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ABSTRACT

Tensor networks (TNs) offer a compact representation for high-dimensional op-
erators in physics and machine learning. While TN structure search (TN-SS) has
advanced model selection, prior work is limited to a single operator. Yet real sys-
tems, such as transformers and quantum circuits, would contain multiple coupled
operators, where treating them independently or enforcing a single shared structure
is fundamentally limiting. We introduce joint TN-SS, the first framework for multi-
operator structure search. Our physics-inspired algorithm runs in two phases: a
symmetry phase, where standard TN-SS finds a shared structure capturing common
inductive bias; and a symmetry-breaking phase, where operator-specific diversity
emerges through greedy core masking, guided by task-explainable loss tolerances.
Across tensor decomposition, parameter-efficient fine-tuning of LLMs, and quan-
tum circuit optimization, joint TN-SS delivers more compact representations with
equal or better accuracy than state-of-the-arts, with affordable search cost. These
results demonstrate that symmetry-driven diversification offers a simple, general,
and scalable solution to TN structure selection in multi-operator systems.

1 INTRODUCTION

Linear operators are the foundation of modern computation. In machine learning (ML) for example,
multiple linear operators appear as fully connected, convolutional, and attention layers, but their
high dimensionality often results in prohibitive computational and memory costs (Desislavov et al.,
2023). Tensor networks (TNs) offer a structured and parameter-efficient way to represent linear
operators (Orús, 2019; Memmel et al., 2024), driving growing interest in tensor network operators
(TNOs) across ML (Novikov et al., 2015; Stoudenmire & Schwab, 2016; Richter et al., 2021; Yang
et al., 2024; George et al., 2024), quantum physics, and beyond.

This growing adoption raises the central challenge of tensor network structure search (TN-SS): how
to select TNs’ structure-related hyperparameters such as ranks (Kodryan et al., 2023; Zheng et al.,
2024), topologies (Li & Sun, 2020), or permutations (Li et al., 2022; Zeng et al., 2024a). Because
TN-SS is NP-hard (Hillar & Lim, 2013) and highly combinatorial, existing methods rely on heuristics
and therefore focus almost exclusively on optimizing a single TN, or at most imposing one shared
structure across multiple operators.

However, numerous studies have shown that the structural complexity of linear operators in deep
neural networks varies substantially across layers. For instance, transformer weights often exhibit
low-rank structure, but the low-rankness differs dramatically between layers (Jaiswal et al., 2024;
Wang et al., 2024). Similar findings in adaptive pruning and low-rank adaptation further highlight
that different operators respond unequally to factorization or sparsity (Frantar & Alistarh, 2023; Yang
et al., 2024). These results expose a key weakness of existing TN-SS methods: they ignore inter-layer
heterogeneity by forcing either isolated optimization or rigid sharing across operators. The open
question is how to search for diverse yet efficient TN structures across multiple operators without
exploding the search cost.

To address this challenge, we introduce the first formal formulation of joint TN-SS, together with
a simple yet efficient algorithm inspired by the principle of symmetry breaking in physics (Lee,
1974). See Figure 1 for illustration. Just as symmetry breaking lowers energy in physical systems,
we observe, in the context of joint TN-SS, a shared structure (i.e., a symmetric solution space)
always exists across operators but is typically suboptimal. More efficient solutions emerge when
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Figure 1: Symmetry breaking (SB) in joint TN-SS. Subfigures (a-b) illustrates the SB in
physics (cms, 2022) and the inspiration for the proposed two-phase algorithm. Subfigure (c) demon-
strates the search efficiency of the proposed methods compared to vanilla TN-SS methods; experi-
mental details are provided in Section 4.1.

introducing controlled diversity close to that shared structure. Guided by this principle, we develop a
two-phase algorithm: Phase I enforces structural sharing for search efficiency, and Phase II
introduces operator-specific diversity through greedy-like core masking. A unified loss (5) governs the
transition, with task-specific tolerances replacing opaque hyperparameters for practical explainability.
Extensive numerical results across domains, including joint tensor decomposition, parameter-efficient
fine-tuning of LLMs, and quantum circuit decomposition, confirm that our approach consistently
produces more compact and effective TN representations than the existing TN-SS methods with
minimal overhead. Our contributions are summarized as follows:

• We introduce the first formal framework for joint TN-SS, extending TN-SS to multi-operator
systems and addressing heterogeneity ignored by prior work;

• We propose a symmetry-breaking algorithm that balances efficiency with expressiveness
through structured diversification;

• We demonstrate broad applicability and consistent gains in parameter efficiency, scalability,
and accuracy across domains.

1.1 RELATED WORKS

Tensor networks (TNs) in representing linear operators. TNs generalize classical tensor decompo-
sitions (Hitchcock, 1927; Tucker, 1966) (see reviews (Kolda & Bader, 2009; Cichocki et al., 2017))
and have become a standard tool for representing high-dimensional operators in both physics and
ML (Novikov et al., 2015; Hou et al., 2019; Kossaifi et al., 2020; Chen et al., 2024a; Wang et al., 2024),
where multiple operators are often coupled through nonlinearities or a unified loss. To capture diverse
correlation patterns, a wide range of variants have been developed, from tensor train (also known
as MPO) (Oseledets, 2011), tensor ring (TR) (Zhao et al., 2016), and tubal-SVD (Kilmer & Martin,
2011) to more flexible circuit-like TNs such as tree (Hackbusch & Kühn, 2009), stairs (Rudolph
et al., 2023), brick-wall (Bensa & Žnidarič, 2021), and random circuits. These circuit-like designs are
particularly relevant for quantum computing and show strong potential in recent ML studies (Chen
et al., 2024a; Li et al., 2025). With this explosion of architectures, tensor network structure search
has emerged as a central challenge in the field.

Tensor network structure search (TN-SS). TN-SS extends classical TN rank selection (Babacan
et al., 2012; Rai et al., 2014; Zhao et al., 2015; Yokota et al., 2016) to richer structure-related
hyperparameters such as topology and tensor permutations (Cheng et al., 2020; Mickelin & Karaman,
2020; Li et al., 2021a; Kodryan et al., 2023; Hayashi et al., 2019; Hashemizadeh et al., 2020; Li
& Sun, 2020; Haberstich et al., 2023; Chen et al., 2024b; Zheng et al., 2024; Li et al., 2023; Zeng
et al., 2024a; Guo et al., 2025). Despite steady progress, two major gaps remain. First, the structural
modeling of those circuit-like TNs has never been systematically formulated. Second, existing TN-SS
methods almost exclusively target a single TN or enforce one shared structure across operators,
ignoring inter-operator heterogeneity. This work closes both gaps. We provide the first formal
formulation for the structural representation of circuit-like TNs and introduce joint TN-SS, the first
framework for simultaneous structure search across multiple operators within a unified system.
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2 BASICS OF JOINT TN-SS

We introduce the key concepts of tensor networks, present the new formulation of joint TN-SS, and
close with a brief review of symmetry breaking, the central inspiration for our search algorithm.

Notations. We use R, C, and Z>0 to denote the sets of real numbers, complex numbers, and positive
integers, respectively. When both fields are admissible, we use F ∈ {R,C}. Bold lowercase and
uppercase letters (e.g., x ∈ FN , A ∈ FI×J ) represent vectors and matrices, respectively, and
calligraphic letters (e.g., A,B ∈ FI1×···×IN ) denote tensors. For a vector x ∈ Fn, diag(x) ∈ Fn×n

denotes the diagonal matrix whose diagonal entries are given by x. The symbol ⊗ is used for the
tensor product, and

⊗
denotes a sequential application of the products. We use × for the Cartesian

product between sets and ◦ for function actions on graphs. The space H := FI1 ⊗· · ·⊗FIN is written
as FI1×···×IN or

⊗N
n=1 FIn for brevity. The notation | · | denotes norm-like quantities depending on

context: e.g., |ϕ| is the absolute value for ϕ ∈ C, and |G| denotes the order (number of vertices) of a
graph G. Last, we define [K] := {1, 2, . . . ,K} for convenience.

2.1 TENSOR NETWORK OPERATORS

Tensor network (TN). We adopt the formal definition of TNs by Ye & Lim (2019), where a TN,
denoted by tnsH(G, r, p), is defined as a set of tensors in a space H. Here, G = (V,E) is a graph
that defines the TN topology (Li & Sun, 2020), where the vertex set V corresponds to a collection of
core tensors, while each edge in E indicates a tensor contraction between connected tensors. The
function r : E → Z>0 assigns a positive integer to each edge, specifying the TN ranks. Additionally,
the mapping p : {FIn}Nn=1 → V associates each input subspace FIn with a vertex of G, specifying
the TN permutation (Li et al., 2022). For a more detailed introduction to TNs, we refer readers to the
overview (Cichocki et al., 2016).

Tensor network operator (TNO). In this work, we focus on TNOs, a special class of circuit-like
TNs designed to represent linear operators, as explored in recent studies (Li et al., 2021b; Liu
et al., 2024b; Chen et al., 2024a). Formally, let Q,K, I ∈ Z>0 with K ≤ Q. A TNO of order
(Q,K) and dimension I associated with a graph G = (V,E) defines a subset of TNs, denoted by
tno(G;Q,K, I) ⊆ tnsH(G, r, p) ⊆ H :=

⊗N
n=1 FIn . The construction imposes three conditions:

1) N = 2Q; 2) each mode dimension satisfies In = I for all n ∈ [2Q] with ranks fixed r(e) = I
for all e ∈ E; 3) the graph G with mapping p is arranged such that every core tensor admits an
unfolding (Cichocki et al., 2017) isomorphic to an IK×IK matrix. As such, anyX ∈ tno(G;Q,K, I)
admits a unified unfolding into an IQ × IQ matrix, making the operator structure explicit.

TR matrix TR matrix a general TNO
(a) (b) (c)

TNOs thus compactly represent high-dimensional operators of size
IQ×IQ through the contraction of a sequence of lower-dimensional
operators of size IK × IK . Because all core tensors are constrained
to be isomorphic to square matrices, circuit graphs (see right figures
for example) offer a more intuitive visualization of complex TNOs
than traditional TN diagrams (Li & Sun, 2020; Li et al., 2022; 2023).
As illustrated on the right, subfigures (a) and (b) show a TR matrix
in both traditional and circuit representations, while subfigure (c) depicts a more general TNO model.

TNO system. Multiple TNOs build up a TNO system. Given Q,K, I , we formulate a M -dimensional
TNO system as follows:

ts(G1, G2, . . . , GM ;Q,K, I) := tno(G1)× tno(G2)× · · · × tno(GM ), (1)

where tno(Gm) := tno(Gm;Q,K, I) for all m. This construction creates a unified combinatorial
space of operators that share the same parameters (Q,K, I) but may differ in topology through
graphs {Gm}Mm=1. We remark that each element in ts(G1, G2, . . . , GM ;Q,K, I) can be viewed as
a vector of operators, which makes the framework able to model multiple, distinct linear operators
that jointly define a system. For example, in computer vision, it can capture multi-view video tensors
where each view is represented by a tensor; in deep learning, it can model a collection of linear
layers in a neural network, where each layer may benefit from a different structure; and in quantum
computing, it represents different unitary blocks in a circuit, which must be optimized jointly but are
not identical. This perspective highlights that a TNO system encodes heterogeneity across operators
in a principled way, going beyond the treatment of one TN in isolation.
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2.2 JOINT TN-SS: EXTENDING TN-SS TO TNO SYSTEMS

Building on prior studies in TN-SS (Li & Sun, 2020; Li et al., 2022; 2023), we move beyond the
conventional task of optimizing a single TN to the more general and practically relevant setting
of joint TN-SS. Formally, given parameters Q,K, I , the goal is to solve the bi-level optimization
problem:

min
{Gm}M

m=1

min
XM

πD(XM )

s.t. Gm ∈ Gm, m ∈ [M ], XM ∈ ts(G1, G2, . . . , GM ;Q,K, I)
, (2)

where Gm denotes the set of valid graphs satisfying the TNO constraints in Section 2.1, and πD(·) :
FIQ×IQ → R is a task-specific loss function defined on some data D. Note that in the existing
TN-SS literature (Li & Sun, 2020; Li et al., 2022; 2023; Zeng et al., 2024b;a) the graph G is typically
represented by adjacency matrices. However, such a representation makes it difficult to enforce the
required TNO structural constraints. To overcome this, we introduce a vertex-indexed incidence (VI)
matrix representation, which naturally encodes circuit-like structures. Specifically, for each TNO
with graph Gm, we define:

Im =


im1,1 im1,2 · · · im1,Lm

im2,1 im2,2 · · · im2,Lm

...
...

. . .
...

imK,1 imK,2 · · · imK,Lm

 , (3)

where Lm is the order of Gm, and the entries satisfy imk,l ∈ [Q] and imk1,l
̸= imk2,l

for all l ∈ [Lm],
k1, k2 ∈ [K] with k1 ̸= k2.

2.3 A BRIEF REVIEW OF SYMMETRY BREAKING AND CONNECTION TO JOINT TN-SS

Our approach to joint TN-SS is motivated by the physical principle of symmetry breaking (SB),
where a system transitions from a symmetric to an asymmetric state (Lee, 1974). A classical example
is the Higgs potential (Melo, 2017):

V (ϕ) = λϕ4 + µ2ϕ2, (4)

where ϕ =
√
ϕ2
x + ϕ2

y is the field magnitude, λ > 0 ensures stability, and µ2 controls the curvature.

The system’s behavior depends critically on the sign of µ2. When µ2 > 0, the potential has a unique
symmetric minimum at ϕ = 0, where all trajectories collapse to the same state. When µ2 < 0
(µ ∈ C), the potential becomes a “Mexican hat” (see Figure 1 (b)) with infinitely many degenerate
minima along a ring, forcing the system to spontaneously choose one, thereby breaking symmetry.

Connection to joint TN-SS. This physics metaphor directly informs our algorithmic design. In joint
TN-SS, the challenge is the combinatorial explosion of possible structures as the number of TNOs M
grows. SB suggests a natural way to manage this complexity:

• Symmetry regime (µ2 > 0) — all TNOs share a common structure, collapsing the search to
standard TN-SS and giving a tractable starting point;

• SB regime (µ2 < 0) — diversity is gradually introduced as the system “selects” differ-
ent operator-specific structures, analogous to particles settling in different minima of the
Mexican hat.

This phase transition, from enforced symmetry to controlled asymmetry, provides a principled
mechanism to reduce the search space initially, then progressively enrich it. Instead of facing the full
exponential complexity of unconstrained joint search, our algorithm leverages SB to unlock diversity
only when needed, enabling efficient exploration of heterogeneous TNO structures.

4
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3 THE PROPOSED APPROACH

3.1 REFORMULATION INSPIRED BY SYMMETRY BREAKING

For brevity, we write qs(G1, . . . , GM ) := qs(G1, . . . , GM ;Q,K, I). The joint TN-SS problem (2)
is reformulated by imposing a common TN structure and introducing controlled structure diversity, in
direct analogy to the Higgs potential (4):

min
G∈Gq,{ϵm}M

m=1

min
XM∈ts(G1,G2,...,GM )

πD(XM ) + λ

M∑
m=1

|ϵm|,

s.t. Gm = G ◦ ϵm, ∀m ∈ [M ].

(5)

Here, Gq denotes the set of valid graphs satisfying the TNO constraints. Each ϵm : Gq → Gq

represents a graph operation applied to G, while λ ∈ R controls the strength of a regularization
term penalizing the “degree” of the structure diversity. Compared to the original formulation (2), (5)
assumes that all structures {Gm} are generated from a common graph G with small perturbations
{ϵm}. The regularization balances the trade-off between structural sharing (when ϵm is close to
identity) and diversity (when “big” ϵm’s are encouraged), thereby mirroring the transition from
symmetry to symmetry breaking.

It is worth emphasizing that imposing the common graph G does not limit expressiveness. By the
universal approximation property of circuit-like TNs (Barenco et al., 1995; Möttönen et al., 2004),
we know there always exists a sufficiently high order G that can represent all operator-specific graphs
{Gm}. While highly diverse Gm may in principle require a large G, our experiments show that in
practice one can almost always find an affordable G close to optimal. From this shared structure, the
perturbations ϵm efficiently specialize into diverse Gm with more compact representation for a TNO
system. Hence, the common graph is not a restriction but a trick for efficiency: it reduces the initial
combinatorial burden while still enabling the emergence of heterogeneous, task-adapted structures.

core maskingTNO

=

Practical choice of ϵm. Empirically, we use core masking as a
simple yet powerful mechanism for modeling ϵm in (5), offering
both efficiency and effectiveness at negligible cost. As illustrated
on the right, core masking corresponds to removing selected core
tensors from a TNO, and the regularization term |ϵm| in (5) is
defined as the number of core tensors masked by ϵm. Formally, let wm ∈ {0, 1}Lm be a binary mask
over the Lm core tensors of the m-th TNO of XM with graph Gm = (Vm, Em) and VI matrix Im ∈
[Q]K×Lm . We have ϵm(wm) : (Im, {Gm,ℓ}) 7→ (Im(diag(1−wm)), {G̃m,ℓ}), where G̃m,ℓ = Gm,ℓ

if wm,ℓ = 0 and G̃m,ℓ equals identity otherwise, and thus |ϵm| = ∥wm∥0 =
∑Lm

ℓ=1 wm,ℓ.

Hyperparameter λ and phase transition. Note that the tuning parameter λ in (5) plays the same
role as the mass parameter in the Higgs potential (4), shaping the loss landscape and governing
the transition between the symmetry and SB regimes. When the common graph G is sufficiently
expressive to have a smaller value of πD and λ ≥ 0, the system remains in a symmetry regime: the
optimal graphs {Gm}Mm=1 must collapse to the single common graph G, since any non-trivial core
masking would be penalized. In this case, each ϵ∗m equals the identity, and the joint TN-SS problem
reduces to vanilla TN-SS. This phase provides an efficient initialization by enforcing structural
sharing.

When λ < 0, the system enters the SB regime. While negative regularization is unusual in ML, in
physics it is precisely what drives the Mexican-hat potential to favor multiple nonzero minima. In
our setting, it encourages independent, operator-specific core masking across the {Gm}, thereby
breaking symmetry and introducing structural diversity. This transition expands the search space in a
controlled manner, guiding the system toward more compact, heterogeneous configurations that often
achieve lower loss.

3.2 ALGORITHM

Motivated by symmetry breaking, we propose a two-phase algorithm that first enforces a shared
structure for efficiency and then gradually introduces diversity via core masking.

5
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Algorithm 1 The proposed algorithm for joint TN-SS (sketch)
1: Initialize: parameters Q,K, I , tolerance η1, η2 with η1 ≤ η2.
2: Define f(·) = minXM∈ts(·) πD(XM ).
3: Obtain common structure G← TN-SS(f) with f(G) ≤ η1 ▷ Phase I: symmetry
4: Set Gm ← G with Gm = (Vm, Em) for all m ∈ [M ] .
5: repeat ▷ Phase II: symmetry breaking!
6: Pick one core tensor v from

⋃M
m=1 Vm at random.

7: Construct masked candidates G′
m = Gm ◦ ϵ(v) for all m. ▷ v is masked from Gm.

8: Evaluate f ′ = f({G′
m}).

9: if f ′ ≤ η2 then
10: Accept: Gm ← G′

m for all m.
11: end if
12: until no further improvement is found
13: Output: {Gm}Mm=1

As analyzed in Sec. 2.3, the optimal solution of (5) in the symmetry regime collapses to a common
graph G. Thus, in Phase I we set ϵ∗m to be identity for all m ∈ [M ] and run any TN-SS method1

to find G with f(G) ≤ η1. A small η1 ensures G is expressive, though possibly redundant. Once G
is fixed, the algorithm enters Phase II (the SB regime), where structural diversity is introduced by
iteratively masking cores: at each step, a vertex v (corresponding to a core tensor) is sampled from⋃M

m=1 Vm, across all TNOs, and the updated graphs are evaluated. If the task loss remains within
tolerance η2, the change is accepted; otherwise, a new masked candidate is tried. The process stops
when no further beneficial masks are found. Note that the gap η2 − η1 quantifies the performance
budget for pruning redundant core tensors and encouraging operator-specific diversity.

Crucially, λ in (5) is never tuned directly in the algorithm. Its effect is implicitly encoded by (η1, η2),
which provide an explainable, task-specific rule for when symmetry should be enforced and when
diversity is allowed. This yields a practical phase transition mechanism that avoids the exponential
cost of unconstrained joint search. Moreover, the greedy masking ensures the number of evaluations
grows only linearly with M in Phase II. Experiments in Sec. 4 confirm that our method achieves
more compact TN representations with little overhead.

Finally, the following perturbation bound illustrates that the loss increase from masking a core is
controlled by its operator–Schmidt rank:
Proposition 3.1 (Perturbation analysis). Let ZM = {Z1, . . . , ZM} be a system of TNOs with ZM ∈
argminYM∈ts(G1,...,GM ;Q,K,I) πD(YM ). Suppose one operator Zj contains a maskable core G with
∥G∥F = 1 and operator–Schmidt rank S. Let ZM,⋆ denote the TNO system obtained by replacing
Zj with its best masked version Y ⋆ ∈ argminY ∈tno(Gmask;Q,K,I) πD({Z1, . . . , Y, . . . , ZM}), where
Gmask = Gj ◦ ϵ(G). If πD is L-Lipschitz in ∥ · ∥F with respect to each operator, then

|πD(ZM,⋆)− πD(ZM )| ≤ LC
√
S − 1,

where C depends only on the contracted environment of G. In particular, if S = 1, masking G does
not increase the loss.

The proof is in the Appendix D. Prop. 3.1 shows that rank-one cores can be pruned without loss,
while higher ranks incur bounded perturbations scaling with

√
S − 1. This provides a sufficient

criterion for identifying redundant core tensors, though we argue in the Appendix that low Schmidt
rank is not necessary, owing to the universality of TN approximations.

4 NUMERICAL RESULTS

We evaluate the proposed algorithm on diverse domains: joint tensor decomposition, parameter-
efficient fine-tuning of LLMs, and quantum circuit optimization, to demonstrate its effectiveness.
Due to space limits, we report only key settings in the main text; full experimental details are deferred
to the Appendix.

1Appendix A.3 provides guidelines for adapting TNGA (Li & Sun, 2020), TNLS (Li et al., 2022), TnALE (Li
et al., 2023), and Greedy (Hashemizadeh et al., 2020) to TNOs.
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4.1 JOINT TENSOR DECOMPOSITION ON SYNTHETIC DATA

We evaluate first the performance of our algorithm on tensor decomposition using synthetic tensors.

Data preparation. We choose Q = 5, K = 2, I = 2 and M = 4 for convenience, following (1),
This choice corresponds to optimizing structures for tensors of order-10, which is markedly larger
than in most prior TN-SS benchmarks, providing a challenging yet tractable testbed for evaluating
our joint TN-SS algorithm. Additional results on varying Q, I , and M are reported in Appendix
A.6. Next, we choose four circuit-like TN structures widely used in ML or physics, including
tensor train (TT, Oseledets 2011), “stairs-like” TN (Stairs, Rudolph et al. 2023), “brick-wall” TN
(Brick, Bensa & Žnidarič 2021), and randomly-connected TN (Rand.), to construct the common
graph G in (5)2, and then randomly mask core tensors from G individually to obtain the diverse
{Gm}Mm=1 for each TNO in the system. Once the structures are determined, we follow the real-valued
and i.i.d. Gaussian distribution N (0, 1) to generate the values of core tensors. Synthetic tensors are
thus obtained by contracting the core tensors.

Setup. For our algorithm, we set πD(XM ) to be the relative squared error (RSE, Li & Sun 2020)
calculated globally among all TNOs, and use Adam (Kingma & Ba, 2014) to optimize the value of
core tensors. The setting of L is determined differently for each data, following a basic principle
that L should be relatively large to achieve a satisfactory approximation error in Phase I. The
tolerances η1, η2 are set to 5× 10−10 and 10−6, respectively (the sensitivity analysis of L and η2 are
given in Appendix A.6). We regard the approximation as successful if RSE ≤ 10−6.

Baselines. For comparison, we adopt four state-of-the-art TN-SS algorithms: TNGA (Li & Sun,
2020), TNLS (Li et al., 2022), TnALE (Li et al., 2023), and Greedy (Hashemizadeh et al., 2020). They
also serve as the backbone optimizers for the common graph G in Phase I of our approach. To han-
dle TNO structures, we introduce minimal adaptations on the baselines while keeping each algorithm’s
original search dynamics intact. Details of these modifications are provided in Appendix A.3.

Results. Figure 2 (a–c) reports results across different TN-SS baselines. We first see from Figure 2
(a) that Phase II significantly reduces the total number of core tensors, resulting in more compact
TN representations than the existing TN-SS methods. Furthermore, we see from Figure 2 (b) that
such compression preserves accuracy. The approximation error remains at RSE ≤ 10−6 in nearly all
cases. Third, Figure 2 (c) illustrates that the evaluation cost in Phase II (dark bars) is consistently
lower than in Phase I, confirming the efficiency of symmetry breaking.

For fairness, we also tested vanilla TN-SS with the assumption of sharing structure among TNOs
with the same |V | as our methods, as done in many existing works. Figure 2(b) shows, this severely
limits performance: none of the methods in this setting reach RSE ≤ 10−6, except TNLS on TT.
This contrast highlights that structural diversity is important for achieving the full expressive power
of TNOs.

Phase transition during the search. Figure 2 (d–f) shows the search dynamics on Rand. with our
approach (that uses TNGA in Phase I). A clear phase transition emerges: once entering Phase
II (the SB regime), the number of core tensors steadily decreases (Figure 2(d)) while RSE remains
stable (Figure 2(e)). At the same time, the per-iteration evaluation cost drops sharply (Figure 2(f)),
highlighting both efficiency and accuracy of the transition.

Experimental details for cover image. We further test a plausible baseline where vanilla TN-SS
tackles joint TN-SS by composing all TN structures together into a single large graph. As shown in
Figure 1(c), vanilla TN-SS (TNGA on Rand., blue/red curves) is significantly less efficient than our
approach ( yellow curve). This highlights the power of the shared-structure prior in (5), which guides
the search toward diverse yet compact solutions at far lower cost.

4.2 PARAMETER EFFICIENT FINE-TUNING (PEFT) FOR LLMS

We next demonstrate that our approach improves parameter efficiency in the PEFT task for LLMs.
For disclaimer, this experiment is not intended to propose a new practical PEFT method, but rather to
highlight how joint TN-SS itself contributes to parameter-efficient representations.

2Note that our focus is on TN structures tailored for high-order tensors; thus, classical tensor decomposition
models such as CP, Tucker and tSVD are excluded from our experiments.
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Figure 2: Experimental results of tensor decomposition. (a) Shaded and colored bars show the total
number of core tensors in Phase I and Phase II, respectively; (b) Solid and hollow markers
indicate the RSE achieved by the proposed algorithm after Phase II and by the vanilla TN-SS with
|V | matched to that obtained by the proposed algorithm. The red dotted line marks the RSE = 10−6

threshold; (c) Light and dark bars denote the total number of evaluations in Phase I and Phase
II, respectively; (d)-(f) Search dynamics of Rand. using TNGA, where blue and red regions
correspond to Phase I and Phase II.

Table 1: Test performance of PEFT. The results marked
with “*” are from Li et al. (2024). The details for QuanTA-
6/4/2 are described in Appendix B.2.

Method #Params PIQA SIQA OBQA ARC-e ARC-c Avg.
LoRA∗ 3.200% 82.1 69.9 80.4 73.8 50.9 71.4
DoRA∗ 3.200% 82.7 74.1 80.6 76.5 59.8 74.7

QuanTA-6 0.041% 79.9 75.9 80.0 84.8 63.3 76.8
Ours 0.031% 80.4 76.2 80.2 84.7 63.7 77.0
QuanTA-4 0.024% 79.2 73.5 77.2 84.4 62.6 75.4
Ours 0.024% 80.3 75.1 78.4 84.2 63.4 76.3
QuanTA-2 0.017% 78.1 72.5 74.8 82.1 57.1 72.9
Ours 0.017% 79.7 72.7 78.0 83.1 59.9 74.7

Figure 3: Param. reduction dynamics.
(a) Number of param. over iterations;
(b) Layer-wise parameter allocation on
ARC-c, where the three colors indicate
different stages in search.

Setup. We build upon QuanTA (Chen et al., 2024a), a state-of-the-art PEFT method for LLMs
utilizing TNO. In this experiment, we enhance it by applying our algorithms to optimize TNO
structures, for the goal of reducing the number of fine-tuned parameters. We conduct the experiment
on five commonsense reasoning datasets with Llama2-7B model (Touvron et al., 2023) (involving the
TNO system of dimension M = 32), and follow most of the settings as the work (Chen et al., 2024a),
where each fine-tuned weight with size 4096× 4096 is recognized as a tensor of order-8 with size3

16× 8× 8× 4× 16× 8× 8× 4. In our algorithm, we directly use the structure in QuanTA as the
common graph G, from which we deploy the proposed algorithm from Phase II.

Results. Table 1 summarizes the test results, including baseline comparisons with LoRA (Hu et al.,
2021) and DoRA (Liu et al., 2024a). Our approach achieves superior performance with the same or
fewer fine-tuning parameters. Figure 3(a) shows the search dynamics across five datasets, where joint
TN-SS consistently reduces the parameter count throughout the search. Figure 3(b) further illustrates
the layer-wise parameter allocation on ARC-c, demonstrating that our approach allows non-uniform
parameter distribution across layers, maximizing overall parameter efficiency. This observation is
consistent with findings discussed in Section 1, which suggest that different weights within a system
often exhibit varying structural complexities. More results are shown in Appendix B.4.

3Note that QuanTA slightly generalizes the definition of TNOs by varying the parameter I . We adopt the
same experimental settings, as the variation in I does not impact the search process of our algorithm.
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Table 2: Result for quantum circuit optimization using joint TN-SS.

Case #Params of
original opreator

Brick-wall (baseline) Classic QFT circuit Ours
#Params Fidelity↑ #Params Fidelity↑ #Params Fidelity↑

Synthetic (Q = 8) 65536 560 > 1− 10−4 / / 208 > 1− 10−4

Synthetic (Q = 12) 1.68× 107 528 > 1− 10−4 / / 176 > 1− 10−4

QFT (Q = 4) 256 240 > 1− 10−4 96 > 1− 10−4 96 > 1− 10−4

QFT (Q = 6) 4096 800 0.9859 240 > 1− 10−4 288 > 1− 10−4

4.3 MEMORY-EFFICIENT QUANTUM CIRCUIT OPTIMIZATION

Quantum circuit optimization aims to represent high-dimensional unitary operators with a compact
circuit of lower-dimensional unitary components. Standard approaches often use multi-layer brick-
wall structures, which can be highly redundant and inefficient. Here we conduct an illustrative study
showing that joint TN-SS can find more compact circuits with fewer components, enhancing resource
efficiency or potentially shallower architecture.

Setup. We evaluate both synthetic unitary operators (generated with Haar-random cores, K = 2,
I = 2, and Q = 8, 12) and the quantum Fourier transform (QFT) (Camps et al., 2021; Chen et al.,
2023),where the same settings of K, I,Q are applied for QFT. For baselines, we use brick-wall TNOs
and, for QFT, the classic hand-crafted QFT circuit. In our method, repeated brick-wall layers are
treated as the common graph G, and structural diversity emerges through symmetry breaking.

Results. Table 2 shows that our approach consistently produces more compact TNO representations
than the brick-wall baseline while maintaining fidelity above 1− 10−4. For synthetic operators, we
achieve up to a 3× reduction in parameters. For QFT, our method recovers circuits with parameter
counts on par with the classic design, yet without SWAP gates, a critical advantage for noise mitigation
on quantum hardware. Figure 4 further illustrates this: for Q = 4, the result matches the conventional
circuit (Camps et al., 2021; Chen et al., 2023), while for Q = 6 it discovers a distinctly different
and more compact architecture using only local operators. These findings demonstrate that joint
TN-SS not only advances efficiency in ML tasks but also provides a new path to discovering efficient
quantum circuits. Full experimental details are given in Appendix C.

(a)
TNO represention for QFT (Q=4)

(b)
TNO represention for QFT (Q=6)

Figure 4: Optimized TNO representation for the QFT operators.

5 CONCLUDING REMARKS

In this work, we introduced joint TN-SS, a previously unexplored extension of tensor network structure
search. Inspired by the principle of symmetry breaking, we proposed a simple yet effective algo-
rithm to tackle the combinatorial complexity inherent in joint TN-SS. Extensive experiments across
diverse tasks, including tensor decomposition, LLM fine-tuning, and quantum circuit optimization,
demonstrate the effectiveness and efficiency of our approach.

Limitations. Due to resource constraints, our experiments on quantum circuit optimization were
limited to small-scale settings. Future work will extend to larger scales. Additionally, we observed
instability in widely used optimization methods, such as gradient-based and SVD-based approaches
(Schollwöck, 2005), when applied to tensor decomposition and quantum circuit optimization. En-
hancing the robustness of joint TN-SS will therefore be an important direction for future study.
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REPRODUCIBILITY STATEMENT

We have made substantial efforts to ensure the reproducibility of our work. Detailed descriptions of
our proposed algorithm are provided in Section 3.2. Detailed settings for each experiment—including
datasets, hyperparameter configurations, and implementation details—are presented in Appendix A, B
and C. We have included the source code for tensor decomposition and LLM fine-tuning in the
supplementary materials (the code for quantum circuit optimization will be made available after
publication). For theoretical results (i.e., Proposition 3.1), the complete proof is presented in Appendix
D. We encourage readers to refer to these sections for comprehensive information necessary to
reproduce our work.
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A TECHNICAL APPENDICES WITH ADDITIONAL RESULTS FOR SYNTHETIC
DATA

A.1 COMPUTATIONAL ANALYSIS OF THE PROPOSED ALGORITHM

As illustrated in Algo. 1, each iteration requires B evaluations in the best case and |V | evaluations in
the worst case, where |V | is the total number of core tensors in the TNO system. This value typically
scales linearly with the number of TNO in the system, i.e., M . Thus, even in the worst case, the
number of evaluations grows linearly with the size of the system. Numerical results presented in
the experiments also demonstrate that Algo. 1 requires significantly fewer evaluations compared to
solving joint TN-SS directly following equation 2 directly.
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A.2 DETAILS OF SYNTHETIC DATA GENERATION

Fig. 5 illustrates the four common TNO graphs G with Q = 5. Table 3 and 4 summarize the structures
(in VI matrix form) for generating the TNO systems used in our experiment. Specifically, each TNO
system contains 4 TNOs, with each TNO generated by masking core tensors with locations 1 to 4
described in Table 3 and 4 from the given common graph. For example, the 2nd TNO for the stairs
structure is generated by masking the 1st, 2nd, and 8th core tensors, which corresponds to removing
the 1st, 2nd, and 8th columns from the VI matrix of the original stairs structure.

(a) (b) (c) (d)
T T Stairs Brick Random

Figure 5: Illustration of common graphs used in our experiment.

Once the TNO system is constructed, we sample each element in core tensors from i.i.d Gaussian
distribution with zero mean and unit variance, and the (observed) synthetic tensor data is obtained by
contracting the core tensors together.

Table 3: TNO generation for TT, Stairs, and Brick structures with Q = 5,K = 2
Structure Common graph (VI matrix) Mask locations 1 Mask locations 2 Mask locations 3 Mask locations 4

TT
(
4 3 2 1
5 4 3 2

)
1 2 3 4

Stairs
(
4 3 2 1 4 3 2 1
5 4 3 2 5 4 3 2

)
1, 2, 3 1, 2, 8 3, 4, 6 1, 4, 7

Brick
(
4 2 3 1 4 2 3 1
5 3 4 2 5 3 4 2

)
1, 2, 8 1, 6, 8 2, 4, 7 6, 7, 8

Table 4: TNO generation for Rand. structures with different Q (K = 2)
Q Common graph (VI matrix) Mask locations 1 Mask locations 2 Mask locations 3 Mask locations 4

4
(
3 1 1 2 2
4 2 3 4 3

)
1 2 3 4

5
(
3 1 2 1 3 4 2
5 3 4 4 4 5 5

)
1, 3 2, 3 1, 4 2, 4

6
(
3 1 1 3 2 4 3 1
5 6 4 6 4 5 4 3

)
1, 2, 3 2, 3, 6 1, 4, 5 4, 6, 8

8
(
6 5 2 1 5 1 4 3 1 3
7 6 5 2 8 4 7 4 3 6

)
1, 2, 3 2, 3, 6 1, 4, 5 4, 6, 8

A.3 TN-SS ALGORITHMS FOR PHASE I

The five joint TN-SS algorithms with default parameter settings used in Phase I are summarized
in Algo. 2-5, which can be seen as extensions of the TNGA (Li & Sun, 2020), TNLS (Li et al., 2022),
TnALE (Li et al., 2023) and Greedy (Hashemizadeh et al., 2020) methods, respectively. To align with
the TNO models targeted in this work, we slightly modified these algorithms but tried our best to
keep the searching dynamics unchanged.

In TNO, the adjacent core tensors can be merged if they have the same connectivity (i.e., the adjacent
columns in Eq. (3) are the same). For the proposed TN-SS algorithms, once a new TNO graph is
generated, we always check if the adjacent core tensors can be merged. If they are mergeable, one
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Algorithm 2 Genetic Algorithm for joint TN-SS (TNGA) in Phase I

1: Input:
2: XM ▷ Group of input tensors
3: Q,K, I ▷ parameters for TNO
4: L ▷ order for the common graph
5: S = 100 ▷ population size of individuals in each generation
6: Cmax = 20 ▷ maximum number of generations
7: f( · ) = minXM∈tno( · ) πD(XM ) ▷ loss function
8: η1 = 5× 10−10 ▷ tolerance
9: ε = 0.2 ▷ elimination parameter

10: p(r) = max
{
0.01, ln(200/(10−2 + 5r))

}
11: Algorithm:
12: randomly generate {Gs}Ss=1 ∈ {G(V,E) : G ∈ G, |V | = L} ▷ parent Initialization
13: for t = 1 to Cmax do
14: fs = f(Gs) for all s ∈ [S] ▷ fitness evaluation
15: Ĝ = argminGs:s∈[S] l

s

16: f̂ = f(Ĝ)

17: if f(Ĝ) < η1 then
18: break
19: end if
20: {rs}Ss=1 = rank({fs}Ss=1) ▷ get rank of the individuals by fitness evaluation
21: Gp = {(Gs, p(rs)) : s ∈ [S], rs ≤ ⌈(1− ε)S⌉} ▷ eliminate the ε× 100% individuals with

worst fitness and compute the sampling probability p on remaining individuals
22: for s = 1 to S do
23: Gp1, Gp2 ← sample(Gp) ▷ select parents with probabilities p and with replacement
24: Gs ← crossover&mutate(Gp1, Gp2) ▷ generate child from the parents
25: end for
26: {Gs}Ss=1 ← deduplicate&fill({Gs}Ss=1) ▷ remove individuals with duplicated graphs and

generate new individuals to replace them
27: end for
28: Output: Ĝ, f̂
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Algorithm 3 Local Sampling algorithm for joint TN-SS (TNLS) in Phase I

1: Input:
2: XM , Q,K, I, f( · ) ▷ Group of input tensors and system parameters
3: L,Cmax = 40, θ = 0.5, η1 = 5× 10−10 ▷ algorithm parameters. θ: sampling ratio
4: Algorithm:
5: initial Ĝ ∈ {G(V,E) : G ∈ G, |V | = L} ▷ Initialize the TNO
6: f̂ = f(Ĝ) ▷ Evaluation on initial TNO
7: for t = 1 to Cmax do
8: Gs = ∅ ▷ Initialize the sampling set
9: for s = 1 to L do

10: Gs ← Gs ∪ {G : G(V,E) ∈ G, |V | = L,G ∈ N (Ĝ, s)} ▷ Add neighborhood TNOs to
the sampling set

11: end for
12: Gs ← random_sampling(Gs, θ) ▷ Randomly sample θ × 100% TNOs from the sampling

set
13: if minG∈Gs f(G) < f̂ then ▷ Evaluation on sampled TNOs and update the best TNO if the

condition satisfies
14: Ĝ = argminG∈Gs f(G)

15: f̂ = f(Ĝ) ▷ Update the estimated TNO graph and corresponding loss
16: end if
17: if f̂ < η1 then
18: break
19: end if
20: end for
21: Output: Ĝ, f̂

Algorithm 4 Alternating Local Enumeration algorithm for joint TN-SS (TnALE) in Phase I

1: Input:
2: XM , Q,K, I, f( · ) ▷ Group of input tensors and system parameters
3: L,D = 2, η1 = 5× 10−10 ▷ algorithm parameters. D: round-trips of ALE
4: Algorithm:
5: initial Ĝ ∈ {G(V,E) : G ∈ G, |V | = L} ▷ Initialize the TNO
6: f̂ = f(Ĝ) ▷ Evaluation on initial TNO
7: for t = 1 to D do
8: for s = 1 to L do ▷ Forward trip
9: Gs = {G : G(V,E) ∈ G, |V | = L,G ∈ N (Ĝ, s)} ▷ Add neighborhood TNOs to the

sampling set
10: if minG∈Gs f(G) < f̂ then ▷ Evaluation on sampled TNOs and update the best TNO if

the condition satisfies
11: Ĝ = argminG∈Gs

f(G)

12: f̂ = f(Ĝ)
13: end if
14: if f̂ < η1 then
15: break
16: end if
17: end for
18: for s = L− 1 to 2 do ▷ Backward trip
19: Repeat steps 9-15
20: end for
21: end for
22: Output: Ĝ, f̂
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Algorithm 5 Greedy algorithm for joint TN-SS in Phase I

1: Input:
2: XM , Q,K, I, f( · ) ▷ Group of input tensors and system parameters
3: L, η1 = 5× 10−10 ▷ algorithm parameters
4: Algorithm:
5: initial Ĝ = ∅ ▷ Initialize an empty TNO
6: for s = 1 to L do
7: Gs = {G : G(V,E) ∈ G, |V | = s,G ∈ N+(Ĝ)} ▷ Add neighborhood TNOs to the

sampling set
8: Ĝ = argminG∈Gs

f(G) ▷ Find the best TNO with minimum loss
9: f̂ = f(Ĝ) ▷ Update the loss

10: if f̂ < η1 then
11: break
12: end if
13: end for
14: Output: Ĝ, f̂

of the duplicated core tensors will be replaced with a new one with different connectivity. This
procedure is repeated until all core tensors in the new TNO graph can not be merged.

For TNLS and TnALE, the neighborhood of a TNO G is denoted as N (G, s), and is defined as the
set of graphs that has the same connectivity of all core tensors except for the s-th one. In the view of
the VI matrix,N (G, s) is generated by replacing the s-th column of the VI matrix of G with columns
that represent all other possible connectivity.

Further, in the Greedy algorithm, the TNO is gradually generated with the graph order from 0 to L.
At each iteration, starting from the previous TNO graph G, we add a core tensor to the right of the
previous TNO, which is equivalent to adding a new column to the right of the VI matrix of G. The
TNO set with all possible connectivity is denoted as N+(G) in Algo. 5, and the best TNO for the
next iteration is chosen as the one with the lowest RSE.

A.4 TENSOR DECOMPOSITION FOR TNO

Given the TNO graph, we apply Adam optimizer (Kingma & Ba, 2014) to perform tensor decom-
position, which is commonly used in existing TN-SS methods. Specifically, given a TNO graph
and the observed tensor X , we initialize each core tensor from Gaussian distribution with zero
mean and variance 0.3. The contraction expression of core tensors is constructed using einsum
function similar to that in (Chen et al., 2024a). The relative squared error (RSE) is used as the loss
function in Eq. (2). Specifically, given the generated synthetic tensors D := {D1,D2, . . . ,DM}
and the approximated tensors XM := {X1,X2, . . . ,XM}, the RSE is defined as πD(XM ) =∑M

m=1 ∥Xm − Dm∥2F /
∑M

m=1 ∥Dm∥2F , where ∥ · ∥F is the Frobenius norm. The learning rate of
Adam is set to 10−2 and the maximum iteration number is set to 1500.

For each evaluation, the RSE is measured over 10 runs with different initializations of core tensors.
Specifically, we select the minimum squared approximation error for each tensor over 10 runs
and compute the overall RSE of four tensors. In Phase I, the tolerance η1 for Algo. 2-5 is set
to 5 × 10−10 to determine if the common graph G is searched, and the initialization strategies
are the same as existing TN-SS methods. The setting of common graph order L is determined
differently for each data, following a basic principle that L should be relatively large to achieve
a satisfactory approximation error in Phase I. While in Phase II, the RSE is compared with
tolerance η2 = 10−6 to determine if the core tensor should be masked.

A.5 IMPLEMENTATION

In our experiments on synthetic data, we run all algorithms on a cluster of NVIDIA V100 GPUs
alongside an Intel Xeon E5-2690 CPU node. Specifically, the CPU node handles data input, applies
the TNO generation procedures, and distributes the sampled TNOs across the GPUs. Each GPU then
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Table 5: Results of the TD experiment. The RSE, total number of core tensors (shown in round
brackets), and the corresponding number of evaluations (shown in square brackets) are presented for
Phase I (top block) and Phase II (middle block). The bottom block shows the RSE of TN-SS
methods for the same graph orders as Phase II.
Method TT Stairs Brick Rand.

GREEDY < 5× 10−10 (24) [55] 2.5× 10−7 (40) [91] 7.8× 10−6 (40) [91] 0.0426 (40) [91]
TnALE < 5× 10−10 (24) [109] < 5× 10−10 (40) [250] < 5× 10−10 (40) [94] 2.12× 10−5 (40) [265]
TNLS < 5× 10−10 (24) [89] < 5× 10−10 (40) [217] < 5× 10−10 (40) [613] 2.25× 10−6 (40) [1441]
TNGA < 5× 10−10 (24) [300] 4× 10−8 (40) [2000] < 5× 10−10 (40) [800] < 5× 10−10 (40) [900]

GREEDY-SB < 5× 10−10 (12) [49] < 5× 10−10 (20) [140] < 5× 10−10 (24) [142] 0.0426 (40) [40]
TnALE-SB < 5× 10−10 (12) [61] < 5× 10−10 (32) [82] 1× 10−8 (32) [103] 2.12× 10−5 (40) [40]
TNLS-SB < 5× 10−10 (20) [50] < 5× 10−10 (29) [136] < 5× 10−10 (22) [136] < 5× 10−10 (38) [66]
TNGA-SB < 5× 10−10 (12) [48] < 5× 10−10 (22) [147] 1× 10−8 (26) [110] < 5× 10−10 (20) [112]

RSE of only optimizing G with the |V | aligned to the results in Phase II

GREEDY 0.3568 (12) [28] 0.2032 (20) [46] 0.1838 (24) [55] 0.0426 (40) [91]
TnALE 0.3637 (12) [66] 0.0094 (32) [208] 0.0133 (32) [208] 2.12× 10−5 (40) [265]
TNLS < 5× 10−10 (20) [111] 0.0045 (32) [1161] 0.1118 (24) [881] 2.25× 10−6 (40) [1441]
TNGA 0.2907 (12) [2000] 0.0145 (24) [2000] 0.0243 (28) [2000] 0.1050 (20) [2000]

Table 6: Results on different Q (random structure with I = 2)
Method Q = 4 Q = 5 Q = 6 Q = 7 Q = 8

TNGA (S=100) <5×10−10 (40) [300] <5×10−10 (50) [600] < 7.4× 10−5 (50) [600] 0.0048 (60) [1500] 0.0312 (60) [600]
TNGA-SB <5×10−10 (16) [62] <5×10−10 (39) [40] < 7.4× 10−5 (50) [50] 0.0048 (60) [60] 0.0312 (60) [60]

TNGA (S=200) − − <5×10−10 (50) [1200] <5×10−10 (60) [4000] 0.0237 (60) [3400]
TNGA-SB − − <5×10−10 (25) [178] <5×10−10 (32) [152] 0237 (60) [60]

TNGA (S=300) − − − − <5×10−10 (60) [2100]
TNGA-SB − − − − <5×10−10 (34) [143]

performs the tensor decomposition for a given TNO and returns its loss. After each iteration, the
CPU node collects these loss values and generates new TNOs according to the specific algorithm for
the subsequent procedure.

A.6 ADDITIONAL EXPERIMENTAL RESULTS ON SYNTHETIC DATA

As a detailed version of Figure 2 (a)-(c), Table 5 reports all the RSE, the total number of core tensors,
and the total number of evaluations for synthetic data. The algorithms with suffix ’-SB’ denote that
Algo.1 is applied for Phase II. We should remark that, although Greedy and TNLS fail to meet
the RSE ≤ 10−6 for Stairs and Rand. in Phase II, respectively, their RSE values are close to
10−6 such that the Phase II can still work to reach the RSE lower than 10−6.

We conduct additional experiments to verify the performance on different TNO parameters Q and I .
The Rand. structures with Q = [4, 5, 6, 7, 8] (see Table.4) are applied as common graphs for data
generation, and the TNGA method is applied for Phase I. Table. 6 shows the performance under
different Q. We gradually increase the population size parameter S from 100 until the RSE reaches
≤ 10−6. The results verify the effectiveness of the proposed method for variant selections of Q.
Further, the S needs to be set to a larger value as Q increases due to the increasing searching space of
the common graph. Consequently, the total number of evaluations in both Phase I and Phase
II grows with Q increases. Further, the decomposition performance under TNO with different I
is depicted in Fig. 7. It can be seen that the proposed algorithm works well on TNO with varying
selections of I .

We also investigate the performance of different common graph orders L used in Phase I. Fig. 6
depicts the performance under different L for the proposed method. The results imply that L
works well when L is slightly larger than groundtruth L∗ = 7. It can be also seen that if the L is
underestimated (i.e. L < 7), the approximation always fails as they can not find the common graph
with L∗ = 7. When L = 7, the approximation still fails as the TNGA method may fail to find the
common graph with a limited number of evaluations. On the other hand, if the L is too large (i.e.,
L ≥ 14 in this experiment), the approximation also fails due to the optimization problem. In practice,
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Table 7: RSE, total number of core tensors (round brackets), and the corresponding number of
evaluations (square brackets) on different I (Rand. structure with Q = 5).

Method I = 2 I = 4 I = 6

TNGA < 5× 10−10 (32) [100] < 5× 10−10 (32) [1000] < 5× 10−10 (32) [800]
TNGA-SB < 5× 10−10 (16) [70] < 5× 10−10 (31) [32] 6.4× 10−7 (22) [69]
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Figure 6: RSE (left) and the total number of core tensors (right) under Rand. structure (Q = 5,K =
2, I = 2) using different parameter L. Dotted red line: order of groundtruth Rand. structure.

as the L∗ is always not known, we may conduct TNGA on various selections of L and choose a
proper one that achieves a satisfactory approximation error.

Further, the efficiency of the proposed joint TN-SS method under different M is verified. TNGA
is employed as the TN-SS algorithm for Phase I. The maximum number of evaluations Cmax is
1000×M . Table 8 presents the results of tensor decomposition for various values of M . We add the
vanilla TN-SS as the comparison, in which each TNO is optimized independently without searching a
common graph. As shown, for M = 4, the vanilla TN-SS requires significantly more evaluations than
the proposed method to search TNOs that can successfully approximate the tensors. As M increases
to 6 and 8, the vanilla TN-SS reaches the maximum evaluation Cmax but still fails to achieve the
desired approximation accuracy of RSE ≤ 10−6. In contrast, although increasing slightly raises
computational complexity for the proposed method, it substantially enhances search efficiency and
final performance due to the presence of shared structural patterns across TNOs. This confirms that
symmetry breaking enables more effective exploration of the TNO structure space—especially when
the TNOs are related (e.g., originating from similar data or architectural settings).

Finally, the sensitivity of different selections of the tolerance parameter η2 in Phase II is analyzed.
The experiment is conducted on Rand. structure with Q = 5, and TNGA is applied for Phase
I. Table 9 reports the performance in terms of different η2. These results show that the method is
robust in a wide range of η2 as long as the task has an internal tensor network structure. As expected,
larger values give a more compact structure, and smaller values improve accuracy with more structure
preserved.

Table 8: RSE and the corresponding number of evaluations (square brackets) on different M (Rand.
structure with Q = 5).

Method M = 2 M = 4 M = 6 M = 8

Vanilla TN-SS < 5× 10−10 [700] < 5× 10−10 [3800] 2.9× 10−6 [6000] 1.5× 10−4

Ours < 5× 10−10 [574] < 5× 10−10 [823] < 5× 10−10 [2027] < 5× 10−10 [2226]
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Table 9: RSE, total number of core tensors (round brackets), and the corresponding number of
evaluations (square brackets) on different η2 (Rand. structure with Q = 5).

η2 = 1 η2 = 0.01 η2 = 10−4 η2 = 10−6 η2 = 10−8

TNGA-SB 0.9926 (4) [41] < 5× 10−10 (20) [83] < 5× 10−10 (20) [102] < 5× 10−10 (20) [112] < 5× 10−10 (20) [87]

B TECHNICAL APPENDICES WITH ADDITIONAL RESULTS FOR LLMS
FINE-TUNING

B.1 COMMONSENSE REASONING DATASETS

Table 10 presents detailed information about the datasets used in our experiments. Specifically, (Hu
et al., 2023) originally collected all datasets including the training set Train and the test set Test. In
our experiments, we randomly select 3000 and 400 data from the original training set as the training
data Train split and validation data Valid split, respectively. We should note that, for ARC-Easy and
ARC-Challenge datasets, the training data for our experiments are 1825 and 720 due to insufficient
original training data. The fine-tuning performance is evaluated on the test set Test.

Table 10: Description of common sense reasoning datasets used in experiments.
Dataset name Domain # Train # Train split # Valid split # Test
PIQA Physical Interaction 16113 3000 400 1838
SIQA Social Interaction 33410 3000 400 1954
OBQA Science Facts 4957 3000 400 500
ARC-Easy (ARC-e) Natural Science 2251 1851 400 2376
ARC-Challenge (ARC-c) Natural Science 1119 719 400 1172

B.2 PEFT FOR TNO

For each dataset, the fine-tuning is performed on Train split described in Table 10. The QuanTA
model (Chen et al., 2024a) is adapted to our experiments with modifications that can handle different
TNOs for each transformer layer. The training parameters used in experiments are shown in Table 11.
The baseline algorithms QuanTA-6/4/2 that use the same TNO for all layers are shown in Table 12.
Specifically, QuanTA-6 corresponds to the original QuanTA algorithm proposed in (Chen et al.,
2024a).

In our experiment, we directly use the TNO of QuanTA-6 as the common graph G and deploy the
proposed algorithm for Phase II. For each evaluation, given a TNO system consisting of the TNOs
for all layers, a training procedure with 3 epochs is conducted on Train split, following the inference
on both Valid split and Test. Instead of using training loss as the loss function for πD(·) in Algo. 1,
we directly set the loss f(·) as 1− accv where accv is the accuracy on Valid split. The tolerance η2
for each dataset is set according to the validation accuracy on TNO using QuanTA-6. Specifically, the
η2 for PIQA, SIQA, OBQA, ARC-e and ARC-c are set to 0.20, 0.23, 0.21, 0.15, 0.38, respectively.

Table 11: Hyperparameter Settings for QuanTA fine-tuning.
Hyperparameters Values
Num of Epochs 3
Batch Size 4
Optimizer AdamW
Scheduler Linear Scheduler
Learning Rate 1e-4
Weight Decay 0
Dropout 0
Modules (q_proj v_proj)
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Table 12: Different TNO structures of QuanTA used in experiments
Method TNO for all layers (in VI matrix form)

QuanTA-6
(
3 2 1 2 1 1
4 4 4 3 3 2

)
QuanTA-4

(
3 2 1 1
4 3 2 4

)
QuanTA-2

(
3 1
4 2

)

B.3 IMPLEMENTATION

In our experiments on PEFT for LLMs, training is carried out on two NVIDIA RTX A6000 GPUs
(each with 48 GB of memory). Similar to synthetic data, an Intel Xeon E5-2690 CPU node manages
results collection and TNO generation.

B.4 ADDITIONAL EXPERIMENTAL RESULTS ON LLM FINE-TUNING

Fig. 7 depicts the dynamic information during the Phase II on five datasets. (a)-(b) report the
average accuracy degradation (×100%) on Test and Valid split, respectively. The curves with
light color in the background denote the accuracy at each iteration, and the curves with dark color
foreground show the average accuracy smoothed with window size 20. (c)-(d) show the total number
of core tensors and parameters at each iteration. It should be noted that the accuracy degradation on
Valid split is bounded due to the settings of tolerance parameter η2. As can be seen, for all datasets
except SIQA, the total number of core tensors and parameters reduce quickly at the first 150 iterations
and then slow down due to the setting of the tolerance η2.
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Figure 7: Accuracy degradation on test data and validation data over iterations (a,b). Total number of
core tensors and #Params over iterations (c, d);
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Figure 8: #Params percentage relative to QuanTA-6 per layer of Llama2-7B on five datasets. Yellow,
orange, and brown bars indicate #Params of 0.031%, 0.024%, and 0.017%, respectively.

Fig. 8 shows the number of parameters on each transformer layer compared with QuanTA-6. The
yellow, orange, and brown bars correspond to the three settings with the total number of parameters
0.031%, 0.024%, and 0.017%, respectively. Further, the VI matrices of corresponding TNOs for
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8/16/24/32 layers with the total number of parameters 0.024% are shown in Table 13. The results
imply the asymmetric property of TNO across different layers and different datasets.

Table 13: TNO structures (in VI matrix form) of different transformer layers with #Params 0.024%
Layer PIQA SIQA OBQA ARC-e ARC-c

8
(
3 2 1 1 1
4 4 4 3 2

) (
3 2 1 1 1
4 4 4 3 2

) (
3 1 2
4 4 3

) (
1 1
4 2

) (
3 2 2
4 4 3

)
16

(
3 2 1 2 1
4 4 4 3 3

) (
1 2
4 3

) (
1 1 1
4 3 2

) (
2 1 1
4 4 3

) (
3 2 1 1
4 4 4 3

)
24

(
1 2 1 1
4 3 3 2

) (
2 1 1
3 3 2

) (
1 2 1 1
4 3 3 2

) (
1 2 1
4 3 2

) (
3 2 1
4 3 2

)
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C TECHNICAL APPENDICES WITH ADDITIONAL RESULTS FOR
REPRESENTATION OF QUANTUM CIRCUIT OPTIMIZATION

C.1 PROBLEM SETTINGS AND SOLUTIONS

The goal of quantum circuit optimization is to approximate a quantum operator U by a quantum
circuit composed of several quantum gates. Following the common setting in quantum computing,
we assume that each two-qubit gate operates on adjacent qubits in a 1D chain. As shown in Fig. 9, a
4 qubits quantum operator U (a) can be represented as a quantum circuit with five two-qubit gates
(b). In practice, finding a quantum circuit like (b) is challenging. An efficient way that avoid circuit
structure searching is directly using the quantum circuits with a brick-wall structure with 3 blocks, as
shown in Fig. 9 (c). However, the quantum circuits constructed using brick-wall structures are not
always compact due to the redundancy of quantum gates (e.g., the gates in the red-dotted boxes in
Fig. 9 (c)). In this work, we aim to efficiently search for a more compact representation with fewer
quantum gates compared to the brick-wall structure.

(c)

Representation of U using Brick
(b)

Quantum circuit corresponds to U 

U

(a)

Quantum opreator U

Figure 9: Illustration of the representation of a quantum operator.

C.2 GENERATION OF SYNTHETIC QUANTUM OPERATORS

In our experiment, we consider synthetic quantum operators with dimension I = 2 and qubit counts
Q = 4, 8, 12. For each qubit count, a quantum circuit using a brick-wall structure with M blocks
is constructed. Then, a quantum circuit is generated by randomly masking a number of quantum
gates, as shown in Fig.10 and Table.14. Finally, for each quantum circuit, 20 quantum operators
are obtained by sampling quantum gates from the Haar-Gaussian distribution and contracting them
according to the generated quantum circuit structure.

C.3 GENERATION OF QUANTUM FOURIER TRANSFORM (QFT) OPERATORS

The QFT is to represent the discrete Fourier transform (DFT) using a quantum circuit. As analyzed in
(Chen et al., 2023; Camps et al., 2021), the DFT matrix can be efficiently represented by QFT using

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) (b) (c)

quantum circuit (4 qubits)

Case A (5 qubits) Case A (6 qubits)

Figure 10: Example of the quantum circuits generated for the synthetic quantum operator experiment
(Q = 4).

Table 14: TNO structure for generation of synthetic quantum operators.
#qubits #block Mask locations for each block
Q M Block 1 Block 2 Block 3 Block 4 Block 5

4 3 1 2 1, 3 / /
8 5 3, 4, 6 2, 3, 6, 7 1, 2, 4, 5, 7 1, 3, 5, 6 2, 4, 5, 6
12 3 2, 3, 4, 6, 8, 10 1, 3, 5, 6, 7, 9, 11 1, 2, 4, 5, 7, 8, 9, 10, 11 / /

matrix (tensor) decomposition due to its special structure. In our experiment, we consider the DFT
matrix F of size 2Q × 2Q with Q = 4, 6, and the QFT operator is set as U = F .

C.4 ALGORITHM FOR QUANTUM CIRCUIT OPTIMIZATION

From the view of TNO, the quantum circuit can be seen as a TNO graph, and the quantum gates
can be represented using the core tensors. Thus, representing a quantum operator U is equivalent to
approximating it using a TNO graph with some core tensors. Additionally, according to the property
of quantum computing, we should constrain the core tensors to be unitary and relax the value to be
complex-valued.

Concentrating on the goal of compact representation, we assume the M for each generated synthetic
quantum operator U is known and directly deploy Phase II to the brick-wall TNO structure with
M blocks. While for each QFT operator, M is set to a relatively large value to achieve a satisfactory
high fidelity. At each evaluation, given a TNO and the quantum operator U , the density-matrix
renormalization group (DMRG) method (Schollwöck, 2005) is applied to optimize the core tensors,
with each core tensor initialized as an identity tensor. The loss function πD(·) in Eq. (2) is defined as

πD(X) = 1− |tr
(
U†X

)
|/IQ. (6)

where |tr(U†X)|/IQ is the normalized fidelity quantifying the ’closeness’ between two operators U
and X . The η2 is set to 10−3. For each case of representing synthetic quantum operators, the fidelity
is averaged over the generated 20 unitary operators.

C.5 IMPLEMENTATION

Due to limited resources, we implement the quantum experiment just in the proof-of-concept scale
using a laptop MacBook Air 13-inch with M3 chip and memory of 24 GB.

D PROOFS FOR PROPOSITION 3.1

In this section, we present the proof of Proposition 3.1 from the main manuscript. Recall the
proposition as follows.

Proposition D.1 (Perturbation analysis). Let ZM = {Z1, . . . , ZM} be a system of TNOs with
ZM ∈ argminYM∈ts(G1,...,GM ;Q,K,I) πD(YM ), where πD is a task loss defined jointly on multiple
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operators. Suppose one operator Zj contains a maskable core G with ∥G∥F = 1 and opera-
tor–Schmidt rank S. Let ZM,⋆ = {Z1, . . . , Y

⋆
j , . . . , ZM} be the system obtained by replacing Zj

with its best masked version

Y ⋆
j ∈ arg min

Y ∈tno(Gmask;Q,K,I)
πD({Z1, . . . , Y, . . . , ZM}),

where Gmask is obtained by masking G. If πD is L-Lipschitz in ∥ · ∥F with respect to each operator,
then

|πD(ZM,⋆)− πD(ZM )| ≤ LC
√
S − 1,

where C depends only on the contracted environment of G. In particular, if S = 1, masking G does
not increase the loss.

Proof. Let ZM = {Z1, . . . , ZM} ∈ ts(G1, . . . , GM ;Q,K, I) be system-optimal:

ZM ∈ arg min
YM∈ts(G1,...,GM )

πD(YM ).

Fix an index j and a maskable core G inside Zj with ∥G∥F = 1 and operator–Schmidt decomposition
G =

∑S
r=1 λr Ur ⊗ Vr, where λ1 ≥ · · · ≥ λS ≥ 0 and ∥Ur∥F = ∥Vr∥F = 1. By the bipartition

assumption, contracting the entire network except G defines a linear map

T : FIK×IK

−→ FIQ×IQ

, such that Zj = T (G).
Since T is linear, write

Zj = T (G) =
S∑

r=1

λr T (Ur ⊗ Vr).

A realizable masked candidate. Masking G removes that core and reconnects its neighbors.
Because the top Schmidt term U1 ⊗ V1 factorizes across the bipartition, it can be absorbed into the
adjacent cores on each side of the cut, hence is realizable in the masked class. Therefore, there exists
Y

(0)
j ∈ tno(Gmask;Q,K, I) such that

Y
(0)
j = T (U1 ⊗ V1).

Define the system candidate ZM,(0) := {Z1, . . . , Y
(0)
j , . . . , ZM}.

Environment norm bound. Let C := ∥T ∥2→F := supX ̸=0
∥T (X)∥F

∥X∥F
, which depends only on the

(fixed) contracted environment surrounding G. Then

∥Zj − Y
(0)
j ∥F =

∥∥∥ S∑
r=2

λr T (Ur ⊗ Vr)
∥∥∥
F
≤

S∑
r=2

λr ∥T (Ur ⊗ Vr)∥F ≤ C
S∑

r=2

λr.

Since ∥G∥2F =
∑S

r=1 λ
2
r = 1, Cauchy–Schwarz yields

∑S
r=2 λr ≤

√
S − 1 (

∑S
r=2 λ

2
r)

1/2 ≤√
S − 1, hence

∥Zj − Y
(0)
j ∥F ≤ C

√
S − 1.

Lipschitz transfer to task loss. By the L-Lipschitz property of πD w.r.t. each operator in Frobenius
norm,

|πD(ZM,(0))− πD(ZM )| ≤ L ∥Zj − Y
(0)
j ∥F ≤ LC

√
S − 1.

Optimal masked replacement. By definition,

Y ⋆
j ∈ arg min

Y ∈tno(Gmask;Q,K,I)
πD({Z1, . . . , Y, . . . , ZM}),

so πD(ZM,⋆) ≤ πD(ZM,(0)), where ZM,⋆ := {Z1, . . . , Y
⋆
j , . . . , ZM}. Therefore,

|πD(ZM,⋆)− πD(ZM )| ≤ |πD(ZM,(0))− πD(ZM )| ≤ LC
√
S − 1.

Finally, if S = 1 then Zj = T (U1 ⊗ V1) is itself realizable post-masking, so we may choose
Y

(0)
j = Zj , giving zero loss change. This proves the claim.
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=

Figure 11: A simple example demonstrating the equivalence of masking different core tensors in a
QTN.

We emphasize that a small Schmidt rank, as discussed in Proposition 3.1, is not a necessary condition
for masking a core tensor to have minimal impact on approximation error. This is demonstrated by a
simple yet insightful example in Figure 11, where two core tensors occupy a commutative position
within a TNO, and each individually possesses full model representation. In this case, masking
either core tensor yields an equivalent result, regardless of its Schmidt number. More generally,
this condition holds when the Zariski closure (Landsberg et al., 2012) of the remaining TNO spans
the entire ambient space FIK×IK

. Such universal representation properties are well-studied in the
context of quantum computing Barenco et al. (1995); Möttönen et al. (2004).

E STATEMENT OF THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the writing of this paper, language polishing and grammar checking were partially assisted by
Large Language Models (LLMs). The LLMs were used to improve the accuracy and fluency of the
text, with all modifications reviewed and approved by the author to ensure originality and academic
integrity.
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