendix B.2.
Furthermore, there exist two problem-dependent constants
Φ,Ψ > 0 (detailed in Appendix B.2), such that:

S(W•) = O
(

Φ2

D2 ∥W•∥2F

)
, • ∈ {K,Q};

S(W•) = O
(

Ψ2

D2 ∥W•∥2F

)
, • ∈ {V,O};

S(γ) = O
(
Φ2 +Ψ2

D ∥γ∥2F

)
.

where the denominators (D2 or D) reflect the number of
parameters in each group.

Theorem 4.2 provides theoretical support for our main find-
ing that both S(QK) and S(VO) are significantly smaller
than S(Norm). The inclusion of the softmax operation in
attention layers introduces additional complexity in the cal-
culations. Detailed derivations are given in the appendix.
As shown in Figure 8 (b), during training, ∥γ∥F gradually

5

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

decreases, and ∥W•∥F (• ∈ {K,Q, V,O}) in SA blocks re-
mains larger than ∥γ∥F, resulting in D2 ∥W•∥2F ≫ D ∥γ∥2F.

This theorem does not explicitly establish that S(QK) <
S(VO). Studying this relation requires a deeper analysis of
the constants Φ and Ψ, as well as the magnitudes of ∥W•∥F.
Ormaniec et al. (2024) has demonstrated S(QK) < S(VO)
both theoretically and experimentally, and we defer to that
analysis instead of repeating it here.

Theorem 4.3 (Emb v.s. Norm). Consider the embed-
ding layer and its adjoint normalization layer of a trans-
former (2). Omitting the layer index for simplicity, let:
Y := Norm(XWemb;γ). The gradients of Q w.r.t Wemb

and γ are derived in Appendix B.3. Moreover, there ex-
ists a problem-dependent constant Ψ > 0 (also detailed in
Appendix B.3), such that:

S(WE) = O
(

Ψ2

Ddmin
i∈[d]

∥w̃Ei∥22

)
;

S(γ) = O
(

Ψ2

D ∥γ∥2F

)
,

where W̃E = (w̃⊤
E1

, · · · , w̃⊤
Ed

)⊤ := WE − Er[WE]. The
denominators (Dd or D) represent the number of parame-
ters in each group.

Theorem 4.3 provides theoretical justification for our main
finding that S(Emb) is much smaller than S(Norm). As
shown in Figure 8(c), during training, Dd ∥w̃Ei

∥22 ≫
D ∥γ∥2F . (Notice that the vocabulary size d is very large in
practice, e.g., 50304 for the GPT tokenizer.)

Recalling the definition of average sharpness (4), the key
step in deriving Theorem 4.1 and 4.2, and 4.3 is establish-
ing ∥∇•Q∥ = O(1/∥θ[•]∥). This relationship is highly
intuitive given the compound multiplicative nature of trans-
former blocks, where the norm of the derivatives is inversely
proportional to the norm of associated parameters, even
with weak non-linearities. For example, if y =

∏n
i=1 xi and

Q = φ(y), then |∂Q/∂xi| = |ϕ′(y)y/xi| ∝ 1/|xi| for all
i ∈ [n].

5. The Blockwise LR Strategy
Recalling Figure 3, the sharpness disparity across different
blocks, as described in (1), emerges early in training and
persists until convergence. This insight can be leveraged to
accelerate LLM pre-training, as elaborated later.

Fast-slow dynamics at EoS. As discussed in Section 2, re-
cent studies (Wen et al., 2024; Song et al., 2024; Wang et al.,
2024) have highlighted the distinct roles of the dynamics
along high- and low-sharpness directions during EoS. The
main picture is summarized as follows:

• Fast dynamics: Along high-sharpness directions, the
optimizer exhibits significant fluctuations without con-
verging or diverging. These components of dynamics
govern training stability, as further increasing the LR
in these directions can lead to instability, while con-
tributing little to loss reduction.

• Slow dynamics: Along low-sharpness directions, the
optimizer progresses steadily, making the primary con-
tribution to loss reduction, albeit at a slow rate.

Inspired by the above picture, a promising approach to ac-
celerating training is as follows: given a base optimizer,
increase the LRs along low-sharpness directions while keep-
ing the LR of high-sharpness directions unchanged. This
strategy aims to speed up loss reduction without compro-
mising training stability.

Wang et al. (2024) has implemented this idea by adjusting
the LR of each parameter based on its sharpness. How-
ever, this approach faces two key challenges: 1) it requires
frequent diagonal Hessian estimation, which imposes sig-
nificant computational and memory overhead; 2) sharpness
estimates at the individual parameter level can be unreliable.

The Blockwise LR. Unlike Wang et al. (2024), we propose
adjusting LRs at the block-type level, as our Principle (1)
reveals a consistent sharpness disparity at this granularity.
Specifically, let ηbase denote the LR for base optimizers
such as AdamW, the LR for each block type is then adjusted
as follows:

• Norm blocks (the sharpest directions): we still use the
base LR, ηNorm = ηbase, to keep training stability;

• Other blocks (low-sharpness directions): we adjust
the LRs of these blocks by η• ∝ r(•)ηbase, where
• ∈ {Emb,QK,FFN,VO}, where r(•) denotes the
adjusting ratio for the block type •.

Naturally, we can set r(•) ∝ S(Norm)/S(•). However, in
practice, we find that manually tuning r(•)’s–involving only
four hyperparameters–while following the qualitative trend
described by Principle (1) is more effective. Further details
are provided in Section 6.

It is also worth noting that due to its simplicity, Blockwise
LR can be seamlessly integrated into modern LLM training
frameworks such as Megatron (Shoeybi et al., 2019).

6. Experiments
Models and datasets. We evaluate our proposed Blockwise
LR in the pre-training of decoder-only LLMs across various
model types, model sizes, and datasets1. Specifically, we

1The code is available at https://github.com/
Wongboo/BlockwiseLearningRate.

6

https://github.com/Wongboo/BlockwiseLearningRate
https://github.com/Wongboo/BlockwiseLearningRate

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

consider two widely-used LLMs: LLaMA and GPT-2; we
experiment with model sizes ranging from 0.12B to 2B
parameters; the datasets includes OpenWebText (Gokaslan
& Cohen, 2019) 2, MiniPile (Kaddour, 2023)3, and Colossal
Clean Crawled Corpus (C4) (Raffel et al., 2020)4, providing
a highly diverse text corpus.

Baselines. As a baseline, we use the default AdamW opti-
mizer, configured with the hyperparameters β1 = 0.9, β2 =
0.95 and weight decay λ = 0.1. To ensure training stability,
gradient clipping is applied with 1.0. These settings align
with the training protocols used in nanoGPT and LLaMA
models (Touvron et al., 2023). The LR strategy includes a
linear warm-up phase followed by a cosine decay scheduler,
capped at lr max. And the terminal LR lr min is set to
lr max/20. For each experiment, we first tune the lr max
to be optimal for AdamW, and the baselines are trained us-
ing these optimal lr max’s. Details of the tuned lr max
values can be found in Appendix A.1.

Adjusting ratio tuning and its transferability. To incor-
porate the Blockwise LR into AdamW, we simply use the
lr max (tuned for vanilla AdamW) for Norm blocks. Then,
we only tuned the four adjusting ratios in a single small-
scale experiment – specifically the pre-training of LLaMA
(0.25B) on Minipile – following the rule: r(•) is adjusted
according to the trend of S(Norm)

S(•) , guided by Principle (1).
The tuned hyperparameters are:

r(Emb) = 10, r(QK) = 8, r(FFN) = 6, r(VO) = 4. (5)

Notably, the adjusting ratios are highly robust hyperparame-
ters, as demonstrated in the following ways:

• First, as shown in Figure 10, in the experiments for tun-
ing the adjusting ratios, Blockwise LR demonstrates ro-
bustness to these hyperparameters, consistently acceler-
ating pre-training across a range of r(•)’s. The configu-
ration in (5) achieves the largest improvements among
those tested. Notably, even with suboptimal ratios,
Blockwise LR still delivers significant performance
gains. Further details are provided in Appendix A.2.

• Second, the configuration in (5), tuned from a single
experiment, transfers perfectly across all AdamW
experiments conducted in this paper. Consequently,
we adopt (5) as the default adjusting ratios for all
AdamW experiments. This robustness aligns with the
consistency of Principle (1), which holds across GPT
and LLaMA models, various model sizes, and datasets.

2An opensource recreation of the WebText corpus, widely used
for LLM pre-training such as RoBERTa (Liu et al., 2019) and
GPT-2.

3A 6GB subset of the deduplicated Pile (825GB) (Gao et al.,
2020)

4A large-scale public language datasets, widely used for LLM
pre-training such as T5 (Raffel et al., 2020)

6.1. Main Results

Main findings. In Figure 4 and Figures 1(right), we com-
pare the performance of AdamW with Blockwise LR against
vanilla AdamW across various settings. Our observations,
which consistently hold across all experiments–including
both GPT-2 and LLaMA models with sizes ranging from
0.12B to 2B–and datasets including OpenWebText and
MiniPile, are as follows:

• Given the same total number of training steps, Block-
wise LR enables AdamW to reach a lower terminal
loss than vanilla AdamW.

• Across different total training steps, AdamW with
Blockwise LR achieves a nearly 2× speedup com-
pared to vanilla AdamW.

An intriguing observation in Figure 4 is that AdamW with
Blockwise LR often starts to outperform vanilla AdamW
from the mid-to-late stages of training. This behavior re-
sembles the WSD scheduler (Wen et al., 2024; Hu et al.,
2024), which typically surpasses cosine or linear decay LR
schedulers in the late stage (during the decay phase). Under-
standing the underlying cause of this phenomenon requires
further investigation, which we leave for future work.

Scaling law is in favor of Blockwise LR. To further exam-
ine scaling behavior, Figure 5 (right) visualizes the scaling
laws of AdamW with Blockwise LR versus AdamW during
LLaMA pre-training. For MiniPile (left) and OpenWebText
(middle), the performance gaps between the two optimiz-
ers get larger as models size grows. For C4 (right), the
performance gap remains stable across model scales, with
the corresponding scaling curves remaining nearly parallel.
These results suggest that the gains offered by Blockwise LR
may persist at larger model scales.

Evaluation on downstream tasks. Furthermore, as ob-
served in Table 1, the improvement in validation loss trans-
fers to an improvement in downstream task accuracy. Within
the same number of pre-training steps, the LLaMA (1.1B)
trained with Blockwise LR shows better downstream perfor-
mance than Adam among all evaluated tasks.

6.2. Ablation Studies

In the preceding experiments, Blockwise LR is applied to
all major blocks simultaneously. Here, we conduct ablation
studies to assess the contribution of each block type individ-
ually. Specifically, we pre-train a LLaMA model (0.25B) on
OpenWebText focusing on three comparisons: (i) applying
Blockwise LR exclusively to Emb; (ii) applying Blockwise
LR to both Emb and FFN; (iii) applying Blockwise LR to
blocks of all the four types (Emb, FFN, QK, and VO). The
adjusting ratios follow Eq. (5) and the results are shown in
Table 2.

7

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

0 25k 50k 75k 100k

num of steps

2.9

3.0

3.1

3.2

va
lid

at
io

n
lo

ss

0.049

1.99× speedup

GPT-2 (small) on OpenWebText

AdamW (50k)

AdamW (100k)

Blockwise LR (50k)

0 15k 30k 45k 60k

num of steps

2.45

2.50

2.55

2.60

2.65

2.70

2.75

va
lid

at
io

n
lo

ss

0.041

1.90× speedup

LLaMA (0.13B) on MiniPile

AdamW (30k)

AdamW (60k)

Blockwise LR (30k)

0 15k 30k 45k 60k

num of steps

2.4

2.5

2.6

va
lid

at
io

n
lo

ss

0.051

1.92× speedup

LLaMA (0.25B) on MiniPile

AdamW (30k)

AdamW (60k)

Blockwise LR (30k)

0 15k 30k 45k 60k

num of steps

2.25

2.30

2.35

2.40

2.45

2.50

2.55

va
lid

at
io

n
lo

ss

0.056

2.25× speedup

LLaMA (0.5B) on MiniPile

AdamW (30k)

AdamW (60k)

Blockwise LR (30k)

0 25k 50k 75k 100k

num of steps

2.75

2.80

2.85

2.90

2.95

3.00

3.05

va
lid

at
io

n
lo

ss

0.058

1.91× speedup

LLaMA (0.25B) on OpenWebText

AdamW (50k)

AdamW (100k)

Blockwise LR (50k)

0 25k 50k 75k 100k

num of steps

2.6

2.7

2.8
va

lid
at

io
n

lo
ss

0.052

1.91× speedup

LLaMA (0.5B) on OpenWebText

AdamW (50k)

AdamW (100k)

Blockwise LR (50k)

0 25k 50k 75k 100k

num of steps

2.50

2.55

2.60

2.65

2.70

2.75

2.80

va
lid

at
io

n
lo

ss

0.052

1.88× speedup

LLaMA (0.75B) on OpenWebText

AdamW (50k)

AdamW (100k)

Blockwise LR (50k)

0 25k 50k 75k 100k

num of steps

2.4

2.5

2.6

2.7

va
lid

at
io

n
lo

ss

0.091
2.31×speedup

LLaMA (2B) on OpenWebText

AdamW (50k)

AdamW (100k)

Blockwise LR (50k)

Figure 4: AdamW with Blockwise LR consistently outperforms AdamW in LLM pre-training tasks across different model
types, varying model sizes, and datasets.

200 300 400 500

parameters / M

2.30

2.35

2.40

2.45

2.50

te
rm

in
al

va
lid

at
io

n
lo

ss

Scaling Laws (LLaMA on MiniPile)

AdamW

Blockwise LR

500 1000 1500 2000

parameters / M

2.5

2.6

2.7

2.8

te
rm

in
al

va
lid

at
io

n
lo

ss

Scaling Laws (LLaMA on OpenWebText)

AdamW

Blockwise LR

1032× 102 3× 1024× 102 6× 102

(non-embedding) parameters / M

2.5

2.6

2.7

2.8

2.9

3.0

te
rm

in
al

va
lid

at
io

n
lo

ss

Scaling Laws (LLaMA on C4)

AdamW

Blockwise LR

Figure 5: Scaling-law comparison of AdamW with Blockwise LR and AdamW on various datasets for LLaMA models.

Table 1: Evaluation results on downstream tasks (0-shot with lm-evaluation-harness) of LLaMA models (1.1B) pre-trained
on OpenWebText using AdamW or Blockwise LR for 50K steps. The best scores in each column are bolded.

Method ARC E ARC C PIQA HellaSwag OBQA WinoGrande SCIQ
AdamW 52.69 22.87 68.71 36.13 19.40 55.17 77.60

Blockwise LR 54.29 25.34 69.53 38.00 22.60 59.83 81.60

First, the results show that applying Blockwise LR to any
block consistently improves performance, supporting the
hypothesis that dynamics along low-sharpness directions
are crucial for loss reduction. Among all blocks, apply-
ing Blockwise LR to FFN yields the largest improvement
(0.043− 0.016 = 0.027), likely because FFN blocks com-
prise the majority of model parameters, offering the greatest
potential for optimization gains.

Second, we conduct an additional experiment to assess the
impact of increasing the LR for Norm blocks. Specifically,
the Norm LR is doubled, while the LR for other blocks
remains unchanged from the baseline. As shown in the last
row of Table 2, this leads to a deterioration in performance,
contrasting with the improvements seen when increasing the
LRs for other blocks by far more than double. This result
underscores a fundamental difference in the dynamics of

Norm with other blocks.

In summary, these ablation studies further validate the ef-
fectiveness of Blockwise LR and confirm the rationale of
selecting specific types of blocks for LR amplification, as
guided by the sharpness disparity principle.

Table 2: Ablation results for the effectiveness of Blockwise
LR in pre-training LLaMA (0.25B) on OpenWebText.

Blockwise LR terminal loss (50k steps)

w/o 2.834
Emb 2.818 (-0.016 ✓)

Emb & FFN 2.791 (-0.043 ✓)
Emb & FFN & QK & VO 2.784 (-0.050 ✓)

Norm 2.837 (+0.003 ✗)

8

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

6.3. Integration into Other Optimization Schemes

In practice, there are two popular directions for improving
LLM pre-training: acceleration and reducing memory con-
sumption. While Blockwise LR has demonstrated remark-
able success in accelerating pre-training, a natural ques-
tion arises: Can Blockwise LR be combined with memory-
efficient optimizers to achieve both faster training and fewer
memory consumption?

Blockwise LR on Adam-mini. Without loss of generality,
we choose the Adam-mini (Zhang et al., 2024c) optimizer,
an Adam variant that reduces memory consumption by ap-
proximately 2× compared to AdamW. Here, we conduct
experiments to explore whether Blockwise LR can also ac-
celerate Adam-mini. Following Zhang et al. (2024c), we
adopt the lr max that tuned for AdamW as the the lr max
of Adam-mini. However, since Adam-mini employs SGD
within each block, its dynamics differs significantly from
AdamW. Consequently, for Adam-mini with Blockwise LR,
we re-tune the ratios r(•) for • ∈ {Emb,QK,FFN,VO}.
More experimental details are provided in Appendix A.3.

0 25k 50k 75k 100k

num of steps

2.75

2.80

2.85

2.90

2.95

3.00

3.05

va
lid

at
io

n
lo

ss

0.044

1.97× speedup

LLaMA (0.25B) on OpenWebText

Adam-mini (50k)

Adam-mini (100k)

Blockwise LR (50k)

0 15k 30k 45k 60k

num of steps

2.3

2.4

2.5

va
lid

at
io

n
lo

ss

0.047

1.97× speedup

LLaMA (0.5B) on MiniPile

Adam-mini (30k)

Adam-mini (60k)

Blockwise LR (30k)

Figure 6: Adam-mini with Blockwise LR outperforms
Adam-mini in pre-training tasks.

The results, presented in Figure 6, demonstrate that Block-
wise LR achieves a 2× speedup on Adam-mini. Since
vanilla Adam-mini already achieves a 2× memory saving
compared to AdamW while maintaining nearly the same
convergence speed, Adam-mini combined with Blockwise
LR achieves both a 2× speedup and 2× memory saving
compared to vanilla AdamW. We leave more ablation stud-
ies with other optimizers for future work.

Blockwise LR on Lion. Another memory-efficient opti-
mizer is Lion (Chen et al., 2024), which eliminates second-
order moments in AdamW. We conduct experiments to ex-
plore whether Blockwise LR can also accelerate Lion. We
begin by tuning the lr max for Lion baseline, as detailed
in Appendix A.3. For Lion with Blockwise LR, we directly
apply the ratios r(•) in Eq. (5) (note that this is originally
tuned for AdamW with Blockwise LR). The results, pre-
sented in Figure 7 (left), demonstrate that Blockwise LR
yields a 2× speedup on Lion.

Additionally, we evaluate the evolution of the average sharp-
ness across different blocks when trained using Lion opti-
mizer. As shown in Figure 11 in Appendix A.3, the results

closely resemble those in Figure 3(b), which uses AdamW.
Our Principle (Eq. (1)) emerges during the initial phase, and
persists throughout the subsequent training process.

Blockwise LR with wsd scheduler. The preceding exper-
iments employ the cosine decayed LR scheduler. In this
section, we evaluate Blockwise LR under an alternative
and increasingly popular scheduler: warmup-stable-decay
(wsd) (Hu et al., 2024), which includes a linear warm-up
LR to peak lr max, followed by a stable phase where LR
remains at lr max, and then a linear decay to lr min. We
extend our experiments to incorporate the WSD scheduler.
Experimental details are provided in Appendix A.3. As
shown in Figure 7 (right), Blockwise LR still achieves a 2×
speedup when used with the wsd scheduler.

0 25k 50k 75k 100k

num of steps

2.75

2.80

2.85

2.90

2.95

3.00

3.05

va
lid

at
io

n
lo

ss
0.05

1.96× speedup

LLaMA (0.25B) on OpenWebText

Lion (50k)

Lion (100k)

Blockwise LR (50k)

0 25k 50k 75k 100k

num of steps

2.75

2.80

2.85

2.90

2.95

3.00

3.05

va
lid

at
io

n
lo

ss

0.042

2× speedup

LLaMA (0.25B) on OpenWebText; wsd scheduler

AdamW (50k)

AdamW (100k)

Blockwise LR (50k)

Figure 7: In pre-training tasks, (left) Lion with Blockwise
LR outperforms Lion; (right) when using wsd LR scheduler,
AdamW with Blockwise LR outperforms AdamW.

These experiments demonstrate that Blockwise LR is not
limited to accelerating AdamW but can also be effectively
combined with other optimizers such as Adam-mini and
Lion, and LR scheduler such as wsd, while preserving their
unique advantages. This finding paves the way for future
research exploring the integration of Blockwise LR with
other optimization algorithms.

7. Conclusion and Outlook
In this paper, we uncovered a sharpness disparity principle
among different types of blocks in transformers, as formal-
ized in Eq. (1). Notably, this blockwise sharpness disparity
persists throughout the entire training process, except during
the initial few steps. Building on this discovery, we pro-
posed a novel Blockwise LR adjustment principle, which
effectively accelerates base optimizers such as AdamW and
Adam-mini in LLM pre-training tasks.

Future works. It would be valuable to investigate the ap-
plicability of our Blockwise LR to non-LLM tasks, such as
computer vision, and its compatibility with other optimizers,
such as Muon (Keller et al., 2024) and other alloy-like archi-
tectures such as Mamba (Gu & Dao, 2023). Furthermore,
our findings open up opportunities to develop other block-
adaptive optimization strategies, such as blockwise weight
decay and gradient clipping, which could further enhance
training efficiency and performance.

9

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

Acknowledgements
Lei Wu was supported by the National Key R&D Program
of China (No. 2022YFA1008200) and National Natural
Science Foundation of China (No. 12288101). Mingze
Wang was supported by Young Scientists (PhD) Fund of
the National Natural Science Foundation of China (No.
124B2028). Junchi Yan and Zhanpeng Zhou were partly
supported by NSFC (72342023).

Impact Statement
This paper contributes to advancing the field of deep learn-
ing, with a focus on understanding and improving the pre-
training of LLMs. While our work has the potential to
impact society in various ways, we do not identify any spe-
cific societal consequences that require particular emphasis
at this time.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023. 1

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,
Lebron, F., and Sanghai, S. GQA: Training generalized
multi-query transformer models from multi-head check-
points. In Bouamor, H., Pino, J., and Bali, K. (eds.), Pro-
ceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 4895–4901, Sin-
gapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.298. 13

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020. 1

Chen, X., Liang, C., Huang, D., Real, E., Wang, K., Pham,
H., Dong, X., Luong, T., Hsieh, C.-J., Lu, Y., et al. Sym-
bolic discovery of optimization algorithms. Advances in
Neural Information Processing Systems, 36, 2024. 2, 9,
16

Cohen, J. M., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar,
A. Gradient descent on neural networks typically occurs
at the edge of stability. International Conference on
Learning Representations, 2021. 3

Cohen, J. M., Ghorbani, B., Krishnan, S., Agarwal, N.,
Medapati, S., Badura, M., Suo, D., Cardoze, D., Nado,
Z., Dahl, G. E., et al. Adaptive gradient methods at the
edge of stability. arXiv preprint arXiv:2207.14484, 2022.
3

Cohen, J. M., Damian, A., Talwalkar, A., Kolter, Z., and Lee,
J. D. Understanding optimization in deep learning with
central flows. arXiv preprint arXiv:2410.24206, 2024. 3

Devlin, J. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020. 1

Everett, K., Xiao, L., Wortsman, M., Alemi, A. A., Novak,
R., Liu, P. J., Gur, I., Sohl-Dickstein, J., Kaelbling, L. P.,
Lee, J., et al. Scaling exponents across parameterizations
and optimizers. arXiv preprint arXiv:2407.05872, 2024.
2

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The Pile: An 800GB dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027,
2020. 7, 13

George, T., Laurent, C., Bouthillier, X., Ballas, N., and
Vincent, P. Fast approximate natural gradient descent
in a Kronecker-factored eigenbasis. Advances in Neural
Information Processing Systems, 31, 2018. 4

Gokaslan, A. and Cohen, V. Openwebtext cor-
pus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019. 2, 7, 13

Grosse, R. and Martens, J. A Kronecker-factored approx-
imate Fisher matrix for convolution layers. In Interna-
tional Conference on Machine Learning, pp. 573–582.
PMLR, 2016. 3

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023. 9

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022. 14

Hu, S., Tu, Y., Han, X., He, C., Cui, G., Long, X., Zheng, Z.,
Fang, Y., Huang, Y., Zhao, W., et al. Minicpm: Unveiling
the potential of small language models with scalable train-
ing strategies. arXiv preprint arXiv:2404.06395, 2024. 7,
9

Jastrzebski, S., Szymczak, M., Fort, S., Arpit, D., Tabor,
J., Cho, K., and Geras, K. The break-even point on

10

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

optimization trajectories of deep neural networks. In
International Conference on Learning Representations,
2020. 3

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. nature, 596(7873):583–589,
2021. 1

Kaddour, J. The MiniPile challenge for data-efficient lan-
guage models. arXiv preprint arXiv:2304.08442, 2023.
2, 7, 13

Karpathy, A. NanoGPT. https://github.com/
karpathy/nanoGPT, 2022. 3, 13

Keller, J. et al. Muon optimizer. https:
//github.com/KellerJordan/Muon?tab=
readme-ov-file, 2024. 2, 9

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. 1

Kunstner, F., Yadav, R., Milligan, A., Schmidt, M., and
Bietti, A. Heavy-tailed class imbalance and why adam
outperforms gradient descent on language models. arXiv
preprint arXiv:2402.19449, 2024. 1, 4

Lei Ba, J., Kiros, J. R., and Hinton, G. E. Layer normaliza-
tion. ArXiv e-prints, pp. arXiv–1607, 2016. 3

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437, 2024a.
1

Liu, H., Li, Z., Hall, D., Liang, P., and Ma, T. Sophia: A
scalable stochastic second-order optimizer for language
model pre-training. International Conference on Learn-
ing Representations, 2024b. 2, 4, 14

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019. 7, 13

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. arXiv preprint arXiv:1711.05101, 2017. 1,
2

Martens, J. and Grosse, R. Optimizing neural networks with
Kronecker-factored approximate curvature. In Interna-
tional conference on machine learning, pp. 2408–2417.
PMLR, 2015. 3

Mi, P., Shen, L., Ren, T., Zhou, Y., Sun, X., Ji, R., and
Tao, D. Make sharpness-aware minimization stronger:
A sparsified perturbation approach. Advances in Neural

Information Processing Systems, 35:30950–30962, 2022.
4

Ormaniec, W., Dangel, F., and Singh, S. P. What does it
mean to be a transformer? insights from a theoretical
hessian analysis. arXiv preprint arXiv:2410.10986, 2024.
2, 4, 6

Pesme, S. and Flammarion, N. Saddle-to-saddle dynamics
in diagonal linear networks. Advances in Neural Informa-
tion Processing Systems, 2023. 1

Popel, M. and Bojar, O. Training tips for the transformer
model. arXiv preprint arXiv:1804.00247, 2018. 1

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019. 2, 4, 13

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020. 2, 7, 13

Shin, K. Y., Kim, S., and Moon, S.-M. Initializing
the layer-wise learning rate, 2024. URL https://
openreview.net/forum?id=mSSi0zYkEA. 2

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019. 6

Song, M., Ahn, K., and Yun, C. Does sgd really happen in
tiny subspaces? arXiv preprint arXiv:2405.16002, 2024.
3, 6

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024. 13

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Sori-
cut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican,
K., et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023. 1

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.
2, 4, 7, 13

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017. 1

11

https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/KellerJordan/Muon?tab=readme-ov-file
https://github.com/KellerJordan/Muon?tab=readme-ov-file
https://github.com/KellerJordan/Muon?tab=readme-ov-file
https://openreview.net/forum?id=mSSi0zYkEA
https://openreview.net/forum?id=mSSi0zYkEA

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

Vyas, N., Morwani, D., Zhao, R., Shapira, I., Brandfon-
brener, D., Janson, L., and Kakade, S. Soap: Improving
and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024. 2

Wang, M. and E, W. Understanding the expressive power
and mechanisms of transformer for sequence model-
ing. Advances in Neural Information Processing Systems,
2024. 1

Wang, M., Wang, J., He, H., Wang, Z., Huang, G., Xiong, F.,
Li, Z., E, W., and Wu, L. Improving generalization and
convergence by enhancing implicit regularization. arXiv
preprint arXiv:2405.20763, 2024. 2, 3, 4, 6, 14

Wen, K., Li, Z., Wang, J., Hall, D., Liang, P., and Ma, T.
Understanding warmup-stable-decay learning rates: A
river valley loss landscape perspective. arXiv preprint
arXiv:2410.05192, 2024. 3, 6, 7

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Transformers: State-of-
the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–
45, Online, October 2020. Association for Computational
Linguistics. 13

Wu, L., Ma, C., and E, W. How SGD selects the global
minima in over-parameterized learning: A dynamical
stability perspective. Advances in Neural Information
Processing Systems, 31:8279–8288, 2018. 3

Xie, X., Zhou, P., Li, H., Lin, Z., and Yan, S. Adan: Adap-
tive nesterov momentum algorithm for faster optimizing
deep models. arXiv preprint arXiv:2208.06677, 2022. 2

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,
C., Zhang, H., Lan, Y., Wang, L., and Liu, T. On layer
normalization in the transformer architecture. In Inter-
national Conference on Machine Learning, pp. 10524–
10533. PMLR, 2020. 1, 21

Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X.,
Farhi, D., Ryder, N., Pachocki, J., Chen, W., and Gao,
J. Tensor programs v: Tuning large neural networks
via zero-shot hyperparameter transfer. arXiv preprint
arXiv:2203.03466, 2022. 2

Yang, Z. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237, 2019. 2

Yuan, H., Liu, Y., Wu, S., Zhou, X., and Gu, Q. Mars:
Unleashing the power of variance reduction for training
large models. arXiv preprint arXiv:2411.10438, 2024. 2

Zhang, B. and Sennrich, R. Root mean square layer nor-
malization. Advances in Neural Information Processing
Systems, 32, 2019. 3

Zhang, J., Karimireddy, S. P., Veit, A., Kim, S., Reddi, S.,
Kumar, S., and Sra, S. Why are adaptive methods good
for attention models? Advances in Neural Information
Processing Systems, 33:15383–15393, 2020. 1

Zhang, P., Zeng, G., Wang, T., and Lu, W. Tinyllama: An
open-source small language model, 2024a. 13

Zhang, Y., Chen, C., Ding, T., Li, Z., Sun, R., and Luo, Z.-
Q. Why transformers need adam: A hessian perspective.
arXiv preprint arXiv:2402.16788, 2024b. 1, 2, 4

Zhang, Y., Chen, C., Li, Z., Ding, T., Wu, C., Ye, Y., Luo,
Z.-Q., and Sun, R. Adam-mini: Use fewer learning rates
to gain more. arXiv preprint arXiv:2406.16793, 2024c.
1, 2, 9, 16

Zhao, J., Zhang, Z., Chen, B., Wang, Z., Anandkumar,
A., and Tian, Y. Galore: Memory-efficient llm train-
ing by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024a. 2, 13, 14

Zhao, R., Morwani, D., Brandfonbrener, D., Vyas, N., and
Kakade, S. Deconstructing what makes a good optimizer
for language models. arXiv preprint arXiv:2407.07972,
2024b. 13, 14

12

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

A. Experimental Details
Models. We utilize two popular classes of LLM models for our pre-training experiments:

• GPT-2. We use GPT-2 (small) model (Radford et al., 2019), implemented via the nanoGPT code base (Karpathy,
2022). Following nanoGPT, the model employs Gaussian Error Linear Unit (GELU) activations and standard Layer
Normalization (LayerNorm). Detailed model configurations are provided in Table 3.

• LLaMA. LLaMA (Touvron et al., 2023) is another popular decoder-only Transformer architecture, incorporating
Rotary Positional Encoding (RoPE) (Su et al., 2024), Swish-Gated Linear Unit (SwiGLU), and Root mean square
layer normalization (RMSNorm). We pre-train LLaMA models of sizes ranging from 0.13B to 2B parameters. For
implementation, for the 1.1B model configuration, we follow TinyLlama (Zhang et al., 2024a), which employs
grouped-query attention (Ainslie et al., 2023); for other model sizes, we utilize the LLaMA code from HuggingFace
Transformers Library (Wolf et al., 2020). Additional model configurations are detailed in Table 3 and 4.

Datasets. Models are pre-trained on the following datasets:

• OpenWebText (Gokaslan & Cohen, 2019). It is an opensource recreation of the WebText corpus, is extensively utilized
for LLM pre-training such as RoBERTa (Liu et al., 2019) and GPT-2.

• MiniPile. (Kaddour, 2023). It is a 6GB subset of the deduplicated Pile (825GB) (Gao et al., 2020) presents a highly
diverse text corpus. Given its diversity, training on minipile poses challenges and potential instabilities.

• Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020). It is a large-scale public language dataset, widely used for
LLM pre-training such as T5 (Raffel et al., 2020), and prior pre-training studies (Zhao et al., 2024a;b).

All experiments are conducted on 4 A800/H800 80G GPUs.

A.1. Training Configurations for AdamW Baselines

Table 3: Model configurations and optimally-tuned peak learning rates on OpenWebText and MiniPile.

Acronym Size dmodel dFF n head depth lr max on OpenWebText lr max on MiniPile

GPT-2 (small) 124M 768 3072 12 12 6e-4 6e-4
LLaMA (0.13B) 134M 768 3072 12 6 – 1.2e-3
LLaMA (0.25B) 237M 1024 4096 16 8 8e-4 7.5e-4
LLaMA (0.5B) 522M 1280 5120 20 15 8e-4 4.5e-4
LLaMA (0.75B) 743M 1664 6656 26 13 6e-4 –
LLaMA (1.1B) 1175M 2048 5632 32 22 4e-4 –
LLaMA (2B) 2025M 2048 8192 32 22 2e-4 –

Table 4: Model configurations and optimally-tuned peak learning rates on C4.

Acronym Size dmodel dFF n head depth lr max

LLaMA (66M) 66M 512 2048 8 8 1e-3
LLaMA (0.2B) 200M 768 3072 16 8 1e-3
LLaMA (0.4B) 400M 1280 5120 16 12 6e-4
LLaMA (1B) 1004M 1600 6400 25 22 3e-4

As a baseline optimizer, we use the default AdamW for LLM pre-training, configured with the hyperparameters β1 =
0.9, β2 = 0.95 and weight decay λ = 0.1. To ensure training stability, gradient clipping is applied by norm with threshold
1.0. These settings align with the training protocols used in nanoGPT and LLaMA models (Touvron et al., 2023). The
default LR strategy integrates a linear warm-up phase, followed by a cosine decay scheduler with the peak learning rate
lr max and the final learning rate lr min=lr max/20. Additionally,

13

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

• OpenWebText pre-training. The (max) sequence length is set to 1024, and the batch size is set to 480, following
nanoGPT and Liu et al. (2024b). The total training duration is 50,000 or 100,000 steps, including 1,000 warm-up steps.
The grid search for lr max is performed over {2e-4, 4e-4, 6e-4, 8e-4, 1e-3}. Optimal learning rates for each
model are detailed in Table 3.

• MiniPile pre-training. The (max) sequence length is set to 512, and the batch size is set to 300, following Wang
et al. (2024). The total training duration is 30,000 or 60,000 steps, including 600 warm-up steps. The grid search for
lr max is performed over {3e-4, 4.5e-4, 6e-4, 7.5e-4, 9e-4, 1.2e-3, 1.5e-3}. Optimal learning rates
for each model are detailed in Table 3.

• C4 pre-training We follow the setup of Zhao et al. (2024a;b), using a sequence length of 256 and batch size of
512. Following the Chinchilla scaling law (Hoffmann et al., 2022), the total number of training tokens is set to be
approximately 20 times the number of model parameters. The training includes 1,000 warm-up steps. The grid search
for lr max is performed over {1e-4, 2e-4, 3e-4, 6e-4, 1e-3, 1.5e-3}. Optimal learning rates for each model
are detailed in Tables 4. We use the T5 tokenizer, with the vocabulary size 32100.

Baselines: models are pre-trained using AdamW with the respective tuned lr max for each dataset and model configuration.

Related Experiments.

• Blockwise LR Experiments. The baseline results in Figure 4, Figure 1 (right), and Table 2 (the w/o line) are trained
following the configurations above.

• Sharpness Principle Experiments. Models for Figure 1 (left), Figure 2, Figure 3, are trained using the baseline
configurations for GPT-2 (small) or LLaMA (0.25B) on OpenWebText, with a total training duration 50,000 steps. In
these experiments, the sharpness is estimated using h(θ) in Eq. (3), with B set to 1024. The sharpness distributions
and average sharpness values for different blocks (•) are calculated on a logarithmic scale, i.e., logh(θ[•]).
Additionally, the experiment in Figure 9 employs the same model and sharpness estimator.

• Theoretical Analysis Support. To support our theoretical insights in Section 4.2, Figure 8 shows the evaluation of the
parameter norms across different blocks during training. The model used is LlaMa (0.25B), trained on OpenWebText.
The model is LLaMA (0.25B), trained on OpenWebText following the baseline configurations.

0 10k 20k 30k 40k 50k

num of steps

0

10

20

30

40

‖W in‖F

‖W out‖F

‖γ‖F

(a) (To illustrate Theorem 4.1)
Norms of input/output weight pa-
rameters in FFN and the weight
parameters of Norm before FFN,
averaged by the number of layers.

0 10k 20k 30k 40k 50k

num of steps

0

5

10

15

20

25

‖WQ‖F

‖WK‖F

‖W V ‖F

‖WO‖F

‖γ‖F

(b) To illustrate Theorem 4.2)
Norms of query/key/value/output
parameters in SA and the weight
parameters of Norm before SA,
averaged by the number of layers.

0 10k 20k 30k 40k 50k

num of steps

104

105

106

107

Ddmini∈[d] ‖w̃Ei‖F

D‖γ‖F

(c) (To illustrate Theorem 4.3)
Norms of weight parameters in
Emb and the weight parameters in
the adjoint Norm layer after Emb.

Figure 8: Evolution of parameter norms across different blocks during pre-training LLaMA (0.25B) on OpenWebText.

A.2. Experimental Details for Blockwise LR on AdamW

Switching Time. The principle of blockwise sharpness heterogeneity emerges clearly after the initial training phase, as
shown in Figure 3. To leverage this principle, in our experiments of AdamW using Blockwise LR, we switch from standard
AdamW to AdamW with Blockwise LR at the end of LR warmup phase.

14

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

0 2 4 6 8

layer index l

10−9

10−8

10−7

10−6

10−5

(a) Average sharpness across different lay-
ers. Layer 0 corresponds to the Emb
layer. Layers 1, · · · , 8 correspond to the
SA-FFN layers.

1 2 3 4 5 6 7 8

layer index l

10−6

10−5

QK

FFN

VO

Norm

(b) Average sharpness of the blocks (• ∈
{QK,FFN,VO,Norm}) across different
layers (l = 1, · · · , 8).

Figure 9: In a pre-trained LLaMA (0.25B) (with L = 8 layer), there is no clear disparity for the average sharpness across
the layers. This is in stark contrast to our our sharpness disparity Principle (1) across the blocks.

Experiments in Figure 4. We adopt the adjusting ratios (5) as the default adjusting ratios for all experiments of AdamW
with Blockwise LR.

Experiment on Hyper-parameter Tuning. We only tune the four adjusting ratios r(•) (• ∈ {Emb,QK,VO,FFN}) in a
single small-scale experiment: pre-training LLaMA (0.25B) on Minipile. Specifically, we compare the results under the
following configurations of ratios:

r(Emb) = 6, r(QK) = 4, r(FFN) = 3, r(VO) = 2;

r(Emb) = 8, r(QK) = 6, r(FFN) = 4, r(VO) = 3;

r(Emb) = 10, r(QK) = 8, r(FFN) = 6, r(VO) = 4.

The results for the tuning experiments are presented in Figure 10. One can see that the configuration r(Emb) = 10, r(QK) =
8, r(FFN) = 6, r(VO) = 4 (Eq. (5)) achieves the largest improvement in terminal loss. Additionally, Blockwise LR
demonstrates robustness to these ratios, consistently accelerating pre-training across all tested configurations.

0 25k 50k

num of steps

2.75

2.80

2.85

2.90

2.95

3.00

3.05

va
lid

at
io

n
lo

ss

LLaMA (0.25B) on OpenWebText

AdamW

Blockwise LR (6, 4, 3, 2)

Blockwise LR (8, 6, 4, 3)

Blockwise LR (10, 8, 6, 4)

Figure 10: Pre-training LLaMA (0.25B) on Minipile using AdamW with Blockwise LR across three configurations of
adjusting ratios.

Experiments in Table 2. We pre-train LLaMA (0.25B) on OpenWebText with a focusing on the three comparisons: (i)
applying Blockwise LR exclusively to Emb; (ii) applying Blockwise LR to both Emb and FFN; (iii) applying Blockwise
LR to blocks of all the four types (Emb, FFN, QK, and VO). The adjusting ratios are maintained as per the tuned in Eq. (5).

A.3. Experimental details for Adam-mini, Lion, and wsd

Experiments for Adam-mini.

15

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

• Baseline. In the baseline experiments in Figure 6, following Zhang et al. (2024c), we adopt the same peak learning rate
lr max tuned for AdamW as the lr max of Adam-mini.

• Hyperparameter tuning. Since Adam-mini uses SGD within each blocks, its dynamics differs significantly
from those of AdamW. Thus, for Adam-mini with Blockwise LR, we re-tune the ratios r(•) ∈ {1, 2, 4} for
• ∈ {Emb,QK,FFN,VO}. The tuned ratios are r(Emb) = 4, r(QK) = 1, r(FFN) = 4, r(VO) = 4, which
are used in the experiments in Figure 6. Note that these ratios do not satisfy r(•) ∝ S(Norm)

S(•) . This discrepancy may
stem from the unique dynamics of Adam-mini, particularly its SGD-like behavior within blocks. We leave further
investigation for future work.

Experiments for Lion In the baseline experiments in Figure 7 (left), following Chen et al. (2024), we search for the optimal
maximum learning rate lr max for Lion within the set {1/3, 1/5, 1/10} of the lr max values tuned for AdamW, using
corresponding weight decay values of {0.3, 0.5, 1.0}. Ultimately, we adopt 1/5 of the AdamW-tuned lr max with a weight
decay of 0.5. For Lion with Blockwise LR, we directly apply the ratios in Eq. (5) (note that this is originally tuned for
AdamW with Blockwise LR).

Figure 11: Evolution of the average sharpness across different blocks during pre-training LLaMA (0.25B) on OpenWebText
using the Lion optimizer. The total training duration is 50k steps. The results closely resemble those in our Figure 3(b),
which uses AdamW. Our Principle (Eq. (1)) emerges during the initial phase (from iteration 0 to iteration 1k), which
accounts for only approximately 2% of the total steps, and persists throughout the subsequent training process.

Experiments for wsd sheduler. In the experiments in Figure 7 (right), we use a linear warm-up LR to peak lr max,
followed by a stable phase where LR remains at lr max (up to 66.7% of the total training steps), and then a linear decay to
0. The lr max is identical to that used in the cosine decay scheduler, as reported in Table 3.

B. Proofs in Section 4
B.1. Proof of Theorem 4.1

We focus on the transformation from X(l−1) to X(l−1/2):

X(l) = X(l−1/2) + FFN(l)
(

Norml
(
X(l−1/2);γ(l)

)
;W

(l)
1 ,W

(l)
2

)
.

From the chain rule, it follows that:

∂Q
∂W

(l)
•

=
∂Q

∂X(l)

∂X(l)

∂W
(l)
•

, • ∈ {1, 2};

∂Q
∂γ(l)

=
∂Q

∂X(l)

∂X(l)

∂γ(l)
.

Thus, it suffices to compute ∂X(l)

∂W
(l)
•

and ∂X(l)

∂γ(l) . For simplicity, we define:

X := X(l−1/2), Xstd =
X − Er[X]√

Vr[X]
, XNorm := Norm(X;γ) = Xstd ⊙ (1n×1 ⊗ γ),

M := XNormW1, A := σ(M), F := AW2, Y := X(l) = X + F,

16

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

where σ(·) represents the ReLU or Leacky ReLU activation function. We now compute ∂Y
∂W•

and ∂Y
∂γ .

It is straightforward that:

∂Y

∂W1
=

∂F
∂W1

=
∂F
∂A

∂A
∂M

∂M
∂W1

=
(
In ⊗W⊤

2

) ∂A
∂M

(XNorm ⊗ IM) ;

∂Y

∂γ
=

∂F
∂XNorm

∂XNorm

∂γ
=

∂F
∂A

∂A
∂M

∂M
∂XNorm

∂XNorm

∂γ

=
(
In ⊗W⊤

2

) ∂A
∂M

(
In ⊗W⊤

1

) (
diag

(
vec(Xstd)

)(
1n×1 ⊗ ID

))
.

For the (Leaky) ReLU, it holds that σ(z) = zσ′(z). Thus, for ∂Y
∂W2

, we have:

∂Y

∂W2
=

∂F
∂W2

= A ⊗ ID =

(
XNormW1 ⊙

∂A
∂M

)
⊗ ID.

Now we derive the upper bounds. First, notice that:

∥Xstd∥F =

 n∑
i=1

(
Xi,: − E[Xi,:]√

V[Xi,:]

)2
1/2

=

(
n∑

i=1

D

)1/2

=
√
nD;

∥XNorm∥F = ∥Xstd ⊙ (1n×1 ⊗ γ)∥F ≤ ∥Xstd∥F ∥1n×1 ⊗ γ∥F ≤
√
nD ∥1n×1∥F ∥γ∥F ≤ n

√
D ∥γ∥F .

Consequently, we have the following estimates:∥∥∥∥ ∂Q
∂W1

∥∥∥∥
F
≤
∥∥∥∥ ∂Q∂Y

∥∥∥∥
F

∥∥∥∥ ∂Y

∂W1

∥∥∥∥
F
=

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

∥∥∥∥(In ⊗W⊤
2

) ∂A
∂M

(XNorm ⊗ IM)

∥∥∥∥
F

≤
∥∥∥∥ ∂Q∂Y

∥∥∥∥
F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F

∥∥In ⊗W⊤
2

∥∥
2
∥XNorm ⊗ IM∥2 ≤

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥In∥2 ∥IM∥2

∥∥W⊤
2

∥∥
F ∥XNorm∥F

≤
∥∥∥∥ ∂Q∂Y

∥∥∥∥
F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥W2∥F ∥XNorm∥F ≤ n

√
D

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥W2∥F ∥γ∥F ;

∥∥∥∥ ∂Q
∂W2

∥∥∥∥
F
≤
∥∥∥∥ ∂Q∂Y

∥∥∥∥
F

∥∥∥∥ ∂Y

∂W2

∥∥∥∥
F
=

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

∥∥∥∥(XNormW1 ⊙
∂A
∂M

)
⊗ ID

∥∥∥∥
F

≤
∥∥∥∥ ∂Q∂Y

∥∥∥∥
F

∥∥∥∥(XNormW1 ⊙
∂A
∂M

)∥∥∥∥
F
∥ID∥2 ≤

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥XNormW1∥F

≤
∥∥∥∥ ∂Q∂Y

∥∥∥∥
F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥W1∥F ∥XNorm∥F ≤ n

√
D

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥W1∥F ∥γ∥F ;

∥∥∥∥∂Q∂γ
∥∥∥∥

F
≤
∥∥∥∥ ∂Q∂Y

∥∥∥∥
F

∥∥∥∥∂Y∂γ
∥∥∥∥

F

=

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

∥∥∥∥(In ⊗W⊤
2

) ∂A
∂M

(
In ⊗W⊤

1

) (
diag

(
vec(Xstd)

)(
1n×1 ⊗ ID

))∥∥∥∥
F

≤
∥∥∥∥ ∂Q∂Y

∥∥∥∥
F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F

∥∥In ⊗W⊤
2

∥∥
F

∥∥In ⊗W⊤
1

∥∥
F

∥∥diag(vec(Xstd)
)(
1n×1 ⊗ ID

)∥∥
F

≤
∥∥∥∥ ∂Q∂Y

∥∥∥∥
F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥In∥2 ∥W2∥F ∥In∥2 ∥W1∥F

∥∥diag(vec(Xstd)
)∥∥

F ∥1n×1 ⊗ ID∥F

17

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

≤
∥∥∥∥ ∂Q∂Y

∥∥∥∥
F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥W1∥F ∥W2∥F ∥Xstd∥F ∥1n×1∥F ∥ID∥2

≤n
√
D

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥W1∥F ∥W2∥F .

Thus, if we define

Ψ := n
√
D

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥W1∥F ∥W2∥F ∥γ∥F ,

then it holds that: ∥∥∥∥ ∂Q
∂W1

∥∥∥∥
F
≤ Ψ

∥W1∥F
;

∥∥∥∥ ∂Q
∂W2

∥∥∥∥
F
≤ Ψ

∥W2∥F
;

∥∥∥∥∂Q∂γ
∥∥∥∥

F
≤ Ψ

∥γ∥F

Therefore,

S(W•) =
1

#(W•)

∥∥∥∥ ∂Q
∂W•

∥∥∥∥2
F
= O

(
Ψ2

D2 ∥W•∥2F

)
, • ∈ {1, 2};

S(γ) = 1

#(γ)

∥∥∥∥∂Q∂γ
∥∥∥∥2

F
= O

(
Ψ2

D ∥γ∥2F

)
.

B.2. Proof of Theorem 4.2

We focus on the transformation from X(l−1) to X(l−1/2):

X(l−1/2) = X(l−1) + SA(l)
(

Norm(l−1/2)
(
X(l−1);γ(l−1/2)

)
;W

(l)
K ,W

(l)
Q ,W

(l)
V ,W

(l)
O

)
.

From the chain rule, it follows that:

∂Q
∂W

(l)
•

=
∂Q

∂X(l−1/2)

∂X(l−1/2)

∂W
(l)
•

, • ∈ {K,Q, V,O};

∂Q
∂γ(l−1/2)

=
∂Q

∂X(l−1/2)

∂X(l−1/2)

∂γ(l−1/2)
.

Thus, it suffices to compute ∂X(l−1/2)

∂W
(l−1/2)
•

and ∂X(l−1/2)

∂γ(l−1/2) . For simplicity, we define:

X := X(l−1), Xstd =
X − Er[X]√

Vr[X]
, XNorm := Norm(X;γ) = Xstd ⊙ γ,

M :=
XNormWQW

⊤
KX⊤

Norm√
D

, A := softmax (M) , S := AXNormWV WO,

Y := X(l−1/2) = X + S.

We now compute ∂Y
∂W•

and ∂Y
∂γ :

∂Y

∂WQ
=

∂S
∂WQ

=
∂S
∂A

∂A
∂M

∂M
∂WQ

=
(
In ⊗W⊤

O W⊤
V X⊤

Norm
) ∂A
∂M

(
XNorm ⊗XNormWK√

D

)
;

∂Y

∂WK
=

∂S
∂WK

=
∂S
∂A

∂A
∂M

∂M
∂WK

=
(
In ⊗W⊤

O W⊤
V X⊤

Norm
) ∂A
∂M

(
XNorm ⊗XNormWQ√

D

)
;

18

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

∂Y

∂WV
=

∂S
∂WV

= AXNorm ⊗W⊤
O ;

∂Y

∂WO
=

∂S
∂WO

= AXNormWV ⊗ ID.

Moreover,

∂Y

∂γ
=

∂Y

∂XNorm

∂XNorm

∂γ
=

∂S
∂XNorm

∂XNorm

∂γ

=

(
1√
D

(
In ⊗W⊤

O W⊤
V X⊤

Norm

) ∂A
∂M

((
In ⊗XNormWKW⊤

Q

)
+Kn,n

(
In ⊗XNormWQW

⊤
K

))
+ A ⊗W⊤

O W⊤
V

)(
diag

(
vec(Xstd)

)(
1n×1 ⊗ Id

))
,

where Kn,n is the commutation matrix5.

Recalling the proof in Appendix B.1, we have:

∥Xstd∥F =
√
nD, ∥XNorm∥F ≤ n

√
D ∥γ∥F .

Then, similar to the proof in Appendix B.1, we have the following upper bounds:∥∥∥∥ ∂Q
∂WQ

∥∥∥∥
F
≤ 1√

D

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥WK∥F ∥WV ∥F ∥WO∥F ∥XNorm∥3F

≤ (n
√
D)3√
D

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥WK∥F ∥WV ∥F ∥WO∥F ∥γ∥

3
F ;

∥∥∥∥ ∂Q
∂WK

∥∥∥∥
F
≤ 1√

D

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥WQ∥F ∥WV ∥F ∥WO∥F ∥XNorm∥3F

≤ (n
√
D)3√
D

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥WQ∥F ∥WV ∥F ∥WO∥F ∥γ∥

3
F ;

∥∥∥∥ ∂Q
∂WV

∥∥∥∥
F
≤
∥∥∥∥ ∂Q∂Y

∥∥∥∥
F
∥A∥F ∥WO∥F ∥XNorm∥F ≤ n

√
D

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F
∥A∥F ∥WO∥F ∥γ∥F ;

∥∥∥∥ ∂Q
∂WO

∥∥∥∥
F
≤
∥∥∥∥ ∂Q∂Y

∥∥∥∥
F
∥A∥F ∥WV ∥F ∥XNorm∥F ≤ n

√
D

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F
∥A∥F ∥WV ∥F ∥γ∥F ;

∥∥∥∥∂Q∂γ
∥∥∥∥

F
≤
∥∥∥∥ ∂Q∂Y

∥∥∥∥
F

√
n ∥Xstd∥F

(
2√
D

∥∥∥∥(In ⊗W⊤
O W⊤

V X⊤
Norm

) ∂A
∂M

(
In ⊗XNormWKW⊤

Q

)∥∥∥∥
F
+
∥∥A ⊗W⊤

O W⊤
V

∥∥
F

)
≤n

√
D

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

(
2√
D

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥WK∥F ∥WQ∥F ∥WV ∥F ∥WO∥F ∥XNorm∥2F + ∥A∥F ∥WV ∥F ∥WO∥F

)
≤
∥∥∥∥ ∂Q∂Y

∥∥∥∥
F

(
2(n

√
D)3√
D

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥WK∥F ∥WQ∥F ∥WV ∥F ∥WO∥F ∥γ∥

2
F + n

√
D ∥A∥F ∥WV ∥F ∥WO∥F

)
.

5The commutation matrix Km,n transforms column-wise vectorization into row-wise vectorization.

19

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

Therefore, if we define:

Φ :=
(n
√
D)3√
D

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F

∥∥∥∥ ∂A
∂M

∥∥∥∥
F
∥WK∥F ∥WQ∥F ∥WV ∥F ∥WO∥F ∥γ∥

3
F ,

Ψ :=n
√
D

∥∥∥∥ ∂Q∂Y
∥∥∥∥

F
∥A∥F ∥WV ∥F ∥WO∥F ∥γ∥F ,

then it holds that: ∥∥∥∥ ∂Q
∂WK

∥∥∥∥
F
≤ Φ

∥WK∥F
;

∥∥∥∥ ∂Q
∂WQ

∥∥∥∥
F
≤ Φ

∥WQ∥F
;∥∥∥∥ ∂Q

∂WV

∥∥∥∥
F
≤ Ψ

∥WV ∥F
;

∥∥∥∥ ∂Q
∂WO

∥∥∥∥
F
≤ Ψ

∥WO∥F
;∥∥∥∥∂Q∂γ

∥∥∥∥
F
≤ 2Φ + Ψ

∥γ∥F
.

Therefore,

S(W•) =
1

#(W•)

∥∥∥∥ ∂Q
∂W•

∥∥∥∥2
F
= O

(
Φ2

D2 ∥W•∥2F

)
, • ∈ {K,Q};

S(W•) =
1

#(W•)

∥∥∥∥ ∂Q
∂W•

∥∥∥∥2
F
= O

(
Ψ2

D2 ∥W•∥2F

)
, • ∈ {V,O};

S(γ) = 1

#(γ)

∥∥∥∥∂Q∂γ
∥∥∥∥2

F
= O

(
Φ2 +Ψ2

D ∥γ∥2F

)
.

B.3. Proof of Theorem 4.3

We focus on the transformation from X to Y := Norm(XWE ;γ
(1/2)). For simplicity, we define:

Z := XWE , Zstd :=
Z − Er[Z]√

Zr[Z]
, Y = Norm(Z;γ) = Zstd ⊙ (1n×1 ⊗ γ).

It is straightforward that:

∂Y

∂γ
= diag

(
vec(Zstd)

)(
1n×1 ⊗ ID

)
.

Recalling the proof in Appendix B.1, we have: ∥∥∥∥∂Y∂γ
∥∥∥∥

F
≤ n

√
D.

Then we calculate ∂Y
∂WE

. For simplicity, we denote

Z̃ := Z − Er[Z], Z =

z̃1
...
z̃d

 ∈ Rd×D,

W̃E := WE − Er[WE], WE =

wE1

...
wEd

 ∈ Rd×D, W̃E =

w̃E1

...
w̃Ed

 ∈ Rd×D

20

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

By the proof in (Xiong et al., 2020), for a vector x ∈ R1×D, denoted by x̃ := x − E[x], then ∂xstd

∂x =
√
D

∥x̃∥2

(
I − x̃⊤x̃

∥x̃∥2
2

) (
I − 1

d1
⊤
1×D11×D

)
. Thus, we have:

∂Y

∂WE
=

∂Y

∂Zstd

∂Zstd

∂Z

∂Z

∂WE

=(In ⊗ diag (vec(γ))) diag

{ √
D

∥z̃i∥2

(
I − z̃⊤

i z̃i

∥z̃i∥22

)(
I − 1

D
1⊤
1×D11×D

)}
i∈[n]

 (X ⊗ ID) .

Recalling the relationship zi,j =
∑d

k=1 xi,kwk,j , we have E[zi] =
∑d

k=1 xi,kE[wk], which implies

z̃i =

d∑
k=1

xi,kw̃k.

Combining this property with the that are one-hot fact of the inputs X , we have:

min
i∈[n]

∥z̃i∥2 ≥ min
k∈[d]

∥w̃k∥2 .

Additionally, the one-hot encoding ensures:

∥X∥F =

(
n∑

i=1

x2
i,j

)1/2

=
√
n.

Now we have the following bound:∥∥∥∥ ∂Y

∂WE

∥∥∥∥
F

≤∥In ⊗ diag (vec(γ))∥F

∥∥∥∥∥∥diag
{ √

D

∥z̃i∥2

(
I − z̃⊤

i z̃i

∥z̃i∥22

)(
I − 1

D
1⊤
1×D11×D

)}
i∈[n]

∥∥∥∥∥∥
2

∥X ⊗ ID∥2

≤√
n ∥γ∥F

√
D

mini∈[n] ∥z̃i∥2
∥X∥2 ≤ n

√
D

∥γ∥F

mini∈[n] ∥z̃i∥2
≤ n

√
D

∥γ∥F

mini∈[d] ∥w̃i∥2
.

If we choose Ψ := n
√
D ∥γ∥F, then we have:∥∥∥∥∂Y∂γ

∥∥∥∥
F
≤ Ψ

∥γ∥F
,

∥∥∥∥ ∂Y

∂WE

∥∥∥∥
F
≤ Ψ

mini∈[d] ∥w̃i∥2
.

Therefore,

S(WE) =
1

#(WE)

∥∥∥∥ ∂Q
∂WE

∥∥∥∥2
F
= O

(
Ψ2

Ddmini∈[d] ∥w̃i∥22

)
;

S(γ) = 1

#(γ)

∥∥∥∥∂Q∂γ
∥∥∥∥2

F
= O

(
Ψ2

D ∥γ∥2F

)
.

21

