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Abstract
Inspired by SentEval and MTEB for sentence em-
beddings and DeepChem for molecular machine
learning, we introduce MolEval 1 . MolEval tack-
les the issue of evaluating large language models
(LLMs) embeddings, which are traditionally ex-
pensive to execute on standard computing hard-
ware. It achieves this by offering a repository of
pre-computed molecule embeddings alongside a
versatile platform that facilitates the evaluation
of any embeddings derived from molecular struc-
tures. This approach not only streamlines the
assessment process but also makes it more acces-
sible to researchers and practitioners in the field.

1. Introduction
Recent developments in large language models highlight the
need for a platform to evaluate their effectiveness in molec-
ular embedding tasks. General-purpose language models
may not be optimized for molecular embedding, but bench-
marking their performance against models pre-trained on
molecular data can offer a comprehensive overview of the
top molecule embedding models across various tasks. This
approach also helps identify language models with the great-
est potential for improvement in this area.

Libraries like DeepChem (Ramsundar et al., 2019) offer the
capability to load MoleculeNet (Wu et al., 2018) benchmark
data through integrated library functions and include imple-
mentations of various chemical featurization methods, as
well as machine learning techniques. However, DeepChem
does not provide the embedding methods required for the
models examined in our study. Hence, inspired from Sen-
tEval (con, 2018) and MTEB (Massive Text Embedding
Benchmark) (Muennighoff et al., 2023) that benchmark sen-
tence embedding methods, we create MolEval a toolkit to
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Figure 1. The MolEval Framework consists of three primary com-
ponents: MolRead, MolEmb, and MolEval.

With the advancements in large language models (LLMs), a
pressing question arises: Can LLMs comprehend molecular
structures and derive meaningful insights from molecular
data? Specifically, can they generate high-quality seman-
tic representations? Recent study (Guo et al., 2023) has
conducted initial investigations by assessing LLMs’ perfor-
mance in addressing SMILES-related inquiries. Building
upon this groundwork, our study delves deeper into exam-
ining the capacity of these models to efficiently encode
SMILES strings.

In our investigation, we compare LLMs against pre-trained
models, including those trained on vast unlabeled SMILES
datasets like Mol2Vec (Jaeger et al., 2018), as well as
transformer-based models fine-tuned for specific tasks such
as classification tasks, exemplified by MolFormer (Ross
et al., 2022), ChemBERTa (Chithrananda et al., 2020), and
Roberta-ZINC (Heyer, 2023). These models, having un-
dergone pre-training on millions of molecular structures,
require substantial computational resources. For instance,
MolFormer necessitates up to 16 V100 graphics processing
units (GPUs) (Ross et al., 2022). Consequently, employing
pre-trained LLMs like BERT (Devlin et al., 2019), GPT
(Radford et al., 2019), LLaMA (Touvron et al., 2023a;b)
for generating embeddings becomes computationally more
viable. These LLMs have already been trained on extensive
datasets, rendering them readily deployable for processing
SMILES strings and deriving molecular embeddings with-
out the need for extensive hardware.

MolEval aims to shed light on model performance across
various embedding tasks, positioning itself as a key resource
for discovering universal molecular embeddings that are
applicable to multiple tasks. The platform features nine
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datasets spanning 12 languages and covers three embedding
tasks: classification, multi-task classification, and regres-
sion. Available as an open-source package, MolEval allows
for the evaluation of any embedding model with fewer than
ten lines of code. We hope our work simplifies the selection
of the right embedding model and facilitates future research
in embeddings.

2. Framework Overview
As illustrated in Figure 1, the MolEval framework comprises
three main steps: MolRead, MolEmb, and MolEval.

2.1. MolRead

We utilize datasets sourced from MoleculeNet (Wu et al.,
2018), a comprehensive collection comprising diverse
datasets spanning various tasks, including the identifica-
tion of properties such as toxicity, bioactivity, and the de-
termination of whether a molecule serves as an inhibitor.
MoleculeNet stands as a widely recognized benchmark
dataset within the field of computational chemistry and drug
discovery. It serves the critical purpose of assessing and
contrasting the efficacy of diverse machine learning models
and algorithms across tasks concerning molecular property
prediction, compound screening, and other cheminformat-
ics endeavors (Chithrananda et al., 2020; Li & Jiang, 2021;
Zhang et al., 2021; Ross et al., 2022; Liu et al., 2023; Zang
et al., 2023; Guo et al., 2023).

The input for MolRead consists of dataset names summa-
rized in Table 1, while the output includes SMILES strings
and their corresponding labels—both for classification and
regression—separated for subsequent processing steps.

2.2. MolEmb

In our MolEmb Step, we incorporated 13 representative
models. The input for this step consists of the SMILES
strings from each dataset and the name of the embedding
method. The output is the vector representation of these
inputs.

To extract embeddings for transformer-based models, we
initiated the process by downloading and loading the model
weights through the Transformers library. Subsequently,
we generated the embeddings. For LLaMA weights, we
acquired the provided weights from Meta for LLaMAs and
then converted them into PyTorch format. The embeddings
were extracted from the last layer of the LLMs, aligning
with established practice (Reimers & Gurevych, 2019). Ad-
ditionally, for GPT embeddings, we opted for the latest
model from OpenAI, named text-small-3-embeddings.

The generation of LLaMA and LLaMA2 embeddings neces-
sitated the utilization of four NVIDIA A2 GPUs to handle

the 7 billion parameter version of LLaMAs. Operating
under this configuration, the average speed for generating
embeddings amounted to one molecule per second. In total,
we generated embeddings for over 65,000 molecules in our
experiments.

In this research, we evaluate several representation models,
categorizing them into two main sections:

• Special-purpose models: These models are devel-
oped specifically for molecule representations, either
pre-trained on SMILES using transformers (Heyer,
2023; Chithrananda et al., 2020; Ross et al., 2022), or
without transformers but learnt from SMILES strings
using Skip gram negative sampling (Jaeger et al., 2018),
or without machine learning (Rogers & Hahn, 2010).

• General-purpose models: These models are pre-
trained on general purpose text data (Devlin et al.,
2019; Liu et al., 2020). Since the data is large, they
may contain SMILES data. LLaMA (Touvron et al.,
2023a;b) and GPT (OpenAI, 2023) mentioned specif-
ically that SMILES data are collected and fed the
trainer. Some are further fine-tuned on NLI data (SBert
(Reimers & Gurevych, 2019), SimCSE (Gao et al.,
2021), AnglEBERT (Reimers & Gurevych, 2019))

2.3. MolEval

In our MolEval step, we obtain the embeddings for each
dataset from MolEmb, along with the labels from MolRead.
MolEval then performs evaluation tasks for both classifica-
tion and regression.

In adherence to the methodology outlined in MoleculeNet
(Wu et al., 2018), for classification tasks, we adopted a
stratified partitioning approach, dividing the datasets into 5
stratified folds to ensure robust benchmarking. This strategy
guarantees that each fold maintains consistent proportions
of observations for each target class as observed in the com-
plete dataset. We employed a logistic regression model from
scikit-learn, configured with default parameters including
L2 regularization, ’lbfgs’ for optimization, and a maximum
of 100 iterations allowed for the solvers to converge. Per-
formance metrics reported include the mean and standard
deviation of F1-score and AUROC, calculated across the
five folds.

For regression tasks, we used a 5-fold cross-validation to
evaluate model performance. Utilizing a Ridge regression
model from scikit-learn, with default parameters were em-
ployed including a tolerance of 0.001 for optimization and
an auto solver to select the most suitable solver method
based on the data type. Reported metrics encompass the
mean and standard deviation of RMSE and R2, computed
across the five folds.
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Table 1. The comparison of representative models on classification tasks. The reported performance metrics are the mean and standard
deviation of their metrics, calculated across the 5-folds. The best performance is highlighted with green . The line between the models
separate the general purpose models from models specialized on molecules. The best performance in each section is highlighted in bold.

Dataset BBBP BACE HIV ClinTox SIDER Tox21

# Compound 2039 1513 41127 1478 1427 7831
# Tasks 1 1 1 2 27 12

Models Dim. Size AUROC

MorganFP (radius=2) 1024 0.896 ± 0.014 0.880 ± 0.020 0.797 ± 0.019 0.799 ± 0.063 0.629 ± 0.01 0.761 ± 0.010
Mol2Vec 300 0.863 ± 0.020 0.858 ± 0.014 0.776 ± 0.021 0.842 ± 0.036 0.625 ± 0.006 0.768 ± 0.011
ChemBERTa 384 0.944 ± 0.012 0.862 ± 0.011 0.767 ± 0.019 0.965 ± 0.010 0.628 ± 0.012 0.781 ± 0.008
Roberta-ZINC 768 0.944 ± 0.010 0.871 ± 0.018 0.792 ± 0.013 0.980 ± 0.011 0.615 ± 0.011 0.786 ± 0.006
MolFormer 768 0.934 ± 0.007 0.860 ± 0.010 0.804 ± 0.010 0.982 ± 0.013 0.605 ± 0.009 0.775 ± 0.012

BERT 768 0.947 ± 0.007 0.845 ± 0.016 0.780 ± 0.011 0.983 ± 0.017 0.625 ± 0.014 0.786 ± 0.011
RoBERTa 768 0.939 ± 0.008 0.837 ± 0.015 0.769 ± 0.016 0.837 ± 0.015 0.621 ± 0.005 0.773 ± 0.009
SBERT 384 0.912 ± 0.009 0.726 ± 0.033 0.716 ± 0.008 0.958 ± 0.016 0.606 ± 0.012 0.739 ± 0.014
SimSCE 768 0.937 ± 0.006 0.845 ± 0.020 0.770 ± 0.007 0.975 ± 0.015 0.618 ± 0.007 0.776 ± 0.011
AngleBERT 768 0.938 ± 0.008 0.845 ± 0.020 0.773 ± 0.015 0.973 ± 0.019 0.622 ± 0.004 0.777 ± 0.011
GPT 1536 0.921 ± 0.015 0.743 ± 0.030 0.746 ± 0.009 0.963 ± 0.019 0.612 ± 0.013 0.757 ± 0.015
LLaMA 4096 0.953 ± 0.009 0.859 ± 0.017 0.802 ± 0.010 0.980 ± 0.008 0.605 ± 0.008 0.774 ± 0.010
LLaMA2 4096 0.945 ± 0.004 0.863 ± 0.018 0.799 ± 0.008 0.978 ± 0.014 0.599 ± 0.009 0.773 ± 0.009

Table 2. The comparison of representative models on regression
tasks. The reported performance metrics are the mean and stan-
dard deviation of their metrics, calculated across the 5-folds. The
best performance is highlighted with green . The line between
the models separate the general purpose models from models spe-
cialized on molecules. The best performance in each section is
highlighted in bold. Since the metric is RMSE, a lower value is
better.

Dataset FreeSolv ESOL Lipophilicity

# Compound 642 1128 4200

Models Dim. Size RMSE

MorganFP (radius=2) 1024 0.534 ± 0.101 0.703 ± 0.020 0.817 ± 0.025
Mol2Vec 300 0.537 ± 0.274 0.495 ± 0.042 0.678 ± 0.024
ChemBERTa 384 0.331 ± 0.034 0.365 ± 0.007 0.716 ± 0.022
Roberta-ZINC 768 0.447 ± 0.046 0.514 ± 0.047 0.761 ± 0.008
MolFormer 768 0.545 ± 0.047 0.493 ± 0.027 0.740 ± 0.012

BERT 768 0.425 ± 0.031 0.382 ± 0.015 0.752 ± 0.013
RoBERTa 768 0.472 ± 0.039 0.405 ± 0.018 0.788 ± 0.013
SBERT 384 0.537 ± 0.070 0.517 ± 0.032 0.872 ± 0.014
SimCSE 768 0.401 ± 0.042 0.394 ± 0.022 0.773 ± 0.007
AngleBERT 768 0.407 ± 0.044 0.409 ± 0.013 0.774 ± 0.005
GPT 1536 0.567 ± 0.087 0.562 ± 0.030 0.852 ± 0.010
LLaMA 4096 0.483 ± 0.036 0.425 ± 0.013 0.785 ± 0.015
LLaMA2 4096 0.422 ± 0.051 0.420 ± 0.023 0.790 ± 0.026

3. Experiments
We experimented with 13 representative models, each eval-
uated by using 9 datasets as described in Table 1 and Table
2. Following are the observations we could make based on
the results:

1. Transformer-based models typically outperform tra-
ditional models. As shown in Table 1, traditional models
(Morgan FP and Mol2Vec) rank at the top in only 3 out of
9 cases. Meanwhile, transformer-based models outperform
these traditional models in the remaining instances.

2. Performance varies depending on the task and, at

times, the specific dataset involved. This variety indicate
that no single model consistently outperforms others across
all settings. Different models may excel in certain contexts
due to variations in dataset complexity and data characteris-
tics. Therefore, evaluating a range of models is essential to
determine the most suitable one for each unique scenario.

3. Fine-tuned LLM models on sentences often perform
worse than vanilla models for SMILES string embed-
dings.

As illustrated in Table 1, models such as AngleBERT, Sim-
CSE, and SBERT, which are fine-tuned on the Natural Lan-
guage Inference (NLI) task, do not perform as well as vanilla
models such as BERT and LLaMA in SMILES embedding
tasks. This suggests that the underperformance of GPT may
also be attributable to its fine-tuning on the NLI task.

4. When special-purpose models outperform general-
purpose ones in classification tasks, the performance
difference is often negligible.

Table 1 clearly demonstrates that the performance difference
between the best models in the general-purpose and spe-
cialized categories is often very small, indicating that both
model types are highly competitive across various tasks. For
instance, when tested on the HIV dataset, the Molformer—a
special-purpose model—scores 0.802, while the LLaMA—a
general-purpose model—marginally outperforms it with a
score of 0.804. This narrow gap in performance implies that
the choice between special-purpose and general-purpose
models may rely more on the specific requirements of use
cases and dataset attributes, rather than on a definitive su-
periority of one type over the other. Additionally, although
pre-training a model like MolFormer requires up to 16 V100
GPUs, using an already pre-trained model like LLaMA can
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Table 3. Comparison of tokenizers for molecular SMILES string. MolFormer perform the best since it tokenizes SMILES strings
atom-wise.

Model Tokenization Strategy Example Tokenization of ’CCS(=O)(=O)CCBr’

ChemBERTa Tokenizer Byte-Pair Encoding-based [’C’, ’C’, ’S’, ’(’, ’=’, ’O’, ’)’, ’(’, ’=’, ’O’, ’)’, ’C’, ’C’, ’B’, ’r’]
MolFormer Tokenizer SMILE Regex [’C’, ’C’, ’S’, ’(’, ’=’, ’O’, ’)’, ’(’, ’=’, ’O’, ’)’, ’C’, ’C’, ’Br’]
Roberta-ZINC Tokenizer Byte-Pair Encoding-based [’CCS’, ’(=’, ’O’, ’)(=’, ’O’, ’)’, ’CCBr’]

BERT Tokenizer Subword-based tokenization [’CC’, ’##S’, ’(’, ’=’, ’O’, ’)’, ’(’, ’=’, ’O’, ’)’, ’CC’, ’##B’, ’##r’]
SimCSE Subword-based tokenization [’cc’, ’##s’, ’(’, ’=’, ’o’, ’)’, ’(’, ’=’, ’o’, ’)’, ’cc’, ’##br’]
AngleBERT Subword-based tokenization [’cc’, ’##s’, ’(’, ’=’, ’o’, ’)’, ’(’, ’=’, ’o’, ’)’, ’cc’, ’##br’]
SBERT Subword-based tokenization [’cc’, ’##s’, ’(’, ’=’, ’o’, ’)’, ’(’, ’=’, ’o’, ’)’, ’cc’, ’##br’]
GPT Tokenizer cl100k-base [’CC’, ’S’, ’(’, ’=’, ’O’, ’)(’, ’=’, ’O’, ’)’, ’CC’, ’Br’]
LLaMA Tokenizer SentencePiece Byte-Pair Encoding-based [’ C’, , ’CS’, ’(’, ’=’, ’O’, ’)(’, ’=’, ’O’, ’)’, ’CC’, ’Br’]
LLaMA2 Tokenizer SentencePiece Byte-Pair Encoding-based [’ C’, , ’CS’, ’(’, ’=’, ’O’, ’)(’, ’=’, ’O’, ’)’, ’CC’, ’Br’]

Table 4. SMILES token regex (Schwaller et al., 2018) used by MolFormer model

SMILES-token-regex= "(\[[ˆ\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#||\+|\\\\\/|:|˜|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"

be computationally cheaper and more efficient.

5. Change in the Tokenization method does not effect
positively on the performance of LLMs. As shown
in Table 3, each method employs a distinct tokenizer. To
explore the significance of tokenizer variation, we conducted
an evaluation assessing the impact on LLaMA and BERT
models. This analysis aimed to understand how tokenizer
changes affect the performance of LLMs. Specifically, we
selected the MolFormer tokenizer that is based on study by
Schwaller et al. (Schwaller et al., 2018), which tokenized
SMILES strings atom-wise using the regular expression
in Table 4. Our study examines the effects of using the
MolFormer tokenizer with BERT and LLaMA models. The
results in Figure 2.a. show that while MolFormer accurately
tokenizes SMILES strings atom-wise, it often decreases
performance in classification tasks. However, as Figure 2.b.
demonstrates, LLaMA models benefit in regression tasks
with the MolFormer tokenizer. Overall, our findings suggest
that choosing the models’ default tokenizers yields better
performance.
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Figure 2. Impact of using molFormer tokenizer instead of LLMs
default tokenizer on classification and regression tasks

4. Conclusions
Molecular representations based on string representations
are a critical focus in computational chemistry research. Our
MolEval framework facilitates comprehensive benchmark-
ing of various models on molecular property prediction,
simplifying evaluation processes. It includes both generic
text encoder models and specialized molecular embedding
models, revealing that while generic models are competi-
tive in classification tasks, they underperform in regression
tasks. This platform enables researchers to select the most
appropriate model for further enhancement. Our work estab-
lishes a foundation for future advancements in using LLMs
for molecular embeddings, with forthcoming efforts aimed
at exploring the quality of these embeddings by leverag-
ing techniques from natural language sentence embedding.
Additionally, we plan to expand MolEval with more tasks
as consensus on optimal molecule embedding evaluations
evolves, hoping that our toolkit will help standardize re-
search outputs.

References
SentEval: An Evaluation Toolkit for Universal Sentence

Representations. In Calzolari, N., Choukri, K., Cieri,
C., and Declerck, T. (eds.), Proceedings of the Eleventh
International Conference on Language Resources and
Evaluation (LREC 2018). European Language Resources
Association (ELRA), May 2018.

Chithrananda, S., Grand, G., and Ramsundar, B. Chem-
BERTa: large-scale self-supervised pretraining for molec-
ular property prediction. Machine Learning for Molecules
Workshop at NeurIPS 2020., 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:

4

https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://ml4molecules.github.io/papers2020/ML4Molecules_2020_paper_67.pdf
https://ml4molecules.github.io/papers2020/ML4Molecules_2020_paper_67.pdf
https://ml4molecules.github.io/papers2020/ML4Molecules_2020_paper_67.pdf
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf


MolEval

Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In North American Chapter of the
Association for Computational Linguistics, 2019.

Gao, T., Yao, X., and Chen, D. SimCSE: Simple Contrastive
Learning of Sentence Embeddings. In Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 6894–6910. Association for
Computational Linguistics, November 2021. doi: 10.
18653/v1/2021.emnlp-main.552.

Guo, T., Nan, B., Liang, Z., Guo, Z., Chawla, N., Wiest, O.,
Zhang, X., et al. What can large language models do in
chemistry? a comprehensive benchmark on eight tasks.
Advances in Neural Information Processing Systems, 36:
59662–59688, 2023.

Heyer, K. Roberta-zinc-480m. https:
//huggingface.co/entropy/roberta_
zinc_480m, 2023.

Jaeger, S., Fulle, S., and Turk, S. Mol2vec: unsupervised
machine learning approach with chemical intuition. Jour-
nal of chemical information and modeling, 58(1):27–35,
2018.

Li, J. and Jiang, X. Mol-BERT: An Effective Molecular Rep-
resentation with BERT for Molecular Property Prediction.
Wireless Communications and Mobile Computing, 2021,
2021.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach, 2020.

Liu, Y., Zhang, R., Li, T., Jiang, J., Ma, J., and Wang, P.
MolRoPE-BERT: An enhanced molecular representation
with Rotary Position Embedding for molecular property
prediction. Journal of Molecular Graphics and Mod-
elling, 118:108344, 2023.

Muennighoff, N., Tazi, N., Magne, L., and Reimers,
N. MTEB: Massive Text Embedding Benchmark. In
Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pp. 2014–2037, May 2023. URL https://
aclanthology.org/2023.eacl-main.148.

OpenAI. Chatgpt [large language model], 2023. URL
https://platform.openai.com/docs.

Radford, A., Wu, J., Child, R., Luan, D., Amodei,
D., and Sutskever, I. Language Models are Unsu-
pervised Multitask Learners. 2019. URL https:
//api.semanticscholar.org/CorpusID:
160025533.

Ramsundar, B., Eastman, P., Walters, P., Pande, V., Leswing,
K., and Wu, Z. Deep Learning for the Life Sciences.
O’Reilly Media, 2019.

Reimers, N. and Gurevych, I. Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks. In Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, 2019.

Rogers, D. and Hahn, M. Extended-connectivity finger-
prints. Journal of chemical information and modeling, 50
(5):742–754, 2010.

Ross, J., Belgodere, B., Chenthamarakshan, V., Padhi, I.,
Mroueh, Y., and Das, P. Large-scale chemical language
representations capture molecular structure and proper-
ties. Nature Machine Intelligence, 4(12):1256–1264,
2022.

Schwaller, P., Gaudin, T., Lanyi, D., Bekas, C., and Laino, T.
“Found in Translation”: predicting outcomes of complex
organic chemistry reactions using neural sequence-to-
sequence models. Chemical science, 9(28):6091–6098,
2018.

Touvron, H., Lavril, T., and Izacard. LLaMA: Open and
Efficient Foundation Language Models. arXiv preprint
arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open Foundation and Fine-
Tuned Chat Models. arXiv preprint arXiv:2307.09288,
2023b.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
MoleculeNet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Zang, X., Zhao, X., and Tang, B. Hierarchical molecular
graph self-supervised learning for property prediction.
Communications Chemistry, 6(1):34, 2023.

Zhang, X.-C., Wu, C.-K., Yang, Z.-J., Wu, Z.-X., Yi, J.-
C., Hsieh, C.-Y., Hou, T.-J., and Cao, D.-S. MG-BERT:
leveraging unsupervised atomic representation learning
for molecular property prediction. Briefings in bioinfor-
matics, 22(6):bbab152, 2021.

5

https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/2021.emnlp-main.552
https://openreview.net/pdf?id=1ngbR3SZHW
https://openreview.net/pdf?id=1ngbR3SZHW
https://huggingface.co/entropy/roberta_zinc_480m
https://huggingface.co/entropy/roberta_zinc_480m
https://huggingface.co/entropy/roberta_zinc_480m
https://pubs.acs.org/doi/10.1021/acs.jcim.7b00616
https://pubs.acs.org/doi/10.1021/acs.jcim.7b00616
https://www.hindawi.com/journals/wcmc/2021/7181815/
https://www.hindawi.com/journals/wcmc/2021/7181815/
https://openreview.net/pdf?id=SyxS0T4tvS
https://openreview.net/pdf?id=SyxS0T4tvS
https://www.sciencedirect.com/science/article/pii/S1093326322002236#:~:text=We%20proposed%20the%20MolRoPE%2DBERT,model%20for%20molecular%20property%20prediction.
https://www.sciencedirect.com/science/article/pii/S1093326322002236#:~:text=We%20proposed%20the%20MolRoPE%2DBERT,model%20for%20molecular%20property%20prediction.
https://www.sciencedirect.com/science/article/pii/S1093326322002236#:~:text=We%20proposed%20the%20MolRoPE%2DBERT,model%20for%20molecular%20property%20prediction.
https://aclanthology.org/2023.eacl-main.148/
https://aclanthology.org/2023.eacl-main.148
https://aclanthology.org/2023.eacl-main.148
https://platform.openai.com/docs
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://deepchem.readthedocs.io/en/latest/
https://api.semanticscholar.org/CorpusID:201646309
https://api.semanticscholar.org/CorpusID:201646309
https://pubs.acs.org/doi/10.1021/ci100050t
https://pubs.acs.org/doi/10.1021/ci100050t
https://www.nature.com/articles/s42256-022-00580-7.epdf?sharing_token=p5m9Z0797IQeBDOiMGn71dRgN0jAjWel9jnR3ZoTv0MeIJPs9pbG9QLaEN_McFTR3KHv1tHh1FDNJB4ZuILdAmRtINVn6KqXrLkPhEiAZW5mM0dWWKSmPk82eibEUBx01sLTSHx6w903cDaUoXg9lAGzcHY_ifmakrBcIzUUDwI%3D
https://www.nature.com/articles/s42256-022-00580-7.epdf?sharing_token=p5m9Z0797IQeBDOiMGn71dRgN0jAjWel9jnR3ZoTv0MeIJPs9pbG9QLaEN_McFTR3KHv1tHh1FDNJB4ZuILdAmRtINVn6KqXrLkPhEiAZW5mM0dWWKSmPk82eibEUBx01sLTSHx6w903cDaUoXg9lAGzcHY_ifmakrBcIzUUDwI%3D
https://www.nature.com/articles/s42256-022-00580-7.epdf?sharing_token=p5m9Z0797IQeBDOiMGn71dRgN0jAjWel9jnR3ZoTv0MeIJPs9pbG9QLaEN_McFTR3KHv1tHh1FDNJB4ZuILdAmRtINVn6KqXrLkPhEiAZW5mM0dWWKSmPk82eibEUBx01sLTSHx6w903cDaUoXg9lAGzcHY_ifmakrBcIzUUDwI%3D
https://pubs.rsc.org/en/content/articlepdf/2018/sc/c8sc02339e
https://pubs.rsc.org/en/content/articlepdf/2018/sc/c8sc02339e
https://pubs.rsc.org/en/content/articlepdf/2018/sc/c8sc02339e
https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2307.09288.pdf
https://arxiv.org/pdf/2307.09288.pdf
https://pubs.rsc.org/en/content/articlepdf/2018/sc/c7sc02664a
https://pubs.rsc.org/en/content/articlepdf/2018/sc/c7sc02664a
https://www.nature.com/articles/s42004-023-00825-5
https://www.nature.com/articles/s42004-023-00825-5
https://academic.oup.com/bib/article/22/6/bbab152/6265201
https://academic.oup.com/bib/article/22/6/bbab152/6265201
https://academic.oup.com/bib/article/22/6/bbab152/6265201

