
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

JOINT STRUCTURE SEARCH FOR TENSOR NETWORK
OPERATORS INSPIRED BY SYMMETRY BREAKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Tensor networks (TNs) offer a compact representation for high-dimensional op-
erators in physics and machine learning. While TN structure search (TN-SS) has
advanced model selection, prior work is limited to a single operator. Yet real sys-
tems, such as transformers and quantum circuits, would contain multiple coupled
operators, where treating them independently or enforcing a single shared structure
is fundamentally limiting. We introduce joint TN-SS, the first framework for multi-
operator structure search. Our physics-inspired algorithm runs in two phases: a
symmetry phase, where standard TN-SS finds a shared structure capturing common
inductive bias; and a symmetry-breaking phase, where operator-specific diversity
emerges through greedy core masking, guided by task-explainable loss tolerances.
Across tensor decomposition, parameter-efficient fine-tuning of LLMs, and quan-
tum circuit optimization, joint TN-SS delivers more compact representations with
equal or better accuracy than state-of-the-arts, with affordable search cost. These
results demonstrate that symmetry-driven diversification offers a simple, general,
and scalable solution to TN structure selection in multi-operator systems.

1 INTRODUCTION

Linear operators are the foundation of modern computation. In machine learning (ML) for example,
multiple linear operators appear as fully connected, convolutional, and attention layers, but their
high dimensionality often results in prohibitive computational and memory costs (Desislavov et al.,
2023). Tensor networks (TNs) offer a structured and parameter-efficient way to represent linear
operators (Orús, 2019; Memmel et al., 2024), driving growing interest in tensor network operators
(TNOs) across ML (Novikov et al., 2015; Stoudenmire & Schwab, 2016; Richter et al., 2021; Yang
et al., 2024; George et al., 2024), quantum physics, and beyond.

This growing adoption raises the central challenge of tensor network structure search (TN-SS): how
to select TNs’ structure-related hyperparameters such as ranks (Kodryan et al., 2023; Zheng et al.,
2024), topologies (Li & Sun, 2020), or permutations (Li et al., 2022; Zeng et al., 2024a). Because
TN-SS is NP-hard (Hillar & Lim, 2013) and highly combinatorial, existing methods rely on heuristics
and therefore focus almost exclusively on optimizing a single TN, or at most imposing one shared
structure across multiple operators.

However, numerous studies have shown that the structural complexity of linear operators in deep
neural networks varies substantially across layers. For instance, transformer weights often exhibit
low-rank structure, but the low-rankness differs dramatically between layers (Jaiswal et al., 2024;
Wang et al., 2024). Similar findings in adaptive pruning and low-rank adaptation further highlight
that different operators respond unequally to factorization or sparsity (Frantar & Alistarh, 2023; Yang
et al., 2024). These results expose a key weakness of existing TN-SS methods: they ignore inter-layer
heterogeneity by forcing either isolated optimization or rigid sharing across operators. The open
question is how to search for diverse yet efficient TN structures across multiple operators without
exploding the search cost.

To address this challenge, we introduce the first formal formulation of joint TN-SS, together with
a simple yet efficient algorithm inspired by the principle of symmetry breaking in physics (Lee,
1974). See Figure 1 for illustration. Just as symmetry breaking lowers energy in physical systems,
we observe, in the context of joint TN-SS, a shared structure (i.e., a symmetric solution space)
always exists across operators but is typically suboptimal. More efficient solutions emerge when

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) (b)
positive mass para.
(symmetry regime)

negative mass para.
(symmetry breaking)

inspiration

Higgs potential

positive regularization

negative regularization

TN structures

loss function

TN structures

Phase I: structure sharing

Phase II: symmetry breaking

similar yet diverse structures

500 1000 1500
#Evaluations

10-8

10-6

10-4

10-2

100

R
SE

 vanilla (|V|=20)
 vanilla (|V|=40)
ours (|V|=40)

(c)
search e�ciency comparison

bene�t

Figure 1: Symmetry breaking (SB) in joint TN-SS. Subfigures (a-b) illustrates the SB in
physics (cms, 2022) and the inspiration for the proposed two-phase algorithm. Subfigure (c) demon-
strates the search efficiency of the proposed methods compared to vanilla TN-SS methods; experi-
mental details are provided in Section 4.1.

introducing controlled diversity close to that shared structure. Guided by this principle, we develop a
two-phase algorithm: Phase I enforces structural sharing for search efficiency, and Phase II
introduces operator-specific diversity through greedy-like core masking. A unified loss (5) governs the
transition, with task-specific tolerances replacing opaque hyperparameters for practical explainability.
Extensive numerical results across domains, including joint tensor decomposition, parameter-efficient
fine-tuning of LLMs, and quantum circuit decomposition, confirm that our approach consistently
produces more compact and effective TN representations than the existing TN-SS methods with
minimal overhead. Our contributions are summarized as follows:

• We introduce the first formal framework for joint TN-SS, extending TN-SS to multi-operator
systems and addressing heterogeneity ignored by prior work;

• We propose a symmetry-breaking algorithm that balances efficiency with expressiveness
through structured diversification;

• We demonstrate broad applicability and consistent gains in parameter efficiency, scalability,
and accuracy across domains.

1.1 RELATED WORKS

Tensor networks (TNs) in representing linear operators. TNs generalize classical tensor decompo-
sitions (Hitchcock, 1927; Tucker, 1966) (see reviews (Kolda & Bader, 2009; Cichocki et al., 2017))
and have become a standard tool for representing high-dimensional operators in both physics and
ML (Novikov et al., 2015; Hou et al., 2019; Kossaifi et al., 2020; Chen et al., 2024a; Wang et al., 2024),
where multiple operators are often coupled through nonlinearities or a unified loss. To capture diverse
correlation patterns, a wide range of variants have been developed, from tensor train (also known
as MPO) (Oseledets, 2011), tensor ring (TR) (Zhao et al., 2016), and tubal-SVD (Kilmer & Martin,
2011) to more flexible circuit-like TNs such as tree (Hackbusch & Kühn, 2009), stairs (Rudolph
et al., 2023), brick-wall (Bensa & Žnidarič, 2021), and random circuits. These circuit-like designs are
particularly relevant for quantum computing and show strong potential in recent ML studies (Chen
et al., 2024a; Li et al., 2025). With this explosion of architectures, tensor network structure search
has emerged as a central challenge in the field.

Tensor network structure search (TN-SS). TN-SS extends classical TN rank selection (Babacan
et al., 2012; Rai et al., 2014; Zhao et al., 2015; Yokota et al., 2016) to richer structure-related
hyperparameters such as topology and tensor permutations (Cheng et al., 2020; Mickelin & Karaman,
2020; Li et al., 2021a; Kodryan et al., 2023; Hayashi et al., 2019; Hashemizadeh et al., 2020; Li
& Sun, 2020; Haberstich et al., 2023; Chen et al., 2024b; Zheng et al., 2024; Li et al., 2023; Zeng
et al., 2024a; Guo et al., 2025). Despite steady progress, two major gaps remain. First, the structural
modeling of those circuit-like TNs has never been systematically formulated. Second, existing TN-SS
methods almost exclusively target a single TN or enforce one shared structure across operators,
ignoring inter-operator heterogeneity. This work closes both gaps. We provide the first formal
formulation for the structural representation of circuit-like TNs and introduce joint TN-SS, the first
framework for simultaneous structure search across multiple operators within a unified system.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BASICS OF JOINT TN-SS

We introduce the key concepts of tensor networks, present the new formulation of joint TN-SS, and
close with a brief review of symmetry breaking, the central inspiration for our search algorithm.

Notations. We use R, C, and Z>0 to denote the sets of real numbers, complex numbers, and positive
integers, respectively. When both fields are admissible, we use F ∈ {R,C}. Bold lowercase and
uppercase letters (e.g., x ∈ FN , A ∈ FI×J) represent vectors and matrices, respectively, and
calligraphic letters (e.g., A,B ∈ FI1×···×IN) denote tensors. For a vector x ∈ Fn, diag(x) ∈ Fn×n

denotes the diagonal matrix whose diagonal entries are given by x. The symbol ⊗ is used for the
tensor product, and

⊗
denotes a sequential application of the products. We use × for the Cartesian

product between sets and ◦ for function actions on graphs. The space H := FI1 ⊗· · ·⊗FIN is written
as FI1×···×IN or

⊗N
n=1 FIn for brevity. The notation | · | denotes norm-like quantities depending on

context: e.g., |ϕ| is the absolute value for ϕ ∈ C, and |G| denotes the order (number of vertices) of a
graph G. Last, we define [K] := {1, 2, . . . ,K} for convenience.

2.1 TENSOR NETWORK OPERATORS

Tensor network (TN). We adopt the formal definition of TNs by Ye & Lim (2019), where a TN,
denoted by tnsH(G, r, p), is defined as a set of tensors in a space H. Here, G = (V,E) is a graph
that defines the TN topology (Li & Sun, 2020), where the vertex set V corresponds to a collection of
core tensors, while each edge in E indicates a tensor contraction between connected tensors. The
function r : E → Z>0 assigns a positive integer to each edge, specifying the TN ranks. Additionally,
the mapping p : {FIn}Nn=1 → V associates each input subspace FIn with a vertex of G, specifying
the TN permutation (Li et al., 2022). For a more detailed introduction to TNs, we refer readers to the
overview (Cichocki et al., 2016).

Tensor network operator (TNO). In this work, we focus on TNOs, a special class of circuit-like
TNs designed to represent linear operators, as explored in recent studies (Li et al., 2021b; Liu
et al., 2024b; Chen et al., 2024a). Formally, let Q,K, I ∈ Z>0 with K ≤ Q. A TNO of order
(Q,K) and dimension I associated with a graph G = (V,E) defines a subset of TNs, denoted by
tno(G;Q,K, I) ⊆ tnsH(G, r, p) ⊆ H :=

⊗N
n=1 FIn . The construction imposes three conditions:

1) N = 2Q; 2) each mode dimension satisfies In = I for all n ∈ [2Q] with ranks fixed r(e) = I
for all e ∈ E; 3) the graph G with mapping p is arranged such that every core tensor admits an
unfolding (Cichocki et al., 2017) isomorphic to an IK×IK matrix. As such, anyX ∈ tno(G;Q,K, I)
admits a unified unfolding into an IQ × IQ matrix, making the operator structure explicit.

TR matrix TR matrix a general TNO
(a) (b) (c)

TNOs thus compactly represent high-dimensional operators of size
IQ×IQ through the contraction of a sequence of lower-dimensional
operators of size IK × IK . Because all core tensors are constrained
to be isomorphic to square matrices, circuit graphs (see right figures
for example) offer a more intuitive visualization of complex TNOs
than traditional TN diagrams (Li & Sun, 2020; Li et al., 2022; 2023).
As illustrated on the right, subfigures (a) and (b) show a TR matrix
in both traditional and circuit representations, while subfigure (c) depicts a more general TNO model.

TNO system. Multiple TNOs build up a TNO system. Given Q,K, I , we formulate a M -dimensional
TNO system as follows:

ts(G1, G2, . . . , GM ;Q,K, I) := tno(G1)× tno(G2)× · · · × tno(GM), (1)

where tno(Gm) := tno(Gm;Q,K, I) for all m. This construction creates a unified combinatorial
space of operators that share the same parameters (Q,K, I) but may differ in topology through
graphs {Gm}Mm=1. We remark that each element in ts(G1, G2, . . . , GM ;Q,K, I) can be viewed as
a vector of operators, which makes the framework able to model multiple, distinct linear operators
that jointly define a system. For example, in computer vision, it can capture multi-view video tensors
where each view is represented by a tensor; in deep learning, it can model a collection of linear
layers in a neural network, where each layer may benefit from a different structure; and in quantum
computing, it represents different unitary blocks in a circuit, which must be optimized jointly but are
not identical. This perspective highlights that a TNO system encodes heterogeneity across operators
in a principled way, going beyond the treatment of one TN in isolation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 JOINT TN-SS: EXTENDING TN-SS TO TNO SYSTEMS

Building on prior studies in TN-SS (Li & Sun, 2020; Li et al., 2022; 2023), we move beyond the
conventional task of optimizing a single TN to the more general and practically relevant setting
of joint TN-SS. Formally, given parameters Q,K, I , the goal is to solve the bi-level optimization
problem:

min
{Gm}M

m=1

min
XM

πD(XM)

s.t. Gm ∈ Gm, m ∈ [M], XM ∈ ts(G1, G2, . . . , GM ;Q,K, I)
, (2)

where Gm denotes the set of valid graphs satisfying the TNO constraints in Section 2.1, and πD(·) :
FIQ×IQ → R is a task-specific loss function defined on some data D. Note that in the existing
TN-SS literature (Li & Sun, 2020; Li et al., 2022; 2023; Zeng et al., 2024b;a) the graph G is typically
represented by adjacency matrices. However, such a representation makes it difficult to enforce the
required TNO structural constraints. To overcome this, we introduce a vertex-indexed incidence (VI)
matrix representation, which naturally encodes circuit-like structures. Specifically, for each TNO
with graph Gm, we define:

Im =


im1,1 im1,2 · · · im1,Lm

im2,1 im2,2 · · · im2,Lm

...
...

. . .
...

imK,1 imK,2 · · · imK,Lm

 , (3)

where Lm is the order of Gm, and the entries satisfy imk,l ∈ [Q] and imk1,l
̸= imk2,l

for all l ∈ [Lm],
k1, k2 ∈ [K] with k1 ̸= k2.

2.3 A BRIEF REVIEW OF SYMMETRY BREAKING AND CONNECTION TO JOINT TN-SS

Our approach to joint TN-SS is motivated by the physical principle of symmetry breaking (SB),
where a system transitions from a symmetric to an asymmetric state (Lee, 1974). A classical example
is the Higgs potential (Melo, 2017):

V (ϕ) = λϕ4 + µ2ϕ2, (4)

where ϕ =
√
ϕ2
x + ϕ2

y is the field magnitude, λ > 0 ensures stability, and µ2 controls the curvature.

The system’s behavior depends critically on the sign of µ2. When µ2 > 0, the potential has a unique
symmetric minimum at ϕ = 0, where all trajectories collapse to the same state. When µ2 < 0
(µ ∈ C), the potential becomes a “Mexican hat” (see Figure 1 (b)) with infinitely many degenerate
minima along a ring, forcing the system to spontaneously choose one, thereby breaking symmetry.

Connection to joint TN-SS. This physics metaphor directly informs our algorithmic design. In joint
TN-SS, the challenge is the combinatorial explosion of possible structures as the number of TNOs M
grows. SB suggests a natural way to manage this complexity:

• Symmetry regime (µ2 > 0) — all TNOs share a common structure, collapsing the search to
standard TN-SS and giving a tractable starting point;

• SB regime (µ2 < 0) — diversity is gradually introduced as the system “selects” differ-
ent operator-specific structures, analogous to particles settling in different minima of the
Mexican hat.

This phase transition, from enforced symmetry to controlled asymmetry, provides a principled
mechanism to reduce the search space initially, then progressively enrich it. Instead of facing the full
exponential complexity of unconstrained joint search, our algorithm leverages SB to unlock diversity
only when needed, enabling efficient exploration of heterogeneous TNO structures.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 THE PROPOSED APPROACH

3.1 REFORMULATION INSPIRED BY SYMMETRY BREAKING

For brevity, we write qs(G1, . . . , GM) := qs(G1, . . . , GM ;Q,K, I). The joint TN-SS problem (2)
is reformulated by imposing a common TN structure and introducing controlled structure diversity, in
direct analogy to the Higgs potential (4):

min
G∈Gq,{ϵm}M

m=1

min
XM∈ts(G1,G2,...,GM)

πD(XM) + λ

M∑
m=1

|ϵm|,

s.t. Gm = G ◦ ϵm, ∀m ∈ [M].

(5)

Here, Gq denotes the set of valid graphs satisfying the TNO constraints. Each ϵm : Gq → Gq

represents a graph operation applied to G, while λ ∈ R controls the strength of a regularization
term penalizing the “degree” of the structure diversity. Compared to the original formulation (2), (5)
assumes that all structures {Gm} are generated from a common graph G with small perturbations
{ϵm}. The regularization balances the trade-off between structural sharing (when ϵm is close to
identity) and diversity (when “big” ϵm’s are encouraged), thereby mirroring the transition from
symmetry to symmetry breaking.

It is worth emphasizing that imposing the common graph G does not limit expressiveness. By the
universal approximation property of circuit-like TNs (Barenco et al., 1995; Möttönen et al., 2004),
we know there always exists a sufficiently high order G that can represent all operator-specific graphs
{Gm}. While highly diverse Gm may in principle require a large G, our experiments show that in
practice one can almost always find an affordable G close to optimal. From this shared structure, the
perturbations ϵm efficiently specialize into diverse Gm with more compact representation for a TNO
system. Hence, the common graph is not a restriction but a trick for efficiency: it reduces the initial
combinatorial burden while still enabling the emergence of heterogeneous, task-adapted structures.

core maskingTNO

=

Practical choice of ϵm. Empirically, we use core masking as a
simple yet powerful mechanism for modeling ϵm in (5), offering
both efficiency and effectiveness at negligible cost. As illustrated
on the right, core masking corresponds to removing selected core
tensors from a TNO, and the regularization term |ϵm| in (5) is
defined as the number of core tensors masked by ϵm. Formally, let wm ∈ {0, 1}Lm be a binary mask
over the Lm core tensors of the m-th TNO of XM with graph Gm = (Vm, Em) and VI matrix Im ∈
[Q]K×Lm . We have ϵm(wm) : (Im, {Gm,ℓ}) 7→ (Im(diag(1−wm)), {G̃m,ℓ}), where G̃m,ℓ = Gm,ℓ

if wm,ℓ = 0 and G̃m,ℓ equals identity otherwise, and thus |ϵm| = ∥wm∥0 =
∑Lm

ℓ=1 wm,ℓ.

Hyperparameter λ and phase transition. Note that the tuning parameter λ in (5) plays the same
role as the mass parameter in the Higgs potential (4), shaping the loss landscape and governing
the transition between the symmetry and SB regimes. When the common graph G is sufficiently
expressive to have a smaller value of πD and λ ≥ 0, the system remains in a symmetry regime: the
optimal graphs {Gm}Mm=1 must collapse to the single common graph G, since any non-trivial core
masking would be penalized. In this case, each ϵ∗m equals the identity, and the joint TN-SS problem
reduces to vanilla TN-SS. This phase provides an efficient initialization by enforcing structural
sharing.

When λ < 0, the system enters the SB regime. While negative regularization is unusual in ML, in
physics it is precisely what drives the Mexican-hat potential to favor multiple nonzero minima. In
our setting, it encourages independent, operator-specific core masking across the {Gm}, thereby
breaking symmetry and introducing structural diversity. This transition expands the search space in a
controlled manner, guiding the system toward more compact, heterogeneous configurations that often
achieve lower loss.

3.2 ALGORITHM

Motivated by symmetry breaking, we propose a two-phase algorithm that first enforces a shared
structure for efficiency and then gradually introduces diversity via core masking.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 The proposed algorithm for joint TN-SS (sketch)
1: Initialize: parameters Q,K, I , tolerance η1, η2 with η1 ≤ η2.
2: Define f(·) = minXM∈ts(·) πD(XM).
3: Obtain common structure G← TN-SS(f) with f(G) ≤ η1 ▷ Phase I: symmetry
4: Set Gm ← G with Gm = (Vm, Em) for all m ∈ [M] .
5: repeat ▷ Phase II: symmetry breaking!
6: Pick one core tensor v from

⋃M
m=1 Vm at random.

7: Construct masked candidates G′
m = Gm ◦ ϵ(v) for all m. ▷ v is masked from Gm.

8: Evaluate f ′ = f({G′
m}).

9: if f ′ ≤ η2 then
10: Accept: Gm ← G′

m for all m.
11: end if
12: until no further improvement is found
13: Output: {Gm}Mm=1

As analyzed in Sec. 2.3, the optimal solution of (5) in the symmetry regime collapses to a common
graph G. Thus, in Phase I we set ϵ∗m to be identity for all m ∈ [M] and run any TN-SS method1

to find G with f(G) ≤ η1. A small η1 ensures G is expressive, though possibly redundant. Once G
is fixed, the algorithm enters Phase II (the SB regime), where structural diversity is introduced by
iteratively masking cores: at each step, a vertex v (corresponding to a core tensor) is sampled from⋃M

m=1 Vm, across all TNOs, and the updated graphs are evaluated. If the task loss remains within
tolerance η2, the change is accepted; otherwise, a new masked candidate is tried. The process stops
when no further beneficial masks are found. Note that the gap η2 − η1 quantifies the performance
budget for pruning redundant core tensors and encouraging operator-specific diversity.

Crucially, λ in (5) is never tuned directly in the algorithm. Its effect is implicitly encoded by (η1, η2),
which provide an explainable, task-specific rule for when symmetry should be enforced and when
diversity is allowed. This yields a practical phase transition mechanism that avoids the exponential
cost of unconstrained joint search. Moreover, the greedy masking ensures the number of evaluations
grows only linearly with M in Phase II. Experiments in Sec. 4 confirm that our method achieves
more compact TN representations with little overhead.

Finally, the following perturbation bound illustrates that the loss increase from masking a core is
controlled by its operator–Schmidt rank:
Proposition 3.1 (Perturbation analysis). Let ZM = {Z1, . . . , ZM} be a system of TNOs with ZM ∈
argminYM∈ts(G1,...,GM ;Q,K,I) πD(YM). Suppose one operator Zj contains a maskable core G with
∥G∥F = 1 and operator–Schmidt rank S. Let ZM,⋆ denote the TNO system obtained by replacing
Zj with its best masked version Y ⋆ ∈ argminY ∈tno(Gmask;Q,K,I) πD({Z1, . . . , Y, . . . , ZM}), where
Gmask = Gj ◦ ϵ(G). If πD is L-Lipschitz in ∥ · ∥F with respect to each operator, then

|πD(ZM,⋆)− πD(ZM)| ≤ LC
√
S − 1,

where C depends only on the contracted environment of G. In particular, if S = 1, masking G does
not increase the loss.

The proof is in the Appendix D. Prop. 3.1 shows that rank-one cores can be pruned without loss,
while higher ranks incur bounded perturbations scaling with

√
S − 1. This provides a sufficient

criterion for identifying redundant core tensors, though we argue in the Appendix that low Schmidt
rank is not necessary, owing to the universality of TN approximations.

4 NUMERICAL RESULTS

We evaluate the proposed algorithm on diverse domains: joint tensor decomposition, parameter-
efficient fine-tuning of LLMs, and quantum circuit optimization, to demonstrate its effectiveness.
Due to space limits, we report only key settings in the main text; full experimental details are deferred
to the Appendix.

1Appendix A.3 provides guidelines for adapting TNGA (Li & Sun, 2020), TNLS (Li et al., 2022), TnALE (Li
et al., 2023), and Greedy (Hashemizadeh et al., 2020) to TNOs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1 JOINT TENSOR DECOMPOSITION ON SYNTHETIC DATA

We evaluate first the performance of our algorithm on tensor decomposition using synthetic tensors.

Data preparation. We choose Q = 5, K = 2, I = 2 and M = 4 for convenience, following (1),
This choice corresponds to optimizing structures for tensors of order-10, which is markedly larger
than in most prior TN-SS benchmarks, providing a challenging yet tractable testbed for evaluating
our joint TN-SS algorithm. Additional results on varying Q, I , and M are reported in Appendix
A.6. Next, we choose four circuit-like TN structures widely used in ML or physics, including
tensor train (TT, Oseledets 2011), “stairs-like” TN (Stairs, Rudolph et al. 2023), “brick-wall” TN
(Brick, Bensa & Žnidarič 2021), and randomly-connected TN (Rand.), to construct the common
graph G in (5)2, and then randomly mask core tensors from G individually to obtain the diverse
{Gm}Mm=1 for each TNO in the system. Once the structures are determined, we follow the real-valued
and i.i.d. Gaussian distribution N (0, 1) to generate the values of core tensors. Synthetic tensors are
thus obtained by contracting the core tensors.

Setup. For our algorithm, we set πD(XM) to be the relative squared error (RSE, Li & Sun 2020)
calculated globally among all TNOs, and use Adam (Kingma & Ba, 2014) to optimize the value of
core tensors. The setting of L is determined differently for each data, following a basic principle
that L should be relatively large to achieve a satisfactory approximation error in Phase I. The
tolerances η1, η2 are set to 5× 10−10 and 10−6, respectively (the sensitivity analysis of L and η2 are
given in Appendix A.6). We regard the approximation as successful if RSE ≤ 10−6.

Baselines. For comparison, we adopt four state-of-the-art TN-SS algorithms: TNGA (Li & Sun,
2020), TNLS (Li et al., 2022), TnALE (Li et al., 2023), and Greedy (Hashemizadeh et al., 2020). They
also serve as the backbone optimizers for the common graph G in Phase I of our approach. To han-
dle TNO structures, we introduce minimal adaptations on the baselines while keeping each algorithm’s
original search dynamics intact. Details of these modifications are provided in Appendix A.3.

Results. Figure 2 (a–c) reports results across different TN-SS baselines. We first see from Figure 2
(a) that Phase II significantly reduces the total number of core tensors, resulting in more compact
TN representations than the existing TN-SS methods. Furthermore, we see from Figure 2 (b) that
such compression preserves accuracy. The approximation error remains at RSE ≤ 10−6 in nearly all
cases. Third, Figure 2 (c) illustrates that the evaluation cost in Phase II (dark bars) is consistently
lower than in Phase I, confirming the efficiency of symmetry breaking.

For fairness, we also tested vanilla TN-SS with the assumption of sharing structure among TNOs
with the same |V | as our methods, as done in many existing works. Figure 2(b) shows, this severely
limits performance: none of the methods in this setting reach RSE ≤ 10−6, except TNLS on TT.
This contrast highlights that structural diversity is important for achieving the full expressive power
of TNOs.

Phase transition during the search. Figure 2 (d–f) shows the search dynamics on Rand. with our
approach (that uses TNGA in Phase I). A clear phase transition emerges: once entering Phase
II (the SB regime), the number of core tensors steadily decreases (Figure 2(d)) while RSE remains
stable (Figure 2(e)). At the same time, the per-iteration evaluation cost drops sharply (Figure 2(f)),
highlighting both efficiency and accuracy of the transition.

Experimental details for cover image. We further test a plausible baseline where vanilla TN-SS
tackles joint TN-SS by composing all TN structures together into a single large graph. As shown in
Figure 1(c), vanilla TN-SS (TNGA on Rand., blue/red curves) is significantly less efficient than our
approach (yellow curve). This highlights the power of the shared-structure prior in (5), which guides
the search toward diverse yet compact solutions at far lower cost.

4.2 PARAMETER EFFICIENT FINE-TUNING (PEFT) FOR LLMS

We next demonstrate that our approach improves parameter efficiency in the PEFT task for LLMs.
For disclaimer, this experiment is not intended to propose a new practical PEFT method, but rather to
highlight how joint TN-SS itself contributes to parameter-efficient representations.

2Note that our focus is on TN structures tailored for high-order tensors; thus, classical tensor decomposition
models such as CP, Tucker and tSVD are excluded from our experiments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: Experimental results of tensor decomposition. (a) Shaded and colored bars show the total
number of core tensors in Phase I and Phase II, respectively; (b) Solid and hollow markers
indicate the RSE achieved by the proposed algorithm after Phase II and by the vanilla TN-SS with
|V | matched to that obtained by the proposed algorithm. The red dotted line marks the RSE = 10−6

threshold; (c) Light and dark bars denote the total number of evaluations in Phase I and Phase
II, respectively; (d)-(f) Search dynamics of Rand. using TNGA, where blue and red regions
correspond to Phase I and Phase II.

Table 1: Test performance of PEFT. The results marked
with “*” are from Li et al. (2024). The details for QuanTA-
6/4/2 are described in Appendix B.2.

Method #Params PIQA SIQA OBQA ARC-e ARC-c Avg.
LoRA∗ 3.200% 82.1 69.9 80.4 73.8 50.9 71.4
DoRA∗ 3.200% 82.7 74.1 80.6 76.5 59.8 74.7

QuanTA-6 0.041% 79.9 75.9 80.0 84.8 63.3 76.8
Ours 0.031% 80.4 76.2 80.2 84.7 63.7 77.0
QuanTA-4 0.024% 79.2 73.5 77.2 84.4 62.6 75.4
Ours 0.024% 80.3 75.1 78.4 84.2 63.4 76.3
QuanTA-2 0.017% 78.1 72.5 74.8 82.1 57.1 72.9
Ours 0.017% 79.7 72.7 78.0 83.1 59.9 74.7

Figure 3: Param. reduction dynamics.
(a) Number of param. over iterations;
(b) Layer-wise parameter allocation on
ARC-c, where the three colors indicate
different stages in search.

Setup. We build upon QuanTA (Chen et al., 2024a), a state-of-the-art PEFT method for LLMs
utilizing TNO. In this experiment, we enhance it by applying our algorithms to optimize TNO
structures, for the goal of reducing the number of fine-tuned parameters. We conduct the experiment
on five commonsense reasoning datasets with Llama2-7B model (Touvron et al., 2023) (involving the
TNO system of dimension M = 32), and follow most of the settings as the work (Chen et al., 2024a),
where each fine-tuned weight with size 4096× 4096 is recognized as a tensor of order-8 with size3

16× 8× 8× 4× 16× 8× 8× 4. In our algorithm, we directly use the structure in QuanTA as the
common graph G, from which we deploy the proposed algorithm from Phase II.

Results. Table 1 summarizes the test results, including baseline comparisons with LoRA (Hu et al.,
2021) and DoRA (Liu et al., 2024a). Our approach achieves superior performance with the same or
fewer fine-tuning parameters. Figure 3(a) shows the search dynamics across five datasets, where joint
TN-SS consistently reduces the parameter count throughout the search. Figure 3(b) further illustrates
the layer-wise parameter allocation on ARC-c, demonstrating that our approach allows non-uniform
parameter distribution across layers, maximizing overall parameter efficiency. This observation is
consistent with findings discussed in Section 1, which suggest that different weights within a system
often exhibit varying structural complexities. More results are shown in Appendix B.4.

3Note that QuanTA slightly generalizes the definition of TNOs by varying the parameter I . We adopt the
same experimental settings, as the variation in I does not impact the search process of our algorithm.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Result for quantum circuit optimization using joint TN-SS.

Case #Params of
original opreator

Brick-wall (baseline) Classic QFT circuit Ours
#Params Fidelity↑ #Params Fidelity↑ #Params Fidelity↑

Synthetic (Q = 8) 65536 560 > 1− 10−4 / / 208 > 1− 10−4

Synthetic (Q = 12) 1.68× 107 528 > 1− 10−4 / / 176 > 1− 10−4

QFT (Q = 4) 256 240 > 1− 10−4 96 > 1− 10−4 96 > 1− 10−4

QFT (Q = 6) 4096 800 0.9859 240 > 1− 10−4 288 > 1− 10−4

4.3 MEMORY-EFFICIENT QUANTUM CIRCUIT OPTIMIZATION

Quantum circuit optimization aims to represent high-dimensional unitary operators with a compact
circuit of lower-dimensional unitary components. Standard approaches often use multi-layer brick-
wall structures, which can be highly redundant and inefficient. Here we conduct an illustrative study
showing that joint TN-SS can find more compact circuits with fewer components, enhancing resource
efficiency or potentially shallower architecture.

Setup. We evaluate both synthetic unitary operators (generated with Haar-random cores, K = 2,
I = 2, and Q = 8, 12) and the quantum Fourier transform (QFT) (Camps et al., 2021; Chen et al.,
2023),where the same settings of K, I,Q are applied for QFT. For baselines, we use brick-wall TNOs
and, for QFT, the classic hand-crafted QFT circuit. In our method, repeated brick-wall layers are
treated as the common graph G, and structural diversity emerges through symmetry breaking.

Results. Table 2 shows that our approach consistently produces more compact TNO representations
than the brick-wall baseline while maintaining fidelity above 1− 10−4. For synthetic operators, we
achieve up to a 3× reduction in parameters. For QFT, our method recovers circuits with parameter
counts on par with the classic design, yet without SWAP gates, a critical advantage for noise mitigation
on quantum hardware. Figure 4 further illustrates this: for Q = 4, the result matches the conventional
circuit (Camps et al., 2021; Chen et al., 2023), while for Q = 6 it discovers a distinctly different
and more compact architecture using only local operators. These findings demonstrate that joint
TN-SS not only advances efficiency in ML tasks but also provides a new path to discovering efficient
quantum circuits. Full experimental details are given in Appendix C.

(a)
TNO represention for QFT (Q=4)

(b)
TNO represention for QFT (Q=6)

Figure 4: Optimized TNO representation for the QFT operators.

5 CONCLUDING REMARKS

In this work, we introduced joint TN-SS, a previously unexplored extension of tensor network structure
search. Inspired by the principle of symmetry breaking, we proposed a simple yet effective algo-
rithm to tackle the combinatorial complexity inherent in joint TN-SS. Extensive experiments across
diverse tasks, including tensor decomposition, LLM fine-tuning, and quantum circuit optimization,
demonstrate the effectiveness and efficiency of our approach.

Limitations. Due to resource constraints, our experiments on quantum circuit optimization were
limited to small-scale settings. Future work will extend to larger scales. Additionally, we observed
instability in widely used optimization methods, such as gradient-based and SVD-based approaches
(Schollwöck, 2005), when applied to tensor decomposition and quantum circuit optimization. En-
hancing the robustness of joint TN-SS will therefore be an important direction for future study.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made substantial efforts to ensure the reproducibility of our work. Detailed descriptions of
our proposed algorithm are provided in Section 3.2. Detailed settings for each experiment—including
datasets, hyperparameter configurations, and implementation details—are presented in Appendix A, B
and C. We have included the source code for tensor decomposition and LLM fine-tuning in the
supplementary materials (the code for quantum circuit optimization will be made available after
publication). For theoretical results (i.e., Proposition 3.1), the complete proof is presented in Appendix
D. We encourage readers to refer to these sections for comprehensive information necessary to
reproduce our work.

REFERENCES

A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature, 607
(7917):60–68, 2022.

S. Derin Babacan, Martin Luessi, Rafael Molina, and Aggelos K. Katsaggelos. Sparse Bayesian
Methods for Low-Rank Matrix Estimation. IEEE Transactions on Signal Processing, 60(8):
3964–3977, 2012. doi: 10.1109/TSP.2012.2197748.

Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo, Norman Margolus, Peter
Shor, Tycho Sleator, John A Smolin, and Harald Weinfurter. Elementary gates for quantum
computation. Physical review A, 52(5):3457, 1995.

Jaš Bensa and Marko Žnidarič. Fastest local entanglement scrambler, multistage thermalization, and
a non-hermitian phantom. Physical Review X, 11(3):031019, 2021.

Daan Camps, Roel Van Beeumen, and Chao Yang. Quantum fourier transform revisited. Numerical
Linear Algebra with Applications, 28(1):e2331, 2021.

Jielun Chen, EM Stoudenmire, and Steven R White. Quantum fourier transform has small entangle-
ment. PRX Quantum, 4(4):040318, 2023.

Zhuo Chen, Rumen Dangovski, Charlotte Loh, Owen Dugan, Di Luo, and Marin Soljačić. QuanTA:
Efficient High-Rank Fine-Tuning of LLMs with Quantum-Informed Tensor Adaptation. arXiv
preprint arXiv:2406.00132, 2024a.

Ziang Chen, Jianfeng Lu, and Anru Zhang. One-dimensional Tensor Network Recovery. SIAM
Journal on Matrix Analysis and Applications, 45(3):1217–1244, 2024b.

Zhiyu Cheng, Baopu Li, Yanwen Fan, and Yingze Bao. A novel rank selection scheme in tensor
ring decomposition based on reinforcement learning for deep neural networks. In ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
3292–3296. IEEE, 2020.

Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, Danilo P Mandic, et al.
Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor
decompositions. Foundations and Trends® in Machine Learning, 9(4-5):249–429, 2016.

Andrzej Cichocki, Anh-Huy Phan, Qibin Zhao, Namgil Lee, Ivan Oseledets, Masashi Sugiyama,
Danilo P Mandic, et al. Tensor networks for dimensionality reduction and large-scale optimization:
Part 2 applications and future perspectives. Foundations and Trends® in Machine Learning, 9(6):
431–673, 2017.

Radosvet Desislavov, Fernando Martínez-Plumed, and José Hernández-Orallo. Trends in ai inference
energy consumption: Beyond the performance-vs-parameter laws of deep learning. Sustainable
Computing: Informatics and Systems, 38:100857, 2023.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International conference on machine learning, pp. 10323–10337. PMLR, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Robert Joseph George, David Pitt, Jiawei Zhao, Jean Kossaifi, Cheng Luo, Yuandong Tian, and Anima
Anandkumar. Tensor-GaLore: Memory-Efficient Training via Gradient Tensor Decomposition. In
OPT 2024: Optimization for Machine Learning, 2024.

Zheng Guo, Aditya Deshpande, Brian Kiedrowski, Xinyu Wang, and Alex Gorodetsky. Tensor
network structure search using program synthesis. arXiv preprint arXiv:2502.02711, 2025.

Cécile Haberstich, Anthony Nouy, and Guillaume Perrin. Active learning of tree tensor networks
using optimal least squares. SIAM/ASA Journal on Uncertainty Quantification, 11(3):848–876,
2023.

Wolfgang Hackbusch and Stefan Kühn. A new scheme for the tensor representation. Journal of
Fourier analysis and applications, 15(5):706–722, 2009.

Meraj Hashemizadeh, Michelle Liu, Jacob Miller, and Guillaume Rabusseau. Adaptive learning of
tensor network structures. arXiv preprint arXiv:2008.05437, 2020.

Kohei Hayashi, Taiki Yamaguchi, Yohei Sugawara, and Shin-ichi Maeda. Exploring Unexplored
Tensor Network Decompositions for Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, pp. 5553–5563, 2019.

Christopher J Hillar and Lek-Heng Lim. Most tensor problems are NP-hard. Journal of the ACM
(JACM), 60(6):45, 2013.

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164–189, 1927.

Ming Hou, Jiajia Tang, Jianhai Zhang, Wanzeng Kong, and Qibin Zhao. Deep multimodal multilinear
fusion with high-order polynomial pooling. In Advances in Neural Information Processing Systems,
pp. 12113–12122, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. Llm-adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of
Large Language Models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 5254–5276, 2023.

Ajay Jaiswal, Lu Yin, Zhenyu Zhang, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
Wang. From GaLore to WeLore: How Low-Rank Weights Non-uniformly Emerge from Low-Rank
Gradients. arXiv preprint arXiv:2407.11239, 2024.

Misha E Kilmer and Carla D Martin. Factorization strategies for third-order tensors. Linear Algebra
and its Applications, 435(3):641–658, 2011.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Maxim Kodryan, Dmitry Kropotov, and Dmitry Vetrov. Mars: Masked automatic ranks selection in
tensor decompositions. In International Conference on Artificial Intelligence and Statistics, pp.
3718–3732. PMLR, 2023.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

Jean Kossaifi, Zachary C Lipton, Arinbjörn Kolbeinsson, Aran Khanna, Tommaso Furlanello, and
Anima Anandkumar. Tensor regression networks. Journal of Machine Learning Research, 21:
1–21, 2020.

Joseph M Landsberg, Yang Qi, and Ke Ye. On the geometry of tensor network states. Quantum
Information & Computation, 12(3-4):346–354, 2012.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tsung-Dao Lee. CP nonconservation and spontaneous symmetry breaking. Physics Reports, 9(2):
143–177, 1974.

Binghua Li, Ziqing Chang, Tong Liang, Chao Li, Toshihisa Tanaka, Shigeki Aoki, Qibin Zhao,
and Zhe Sun. Parameter-efficient fine-tuning of 3d ddpm for mri image generation using tensor
networks. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 382–392. Springer, 2025.

Chao Li and Zhun Sun. Evolutionary topology search for tensor network decomposition. In
International Conference on Machine Learning, pp. 5947–5957. PMLR, 2020.

Chao Li, Junhua Zeng, Zerui Tao, and Qibin Zhao. Permutation search of tensor network structures
via local sampling. In International Conference on Machine Learning, pp. 13106–13124. PMLR,
2022.

Chao Li, Junhua Zeng, Chunmei Li, Cesar F Caiafa, and Qibin Zhao. Alternating local enumeration
(tnale): Solving tensor network structure search with fewer evaluations. In International Conference
on Machine Learning, pp. 20384–20411. PMLR, 2023.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhiyuan Cheng, Lei Duan, Jie Zuo, Cal Yang, and Mingjie
Tang. Mixlora: Enhancing large language models fine-tuning with lora based mixture of experts.
arXiv preprint arXiv:2404.15159, 2024.

Nannan Li, Yu Pan, Yaran Chen, Zixiang Ding, Dongbin Zhao, and Zenglin Xu. Heuristic rank
selection with progressively searching tensor ring network. Complex & Intelligent Systems, pp.
1–15, 2021a.

Sujie Li, Feng Pan, Pengfei Zhou, and Pan Zhang. Boltzmann machines as two-dimensional tensor
networks. Physical Review B, 104(7):075154, 2021b.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024a.

Yipeng Liu, Yingcong Lu, Weiting Ou, Zhen Long, and Ce Zhu. Adaptively Topological Tensor
Network for Multi-view Subspace Clustering. IEEE Transactions on Knowledge and Data
Engineering, 2024b.

Ivan Melo. Higgs potential and fundamental physics. European Journal of Physics, 38(6):065404,
2017.

Eva Memmel, Clara Menzen, Jetze Schuurmans, Frederiek Wesel, and Kim Batselier. Position: Tensor
networks are a valuable asset for green ai. In International Conference on Machine Learning, pp.
35340–35353. PMLR, 2024.

Oscar Mickelin and Sertac Karaman. On algorithms for and computing with the tensor ring decom-
position. Numerical Linear Algebra with Applications, 27(3):e2289, 2020.

Mikko Möttönen, Juha J Vartiainen, Ville Bergholm, and Martti M Salomaa. Quantum circuits for
general multiqubit gates. Physical review letters, 93(13):130502, 2004.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
networks. In Advances in Neural Information Processing Systems, pp. 442–450, 2015.

Román Orús. Tensor networks for complex quantum systems. Nature Reviews Physics, 1(9):538–550,
2019.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):
2295–2317, 2011.

Piyush Rai, Yingjian Wang, Shengbo Guo, Gary Chen, David Dunson, and Lawrence Carin. Scalable
bayesian low-rank decomposition of incomplete multiway tensors. In International Conference on
Machine Learning, pp. 1800–1808. PMLR, 2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lorenz Richter, Leon Sallandt, and Nikolas Nüsken. Solving high-dimensional parabolic pdes using
the tensor train format. In International Conference on Machine Learning, pp. 8998–9009. PMLR,
2021.

Manuel S Rudolph, Jing Chen, Jacob Miller, Atithi Acharya, and Alejandro Perdomo-Ortiz. Decom-
position of matrix product states into shallow quantum circuits. Quantum Science and Technology,
9(1):015012, 2023.

Ulrich Schollwöck. The density-matrix renormalization group. Reviews of modern physics, 77(1):
259–315, 2005.

Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks. In Advances in
Neural Information Processing Systems, pp. 4799–4807, 2016.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):
279–311, 1966.

Andong Wang, Chao Li, Mingyuan Bai, Zhong Jin, Guoxu Zhou, and Qibin Zhao. Transformed
low-rank parameterization can help robust generalization for tensor neural networks. Advances in
Neural Information Processing Systems, 36, 2024.

Zi Yang, Samridhi Choudhary, Xinfeng Xie, Cao Gao, Siegfried Kunzmann, and Zheng Zhang.
CoMERA: Computing-and Memory-Efficient Training via Rank-Adaptive Tensor Optimization.
arXiv preprint arXiv:2405.14377, 2024.

Ke Ye and Lek-Heng Lim. Tensor network ranks. arXiv preprint arXiv:1801.02662, 2019.

Tatsuya Yokota, Qibin Zhao, and Andrzej Cichocki. Smooth PARAFAC decomposition for tensor
completion. IEEE Transactions on Signal Processing, 64(20):5423–5436, 2016.

Junhua Zeng, Chao Li, Zhun Sun, Qibin Zhao, and Guoxu Zhou. tnGPS: Discovering Unknown
Tensor Network Structure Search Algorithms via Large Language Models (LLMs). In Forty-first
International Conference on Machine Learning, 2024a.

Junhua Zeng, Guoxu Zhou, Yuning Qiu, Chao Li, and Qibin Zhao. Bayesian tensor network structure
search and its application to tensor completion. Neural Networks, pp. 106290, 2024b.

Qibin Zhao, Liqing Zhang, and Andrzej Cichocki. Bayesian CP factorization of incomplete tensors
with automatic rank determination. IEEE transactions on pattern analysis and machine intelligence,
37(9):1751–1763, 2015.

Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring decomposi-
tion. arXiv preprint arXiv:1606.05535, 2016.

Yu-Bang Zheng, Xi-Le Zhao, Junhua Zeng, Chao Li, Qibin Zhao, Heng-Chao Li, and Ting-Zhu
Huang. SVDinsTN: A Tensor Network Paradigm for Efficient Structure Search from Regularized
Modeling Perspective. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 26254–26263, 2024.

A TECHNICAL APPENDICES WITH ADDITIONAL RESULTS FOR SYNTHETIC
DATA

A.1 COMPUTATIONAL ANALYSIS OF THE PROPOSED ALGORITHM

As illustrated in Algo. 1, each iteration requires B evaluations in the best case and |V | evaluations in
the worst case, where |V | is the total number of core tensors in the TNO system. This value typically
scales linearly with the number of TNO in the system, i.e., M . Thus, even in the worst case, the
number of evaluations grows linearly with the size of the system. Numerical results presented in
the experiments also demonstrate that Algo. 1 requires significantly fewer evaluations compared to
solving joint TN-SS directly following equation 2 directly.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 DETAILS OF SYNTHETIC DATA GENERATION

Fig. 5 illustrates the four common TNO graphs G with Q = 5. Table 3 and 4 summarize the structures
(in VI matrix form) for generating the TNO systems used in our experiment. Specifically, each TNO
system contains 4 TNOs, with each TNO generated by masking core tensors with locations 1 to 4
described in Table 3 and 4 from the given common graph. For example, the 2nd TNO for the stairs
structure is generated by masking the 1st, 2nd, and 8th core tensors, which corresponds to removing
the 1st, 2nd, and 8th columns from the VI matrix of the original stairs structure.

(a) (b) (c) (d)
T T Stairs Brick Random

Figure 5: Illustration of common graphs used in our experiment.

Once the TNO system is constructed, we sample each element in core tensors from i.i.d Gaussian
distribution with zero mean and unit variance, and the (observed) synthetic tensor data is obtained by
contracting the core tensors together.

Table 3: TNO generation for TT, Stairs, and Brick structures with Q = 5,K = 2
Structure Common graph (VI matrix) Mask locations 1 Mask locations 2 Mask locations 3 Mask locations 4

TT
(
4 3 2 1
5 4 3 2

)
1 2 3 4

Stairs
(
4 3 2 1 4 3 2 1
5 4 3 2 5 4 3 2

)
1, 2, 3 1, 2, 8 3, 4, 6 1, 4, 7

Brick
(
4 2 3 1 4 2 3 1
5 3 4 2 5 3 4 2

)
1, 2, 8 1, 6, 8 2, 4, 7 6, 7, 8

Table 4: TNO generation for Rand. structures with different Q (K = 2)
Q Common graph (VI matrix) Mask locations 1 Mask locations 2 Mask locations 3 Mask locations 4

4
(
3 1 1 2 2
4 2 3 4 3

)
1 2 3 4

5
(
3 1 2 1 3 4 2
5 3 4 4 4 5 5

)
1, 3 2, 3 1, 4 2, 4

6
(
3 1 1 3 2 4 3 1
5 6 4 6 4 5 4 3

)
1, 2, 3 2, 3, 6 1, 4, 5 4, 6, 8

8
(
6 5 2 1 5 1 4 3 1 3
7 6 5 2 8 4 7 4 3 6

)
1, 2, 3 2, 3, 6 1, 4, 5 4, 6, 8

A.3 TN-SS ALGORITHMS FOR PHASE I

The five joint TN-SS algorithms with default parameter settings used in Phase I are summarized
in Algo. 2-5, which can be seen as extensions of the TNGA (Li & Sun, 2020), TNLS (Li et al., 2022),
TnALE (Li et al., 2023) and Greedy (Hashemizadeh et al., 2020) methods, respectively. To align with
the TNO models targeted in this work, we slightly modified these algorithms but tried our best to
keep the searching dynamics unchanged.

In TNO, the adjacent core tensors can be merged if they have the same connectivity (i.e., the adjacent
columns in Eq. (3) are the same). For the proposed TN-SS algorithms, once a new TNO graph is
generated, we always check if the adjacent core tensors can be merged. If they are mergeable, one

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 Genetic Algorithm for joint TN-SS (TNGA) in Phase I

1: Input:
2: XM ▷ Group of input tensors
3: Q,K, I ▷ parameters for TNO
4: L ▷ order for the common graph
5: S = 100 ▷ population size of individuals in each generation
6: Cmax = 20 ▷ maximum number of generations
7: f(·) = minXM∈tno(·) πD(XM) ▷ loss function
8: η1 = 5× 10−10 ▷ tolerance
9: ε = 0.2 ▷ elimination parameter

10: p(r) = max
{
0.01, ln(200/(10−2 + 5r))

}
11: Algorithm:
12: randomly generate {Gs}Ss=1 ∈ {G(V,E) : G ∈ G, |V | = L} ▷ parent Initialization
13: for t = 1 to Cmax do
14: fs = f(Gs) for all s ∈ [S] ▷ fitness evaluation
15: Ĝ = argminGs:s∈[S] l

s

16: f̂ = f(Ĝ)

17: if f(Ĝ) < η1 then
18: break
19: end if
20: {rs}Ss=1 = rank({fs}Ss=1) ▷ get rank of the individuals by fitness evaluation
21: Gp = {(Gs, p(rs)) : s ∈ [S], rs ≤ ⌈(1− ε)S⌉} ▷ eliminate the ε× 100% individuals with

worst fitness and compute the sampling probability p on remaining individuals
22: for s = 1 to S do
23: Gp1, Gp2 ← sample(Gp) ▷ select parents with probabilities p and with replacement
24: Gs ← crossover&mutate(Gp1, Gp2) ▷ generate child from the parents
25: end for
26: {Gs}Ss=1 ← deduplicate&fill({Gs}Ss=1) ▷ remove individuals with duplicated graphs and

generate new individuals to replace them
27: end for
28: Output: Ĝ, f̂

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 3 Local Sampling algorithm for joint TN-SS (TNLS) in Phase I

1: Input:
2: XM , Q,K, I, f(·) ▷ Group of input tensors and system parameters
3: L,Cmax = 40, θ = 0.5, η1 = 5× 10−10 ▷ algorithm parameters. θ: sampling ratio
4: Algorithm:
5: initial Ĝ ∈ {G(V,E) : G ∈ G, |V | = L} ▷ Initialize the TNO
6: f̂ = f(Ĝ) ▷ Evaluation on initial TNO
7: for t = 1 to Cmax do
8: Gs = ∅ ▷ Initialize the sampling set
9: for s = 1 to L do

10: Gs ← Gs ∪ {G : G(V,E) ∈ G, |V | = L,G ∈ N (Ĝ, s)} ▷ Add neighborhood TNOs to
the sampling set

11: end for
12: Gs ← random_sampling(Gs, θ) ▷ Randomly sample θ × 100% TNOs from the sampling

set
13: if minG∈Gs f(G) < f̂ then ▷ Evaluation on sampled TNOs and update the best TNO if the

condition satisfies
14: Ĝ = argminG∈Gs f(G)

15: f̂ = f(Ĝ) ▷ Update the estimated TNO graph and corresponding loss
16: end if
17: if f̂ < η1 then
18: break
19: end if
20: end for
21: Output: Ĝ, f̂

Algorithm 4 Alternating Local Enumeration algorithm for joint TN-SS (TnALE) in Phase I

1: Input:
2: XM , Q,K, I, f(·) ▷ Group of input tensors and system parameters
3: L,D = 2, η1 = 5× 10−10 ▷ algorithm parameters. D: round-trips of ALE
4: Algorithm:
5: initial Ĝ ∈ {G(V,E) : G ∈ G, |V | = L} ▷ Initialize the TNO
6: f̂ = f(Ĝ) ▷ Evaluation on initial TNO
7: for t = 1 to D do
8: for s = 1 to L do ▷ Forward trip
9: Gs = {G : G(V,E) ∈ G, |V | = L,G ∈ N (Ĝ, s)} ▷ Add neighborhood TNOs to the

sampling set
10: if minG∈Gs f(G) < f̂ then ▷ Evaluation on sampled TNOs and update the best TNO if

the condition satisfies
11: Ĝ = argminG∈Gs

f(G)

12: f̂ = f(Ĝ)
13: end if
14: if f̂ < η1 then
15: break
16: end if
17: end for
18: for s = L− 1 to 2 do ▷ Backward trip
19: Repeat steps 9-15
20: end for
21: end for
22: Output: Ĝ, f̂

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 5 Greedy algorithm for joint TN-SS in Phase I

1: Input:
2: XM , Q,K, I, f(·) ▷ Group of input tensors and system parameters
3: L, η1 = 5× 10−10 ▷ algorithm parameters
4: Algorithm:
5: initial Ĝ = ∅ ▷ Initialize an empty TNO
6: for s = 1 to L do
7: Gs = {G : G(V,E) ∈ G, |V | = s,G ∈ N+(Ĝ)} ▷ Add neighborhood TNOs to the

sampling set
8: Ĝ = argminG∈Gs

f(G) ▷ Find the best TNO with minimum loss
9: f̂ = f(Ĝ) ▷ Update the loss

10: if f̂ < η1 then
11: break
12: end if
13: end for
14: Output: Ĝ, f̂

of the duplicated core tensors will be replaced with a new one with different connectivity. This
procedure is repeated until all core tensors in the new TNO graph can not be merged.

For TNLS and TnALE, the neighborhood of a TNO G is denoted as N (G, s), and is defined as the
set of graphs that has the same connectivity of all core tensors except for the s-th one. In the view of
the VI matrix,N (G, s) is generated by replacing the s-th column of the VI matrix of G with columns
that represent all other possible connectivity.

Further, in the Greedy algorithm, the TNO is gradually generated with the graph order from 0 to L.
At each iteration, starting from the previous TNO graph G, we add a core tensor to the right of the
previous TNO, which is equivalent to adding a new column to the right of the VI matrix of G. The
TNO set with all possible connectivity is denoted as N+(G) in Algo. 5, and the best TNO for the
next iteration is chosen as the one with the lowest RSE.

A.4 TENSOR DECOMPOSITION FOR TNO

Given the TNO graph, we apply Adam optimizer (Kingma & Ba, 2014) to perform tensor decom-
position, which is commonly used in existing TN-SS methods. Specifically, given a TNO graph
and the observed tensor X , we initialize each core tensor from Gaussian distribution with zero
mean and variance 0.3. The contraction expression of core tensors is constructed using einsum
function similar to that in (Chen et al., 2024a). The relative squared error (RSE) is used as the loss
function in Eq. (2). Specifically, given the generated synthetic tensors D := {D1,D2, . . . ,DM}
and the approximated tensors XM := {X1,X2, . . . ,XM}, the RSE is defined as πD(XM) =∑M

m=1 ∥Xm − Dm∥2F /
∑M

m=1 ∥Dm∥2F , where ∥ · ∥F is the Frobenius norm. The learning rate of
Adam is set to 10−2 and the maximum iteration number is set to 1500.

For each evaluation, the RSE is measured over 10 runs with different initializations of core tensors.
Specifically, we select the minimum squared approximation error for each tensor over 10 runs
and compute the overall RSE of four tensors. In Phase I, the tolerance η1 for Algo. 2-5 is set
to 5 × 10−10 to determine if the common graph G is searched, and the initialization strategies
are the same as existing TN-SS methods. The setting of common graph order L is determined
differently for each data, following a basic principle that L should be relatively large to achieve
a satisfactory approximation error in Phase I. While in Phase II, the RSE is compared with
tolerance η2 = 10−6 to determine if the core tensor should be masked.

A.5 IMPLEMENTATION

In our experiments on synthetic data, we run all algorithms on a cluster of NVIDIA V100 GPUs
alongside an Intel Xeon E5-2690 CPU node. Specifically, the CPU node handles data input, applies
the TNO generation procedures, and distributes the sampled TNOs across the GPUs. Each GPU then

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Results of the TD experiment. The RSE, total number of core tensors (shown in round
brackets), and the corresponding number of evaluations (shown in square brackets) are presented for
Phase I (top block) and Phase II (middle block). The bottom block shows the RSE of TN-SS
methods for the same graph orders as Phase II.
Method TT Stairs Brick Rand.

GREEDY < 5× 10−10 (24) [55] 2.5× 10−7 (40) [91] 7.8× 10−6 (40) [91] 0.0426 (40) [91]
TnALE < 5× 10−10 (24) [109] < 5× 10−10 (40) [250] < 5× 10−10 (40) [94] 2.12× 10−5 (40) [265]
TNLS < 5× 10−10 (24) [89] < 5× 10−10 (40) [217] < 5× 10−10 (40) [613] 2.25× 10−6 (40) [1441]
TNGA < 5× 10−10 (24) [300] 4× 10−8 (40) [2000] < 5× 10−10 (40) [800] < 5× 10−10 (40) [900]

GREEDY-SB < 5× 10−10 (12) [49] < 5× 10−10 (20) [140] < 5× 10−10 (24) [142] 0.0426 (40) [40]
TnALE-SB < 5× 10−10 (12) [61] < 5× 10−10 (32) [82] 1× 10−8 (32) [103] 2.12× 10−5 (40) [40]
TNLS-SB < 5× 10−10 (20) [50] < 5× 10−10 (29) [136] < 5× 10−10 (22) [136] < 5× 10−10 (38) [66]
TNGA-SB < 5× 10−10 (12) [48] < 5× 10−10 (22) [147] 1× 10−8 (26) [110] < 5× 10−10 (20) [112]

RSE of only optimizing G with the |V | aligned to the results in Phase II

GREEDY 0.3568 (12) [28] 0.2032 (20) [46] 0.1838 (24) [55] 0.0426 (40) [91]
TnALE 0.3637 (12) [66] 0.0094 (32) [208] 0.0133 (32) [208] 2.12× 10−5 (40) [265]
TNLS < 5× 10−10 (20) [111] 0.0045 (32) [1161] 0.1118 (24) [881] 2.25× 10−6 (40) [1441]
TNGA 0.2907 (12) [2000] 0.0145 (24) [2000] 0.0243 (28) [2000] 0.1050 (20) [2000]

Table 6: Results on different Q (random structure with I = 2)
Method Q = 4 Q = 5 Q = 6 Q = 7 Q = 8

TNGA (S=100) <5×10−10 (40) [300] <5×10−10 (50) [600] < 7.4× 10−5 (50) [600] 0.0048 (60) [1500] 0.0312 (60) [600]
TNGA-SB <5×10−10 (16) [62] <5×10−10 (39) [40] < 7.4× 10−5 (50) [50] 0.0048 (60) [60] 0.0312 (60) [60]

TNGA (S=200) − − <5×10−10 (50) [1200] <5×10−10 (60) [4000] 0.0237 (60) [3400]
TNGA-SB − − <5×10−10 (25) [178] <5×10−10 (32) [152] 0237 (60) [60]

TNGA (S=300) − − − − <5×10−10 (60) [2100]
TNGA-SB − − − − <5×10−10 (34) [143]

performs the tensor decomposition for a given TNO and returns its loss. After each iteration, the
CPU node collects these loss values and generates new TNOs according to the specific algorithm for
the subsequent procedure.

A.6 ADDITIONAL EXPERIMENTAL RESULTS ON SYNTHETIC DATA

As a detailed version of Figure 2 (a)-(c), Table 5 reports all the RSE, the total number of core tensors,
and the total number of evaluations for synthetic data. The algorithms with suffix ’-SB’ denote that
Algo.1 is applied for Phase II. We should remark that, although Greedy and TNLS fail to meet
the RSE ≤ 10−6 for Stairs and Rand. in Phase II, respectively, their RSE values are close to
10−6 such that the Phase II can still work to reach the RSE lower than 10−6.

We conduct additional experiments to verify the performance on different TNO parameters Q and I .
The Rand. structures with Q = [4, 5, 6, 7, 8] (see Table.4) are applied as common graphs for data
generation, and the TNGA method is applied for Phase I. Table. 6 shows the performance under
different Q. We gradually increase the population size parameter S from 100 until the RSE reaches
≤ 10−6. The results verify the effectiveness of the proposed method for variant selections of Q.
Further, the S needs to be set to a larger value as Q increases due to the increasing searching space of
the common graph. Consequently, the total number of evaluations in both Phase I and Phase
II grows with Q increases. Further, the decomposition performance under TNO with different I
is depicted in Fig. 7. It can be seen that the proposed algorithm works well on TNO with varying
selections of I .

We also investigate the performance of different common graph orders L used in Phase I. Fig. 6
depicts the performance under different L for the proposed method. The results imply that L
works well when L is slightly larger than groundtruth L∗ = 7. It can be also seen that if the L is
underestimated (i.e. L < 7), the approximation always fails as they can not find the common graph
with L∗ = 7. When L = 7, the approximation still fails as the TNGA method may fail to find the
common graph with a limited number of evaluations. On the other hand, if the L is too large (i.e.,
L ≥ 14 in this experiment), the approximation also fails due to the optimization problem. In practice,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 7: RSE, total number of core tensors (round brackets), and the corresponding number of
evaluations (square brackets) on different I (Rand. structure with Q = 5).

Method I = 2 I = 4 I = 6

TNGA < 5× 10−10 (32) [100] < 5× 10−10 (32) [1000] < 5× 10−10 (32) [800]
TNGA-SB < 5× 10−10 (16) [70] < 5× 10−10 (31) [32] 6.4× 10−7 (22) [69]

5 10 15

L

10
-8

10
-6

10
-4

10
-2

10
0

R
S

E

TNGA

TNGA-SB

5 10 15

L

20

30

40

50

60

70

#
T

o
ta

l
C

o
re

s
 |
V

|

TNGA

TNGA-SB

GroundTruth

Figure 6: RSE (left) and the total number of core tensors (right) under Rand. structure (Q = 5,K =
2, I = 2) using different parameter L. Dotted red line: order of groundtruth Rand. structure.

as the L∗ is always not known, we may conduct TNGA on various selections of L and choose a
proper one that achieves a satisfactory approximation error.

Further, the efficiency of the proposed joint TN-SS method under different M is verified. TNGA
is employed as the TN-SS algorithm for Phase I. The maximum number of evaluations Cmax is
1000×M . Table 8 presents the results of tensor decomposition for various values of M . We add the
vanilla TN-SS as the comparison, in which each TNO is optimized independently without searching a
common graph. As shown, for M = 4, the vanilla TN-SS requires significantly more evaluations than
the proposed method to search TNOs that can successfully approximate the tensors. As M increases
to 6 and 8, the vanilla TN-SS reaches the maximum evaluation Cmax but still fails to achieve the
desired approximation accuracy of RSE ≤ 10−6. In contrast, although increasing slightly raises
computational complexity for the proposed method, it substantially enhances search efficiency and
final performance due to the presence of shared structural patterns across TNOs. This confirms that
symmetry breaking enables more effective exploration of the TNO structure space—especially when
the TNOs are related (e.g., originating from similar data or architectural settings).

Finally, the sensitivity of different selections of the tolerance parameter η2 in Phase II is analyzed.
The experiment is conducted on Rand. structure with Q = 5, and TNGA is applied for Phase
I. Table 9 reports the performance in terms of different η2. These results show that the method is
robust in a wide range of η2 as long as the task has an internal tensor network structure. As expected,
larger values give a more compact structure, and smaller values improve accuracy with more structure
preserved.

Table 8: RSE and the corresponding number of evaluations (square brackets) on different M (Rand.
structure with Q = 5).

Method M = 2 M = 4 M = 6 M = 8

Vanilla TN-SS < 5× 10−10 [700] < 5× 10−10 [3800] 2.9× 10−6 [6000] 1.5× 10−4

Ours < 5× 10−10 [574] < 5× 10−10 [823] < 5× 10−10 [2027] < 5× 10−10 [2226]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: RSE, total number of core tensors (round brackets), and the corresponding number of
evaluations (square brackets) on different η2 (Rand. structure with Q = 5).

η2 = 1 η2 = 0.01 η2 = 10−4 η2 = 10−6 η2 = 10−8

TNGA-SB 0.9926 (4) [41] < 5× 10−10 (20) [83] < 5× 10−10 (20) [102] < 5× 10−10 (20) [112] < 5× 10−10 (20) [87]

B TECHNICAL APPENDICES WITH ADDITIONAL RESULTS FOR LLMS
FINE-TUNING

B.1 COMMONSENSE REASONING DATASETS

Table 10 presents detailed information about the datasets used in our experiments. Specifically, (Hu
et al., 2023) originally collected all datasets including the training set Train and the test set Test. In
our experiments, we randomly select 3000 and 400 data from the original training set as the training
data Train split and validation data Valid split, respectively. We should note that, for ARC-Easy and
ARC-Challenge datasets, the training data for our experiments are 1825 and 720 due to insufficient
original training data. The fine-tuning performance is evaluated on the test set Test.

Table 10: Description of common sense reasoning datasets used in experiments.
Dataset name Domain # Train # Train split # Valid split # Test
PIQA Physical Interaction 16113 3000 400 1838
SIQA Social Interaction 33410 3000 400 1954
OBQA Science Facts 4957 3000 400 500
ARC-Easy (ARC-e) Natural Science 2251 1851 400 2376
ARC-Challenge (ARC-c) Natural Science 1119 719 400 1172

B.2 PEFT FOR TNO

For each dataset, the fine-tuning is performed on Train split described in Table 10. The QuanTA
model (Chen et al., 2024a) is adapted to our experiments with modifications that can handle different
TNOs for each transformer layer. The training parameters used in experiments are shown in Table 11.
The baseline algorithms QuanTA-6/4/2 that use the same TNO for all layers are shown in Table 12.
Specifically, QuanTA-6 corresponds to the original QuanTA algorithm proposed in (Chen et al.,
2024a).

In our experiment, we directly use the TNO of QuanTA-6 as the common graph G and deploy the
proposed algorithm for Phase II. For each evaluation, given a TNO system consisting of the TNOs
for all layers, a training procedure with 3 epochs is conducted on Train split, following the inference
on both Valid split and Test. Instead of using training loss as the loss function for πD(·) in Algo. 1,
we directly set the loss f(·) as 1− accv where accv is the accuracy on Valid split. The tolerance η2
for each dataset is set according to the validation accuracy on TNO using QuanTA-6. Specifically, the
η2 for PIQA, SIQA, OBQA, ARC-e and ARC-c are set to 0.20, 0.23, 0.21, 0.15, 0.38, respectively.

Table 11: Hyperparameter Settings for QuanTA fine-tuning.
Hyperparameters Values
Num of Epochs 3
Batch Size 4
Optimizer AdamW
Scheduler Linear Scheduler
Learning Rate 1e-4
Weight Decay 0
Dropout 0
Modules (q_proj v_proj)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 12: Different TNO structures of QuanTA used in experiments
Method TNO for all layers (in VI matrix form)

QuanTA-6
(
3 2 1 2 1 1
4 4 4 3 3 2

)
QuanTA-4

(
3 2 1 1
4 3 2 4

)
QuanTA-2

(
3 1
4 2

)

B.3 IMPLEMENTATION

In our experiments on PEFT for LLMs, training is carried out on two NVIDIA RTX A6000 GPUs
(each with 48 GB of memory). Similar to synthetic data, an Intel Xeon E5-2690 CPU node manages
results collection and TNO generation.

B.4 ADDITIONAL EXPERIMENTAL RESULTS ON LLM FINE-TUNING

Fig. 7 depicts the dynamic information during the Phase II on five datasets. (a)-(b) report the
average accuracy degradation (×100%) on Test and Valid split, respectively. The curves with
light color in the background denote the accuracy at each iteration, and the curves with dark color
foreground show the average accuracy smoothed with window size 20. (c)-(d) show the total number
of core tensors and parameters at each iteration. It should be noted that the accuracy degradation on
Valid split is bounded due to the settings of tolerance parameter η2. As can be seen, for all datasets
except SIQA, the total number of core tensors and parameters reduce quickly at the first 150 iterations
and then slow down due to the setting of the tolerance η2.

0 100 200 300

#Iterations

(a)

-10

-5

0

5

A
c
c
u
ra

c
y
 d

e
g
ra

d
a
ti
o
n
 (

%
)

0 100 200 300

#Iterations

(b)

-2

0

2

4

A
c
c
u
ra

c
y
 d

e
g
ra

d
a
ti
o
n
 (

%
)

0 100 200 300

#Iterations

(c)

50

100

150

200

#
T

o
ta

l
c
o
re

s
 |
V

|

0 100 200 300

#Iterations

(d)

0.01

0.02

0.03

0.04

#
P

a
ra

m
s
 (

%
)

PIQA SIQA OBQA ARC-e ARC-c

Figure 7: Accuracy degradation on test data and validation data over iterations (a,b). Total number of
core tensors and #Params over iterations (c, d);

0 50 100

Relative #params (%)

0

10

20

30

#
L

a
y
e

rs

PIQA

0 50 100

Relative #params (%)

0

10

20

30

#
L

a
y
e

rs

SIQA

0 50 100

Relative #params (%)

0

10

20

30

#
L

a
y
e

rs

OBQA

0 50 100

Relative #params (%)

0

10

20

30

#
L

a
y
e

rs

ARC-e

0 50 100

Relative #params (%)

0

10

20

30

#
L

a
y
e

rs

ARC-c

Figure 8: #Params percentage relative to QuanTA-6 per layer of Llama2-7B on five datasets. Yellow,
orange, and brown bars indicate #Params of 0.031%, 0.024%, and 0.017%, respectively.

Fig. 8 shows the number of parameters on each transformer layer compared with QuanTA-6. The
yellow, orange, and brown bars correspond to the three settings with the total number of parameters
0.031%, 0.024%, and 0.017%, respectively. Further, the VI matrices of corresponding TNOs for

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

8/16/24/32 layers with the total number of parameters 0.024% are shown in Table 13. The results
imply the asymmetric property of TNO across different layers and different datasets.

Table 13: TNO structures (in VI matrix form) of different transformer layers with #Params 0.024%
Layer PIQA SIQA OBQA ARC-e ARC-c

8
(
3 2 1 1 1
4 4 4 3 2

) (
3 2 1 1 1
4 4 4 3 2

) (
3 1 2
4 4 3

) (
1 1
4 2

) (
3 2 2
4 4 3

)
16

(
3 2 1 2 1
4 4 4 3 3

) (
1 2
4 3

) (
1 1 1
4 3 2

) (
2 1 1
4 4 3

) (
3 2 1 1
4 4 4 3

)
24

(
1 2 1 1
4 3 3 2

) (
2 1 1
3 3 2

) (
1 2 1 1
4 3 3 2

) (
1 2 1
4 3 2

) (
3 2 1
4 3 2

)
32

(
3 2 1 1
4 4 4 3

) (
3 2 1 1
4 3 3 2

) (
2
3

) (
1 2 1
4 3 3

) (
2 1 2
4 4 3

)

C TECHNICAL APPENDICES WITH ADDITIONAL RESULTS FOR
REPRESENTATION OF QUANTUM CIRCUIT OPTIMIZATION

C.1 PROBLEM SETTINGS AND SOLUTIONS

The goal of quantum circuit optimization is to approximate a quantum operator U by a quantum
circuit composed of several quantum gates. Following the common setting in quantum computing,
we assume that each two-qubit gate operates on adjacent qubits in a 1D chain. As shown in Fig. 9, a
4 qubits quantum operator U (a) can be represented as a quantum circuit with five two-qubit gates
(b). In practice, finding a quantum circuit like (b) is challenging. An efficient way that avoid circuit
structure searching is directly using the quantum circuits with a brick-wall structure with 3 blocks, as
shown in Fig. 9 (c). However, the quantum circuits constructed using brick-wall structures are not
always compact due to the redundancy of quantum gates (e.g., the gates in the red-dotted boxes in
Fig. 9 (c)). In this work, we aim to efficiently search for a more compact representation with fewer
quantum gates compared to the brick-wall structure.

(c)

Representation of U using Brick
(b)

Quantum circuit corresponds to U

U

(a)

Quantum opreator U

Figure 9: Illustration of the representation of a quantum operator.

C.2 GENERATION OF SYNTHETIC QUANTUM OPERATORS

In our experiment, we consider synthetic quantum operators with dimension I = 2 and qubit counts
Q = 4, 8, 12. For each qubit count, a quantum circuit using a brick-wall structure with M blocks
is constructed. Then, a quantum circuit is generated by randomly masking a number of quantum
gates, as shown in Fig.10 and Table.14. Finally, for each quantum circuit, 20 quantum operators
are obtained by sampling quantum gates from the Haar-Gaussian distribution and contracting them
according to the generated quantum circuit structure.

C.3 GENERATION OF QUANTUM FOURIER TRANSFORM (QFT) OPERATORS

The QFT is to represent the discrete Fourier transform (DFT) using a quantum circuit. As analyzed in
(Chen et al., 2023; Camps et al., 2021), the DFT matrix can be efficiently represented by QFT using

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) (b) (c)

quantum circuit (4 qubits)

Case A (5 qubits) Case A (6 qubits)

Figure 10: Example of the quantum circuits generated for the synthetic quantum operator experiment
(Q = 4).

Table 14: TNO structure for generation of synthetic quantum operators.
#qubits #block Mask locations for each block
Q M Block 1 Block 2 Block 3 Block 4 Block 5

4 3 1 2 1, 3 / /
8 5 3, 4, 6 2, 3, 6, 7 1, 2, 4, 5, 7 1, 3, 5, 6 2, 4, 5, 6
12 3 2, 3, 4, 6, 8, 10 1, 3, 5, 6, 7, 9, 11 1, 2, 4, 5, 7, 8, 9, 10, 11 / /

matrix (tensor) decomposition due to its special structure. In our experiment, we consider the DFT
matrix F of size 2Q × 2Q with Q = 4, 6, and the QFT operator is set as U = F .

C.4 ALGORITHM FOR QUANTUM CIRCUIT OPTIMIZATION

From the view of TNO, the quantum circuit can be seen as a TNO graph, and the quantum gates
can be represented using the core tensors. Thus, representing a quantum operator U is equivalent to
approximating it using a TNO graph with some core tensors. Additionally, according to the property
of quantum computing, we should constrain the core tensors to be unitary and relax the value to be
complex-valued.

Concentrating on the goal of compact representation, we assume the M for each generated synthetic
quantum operator U is known and directly deploy Phase II to the brick-wall TNO structure with
M blocks. While for each QFT operator, M is set to a relatively large value to achieve a satisfactory
high fidelity. At each evaluation, given a TNO and the quantum operator U , the density-matrix
renormalization group (DMRG) method (Schollwöck, 2005) is applied to optimize the core tensors,
with each core tensor initialized as an identity tensor. The loss function πD(·) in Eq. (2) is defined as

πD(X) = 1− |tr
(
U†X

)
|/IQ. (6)

where |tr(U†X)|/IQ is the normalized fidelity quantifying the ’closeness’ between two operators U
and X . The η2 is set to 10−3. For each case of representing synthetic quantum operators, the fidelity
is averaged over the generated 20 unitary operators.

C.5 IMPLEMENTATION

Due to limited resources, we implement the quantum experiment just in the proof-of-concept scale
using a laptop MacBook Air 13-inch with M3 chip and memory of 24 GB.

D PROOFS FOR PROPOSITION 3.1

In this section, we present the proof of Proposition 3.1 from the main manuscript. Recall the
proposition as follows.

Proposition D.1 (Perturbation analysis). Let ZM = {Z1, . . . , ZM} be a system of TNOs with
ZM ∈ argminYM∈ts(G1,...,GM ;Q,K,I) πD(YM), where πD is a task loss defined jointly on multiple

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

operators. Suppose one operator Zj contains a maskable core G with ∥G∥F = 1 and opera-
tor–Schmidt rank S. Let ZM,⋆ = {Z1, . . . , Y

⋆
j , . . . , ZM} be the system obtained by replacing Zj

with its best masked version

Y ⋆
j ∈ arg min

Y ∈tno(Gmask;Q,K,I)
πD({Z1, . . . , Y, . . . , ZM}),

where Gmask is obtained by masking G. If πD is L-Lipschitz in ∥ · ∥F with respect to each operator,
then

|πD(ZM,⋆)− πD(ZM)| ≤ LC
√
S − 1,

where C depends only on the contracted environment of G. In particular, if S = 1, masking G does
not increase the loss.

Proof. Let ZM = {Z1, . . . , ZM} ∈ ts(G1, . . . , GM ;Q,K, I) be system-optimal:

ZM ∈ arg min
YM∈ts(G1,...,GM)

πD(YM).

Fix an index j and a maskable core G inside Zj with ∥G∥F = 1 and operator–Schmidt decomposition
G =

∑S
r=1 λr Ur ⊗ Vr, where λ1 ≥ · · · ≥ λS ≥ 0 and ∥Ur∥F = ∥Vr∥F = 1. By the bipartition

assumption, contracting the entire network except G defines a linear map

T : FIK×IK

−→ FIQ×IQ

, such that Zj = T (G).
Since T is linear, write

Zj = T (G) =
S∑

r=1

λr T (Ur ⊗ Vr).

A realizable masked candidate. Masking G removes that core and reconnects its neighbors.
Because the top Schmidt term U1 ⊗ V1 factorizes across the bipartition, it can be absorbed into the
adjacent cores on each side of the cut, hence is realizable in the masked class. Therefore, there exists
Y

(0)
j ∈ tno(Gmask;Q,K, I) such that

Y
(0)
j = T (U1 ⊗ V1).

Define the system candidate ZM,(0) := {Z1, . . . , Y
(0)
j , . . . , ZM}.

Environment norm bound. Let C := ∥T ∥2→F := supX ̸=0
∥T (X)∥F

∥X∥F
, which depends only on the

(fixed) contracted environment surrounding G. Then

∥Zj − Y
(0)
j ∥F =

∥∥∥ S∑
r=2

λr T (Ur ⊗ Vr)
∥∥∥
F
≤

S∑
r=2

λr ∥T (Ur ⊗ Vr)∥F ≤ C
S∑

r=2

λr.

Since ∥G∥2F =
∑S

r=1 λ
2
r = 1, Cauchy–Schwarz yields

∑S
r=2 λr ≤

√
S − 1 (

∑S
r=2 λ

2
r)

1/2 ≤√
S − 1, hence

∥Zj − Y
(0)
j ∥F ≤ C

√
S − 1.

Lipschitz transfer to task loss. By the L-Lipschitz property of πD w.r.t. each operator in Frobenius
norm,

|πD(ZM,(0))− πD(ZM)| ≤ L ∥Zj − Y
(0)
j ∥F ≤ LC

√
S − 1.

Optimal masked replacement. By definition,

Y ⋆
j ∈ arg min

Y ∈tno(Gmask;Q,K,I)
πD({Z1, . . . , Y, . . . , ZM}),

so πD(ZM,⋆) ≤ πD(ZM,(0)), where ZM,⋆ := {Z1, . . . , Y
⋆
j , . . . , ZM}. Therefore,

|πD(ZM,⋆)− πD(ZM)| ≤ |πD(ZM,(0))− πD(ZM)| ≤ LC
√
S − 1.

Finally, if S = 1 then Zj = T (U1 ⊗ V1) is itself realizable post-masking, so we may choose
Y

(0)
j = Zj , giving zero loss change. This proves the claim.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

=

Figure 11: A simple example demonstrating the equivalence of masking different core tensors in a
QTN.

We emphasize that a small Schmidt rank, as discussed in Proposition 3.1, is not a necessary condition
for masking a core tensor to have minimal impact on approximation error. This is demonstrated by a
simple yet insightful example in Figure 11, where two core tensors occupy a commutative position
within a TNO, and each individually possesses full model representation. In this case, masking
either core tensor yields an equivalent result, regardless of its Schmidt number. More generally,
this condition holds when the Zariski closure (Landsberg et al., 2012) of the remaining TNO spans
the entire ambient space FIK×IK

. Such universal representation properties are well-studied in the
context of quantum computing Barenco et al. (1995); Möttönen et al. (2004).

E STATEMENT OF THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the writing of this paper, language polishing and grammar checking were partially assisted by
Large Language Models (LLMs). The LLMs were used to improve the accuracy and fluency of the
text, with all modifications reviewed and approved by the author to ensure originality and academic
integrity.

25

	Introduction
	Related Works

	Basics of Joint TN-SS
	Tensor Network Operators
	Joint TN-SS: Extending TN-SS to TNO systems
	A Brief Review of Symmetry Breaking and Connection to Joint TN-SS

	The Proposed Approach
	Reformulation Inspired by Symmetry Breaking
	Algorithm

	Numerical Results
	Joint Tensor decomposition on synthetic data
	Parameter efficient fine-tuning (PEFT) for LLMs
	Memory-efficient quantum circuit optimization

	Concluding Remarks
	Technical appendices with additional results for synthetic data
	Computational analysis of the proposed algorithm
	Details of synthetic data generation
	TN-SS algorithms for Phase I
	Tensor decomposition for TNO
	Implementation
	Additional experimental results on synthetic data

	Technical appendices with additional results for LLMs fine-tuning
	Commonsense reasoning datasets
	PEFT for TNO
	Implementation
	Additional experimental results on LLM fine-tuning

	Technical appendices with additional results for representation of quantum circuit optimization
	Problem settings and solutions
	Generation of Synthetic quantum operators
	Generation of quantum Fourier transform (QFT) operators
	Algorithm for quantum circuit optimization
	Implementation

	Proofs for Proposition 3.1
	Statement of the Use of Large Language Models (LLMs)

