
Under review as a conference paper at ICLR 2024

HIDDENKEY: PARAMETER-EFFICIENT FINETUNING
MEETS DROPOUT UNDER A UNIFIED FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

The emerging powerful capabilities exhibited by large language models (LLMs)
have established them as a fundamental element in various applications that rely
on advanced language understanding. At the same time, fine-tuning has become
the standard learning approach to adapting LLMs to a concrete application (e.g.,
instruction tuning, alignment tuning, and task/user-specific specialization). Due to
the high cost associated with full finetuning, parameter-efficient finetuning (PEFT)
methods, especially LoRA, have gained popularity due to their lower storage,
memory, and computation requirements. However, the possible contradiction be-
tween limited trainable parameters and the dropout regularization methods (which
aim at alleviating overfitting associated with excessive parameter redundancy),
has been largely overlooked. With extensive experiments of LoRA-based PEFT,
we first confirm that PEFT is also overfitting-prone. We then revisit transformer-
specific dropout methods, and validate their equivalence and differences mathe-
matically and empirically. To facilitate a comprehensive comparison, we intro-
duce a unified framework to instantiate them along dropping position, structural
pattern and compensation measure, and uncover their new preferences and per-
formance comparisons in PEFT scenarios. This framework also enables us to
integrate the best of all into a new dropout method named HiddenKey, which
shows performance superiority over existing methods on both NLU and NLG
tasks. Compared to baselines, it also achieves better performance with less fine-
tuning time, and offers continuous improvement with further finetuning. These
highlight HiddenKey as the better practice for high-performance and parameter-
efficient finetuning of LLMs.

1 INTRODUCTION

With efficient architecture, good scalability and outstanding performance, transformers have grad-
ually dominated sequence modeling in natural language processing (NLP) and have been widely
applied to the fields of image and speech (Vaswani et al., 2017; Kirillov et al., 2023; Radford et al.,
2023). In general, a model’s performance tends to improve with more parameters given sufficient
training data. Thus, pretrained language models, such as GPT-4 (OpenAI, 2023), PaLM 2 (Anil
et al., 2023) and LLaMA 2(Touvron et al., 2023b), have been rapidly expanded to hundreds of
billions or even trillions of parameters, leading to significant performance improvement. When cus-
tomizing these models for downstream tasks, fine-tuning has been the standard learning approach.
However, in addition to being computationally expensive, full fine-tuning in the increasing multi-
task and multi-user scenarios requires storing a complete set of parameters for each user/task, mak-
ing it less practical due to the high costs associated with storage, training and inference. Hence,
many parameter-efficient fine-tuning (PEFT) approaches have been proposed (Houlsby et al., 2019;
Hu et al., 2021; Liu et al., 2022). These methods freeze the vast majority of parameters, allowing
or adding only a small portion of parameters to be updated. Performance comparable to or better
than fine-tuning a whole model is reported, with less than 0.1% of the model parameters adjusted
(Hu et al., 2021; He et al., 2021). Meanwhile, PEFT methods have been proven to be less prone to
overfitting and enjoy better robustness (Chen et al., 2022). PEFT methods, especially LoRA, have
hence been widely studied in academia and deployed in industry (Valipour et al., 2022).

However, PEFT and dropout present a possible contradiction when jointly applied: the dropout
methods can be ineffective with limited trainable parameters in PEFT scenarios, as overfitting
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mostly occurs with excessive parameter redundancy. In this study, we first conduct extensive exper-
iments with LoRA-based PEFT, and confirm that PEFT also suffers from overfitting easily and can
be improved with dropout methods, regardless of the inconsistent choices of dropout methods be-
tween pretraining and finetuning stages. Besides, we analyze existing transformer-specific dropout
methods mathematically, and find the quantitative relationship between DropKey and DropAttention
Empirically, these methods have new preferences in PEFT scenarios. For example, span-wise Hid-
denCut is no longer superior to the element-wise one due to the limited tunable parameters, while
DropKey prefers the column style for NLP tasks instead of the element style for computer vision
(CV) tasks.

To compare these methods comprehensively, we introduce a unified framework from the perspective
of dropout positions, structural pattern and compensation measure. Within this framework, we find
that DropKey performs the best followed by HiddenCut, and DropAttention exhibits the worst per-
formance due to the unreasonable gradient noise. Bidirectional Kullback-Leibler (KL) divergence
loss consistently achieves performance gains, while Jensen-Shannon (JS) consistency regulariza-
tion loss does not. Guided by this framework to integrate the best of all, we also derive a new
dropout method named HiddenKey. HiddenKey empirically exhibits superiority on multiple natu-
ral language understanding (NLU) and natural language generation (NLG) tasks, filling the gap on
the effect of dropout methods on NLG tasks largely overlooked by previous research. Integrating
with input and output dropout does not provide further consistent complementarity, demonstrating
the adequacy of our method. It also outperforms baselines with less finetuning time, and continu-
ous performance improvement can be obtained when longer finetuning process is allowed. Hence,
HiddenKey excels as the better method for high-performance and parameter-efficient finetuning of
LLMs on both NLU and NLG tasks.

2 PRELIMINARIES

We revisit three transformer-specific dropout methods shown in Figure 1 and use the mathematical
symbols for the analysis of their features and interconnections in the next section.

DropAttention. DropAttention (Zehui et al., 2019) is the first dropout-based regularization
method specially designed for self-attention mechanism. It randomly masks independent elements
or key columns of attention weights, to encourage the model to utilize different contextualized fea-
tures instead of overfitting some specific patterns. Following Eq. 1 and Eq. 2, normalized rescaling
operation replaces traditional rescaling to guarantee that the sum of attention weights remains 1, and
achieves better performance and more stable training for multiple NLP classification tasks.

wj = m · wj , m ∼ Bernoulli(p) (1)

w′
j =

wj

NoGrad(
∑l−1

j=0 wj)
(2)

where p, wj , wj and w′
j are the dropout rate, original, masked and rescaled attention weights,

while NoGrad() and Bernoulli() denote gradient stopping operator and sampling from Bernoulli
distribution, respectively1.

DropKey. Instead of dropping attention weights after the softmax() operation, DropKey (Li et al.,
2023) proposes a dropout-before-softmax scheme which takes attention logits gj as the dropout
units, shown in Eq. 3. Since the subsequent softmax() ensures the sum of weights to be one,
rescaling is unnecessary in DropKey. Although three structured dropout methods are introduced,
the vanilla structure is verified to be the most effective for CV tasks (Li et al., 2023).

g′j = m+ gj , m =

{
0, with probability 1− p

−∞, with probability p
(3)

1Here we omit the subscript t for clarity. Although whether the NoGrad() operator exists or not signifi-
cantly impacts the performance of DropAttention, it is overlooked in the original paper. We use it here and will
discuss both cases in detail.
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HiddenCut. In contrast, HiddenCut (Chen et al., 2021) focuses on preventing the co-adaptation
of hidden representations produced in the feed-forward module. The core idea is to cut single con-
tiguous span, which may contain semantic information that is more difficult to be restored than
independent hidden elements. Additionally, JS loss is applied to encourage the perturbed represen-
tations to be as close to the ones in inference as possible.

SoftMax

MatMul

Scale

Add & LayerNorm

FeedForward

MatMul

X

HiddenCut
Add & LayerNorm

*L DropAttention

DropKey

Figure 1: Illustration of transformer archi-
tecture and popular transformer-specific
dropout methods, namely DropKey,
DropAttention and HiddenCut. Blocks
with dashed borderlines and arrows
represent positions of these methods.

(a) element (b) column (c) span

Figure 2: Three structural sampling strategies, namely
element, column and span. The grey and blue cells rep-
resent masked and remaining entries, respectively. Rows
and columns represent the sequence length and the hid-
den state dimension for HiddenCut, and the numbers of
keys and queries for DropKey and DropAttention.

3 METHOD

In this section, we first conduct an analytical study of existing dropout methods. We then propose
a unified framework from the perspective of dropout positions, structural pattern and compensation
measure. Finally, we derive a new dropout method named HiddenKey which provides respective
treatment to attention logits and feed-forward module and exhibits better performance empirically.

3.1 MATHEMATICAL AND EMPIRICAL COMPARISON

Equivalent Forwarding between DropKey and DropAttention. Even if the dropping details
are different between DropKey and DropAttention, we show their mathematical equivalence in the
forward pass. Let gu and gm represent the unmasked and masked attention logits, and wu and wm

denote attention weights2. For DropKey, we have

g′m := −∞, g′u := gu, w′
m = 0 (4)

w′
u =

exp(g′u)∑l−1
i=0 exp(g

′
i)
, (5)

while for DropAttention, we have

w′
m := 0 (6)

w′
u =

exp(gu)∑l−1
i=0 exp(gi)

· 1∑l−1
i=0 wi

(7)

Proved by Eq. 14 in Appendix B, Eq. 5 and Eq. 7 are strictly equal to each other. Hence, the
final attention weights (i.e., w′

u and w′
m) of DropKey are the same as those of DropAttention in

the forward pass, and so is the following computation in the whole model. It is worth noting that
normalized rescaling plays an important role in this equivalence, which diminishes the differences
between these two methods in the forward process.

2Only one masked element is considered here, but masking multiple elements shares the same analysis.
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Similarity of Back-Propagation between DropKey and DropAttention. Given L as the loss
function, the corresponding values of ∂L

∂w′
u

and ∂L
∂w′

m
remain the same for DropKey and DropAt-

tention due to the identical forward pass. Meanwhile, because the forward pass before calculating
the attention logits is also the same, the analysis of back-propagation focuses on the four partial
derivatives of w′

u and w′
m with respect to gu and gm, respectively. For DropKey, we have

∂w′
u

∂gu
= exp(gu) ·

∑l−1
i=0, ̸=m exp(gi)− exp(gu)

(
∑l−1

i=0,̸=m exp(gi))2
. (8)

For DropAttention with NoGrad() operator, we have

∂w′
u

∂gm
= − exp(gu) · exp(gm)∑l−1

i=0 exp(gi) ·
∑l−1

i=0,̸=m exp(gi)
(9)

∂w′
u

∂gu
=

exp(gu) ·
∑l−1

i=0,̸=u exp(gi)∑l−1
i=0 exp(gi) ·

∑l−1
i=0, ̸=m exp(gi)

(10)

For other partial derivatives, the dropping operations stop the gradient flow or set the gradients to
0. When the corresponding elements of attention logits and weights are masked, the derivative of
w′

u with respect to gu has proportional relation as shown in Eq. 11, proven in Eq. 15 of Appendix
B. Provably, k is always less than 1 and continuously decreases with the increase of gm. In other
words, compared to DropAttention with NoGrad() operator, DropKey can adaptively lower the
gradients when a large attention logit gm is discarded. This can provide DropKey with dropping-
dependent compensation capability, thereby stabilizing the training process. For DropAttention with
NoGrad(), the partial derivative of w′

u with respect to gm is none-zero and that with respect to gu
depends on the value of gm, even if wm is masked and gm does not participate in the forward com-
putation. This implies that a larger dropout rate can introduce more gradient noise. The inferior
performance in Sec. 4 also validates this analysis empirically. In contrast, DropAttention without
NoGrad() provably shares the same back-propagation with HiddenKey, thereby exhibiting identi-
cal behaviors. Hence, unless otherwise stated, we will refer to DropAttention with NoGrad() as
DropAttention, and include DropAttention without NoGrad() under DropKey for simplicity below.

(
∂w′

u

∂gu
)DropKey = k · (∂w

′
u

∂gu
)DropAttention, k =

1− exp(gu)∑l−1
i=0, ̸=m exp(gi)

1− exp(gu)∑l−1
i=0 exp(gi)

(11)

Comparison with HiddenCut. The commonality among these methods is that they all need to se-
lect a specific type of data, decide what patterns to mask, and consider how to reduce the differences
between the training and inference stages, which will be explained in detail in the next section. In
contrast, the differences are two-fold. First, their distinct dropping locations and patterns leads to
different compensation methods. Similar to the vanilla dropout, element-wise HiddenCut amplifies
representations by a factor of 1/(1−p) for consistent scales between training and testing, while nor-
malized rescaling in Eq. 2 is used for DropAttention. Due to the subsequent softmax(), DropKey
no longer uses any scaling method. Next, the other difference is that like DropConnect (Wan et al.,
2013) which randomly zeros layer weights, DropAttention and DropKey can also be regarded as
operations performed on weight matrices (which are utilized for the weighted summation of value
vectors), even if these weight matrices are input-dependent and dynamically generated (Zehui et al.,
2019). Contrarily, HiddenCut operates directly in semantic representations.

3.2 A UNIFIED FRAMEWORK

Although these methods has different design details, the core idea and components behind designing
a dropout method are shared, such as dropping position, structural pattern and compensation strat-
egy to close the training and inference gap. We will further explain these design dimensions and
instantiate these dropout methods along them below.

Dropping Position. For better generalization, a robust model needs to learn noise-resilient fea-
tures. Hence, dropping position, determining where to inject noise, emerges as a primary consid-
eration in designing dropout methods. For example, dropping inputs acts like data augmentation,
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dropping output representations encourages an ensemble of sub-classifiers, and dropping intermedi-
ate representations affects the co-adaptation of different neurons. For a transformer layer illustrated
in Figure 1, DropKey, DropAttention and HiddenCut respectively drop attention logits, weights and
hidden representations, covering the self-attention mechanism and feed-forward module.

Structural Pattern. Structural pattern means the style of units deactivated randomly, and deter-
mines how the co-adaptation of neurons is disrupted, thereby affecting the semantic information
learned by these units. Specifically, as shown in Figure 2(b), if column pattern is adopted in Drop-
Key, each value vector will tend to possess as much contextual information as possible so that the
output vectors is minimally affected by the dropped key columns. Furthermore, different optimal
dropping patterns may be required for distinct dropping positions, which will be thoroughly studied.

Compensation for Training-Inference Gap. For better performance and deterministic output,
dropout mechanisms are generally disabled in inference. However, this is not consistent with the
training stage and can lead to a gap between the actual and ideal performance. Therefore, another
key consideration is how to close the training and inference gap. Apart from simple rescaling asso-
ciated with each method, R-drop (Wu et al., 2021) explores another solution which utilizes Eq. 12,
bidirectional KL divergence loss, to enforce the output distributions to be more dropout-insensitive
so that the gap between training and inference can be minimized. Instead, HiddenCut replaces it
with JS loss shown in the Eq. 13. For the sake of symmetry, KL loss calculates the bidirectional
distances, while JS loss uses the inference distribution as reference.

LKL =
1

2
(DKL(P1∥P2) +DKL(P2∥P1)) (12)

LJS = DKL(P1∥P ) (13)

where P1, P2 and P represent two different output distributions in the training stage and one in
inference with the same samples, respectively. DKL() calculates the asymmetric KL divergence
between two distribution.

3.3 HIDDENKEY

Input Samples

Sentence 1:
Oil prices fall back as
Yukos oil threat lifted.
 
Sentence 2: 
Oil prices rise. 

ClassifierSoftMax FeedForward Add &
LayerNorm

······

······

Transformer Layer * L

ClassifierSoftMax FeedForward Add &
LayerNorm

Transformer Layer * L

······

······

+ Kullback–Leibler
Divergence Loss

Grad

NoGrad

Figure 3: Illustration of DropKey. It respectively drops columns and elements for attention logits and
hidden representations, and augments KL loss to minimize the training and testing gap implicitly.

The proposed unified framework enables us to analyze the critical choices along each dimension and
their mutual influences, and also guides us to design new dropout methods. As shown in Figure 3, we
propose “HiddenKey”, which drops the attention logits column-wisely in the attention mechanism
and hidden representations element-wisely in the feed-forward module. Similar to a Siamese archi-
tecture (Bromley et al., 1993), during the training stage, the model performs two forward passes in
parallel which does not apparently increase the training time, and augments an extra KL loss to en-
hance the similarity of output distributions, thereby minimizing the gap between training and testing.
For classification tasks, the representations produced by the classifier are used, while those produced
by the last transformer layer are used for regression tasks. Furthermore, the superiority over all the
aforementioned methods will be extensively analyzed on diverse tasks and models below.
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4 EXPERIMENTS

4.1 GENERAL SETUP

Models and Datasets. We implement comprehensive empirical analysis of multiple tasks and
models in LoRA-based PEFT scenarios. The models start from RoBERTa-large (Liu et al., 2019)
and GPT2-Medium (Li & Liang, 2021) and scale up to LLaMA-7B(Touvron et al., 2023a). The tasks
cover NLU and NLG. For NLU tasks, we use six datasets from the GLUE benchmark (Wang et al.,
2018): (i) SST-2 (Socher et al., 2013), (ii) RTE (Wang et al., 2018), (iii) MRPC (Dolan & Brockett,
2005), (iv) STS-B (Cer et al., 2017), (v) CoLA (Warstadt et al., 2018) and (vi) QNLI (Rajpurkar
et al., 2018). These datasets are selected to cover different sizes and diverse tasks, including single
sentence, similarity, paraphrase and inference. Specially, STS-B performs a regression task for
better generalization of our conclusions. For NLG tasks, we follow Hu et al. (2021) and focus on
E2E (Novikova et al., 2017) and WebNLG (Gardent et al., 2017). More details can be found in
Appendix C.

Baseline. Due to the popularity, we use models with LoRA as the representative baselines for
PEFT scenarios, and keep their most configurations. Especially, parallel low-rank matrices are
utilized with the rank as 8 and a scaler as 16 for W k and W v in the attention module. This results
in trainable parameters of 0.79M in the Roberta-large model, accounting for 0.22% of the total
model parameters3. In comparison, for GPT2-Medium, these values are 0.39M and 0.11%, while
for LLaMA-7B, they are 4.19M and 0.06%. The detailed configurations are in the Appendix D.

4.2 MAIN RESULTS

Figure 4: Performance of different dropout methods on four datasets (RTE, MRPC, STS-B and
SST-2). Markers and line styles differentiate various dropping positions, while the shades of color
represent the structural patterns. Pearson correlation is reported for STS-B, and accuracy for others.

In the PEFT scenario, we first conduct extensive experiments with RoBERTa-large on four NLU
datasets, and display the results in Figure 4 and Table 1. Generally, almost all methods can outper-
form the baseline with a large margin. This demonstrates that despite limited trainable parameters,
PEFT still suffers from overfitting and these transformer-specific dropout methods can alleviate this
problem regardless of different dropout methods from the pretraining stage. We claim that limited
adjustable parameters of PEFT in LLMs still enable large model capacity. This stems from two as-
pects: (1) Even if the proportion is negligible, the number of tunable parameters remains significant
due to the large size of foundation models. In our setting, there are still 0.79M tunable parameters,
accounting for 0.22% of the total in Roberta-large model. (2) Coupled with the base model, the ex-
pressiveness of these parameters is enlarged extremely, as evidenced by the remarkable performance
across multiple tasks in (Hu et al., 2021; Zaken et al., 2021). This excessive model capacity causes
the entire model to overfit to specific patterns, with a negligible portion of tunable parameters.

Different dropout methods have distinctive characteristics in PEFT scenarios. Specifically, with a
small dropout rate, all methods perform very similarly, fluctuating around the baseline. However,
as the dropout rate increases, DropKey consistently achieves the best performance on four datasets,
followed by HiddenCut. Both of them also exhibit an overall trend of initially increasing and then

3The classifier parameters are excluded here due to their varying numbers for different tasks.
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decreasing, which aligns with the regular dropout behaviors in pre-training and full-finetuning (Sri-
vastava et al., 2014). In contrast, despite the similar dropping positions and the same forward pass as
DropKey, DropAttention produces the worst results. This confirms our earlier analysis in Sec. 3.1,
indicating that the backward propagation with NoGrad() leads to larger gradient noise and rapidly
degrades the model’s performance as the dropout rate increases.

Table 1: Results of various dropping positions, structural patterns and compensation methods for
RoBERTa-large model on RTE, MRPC, STS-B and SST-2 datasets. “input” and “output” mean the
dropping of input and output representations. The superscript of data denotes the optimal parameter
of each method, while the subscript means the standard deviation. Bold indicates the best perfor-
mance. “Compen.” and “Avg.” are compensation methods and the average results on four datasets. 4

Position Pattern /
Compen.

RTE MRPC STS-B STS2
Avg.

Acc. Acc. Pearson. Acc.

baseline - 84.480.00±0.98 89.950.00
±0.50 91.960.00

±0.48 95.990.00
±0.25 90.60

HiddenCut

element 87.000.20±1.14 90.690.10
±0.42 91.940.05

±0.28 96.100.10
±0.42 91.43

column 86.640.15±0.80 90.200.05±0.80 91.960.02
±0.11 96.220.10

±0.19 91.26

span 86.640.15
±1.63 90.690.10

±0.22 92.050.02
±0.35 96.100.20

±0.30 91.37

DropKey

element 87.000.25±1.08 90.930.20
±1.06 92.210.10

±0.21 96.220.20
±0.25 91.59

column 87.360.20±1.70 90.930.15±0.40 92.250.05
±0.13 96.220.15

±0.24 91.69

span 86.280.20
±0.94 90.690.05

±0.69 92.210.10
±0.21 96.220.20

±0.25 91.35

DropAttention

element 85.560.10
±11.73 90.200.02

±3.07 92.030.05
±0.27 95.760.01

±0.30 90.89

column 85.560.02±1.80 90.200.02±0.71 92.110.05
±0.28 95.870.01

±0.21 90.94

span 86.280.05
±0.60 89.950.01

±0.61 92.210.01
±0.36 96.100.02

±0.39 91.14

HiddenKey−

- 87.700.05,0.2±0.91 90.900.05,0.15
±0.72 92.280.05,0.05

±0.19 96.220.1,0.15
±0.13 91.78

+ KL 88.100.50
±1.60 91.205.00

±0.90 92.301000.00
±0.11 96.442.00

±0.20 92.01

+ JS 87.700.01
±1.72 90.900.02

±0.47 92.240.05
±0.21 96.220.01

±0.24 91.77

+ input 88.500.02
±2.11 90.700.10

±1.03 92.110.05
±0.14 96.330.20

±0.27 91.16

+ output 87.700.02±2.24 90.700.10
±1.20 92.190.10

±0.11 96.220.10
±0.15 90.95

Dropping positions prefer different optimal structural patterns, and combining different positions can
further improve performance. Based on our results, the optimal structure for DropKey is “column”,
which deactivates specific keys across all queries within a head, thereby breaking the co-adaptation
of value vectors and achieving better performance. Oppositely, Li et al. (2023) confirms the ineffec-
tiveness of structural patterns in multiple CV tasks. This divergence may arise from that NLP tasks
have a more semantically explicit token segmentation, while this property is absent for CV tasks.
In comparison, HiddenCut only has one representation sequence instead of multiple sequences in
the multi-head attention module in DropKey. Hence, “column” and “span” modes erase too much
information, especially when semantically important representations, such as negation words, emo-
tional words, etc., are masked. This may introduce excessive noise and even incorrect input-label
pairs for the relatively limited PEFT capacity, and explains why element-wise HiddenCut achieves
better performance on average, contrary to the superiority of “span” in full-finetuning (Chen et al.,
2021). In Table 1, we further combine element-wise HiddenCut with column-wise DropKey, named
HiddenKey−. On average, it achieves further improvement compared to any single dropout mecha-
nism. We also attempt to combine DropAttention, but it does not lead to any improvement.

As for the augmented loss to narrow the gap between training and inference, KL loss empirically
achieves better performance than JS loss. Specifically, compared to HiddenKey− (i.e. HiddenKey

4Even if there are some extra designs among existing dropout methods, like scheduled dropout ratio and
strategic sampling, they cannot be shared or are complicated to optimize, thereby being neglected here.
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without any additional loss), the introduction of KL loss always provides further performance gains
on all datasets, including the STS-B dataset of a regression task. In contrast, JS loss does not have an
apparent impact on the results, while Chen et al. (2021) claims its superiority but does not implement
any comparison with KL loss. This difference may arise from the PEFT scenario and more superb
dropout method, which squeezes the potential improvement space of JS loss. Therefore, with the
validated superior performance, KL loss is applied in HiddenKey along the third dimension of our
proposed framework. Due to the optimal practice along each dimension, HiddenKey also achieves
the best performance among all above methods on all datasets.

4.3 GENERALIZATION ON MORE NLU DATASETS AND LLMS

More NLU Datasets. We generalize HiddenKey to two extra NLU datasets, namely CoLA and
QNLI. As shown in Table. 2, HiddenKey steadily achieves 1.95 and 0.81 performance improvement
over baselines on both of the datasets, even if Matthew’s correlation is used for the evaluation of
CoLA. These further confirm the superiority of HiddenKey in NLU tasks.

Table 2: Results of RoBERTa-large finetuned
with HiddenKey on CoLA and QNLI datasets.

Method CoLA QNLI
Matthew. Acc.

baseline 67.96±0.25 94.23±0.17

HiddenKey 69.91±0.52 95.04±0.11

Table 3: Results of LLaMA-7B finetuned with
HiddenKey on RTE and MRPC datasets.

Method RTE MRPC
Acc. Acc.

baseline 89.17±1.18 88.73±0.62

HiddenKey 90.61±1.51 89.22±1.12

LLaMA. With the dominance of LLMs, we also extend the application of HiddenKey to LLaMA
7B, one of the most popular and open-sourced LLMs. Its performance on RTE and MRPC datasets
is given in Table 3. Apparently, models finetuned with HiddenKey outperform those without Hid-
denKey by a large margin in the LoRA-based PEFT scenario. This indicates that HiddenKey can
also function well when an auto-regressive decoder-only LLM is deployed and the representation of
the final time step is used for prediction.

4.4 PERFORMANCE ON NLG TASKS

Following Hu et al. (2021), we conduct extra experiments with GPT2-Medium to demonstrate the
superior performance of HiddenKey on NLG tasks. As shown in Table 4, HiddenKey consistently
outperforms baseline and other dropout methods over all the five metrics on E2E dataset. Similarly
in Table 5, on the “All”, “Seen” and “Unseen” subsets of the WebNLG dataset, HiddenKey gains 7/9
wins over other methods on BLEU, METEOR and TER metrics. In conclusion, HiddenKey exhibits
similar performance surge on diverse metrics, datasets and their subsets with causal autoregressive
models for NLG tasks as it has shown for NLU tasks, and can be the recommended method for
high-performance and parameter-efficient finetuning of LLMs on both NLU and NLG tasks.

Table 4: Results of GPT2-Medium finetuned with different dropout methods on E2E dataset.

Method BLEU ↑ NIST ↑ METEOR ↑ ROUGE L ↑ CIDEr ↑
Baseline 68.50±0.90 8.615±0.09 0.464±0.00 0.711±0.00 2.490±0.02

HiddenCut 69.22±0.44 8.700±0.05 0.467±0.00 0.714±0.00 2.491±0.01

DropKey 68.78±0.75 8.651±0.08 0.465±0.00 0.714±0.00 2.486±0.01

HiddenKey− 69.35±0.48 8.726±0.04 0.466±0.00 0.716±0.00 2.510±0.00

HiddenKey 69.76±0.51 8.765±0.08 0.468±0.00 0.718±0.00 2.511±0.03

4.5 COMPLEMENTARITY WITH INPUT AND OUTPUT DROPPING

Except various dropout methods designed for transformer layers, cutoff, proposed in Shen et al.
(2020), is applied to input embedding sequence to perform data augmentation, and standard dropout
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Table 5: Results of GPT2-Medium finetuned with different dropout methods on WebNLG dataset.
“A”, “S” and “U” denote the “All”, “Seen” and “Unseen” categories in the test set, correspondingly.

Method A S U

BLEU ↑ METEOR ↑ TER ↓ BLEU ↑ METEOR ↑ TER ↓ BLEU ↑ METEOR ↑ TER ↓
Baseline 54.78±0.16 0.411±0.00 0.395±0.00 62.30±0.47 0.420±0.04 0.331±0.00 45.53±0.21 0.376±0.00 0.464±0.00

HiddenCut 55.06±0.18 0.411±0.00 0.391±0.00 62.43±0.21 0.442±0.00 0.329±0.00 46.11±0.20 0.377±0.00 0.458±0.00

DropKey 55.22±0.34 0.411±0.00 0.389±0.00 62.47±0.17 0.441±0.00 0.328±0.00 46.39±0.75 0.378±0.00 0.455±0.01

HiddenKey− 55.26±0.20 0.411±0.00 0.388±0.00 62.57±0.24 0.441±0.00 0.328±0.00 46.36±0.34 0.378±0.00 0.454±0.00

HiddenKey 55.27±0.21 0.413±0.00 0.386±0.00 62.49±0.18 0.441±0.00 0.326±0.00 46.48±0.46 0.381±0.00 0.452±0.00

is also used to the output representations for a more robust classifier. Therefore, we also investigate
whether these methods could further enhance the transformer-specific dropout. The results at the end
of Table 1 suggest that neither of these methods consistently achieve improvement over HiddenKey−

across all datasets, and both of their average performance suffer a slight decrease. This indicates that
the performance gains brought by dropout methods have mostly been captured by HiddenKey, and
the input or output dropping does not provide steady complementarity. This adequacy hints that
finetuning with HiddenKey only is enough in PEFT scenarios.

4.6 FINETUNING DYNAMICS

Figure 5: Finetuning loss and evaluation ac-
curacy curves for baseline, HiddenKey− and
HiddenKey. The vertical black dashed line
denotes the convergence point of baseline.

Beyond the superior performance on both NLU and
NLG tasks, we also visualize the finetuning dynam-
ics to understand HiddenKey from a new perspec-
tive. Figure 5 shows the averaged dynamic curves of
training loss and evaluation accuracy over five ran-
dom seeds on RTE dataset, when models are fine-
tuned with different methods in LoRA-based PEFT
scenarios. Compared to the baseline whose train-
ing loss rapidly converges to near zero, the introduc-
tion of HiddenKey− significantly slows down this
process and leads to larger final loss, while Hid-
denKey further exacerbates this phenomenon. How-
ever, large final loss does not mean inferior per-
formance. Specifically, after reaching a fair peak
value, accuracy of the baseline deteriorates slightly
with the continuous loss decline. This hints that the
models suffer from overfitting, which further sup-
ports our earlier analysis. In contrast, HiddenKey−

reaches the peak accuracy more slowly with larger
loss but remains superior to the baseline. With the
additional KL loss, the accuracy keeps fluctuating upwards and achieves the best value, even with
the largest loss. It can be anticipated that a longer finetuning process would result in higher accuracy
for HiddenKey. In summary, LoRA-based PEFT scenarios are still overfitting-prone and HiddenKey
can provide excellent model regularization. Besides, as shown by the vertical black dashed line, al-
though HiddenKey converges slower, it still achieves better performance even before the baseline
converges. Therefore, we claim that HiddenKey outperforms the baseline with shorter finetuning
process and can continue improving performance when further finetuning is allowed.

5 CONCLUSION

We investigate the possible contradiction between the limited trainable parameters in LoRA-based
PEFT scenarios and overfitting associated excessive parameter redundancy. After confirming the
overfitting-prone property, we give a mathematical analysis of existing dropout methods and intro-
duce a unified framework to compare them empirically, which also guides us to derive a new dropout
method, HiddenKey. With its superior performance, adequacy and efficiency on both NLU and NLG
datasets, HiddenKey deserves to be the recommended dropout method in PEFT scenarios.
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6 REPRODUCIBILITY STATEMENT

All of our models are based on open-sourced foundation models, including RoBERTa-large (Liu
et al., 2019) and GPT2-Medium (Li & Liang, 2021) and LLaMA-7B(Touvron et al., 2023a). Suf-
ficient details to finetune these models can be found in Sec. 4.1 and Appendix D. Besides, we will
also release the code upon publication for publicly available reproducibility with minimal effort.
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A RELATED WORK

Transformers consist of stacked attention-based modules, and demonstrate good performance due
to its ability to effectively capture long-range contextual information (Vaswani et al., 2017). Based
on a casual multi-layer Transformer decoder for language understanding tasks, Radford et al. (2018)
achieves significant gains on training from scratch with a new semi-supervised approach paradigm,
combining pretraining an autoregressive language model generatively on unlabelled text and fine-
tuning on task-specific data. Subsequently, BERT utilises MLM loss to expand this diagram to
bidirectional transformers for natural language understanding tasks (Devlin et al., 2018). These
two paradigms have opened up the era of large-scale applications of transformer models like GPT-2
(Radford et al., 2019), Megatron-LM (Shoeybi et al., 2019), and T5 (Raffel et al., 2020), quickly
dominating the NLP community and continuously pushing the performance boundaries on multiple
tasks. Taking GPT-3 (Brown et al., 2020) with 175B parameters as a representative, large language
models emerge strong zero-shot and few-shot learning on many tasks and further sparks a scaling
frenzy. LLMs such as InstructGPT (Ouyang et al., 2022), Chinchilla (Hoffmann et al., 2022), OPT
(Zhang et al., 2022), GPT-4 (OpenAI, 2023), PaLM 2 (Anil et al., 2023) and LLaMA 2(Touvron
et al., 2023b) are developed intensively and commercialized.

Regular finetuning adapts a generally pretrained model to a task-specific data distribution, which
will incur another slightly different copy of the pretrained parameter sets. However, the rapidly
increasing scale of LLMs makes it impractical to store and load several versions of these model fine-
tuned for multiple users and tasks. As a light alternative, parameter-efficient finetuning methods only
introduce or retrain a negligible portion of pretrained parameters, yielding a high degree of parameter
sharing while preserving competitive performance as fully finetuning. Houlsby et al. (2019) inserts
new adapter modules between layers of a frozen pre-trained model, but extends the depth of the
original model, thus incurring more time latency. Lester et al. (2021) concatenates learnable prompt
with input and feed this longer sequence into the frozen network. However, this method reduces
the model’s usable sequence length, needs much more computation, and is empirically verified to
be sensitive to the prompt initialisation. Li & Liang (2021) attaches prefixed tokens to the K and
V sequences of the transformer layer and avoids the first drawback, but still suffers the later two
problems and brings more memory footprint. Zaken et al. (2021) proposes to only finetune the
existing biases without introducing any new parameters and thus avoids all the above problems,
but its capacity is so limited that it only shows inferior performance. In contrast, Hu et al. (2021)
imposes a low-rank constraint on the weight updates and these new parameters can be merged with
the pretrained weights during inference, resulting no increased time latency.

At the training stage, dropout randomly deactivates each neuron with a certain probability, while
keeps all the neurons active in the reference phase. The operation can be regarded as injecting noise
like a data augmentation method, preventing co-adaptation of neurons, or ensembling exponentially
many sub-networks, and has been verified as a extremely effective regulariser to improve the gener-
alization ability of multiple popular applications and model architectures, including CNNs, RNNs,
Transformers and GNNs. Specifically for Transformer models, Zehui et al. (2019) proposes the
first variant for fully-connected self-attention layer, dropping the attention weights to prevent dif-
ferent contextualized tokens from co-adaption. Instead of dropping the attention layer, Chen et al.
(2021) introduces contiguous span-style deactivations to hidden representations produced by the
linear layer following each attention layer. Recently, Li et al. (2023) proposes to drop key units
before the softmax layer to keep probability features of attention weights. But it only focuses on
computer vision tasks, while totally neglecting the NLP community that emphasizes on semantics
and linguistic information. And we closes this gap with extensive experiments, verifying its supe-
rior performance on NLP tasks and some different conclusions. Wu et al. (2021) minimizes the
bidirectional Kullback-Leibler (KL) divergence between the two output distributions of sub models
sampled by two different forward passes with dropout. Shen et al. (2020) applies Jensen-Shannon
Divergence loss to enforce consistent representations between outputs with and without dropout and
thus narrows the gap between model training and inference stages.
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B MATHEMATICAL PROOFS

We prove the mathematical equivalence of w′
u for DropKey and DropAttention as follows:

exp(gu)∑l−1
i=0 exp(gi)

· 1∑l−1
i=0 wi

=
exp(gu)∑l−1
i=0 exp(gi)

· 1

1− wm

=
exp(gu)∑l−1
i=0 exp(gi)

· 1

1− exp(gm)∑l−1
i=0 exp(gi)

=
exp(gu)∑l−1

i=0 exp(gi)− exp(gm)

=
exp(gu)∑l−1

i=0,̸=m exp(gi)

=
exp(g′u)∑l−1
i=0 exp(g

′
i)

(14)

The proportional relationship of ∂w′
u

∂gu
between DropKey and DropAttention can be derived with the

following equation:

(
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u
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)DropKey
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)DropAttention

=
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·
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=
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(15)

If k is denoted as the result of Eq. 15, we have

k <
1− exp(gu)∑l−1

i=0, ̸=m exp(gi)+exp(gm)

1− exp(gu)∑l−1
i=0 exp(gi)

= 1

(16)

C DATASET DETAILS

For NLU tasks, (i) Stanford Sentiment Treebank (SST-2) (Socher et al., 2013) is an English senti-
ment classification benchmark for a single sentence task, predicting whether the sentiment of movie
reviews is positive or not. (ii) Recognizing Textual Entailment (RTE) (Wang et al., 2018) repre-
sents an inference task that predicts the entailment relation between two sentences. (iii) Microsoft
Research Paraphrase Corpus (MRPC) (Dolan & Brockett, 2005) predicts the semantic equivalence
between two sentences, while (iv) Semantic Textual Similarity Benchmark (STS-B) (Cer et al.,
2017) predicts the similarity between two sentences. The later two tasks are involved with compar-
ing and assessing the similarity and paraphrasing of two sentences. It is worth noting that, compared
to the other classification tasks, STS-B performs a regression task and thus encompasses a broad
range of tasks, enhancing the generalizability of our conclusions. Besides, additional experiments
are further conducted to verify the validation of our analysis on (v) Corpus of Linguistic Accept-
ability (CoLA) (Warstadt et al., 2018), which aims to predict whether a sentence is linguistically
acceptable or not, and (vi) Question Natural Language Inference (QNLI) (Rajpurkar et al., 2018),
which predicts whether a sentence is the answer to a given question. For NLG tasks, we focus on
(vii) E2E NLG Challenge (Novikova et al., 2017) and (viii) WebNLG (Gardent et al., 2017). The
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former consists of sets of slot-value pairs along with multiple corresponding natural language ref-
erences in the restaurant domain, while the later is a dataset where models generate corresponding
description in form of natural language text given a sequence of SUBJECT-PROPERTY-OBJECT
triples.

As for the evaluation metrics, we report the Pearson correlation for STS-B, Matthew’s correlation for
CoLA, and accuracy for other NLU datasets. For NLG tasks, BLEU, NIST, METEOR, ROUGE-L
and CIDEr are used on the E2E NLG Challenge dataset, while BLEU, METEOR and TER are eval-
uated separately for “Unseen”, “Seen” and “All” categories in the test set of the WebNLG dataset.

D HYPERPARAMETER CONFIGURATION

Table 6: The hyperparameters for RoBERTa-large and LLaMA-7B with LoRA on NLU datasets.

Model RoBERTa-large LLaMA-7B

Dataset RTE MRPC STS-B SST-2 CoLA QNLI RTE MRPC

Optimizer AdamW AdamW
Weight Decay 0.1 0.1
Warmup Ratio 0.06 0.06
LR Schedule Linear Linear
Learning Rate 4E-4 3E-4 3E-4 4E-4 2E-4 2E-4 4E-4 5E-4

Epoch 30 30 10 10 40 10 10 8
Batch Size 64 32 32 64 32 32 64 32

Mac Seq. Len. 512 512 128 512 128 512 512 512
LoRA Rank rq = rv = 8 rq = rv = 8
LoRA Scalar 16 16

Table 7: The hyperparameters for GPT2-
Medium with LoRA on NLG datasets.

Dataset E2E WebNLG

Training

Optimizer AdamW
Weight Decay 0.01
Warmup Step 500
LR Schedule Linear
Learning Rate 2E-4

Epoch 5
Batch Size 8

Label Smooth 0.1
LoRA Rank rq = rv = 4
LoRA Scalar 32

Inference

Beam Size 10
Length Penalty 0.9 0.8

No Repeat N-Gram Size 4
Repetition Penalty 1.0

As shown in Table 6 and 7, we mainly follow the
setup of LoRA (Hu et al., 2021) with as mini-
mal changes as possible. However, based on our
pre-experiments, significant fluctuations of the re-
sults are observed when models are trained with
the original epochs, even if only random seeds
change. Therefore, we increase the number of train-
ing epochs for more steady results. We also use
the regular initialization instead of the MNLI check-
point to initialize the LoRA modules. Different
from RoBERTa-large and GPT2-Medium, we em-
ploy FP16 mixed precision training for LLaMA-7B
to reduce the memory requirement.

For the specific parameters in our experiments, we
disable dropout in baselines and iterate all avail-
able dropout rate from {0.01, 0.02, 0.05, 0.1, 0.15,
0.2} for various dropout methods, which is expanded
with {0.25, 0.3} for clearer trend of performance in
RTE dataset. To the best of our knowledge, neither
of HiddenCut, DropKey and DropAttention imple-
ments experiments with a casual decoder-only trans-
former model before. Based on our empirical ob-
servation, applying any of these methods can only
produce limited improvement or even deteriorate the
performance on both NLU and NLG tasks, and the
results are extremely sensitive to the dropout rate. This phenomenon might be caused by fragile
shallow forward process. In other words, noise introduced by dropout methods can be amplified
with the propagation and diminish the benefits brought by dropout. Hence, we only introduce the
dropping in the latter half of layers in decoder-only models and the apparent performance improve-
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ment emerges again. Besides, our pre-experiments demonstrate that a weight between 0.01 and 10
for KL and JS loss generally yields the best results. Therefore, we iterate the weight within {0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}. All experiments are repeated 5 times to calculate the median
values on NLU tasks, while the average values of three runs is reported for NLG tasks.

E LOSS LANDSCAPE VISUALIZATION

(a) Loss - Baseline (b) Acc. - Baseline (c) Loss - HiddenKey (d) Acc. - HiddenKey

Figure 6: 2D contours of loss and accuracy with respect to perturbed low-rank matrices in LoRA of
baseline and HiddenKey.

Following Li et al. (2018), we also visualize the loss landscape to understand the parameter sensi-
tivity and model generalization in PEFT scenarios. We utilize the filter normalization, introduced
by Li et al. (2018), to correct perturbations by normalizing them based on the scale of parameters
filter-wisely. In the original paper, based on the sensitivity of loss to model parameters, side-by-side
comparisons of different minima can be enabled, and a flatter landscape is indicative of better gen-
eralization. Here we perturb low-rank matrices in LoRA along two random directions and visualize
the loss and accuracy landscapes in Figure 6. However, the results clearly contradict this empirical
notion. Compared with the landscapes of the baseline, those of HiddenKey exhibit rougher loss and
accuracy surfaces, but significantly better performance, which might be attributed to the enhanced
robustness of representations brought about by dropout. Based on the fact that loss is obtained by
combining the model’s structure, parameters and inputs, this contradiction suggests that the gen-
eralization and robustness of a model may involve loss sensitivity (flatness of the loss landscape)
to both parameters and inputs (more broadly, input embeddings and hidden representations). One-
sided analysis can provide some but not sufficient insights. Hence, building loss surface against
parameters and representations simultaneously will further establish the relationship between loss
landscape and model generalization. Although this is not the focus of this paper and left for future
research, it may shed light on the future research direction of loss landscape visualization.
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