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Abstract
In this work, we study the noisy-labeled001
named entity recognition under distant super-002
vision setting. Considering that most NER sys-003
tems based on confidence estimation deal with004
noisy labels ignoring the fact that model has005
different levels of confidence towards different006
categories, we propose a Category-oriented007
confidence calibration (Coca) strategy with008
an automatically confidence threshold calcu-009
lation module. We integrate our method into010
a teacher-student framework to improve the011
model performance. Our proposed approach012
achieves promising performance among ad-013
vanced baseline models, setting new state-of-014
the-art performance on three existing distantly015
supervised NER benchmarks1.016

1 Introduction017

Named entity recognition(NER) task is one of the018

core tasks in natural language processing(NLP),019

which lays foundations to many NLP applications020

including summarization(Erera et al., 2019; Has-021

sel, 2003), relation extraction(Hou et al., 2019;022

Wang et al., 2020), question answering(Kandasamy023

and Cherukuri, 2020) and knowledge base popula-024

tion(Shen et al., 2014).025

In many cases, annotated datasets for training026

supervised NER models are not available and it’s027

labor-expensive and time-consuming to manually028

label the datasets. Distant supervision uses knowl-029

edge bases, domain ontologies and gazetteers to030

automatically generate annotated datasets, alleviat-031

ing the need for hand-crafted datasets.032

Although distant supervision(Mintz et al., 2009)033

provides an efficient way to annotate training data,034

entity type labels induced by distant supervision035

ignore entities’ local context and may have limited036

usage in context-sensitive applications. In addi-037

tion, since knowledge bases are inherently incom-038

plete(Min et al., 2013), existing KBs only include039

1Our code is publicly available at: https://github.
com/possible1402/BOND_Coca

limited entity mentions. Thus models trained on 040

distantly supervised datasets fail to generalize to 041

unseen entities. 042

To address these challenges, it’s essential to 043

denoise the distant labels for training the robust 044

NER system. Many existing works propose var- 045

ious methods such as partial annotation learn- 046

ing(Mayhew et al., 2019), self-training(Jie et al., 047

2019), reinforcement learning(Yang et al., 2018), 048

positive-unlabeled learning(Peng et al., 2019), 049

causal intervention(Zhang et al., 2021a) to tackle 050

this problem. 051

In this work, we introduce a category-oriented 052

confidence calibration approach accompanying 053

with an automatically confidence threshold cal- 054

culation module and apply our method to a self- 055

training teacher-student framework to process the 056

unreliable labels in distantly supervised NER. The 057

inspiration of our method is that traditional NER 058

systems usually deal with noise by setting a confi- 059

dence threshold to filter out uncertain labels. While 060

we assume that it’s inconsistent of the model’s cer- 061

tainty for distinct label types, particularly under the 062

label imbalance scenario. It could be detrimental 063

to the model performance if there is only one con- 064

fidence threshold for all the label types, especially 065

for highly-skewed sequence labeling tasks. 066

To summarize, our major contribution includes: 067

1. We integrate category-oriented confidence cal- 068

ibration with teacher-student framework to 069

tackle the problem of noisy labels in distantly 070

supervised NER, which allows the model to 071

adjust labels during self-training according to 072

the confidence threshold of each label type. 073

2. Our proposed approach can automatically cal- 074

culate the threshold of confidence estimation 075

score for each label type instead of treating 076

it as a hyper-parameter, which can be easily 077

adapted to different NER tasks. 078
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2 Methodology079

In this section, we introduce our teacher-student080

framework with category-oriented confidence cali-081

bration. Figure 1 provides a graphical overview of082

our model.083

2.1 Task Formulation084

We formally formulate the named entity recogni-085

tion task as a sequence labeling task. Given a086

sequence of tokens X = [x1, ...xi, ..., xn], the087

aim is to predict a sequence of labels Y =088

[y1, ...yi, ..., yn] that encodes the named entities,089

where n is the length of sequence and yi is the corre-090

sponding label for token xi. Let LE = [1, 2, ..., C]091

represent the label set and C is the number of092

classes.093

2.2 Model Architecture094

Our model consists of four modules, termed confi-095

dence threshold calculation, category-oriented con-096

fidence calibration, teacher network, and student097

network, where the student network and teacher098

network are structurally identical.099

We use pretrained language model RoBERTa to100

implement the teacher-student framework, which101

acts as the encoder and a linear classification layer102

is atop it to compute the probability distribution of103

labels among LE for each corresponding token xi.104

Specifically, the RoBERTa layer fθ maps the input105

sequence x into a sequence of hidden vectors h =106

{h1, ...hi, ..., hn}. After that, the classifier takes in107

token-wise hidden vector from the RoBERTa layer108

and gives the probabilities on all label types for109

each token xi through SoftMax function.110

hi = fθ(xi) (1)111

112
p(xi,Θ) = SoftMax(Whi + b) (2)113

where fθ(·) produces context-sensitive representa-114

tions for the input token sequence, hi is the hidden115

vector of the final hidden layer corresponding to the116

i-th token xi, p(xi,Θ) ∈ R|C|, and Θ = {θ,W, b}117

denotes all the model parameters to be learned.118

2.3 Self-Training with Category-Oriented119

Confidence Calibration120

Under the teacher-student framework, our model121

modulates the parameter update to the student net-122

work according to the posterior confidence in its123

label-quality estimated by a teacher network based124

on category-oriented confidence calibration. The125

whole self-training process can be mainly split into 126

three phases. 127

Step 1: Confidence Threshold Calculation. 128

129

Given the distant labeled NER training set 130

D = {(X(m), Ỹ (m))}Mm=1, where Ỹ (m) = 131

[ỹ
(m)
1 , ..., ỹ

(m)
i , ..., ỹ

(m)
n ] represents a sequence of 132

distant labels for sample m and ỹ(m)
i ∈ LE . We 133

remark that self-training behaves poorly when 134

encountering unreliable predicted labels namely 135

pseudo labels, which will cause the student net- 136

work to be updated towards the wrong direction. 137

To alleviate this issue, we firstly initialize the stu- 138

dent network and teacher network using the param- 139

eters of RoBERTa and then adapt them to acquire 140

task dependent representation on the minibatch TK 141

from D whose size is K: 142

Θinit = arg min
Θ

1

K

K∑
m=1

l(Ỹ (m), f(X(m); Θ))

(3) 143

Θ0
tea = Θ0

stu = Θinit (4) 144

During the adaptation, RoBERTa model assigns 145

the probabilities to all label types for the i-th to- 146

ken in the m-th sample, and the output probability 147

simplex over C classes is denotes as: P (m)
xi

= 148

[p(x
(m)
i ,Θ)1, ..., p(x

(m)
i ,Θ)C ]. Here p(x(m)

i ,Θ)c 149

denotes the predicted probability corresponding to 150

the label type c. The formulas to get the pseudo 151

label and the predicted confidence score for token 152

xi in m are as follows: 153

ŷ
(m)
i = arg max

c
P (m)
xi

(5) 154

ŝ
(m)
i = maxP (m)

xi
(6) 155

To calculate confidence thresholds, we average 156

over all confidence scores where the pseudo labels 157

are same as the distant labels for the correspond- 158

ing label type. Specifically, we firstly create an 159

empty number sequence {Sc,m
j }nc,m

j=1 to gather all 160

the predicted confidence scores corresponding to 161

label type c for them-th sample, in which nc,m rep- 162

resents the length of number sequence. And then 163

for sample m in minibatch TK , if the distant label 164

is same as the pseudo label in the corresponding 165

position i and the entity type is c, we add the pre- 166

dicted confidence score in position i to the number 167
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Figure 1: The Framework of Our Model

sequence. Finally, the confidence threshold for la-168

bel type c, denoted as Vc, is calculated as follows:169

170

Vc =

∑K
m=1

∑nc,m

j=1 Sc,m
j∑K

m=1 nc,m
(7)171

Step 2: Category-Oriented Confidence Calibra-172

tion.173

Instead of discarding all distant labels(Liang et al.,174

2020), we only replace the distant labels over the175

confidence threshold with pseudo labels, while176

other distant labels remain constant. Intuitively,177

we consider that most distant labels are correct,178

and it’s reasonable to do the replacement only if179

the model has strong confidence to believe the pre-180

dicted pseudo labels.181

To be precise, p(x(m)
i ,Θ)

ỹ
(m)
i

denotes the pre-182

dicted probability corresponding to the distant la-183

bel ỹ(m)
i for the i-th token in the m-th sample. If184

the label type of the pseudo label ŷ(m)
i is c and the185

confidence score ŝ(m)
i is greater than or equal to Vc,186

we assign p(x(m)
i ,Θ)

ỹ
(m)
i

to 1, and other elements187

in P (m)
xi

are set to 0. After that, we update ŷ(m)
i188

and ŝ
(m)
i according to the calibrated confidence189

simplex by Eq.(5) and Eq.(6). The final pseudo190

label for token x(m)
i after calibration is calculated191

as follows:192

ŷ
(m)
i =

{
c if ŝ

(m)
i ≥ Vc

ỹ
(m)
i if ŝ

(m)
i < Vc

(8)193

Step 3: Self-Training194

We integrate our approach into a teacher-student195

self-training framework BOND (Liang et al., 2020). 196

The teacher network is used to generate pseudo la- 197

bels in the named entity recognition system. The 198

student network is solving a surrogate task of ap- 199

proximating the output probability distribution of 200

the entity types by the teacher network, transfer- 201

ring the knowledge from teacher network to student 202

network. 203

The teacher network generates pseudo labels by 204

Eq.(8) based on category-oriented confidence cal- 205

ibration. And then the student network is trained 206

to fit these pseudo labels. Specifically, at the t- 207

th iteration round, we learn the student network 208

Θ̂t
stu by minimizing Eq.(3) with Ỹ (m) replaced 209

by the pseudo labels counterparts Ŷ (m), in which 210

Ŷ (m) = [ŷ
(m)
1 , ..., ŷ

(m)
i , ..., ŷ

(m)
n ]. The final stu- 211

dent model after self-training iteration is treated as 212

the final model. 213

The student network is updated using stochastic 214

gradient descent(SGD). Note that back-propagation 215

is only through student network and the parameters 216

of the teacher network are kept frozen during each 217

self-training iteration. At the end of t-th iteration, 218

we update the teacher model and student model as 219

follows: 220

Θt+1
tea = Θt+1

stu = Θ̂t
stu (9) 221

3 Experiments 222

3.1 Experimental Setup 223

We consider five benchmark datasets includ- 224

ing CoNLL03(Sang and De Meulder, 2003), 225

Tweet(Godin et al., 2015), Wikigold(Balasuriya 226

et al., 2009), Webpage(Ratinov and Roth, 2009) 227
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Table 1: Experiment Results(F1%) on Fully Supervised Datasets and Distantly Supervised Datasets

Method Datasets
conll2003 twitter webpage wikigold BC5CDR

Roberta-base(Fully Supervised) 90.1 52.2 72.4 86.4 -
AutoNER(Shang et al., 2018) 67.0 26.1 51.4 47.5 84.8
LRNT (Cao et al., 2019a) 69.7 23.8 47.4 46.2 -
Noisy NER(Liu et al., 2021) 78.9 47.3 61.9 57.7 -
BOND(Liang et al., 2020) 81.5 48.0 65.7 60.1 78.7
BOND+BA+CIR(Zhang et al., 2021b) 81.5 49.0 64.7 61.5 -
BOND+Coca(Ours) 82.7 48.7 68.2 63.0 79.6

and BC5CDR(Li et al., 2016). The first four228

datasets are processed in KB-Matching annota-229

tion setting, where the distantly supervised labels230

are generated following BOND(Liang et al., 2020).231

And the BC5CDR dataset is processed following232

AutoNER(Shang et al., 2018). We compare with233

a wide range of state-of-the-art distantly-labeled234

NER models including AutoNER(Shang et al.,235

2018), LRNT(Cao et al., 2019b), BOND(Liang236

et al., 2020), Noisy NER(Liu et al., 2021),237

BOND+BA+CIR(Zhang et al., 2021b).238

3.2 Experimental Results239

Table 1 shows our primary results on fully super-240

vised datasets and distantly supervised datasets.241

Experimental results demonstrate that our model242

is effective under distant supervision setting; it243

achieves state-of-the-art performance on three ex-244

isting named entity recognition benchmarks.245

Our proposed method is mostly closely aligned246

with the BOND framework. We observe that inte-247

grating our category-oriented confidence calibra-248

tion strategy into BOND exceeds the performance249

without calibration on all of the five datasets by250

{1.3, 0.7, 2.5, 3.0, 0.9} in terms of F1-score.251

In addition, We demonstrate that our proposed252

category-oriented confidence estimation method is253

beneficial not only to open-domain NER tasks, but254

also to specific domain such as medical domain,255

which can be seen from the result on BC5CDR256

dataset. We note that one of the reasons why257

our method is worse than AutoNER on BC5CDR258

dataset is that they use additional lexicons to boost259

the model performance.260

4 Related Work261

Distant supervision is a particular instance of weak262

supervision, which relies on external resources263

such as knowledge bases to automatically label doc-264

uments with entities that are known to belong to a265

particular category(Shang et al., 2018; Ritter et al., 266

2013). NER systems achieve high performance on 267

clean text, while their performance dramatically 268

degrades when moved to noisy scenarios such as 269

distant supervision(Aguilar et al., 2018). 270

Denoising is an essential step in many distantly 271

supervised NER systems. Peng et al. (2019) formu- 272

lated the task as a positive-unlabeled (PU) learn- 273

ing problem to obtain unbiased estimation of the 274

loss value. Shang et al. (2018) employed fuzzy 275

CRF layer which assigned ambiguous tokens with 276

all possible labels and maximized the overall like- 277

lihood. Yang et al. (2018) designed an instance 278

selector based on reinforcement learning to distin- 279

guish positive sentences. 280

Our proposed method is most closely aligned 281

with the BOND framework(Liang et al., 2020), in 282

which a self-training algorithm is applied to guide 283

the training of teacher-student network. They cast 284

confidence threshold as a hyper-parameter to tune 285

and prevented the low-confidence labels to be in- 286

volved into loss calculation. Zhang et al. (2021a) 287

integrated backdoor adjustment and causal invari- 288

ance regularizer into BOND to conduct debiased 289

method via causal interventions(Wu et al., 2020). 290

5 Conclusions 291

In this work, we propose a category-oriented con- 292

fidence calibration approach accompanying with 293

an automatically confidence threshold calculation 294

module to tackle the problem of noisy supervi- 295

sion in distantly supervised NER. We integrate our 296

method into Roberta under a teacher-student self- 297

training framework. Extensive experiments demon- 298

strate the effectiveness of our method. We evalu- 299

ate our model on five datasets where our method 300

outperforms state-of-the-art alternative distantly la- 301

beled learning methods in three datasets and shows 302

promising results on another two datasets. 303
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