

ESTIMATING COMMONSENSE PLAUSIBILITY THROUGH SEMANTIC SHIFTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Commonsense plausibility estimation is critical for evaluating language models (LMs), yet existing generative approaches—reliant on likelihoods or verbalized judgments—struggle with fine-grained discrimination. In this paper, we propose ComPaSS, a novel discriminative framework that quantifies commonsense plausibility by measuring semantic shifts when augmenting sentences with commonsense-related information. Plausible augmentations induce minimal shifts in semantics, while implausible ones result in substantial deviations. Evaluations on two types of fine-grained commonsense plausibility estimation tasks across varying input formats and commonsense knowledge levels based on different backbones, including LLMs and vision-language models (VLMs), show that ComPaSS consistently outperforms baselines. It demonstrates the advantage of discriminative approaches over generative methods in fine-grained commonsense plausibility evaluation. Experiments also show that (1) VLMs yield superior performance to LMs, when integrated with ComPaSS, on vision-grounded commonsense tasks. (2) contrastive pre-training sharpens backbone models’ ability to capture semantic nuances, thereby further enhancing ComPaSS.

1 INTRODUCTION

Commonsense knowledge—the shared understanding of everyday phenomena and human experiences Schank (1983); Winograd (1986); Hobbs (1990)—is foundational to natural language understanding and generation. Despite the remarkable progress in large language models’ (LLMs) text generation capabilities, ensuring commonsense plausibility in their outputs remains an unresolved challenge Marcus (2020); Elazar et al. (2021); Mahowald et al. (2024); Chen et al. (2023). This challenge arises not only from the inherent difficulty of acquiring and applying commonsense knowledge but also from the absence of reliable frameworks for evaluating textual plausibility. Effective evaluation of commonsense plausibility addresses this gap twofold: it identifies commonsense violations Miranda et al. (2024); Saravanan et al. (2024) while offering quantifiable metrics to guide the development of techniques that augment LLM outputs Tian et al. (2023).

In this work, we focus on developing generalizable methods for commonsense plausibility estimation (CSPE) that can be applied across diverse domains and tasks. This leads us to investigate zero-shot and few-shot approaches based on pre-trained LMs, which leverage their inherent knowledge without requiring additional training data or domain-specific fine-tuning.

Previous studies on zero or few-shot CSPE primarily adopt a generative perspective and can be categorized into two main approaches, likelihood estimation and verbalized judgments. The likelihood-based methods Trinh & Le (2018); Tamborrino et al. (2020); Holtzman et al. (2021) utilize token prediction probabilities from language models as an indicator, with the assumption that sentences consistent with commonsense knowledge tend to have a higher likelihood for their component tokens. The verbalization-based methods Brown et al. (2020); Krause & Stolzenburg (2024) ask pre-trained LMs to answer the plausibility of a sentence through natural language. The models can generate the answer based on knowledge stored in their parameters.

However, approaches based on the generative perspective could be suboptimal for CSPE, since it is essentially a discriminative task. In this paper, we adopt a discriminative perspective for CSPE. In communication, commonsense knowledge is often assumed and left unstated, yet such omissions rarely hinder mutual understanding Clark (1996); Noveck & Sperber (2004). Inspired by this, we

propose ComPaSS, a method that measures **Commonsense Plausibility** through Semantic Shifts introduced when augmenting sentences with commonsense-related information. Plausible additions yield minimal semantic shifts, whereas implausible ones result in substantial deviations. For instance, adding ‘black’ to ‘There is a penguin’ results in a minor semantic shift, aligning with the penguins’ natural coloration. By contrast, introducing ‘green’ creates a substantial shift, highlighting the implausibility of such an atypical attribute. To quantify semantic shifts, ComPaSS computes the similarity between embeddings of the original sentence (without explicit commonsense references) and its modified counterpart augmented with commonsense-related information.

Two aspects of semantic representations could influence the capability of ComPaSS in CSPE: the inclusion of commonsense knowledge and the discrimination of semantic nuances. These correspond to two key aspects of models used for obtaining sentence embeddings: 1) Modality. Language Models (LMs) often suffer from *reporting bias* Gordon & Durme (2013), which involves systematic distortions due to omitted commonsense details (e.g., ‘penguins are black’ is rarely stated) and statistical biases from fixed linguistic patterns (e.g., ‘black sheep’). In contrast, vision-language models (VLMs) incorporate visual information, thus mitigating reporting bias, especially for visually-grounded commonsense knowledge (e.g., object colors or spatial relations) Paik et al. (2021); Zhang et al. (2022). 2) Contrastive learning. By training a model to distinguish between semantically similar and dissimilar instances, it enhances the model’s discriminative power. Representations from contrastively trained models exhibit sharper separability, which directly impacts the precision of semantic shift measurements. Given these considerations, we study how ComPaSS performs based on various backbones of both LMs and VLMs, with and without contrastive learning.

We evaluate ComPaSS against baselines on two fine-grained CSPE tasks that require ranking candidate answers by plausibility rather than binary classification. These tasks prioritize nuanced plausibility judgments, where answers may hold varying degrees of validity. The first task, attribute value ranking (CoDa Paik et al. (2021) and ViComTe Zhang et al. (2022)), involves ranking candidate attribute values (e.g., color, shape, material) for objects using structured triplets as input (e.g., determining that “black” is more plausible than “green” for penguin-color). The second task, commonsense frame completion Cheng et al. (2024), challenges models to rank plausible completions for free-form open-ended questions (e.g., selecting ‘farm’ over ‘truck’ for ‘Where are farmers with newly harvested crops?’), testing alignment with human preferences and broader commonsense reasoning. Together, these tasks assess ComPaSS across input formats (structured triplets vs. free-form text) and knowledge types (object-specific attributes vs. general everyday commonsense).

Our experiments reveal three critical insights. First, as a discriminative approach, ComPaSS consistently outperforms prior generative methods in fine-grained plausibility estimation, achieving superior results across diverse model backbones. This highlights the advantage of discriminative methods in capturing subtle plausibility distinctions. Second, utilizing ComPaSS, VLMs significantly outperform LMs for vision-grounded commonsense (e.g., object colors or shapes), demonstrating that visual information enhances representations and benefits CSPE. Third, models with contrastive pre-training yield significantly better results than those without, emphasizing the importance of representations that capture semantic nuances in plausibility measurement through ComPaSS.

2 RELATED WORK

2.1 CSPE BASED ON INTERNAL KNOWLEDGE

The sentence probability and perplexity computed by LMs can serve as indicators of commonsense plausibility, even in zero-shot settings Trinh & Le (2018); Davison et al. (2019); Liu et al. (2021a). For LLMs with instruction-following capability, they can be directly prompted to judge whether a given input is consistent with commonsense or not Zhao et al. (2024). Beyond directly judging plausibility, some methods Jung et al. (2022); Tafjord et al. (2022) evaluate the plausibility of hypotheses by scoring the validity of entailment paths generated by the LLMs, i.e., the reasoning chains justifying ‘reasonable’ or ‘unreasonable’ conclusions, and selecting the final prediction based on the highest-scoring path. VERA Liu et al. (2023) adopts a discriminative approach, training a classification head to make predictions based on model representations, which fine-tunes LLMs on~7 million commonsense statements. In contrast, our approach also leverages internal knowledge from a discriminative perspective but does not require additional training.

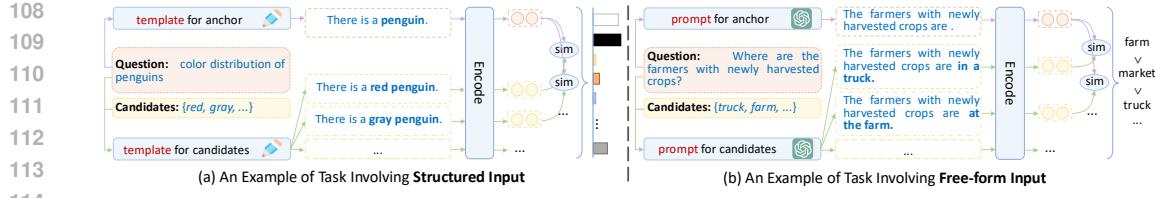


Figure 1: How ComPaSS works on different tasks.

2.2 CSPE BASED ON EXTERNAL KNOWLEDGE

Language models (LMs) may have insufficient or inaccurate knowledge, which led to some methods to incorporate external knowledge to better estimate commonsense plausibility. A typical approach is to augment the model’s knowledge by retrieving relevant sentences from external sources Zhang et al. (2021); Yu et al. (2022). Commonsense knowledge bases (KBs) Speer et al. (2016); Sap et al. (2019); Hwang et al. (2020) store extensive commonsense knowledge, enabling the extraction of relevant subgraphs to evaluate sentence consistency with commonsense Choi et al. (2022). To alleviate the coverage limitations of the KBs while leveraging the extensive knowledge encoded in LMs, COMET Bosselut et al. (2019) introduced a dynamic KB by pre-training LM on existing commonsense KBs. Methods that utilize this dynamic KB Ghazarian et al. (2023); Tian et al. (2023) demonstrate improved generalization across various commonsense reasoning tasks.

3 TASK DEFINITION

Formally, given an input instance $x_i = (c; a_i^c)$ consisting of a context c and a candidate information $a_i^c \in A$, where $A^c = \{a_1^c, a_2^c, \dots, a_K^c\}$ denotes the context-dependent candidate set with size K , the task is to predict a plausibility score set $\mathcal{P}^c = \{p_1^c, p_2^c, \dots, p_K^c\}$ for all candidates, where each $p_i^c \in \mathbb{R}$ quantifies the plausibility of augmenting c with a_i^c . The ground-truth scores are denoted as $\mathcal{G}^c = \{g_1^c, g_2^c, \dots, g_K^c\}$, where g_i^c indicates the true score of a_i^c . Performance is measured by the correlation between \mathcal{P}^c and \mathcal{G}^c .

The input can take two specific forms: for *attribute value ranking* task, the input is a structured triplet $x_i = (o, \text{has property } p; a_i^c)$. The context $c = (o, \text{has property } p)$, where o is a common object and p is a property. The candidate a_i^c represents the i -th attribute value for the specified property. For the *commonsense frame completion* task, the context $c = q$ is a free-form question, the input is a question-answer pair $x_i = (q; a_i^c)$, where a_i^c is the i -th plausible answer to this question.

4 COMPASS

Our method, ComPaSS, is a zero-shot approach for estimating commonsense plausibility. We demonstrate in Figure 1 how this method works on different tasks. For each input, we first construct an anchor sentence (omitting the commonsense-related detail) and a candidate sentence (augmenting that detail). We then encode both sentences individually to obtain their semantic representations. Next, we calculate their semantic similarity, where the degree of semantic shift— inversely proportional to similarity—quantifies plausibility.

4.1 CONSTRUCTING SENTENCES

For each input context c and the candidate to be evaluated a_i^c , we construct two types of sentences: an anchor sentence s_{anchor} that contains only the base context c while omitting target details, and a candidate sentence s_{candi} that further incorporates commonsense-related information a_i^c . The construction process varies based on input type but follows a unified framework:

$$s_{\text{anchor}} = f_{\text{anchor}}(c, z_{\text{anchor}}), \quad (1)$$

$$s_{\text{candi}} = f_{\text{candi}}(c, a_i^c, z_{\text{candi}}), \quad (2)$$

where $f(\cdot) \in \{f_{\text{anchor}}(\cdot), f_{\text{candi}}(\cdot)\}$ denotes the construction function, and $z \in \{z_{\text{anchor}}, z_{\text{candi}}\}$ denotes task-specific templates or prompts.

162 As illustrated in Figure 1, the framework is instantiated differently based on the input format: For
 163 *structured triplet inputs*, we employ template-based construction, where z represents a pre-defined
 164 template (see Appendix D) and $f(\cdot)$ represents applying this template to generate a sentence. In
 165 contrast, for tasks involving *free-form question-answer pairs as input*, we query GPT-4 Achiam et al.
 166 (2023) to generate contextually coherent sentences, where z denotes the prompt (see Appendix C)
 167 and $f(\cdot)$ represents querying GPT-4 using the prompt. Since questions cannot be directly converted
 168 into coherent statements, we use a blank space as a placeholder when constructing anchor sentences.
 169 Such an adaptive construction method enables ComPaSS to be applicable to different input forms.

170
 171 **4.2 REPRESENTING SENTENCES**
 172

173 Given anchor and candidate sentences, we encode them into dense semantic representations using a
 174 pre-trained model θ , which can be either a LM or a VLM. For each sentence $s \in \{s_{\text{anchor}}, s_{\text{candi}}\}$, the
 175 model first processes the sentence along with special tokens (e.g., [CLS], [EOS], or others depending
 176 on the model architecture) and then outputs token hidden states:

177
 178
$$H = \theta(s) = \{h_0, h_1, \dots, h_l\}, \quad (3)$$

179 where l denotes the sequence length, including the special tokens. The final sentence representation
 180 $r \in \{r_{\text{anchor}}, r_{\text{candi}}\}$ is derived through architecture-specific strategies.

181 For encoder models, we use the hidden state of the designated semantic aggregation token as sentence
 182 representation. Some models (e.g., RoBERTa Liu et al. (2021b)) use the initial '[CLS]' token
 183 for sentence representation ($r = h_0$), while others (e.g., CLIP Radford et al. (2021)) utilize the final
 184 '[EOS]' token embedding ($r = h_l$).

185 For decoder models, we use the hidden state of the last token as sentence representation $r = h_l$,
 186 which naturally encapsulates the accumulated context. Alternatively, PromptReps Zhuang et al.
 187 (2024) prompts the model to generate a new representative token at position $l + 1$, using its hidden
 188 state as the sentence representation ($r = h_{l+1}$). We apply this strategy to models that are not
 189 enhanced by contrastive learning.

190 This architecture-aware representation strategy ensures ComPaSS’s flexibility across different model
 191 backbones while maintaining optimal performance for each specific architecture.

192
 193 **4.3 RANKING WITH SEMANTIC SHIFTS**

194 We rank the candidate option a_i^c by measuring how naturally it integrates into the context, quantified
 195 through semantic similarity between the anchor sentence representation r_{anchor} and the candidate
 196 sentence representation r_{candi} . The underlying principle is that the more plausible the information,
 197 the smaller the semantic shifts it induces when added to the context, leading to higher semantic
 198 similarity. Formally, we define the commonsense plausibility score p_i^c for each candidate a_i^c as:

199
 200
$$p_i^c \propto \text{sim}(r_{\text{anchor}}, r_{\text{candi}}), \quad (4)$$

201 where $\text{sim}(\cdot)$ denotes a similarity function (e.g., cosine similarity or dot product). Candidates are
 202 then ranked by their plausibility scores descendingly, with higher-ranked candidates representing
 203 more commonsense-consistent answers.

204
 205 **4.4 DISCUSSION OF APPLICABLE LMs**

206 This paragraph discusses the differences in applicable LMs between ComPaSS and generative meth-
 207 ods based on likelihoods and verbalization. ComPaSS can utilize both encoder and decoder models
 208 as long as they can yield reasonable sentence representations. Likelihood-based approaches can also
 209 leverage these two types of LMs. Candidate likelihoods can be estimated based on masked/next to-
 210 ken prediction for encoders and decoders respectively. In contrast, verbalization-based approaches
 211 require LLMs-decoder-only LMs-to answer the plausibility estimation questions. This indicates the
 212 broader applicability of ComPaSS.

216 5 EXPERIMENTAL SETUP
217218 5.1 DATASETS
219220 We evaluate methods through two types of fine-grained commonsense plausibility estimation
221 (CSPE) tasks, where candidates should be ranked based on commonsense plausibility. These tasks
222 are chosen to comprehensively evaluate methods across varying input formats (from structured
223 triplets to free-form text) and commonsense knowledge levels (from specific attribute knowledge
224 to general everyday commonsense knowledge).225 5.1.1 STRUCTURED ATTRIBUTE KNOWLEDGE
226227 **Color Dataset (CoDa)**¹ Paik et al. (2021) is a human-annotated dataset used for attribute value
228 ranking, which provides color distributions for commonly recognized objects. It contains 521 ob-
229 jects, each with 11 candidate color attributes.230 **Visual Commonsense Tests (ViComTe)**² Zhang et al. (2022) is another dataset used for attribute value
231 ranking, which is derived from Visual Genome Krishna et al. (2017). It offers attribute value
232 distributions across broader properties, including color, shape, and material. It contains 2,877 ob-
233 jects with 12 candidate color attributes, 706 objects with 12 candidate shape attributes, and 1,423
234 objects with 18 candidate material attributes.235 5.1.2 FREE-FORM GENERAL KNOWLEDGE
236237 **Commonsense Frame Completion (CFC)**³ Cheng et al. (2024) is a dataset designed to evaluate
238 implicit commonsense reasoning, which consists of questions accompanied by multiple plausible
239 answers with human-annotated preference scores. It requires models to make probabilistic judg-
240 ments about answer plausibility, which should align with human preferences. As the test set is not
241 public, we use the validation set containing 55 questions for zero-shot evaluation.242 5.2 EVALUATION METRICS
243244 **Spearman’s rank correlation coefficient ρ :** We choose this as the primary metric following CoDa
245 and ViComTe. It measures the rank correlation between predicted and ground-truth plausibility
246 orderings. This emphasis on relative ordering aligns with the nature of commonsense plausibility
247 assessment, where the exact probability values are less important than correctly identifying more
248 plausible options over less plausible ones.249 **Accuracy:** CoDa and ViComTe also include binary comparison tasks where each object is paired
250 with two attribute values, with one more plausible than the other. Models need to rank the more
251 plausible value higher. Accuracy quantifies the success rate of these binary selections. This metric is
252 suitable for cross-attribute comparisons as it is unaffected by variations in the number of candidates,
253 unlike Spearman’s rank correlation coefficient.254 5.3 METHODS FOR COMPARISON
255256 5.3.1 COMPASS WITH VARIOUS BACKBONES
257

258 We evaluate ComPaSS across diverse model architectures to assess its adaptability:

259 For LMs, we evaluate both base models and their contrastive learning pre-trained variants:
260 RoBERTa-Large Liu et al. (2021b) (RoBERTa) is a widely-used encoder-only LM with fewer param-
261 eters. Mistral-7B-Instruct Jiang et al. (2023) (Mistral) and Qwen2-7B-instruct qwe (2024) (Qwen2)
262 are two decoder-only LLMs with strong instruction-following capabilities. We also evaluate their
263 **contrastive learning pre-trained** variants, i.e., sup-SimCSE-RoBERTa-Large Gao et al. (2021)
264 (RoBERTa_{w/CL}), E5-Mistral-7B-Instruct Wang et al. (2023; 2022) (Mistral_{w/CL}) and gte-Qwen2-
265 7B-instruct Li et al. (2023) (Qwen2_{w/CL}). Please note that all contrastive learning procedures are266 ¹<https://github.com/nala-cub/coda>267 ²<https://github.com/ChenyuHeidiZhang/VL-commonsense>268 ³https://github.com/qxc101/PROBEVAL_CFC/

270	271	272	Model (#Inference Parameters)	CoDa	Color	Shape	Material	CFC
Baselines								
273	CSM	ACCENT (440M)	10.07	10.35	-2.10	16.99	35.04	
274		COMET-Atomic (440M)	22.91	26.98	40.44	25.72	-	
275		VERA-T5 (5B)	58.93	45.08	30.31	33.51	45.81	
276	LM	RoBERTa+likelihood (355M)	24.37	33.63	36.12	24.23	42.46	
277		RoBERTa _{w/ CL} +likelihood (355M)	23.36	31.51	26.69	22.23	38.03	
278		Mistral+verbal. (7B)	46.64	38.63	30.46	36.34	32.06	
279		Mistral+likelihood (7B)	51.30	34.31	26.70	37.03	47.98	
280		Qwen2+verbal. (7B)	57.40	41.59	38.30	36.76	29.32	
281		Qwen2+likelihood (7B)	50.25	40.99	32.52	37.13	45.10	
282		Qwen2 _{w/ CL} +likelihood (7B)	49.65	41.75	32.80	37.30	43.00	
283	ComPASS							
284	VLM LM	RoBERTa _{w/ CL} (355M)	44.59	38.92	42.92	33.55	44.46	
285		Mistral _{w/ CL} (7B)	58.54	42.20	43.75	38.77	49.01	
286		Qwen2 _{w/ CL} (7B)	<u>59.16</u>	44.61	<u>47.51</u>	38.49	46.41	
287		CLIP (124M)	58.10	<u>45.55</u>	45.82	33.56	35.13	
288		EVA-CLIP (695M)	62.87	51.73	48.05	<u>38.67</u>	41.46	

Table 1: Spearman’s rank correlation coefficient ρ between the predicted ranks of candidates and their ground-truth on CoDa, ViComTe (Color, Shape, and Material), and CFC, shown in percentage. The **best** and second best results are highlighted in bold and underlined, respectively. ‘+verbal.’ indicates using the verbalization-based method.

pre-training stage optimizations unrelated to our task. We directly use their released checkpoints without task-specific fine-tuning.

For VLMs, we test CLIP-ViT-L/14 Radford et al. (2021) (CLIP), a multimodal representation model trained on image-text pairs using **contrastive learning**, which aligns semantically similar images and text into closely matching representations. We also consider its advanced variant EVA-CLIP-8B Sun et al. (2023) (EVA-CLIP).

5.3.2 BASELINES

Commonsense models (CSMs): These models are specifically designed for modeling commonsense knowledge: COMET-Atomic-2020-Bart Bosselut et al. (2019) (COMET-Atomic) is a commonsense LM pre-trained on commonsense KBs. COMET is suitable for processing triple input, which can generate a probability score for each candidate. ACCENT Ghazarian et al. (2023) assesses the commonsense plausibility of a sentence by first extracting structured tuples and then scoring them based on their compatibility with a commonsense KB. VERA-T5-XXL Liu et al. (2023) (VERA-T5) is trained on ~7M commonsense statements and can directly estimate the commonsense plausibility of statements.

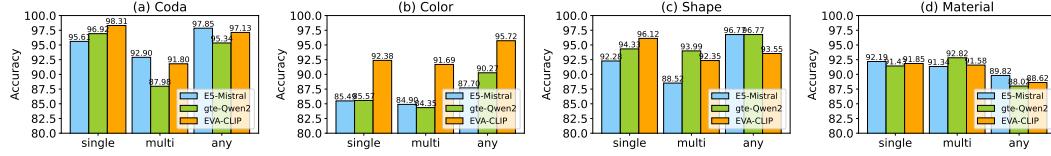
Language models (LMs): We evaluate all open-source LMs used as the backbone of ComPaSS with two methods. For the *likelihood based* method, the plausibility of a sentence is proportional to the normalized probability of predicting each token sequentially. For the *verbalization based* method, pre-trained LMs are prompted in natural language (see Appendix B) to rank candidates based on plausibility. We also test closed-source LLMs including gpt-3.5-turbo-0125 OpenAI (2022) (GPT-3.5) and gpt-4-0125-preview Achiam et al. (2023) (GPT-4), the latter introduces multimodal technology with superior capabilities.

5.4 IMPLEMENTATION DETAILS

All experiments are carried out in a zero-shot or in-context few-shot setting. Closed-source models are accessed via official APIs, while open-source implementations run on a single NVIDIA A800 80G GPU. For ACCENT, the beam number is 10 as the official setting. When testing the CFC

324
325
326
327
328
329
330

Method	CoDa	Color	Shape	Material
likelihood	24.37	33.63	36.12	24.23
ComPaSS	24.63	22.68	26.77	19.93
w/ unsup-CL	32.67	32.00	42.18	31.12
w/ sup-CL	44.59	38.92	42.92	33.55

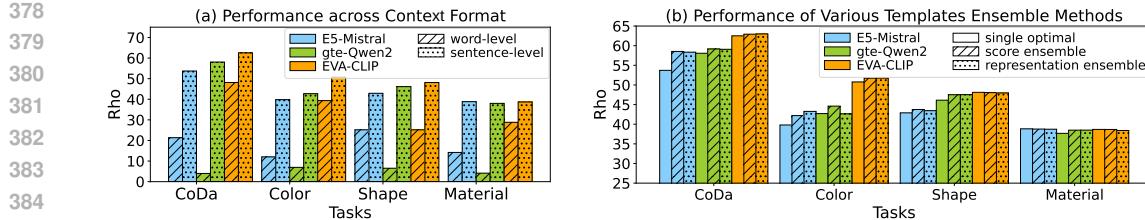
331 Table 2: Performance of different Roberta variants. By default we use the vanilla RoBERTa. ‘w/
332 unsup-CL’ and ‘w/ sup-CL’ denote RoBERTa pre-trained with unsupervised and supervised
333 contrastive learning, respectively.340 Figure 2: Binary classification accuracy of models with ComPaSS on different groups.
341
342
343344 dataset using the verbalization method, we sample the model 100 times for each question with a
345 temperature of 0.7, and cluster answers follow the official protocol.
346347

6 RESULTS AND ANALYSIS

348349

6.1 OVERALL RESULTS

350351 The overall experimental results are presented in Table 1, which reveals several key findings:
352353 **ComPaSS achieves the best performance compared to baselines across both structured triplets**
354 **(attribute ranking) and free-form text (CFC) inputs.** This demonstrates its robustness to diverse
355 input formats without relying on task-specific templates. Further comparison between RoBERTa,
356 Mistral, and Qwen2, with and without ComPaSS, shows a consistent improvement when ComPaSS
357 is applied. This validates our method’s architecture-agnostic effectiveness. Notably, even VERA,
358 which was specifically fine-tuned for CSPE, achieves only comparable performance to ComPaSS-
359 enhanced models. Comparing the performance of different methods on LMs in the baseline, we
360 find that verbalization-based methods fail to consistently outperform likelihood-based approaches,
361 even when applied to generative models. This limitation highlights the challenges such methods
362 face in making fine-grained distinctions required for precise plausibility estimation, whereas Com-
363 PaSS succeeds by unifying semantic shift measurement across both templated and non-templated
364 scenarios.365 **VLMs demonstrate superior effectiveness in learning visual-related commonsense knowledge.**
366 Comparing the ComPaSS methods based on various backbones, we find VLMs exhibit particular
367 strength in visual attribute ranking, with EVA-CLIP achieving the highest scores on CoDa (62.87),
368 Color (51.73), and Shape (48.05), significantly outperforming even 7B parameter LLMs. This per-
369 formance gap persists despite the LLMs’ access to large-scale text corpora and additional par-
370 ameters, underscoring the unique value of visual supervision. This performance gap highlights the
371 limitations of text-only training, as even extensive textual data and additional parameters cannot
372 fully compensate for the lack of visual grounding, which underscores the importance of multimodal
373 learning for comprehensive commonsense understanding.374 **Discriminative approaches may offer a more parameter-efficient pathway compared to gen-
375 erative methods.** Our experiments reveal that encoder-only models with millions of parameters
376 like RoBERTa and CLIP-series models achieve comparable or even superior results to much larger
377 decoder-only models (with billions of parameters) when combined with ComPaSS. This suggests
378 that our discriminative method effectively leverages the semantic representation strengths of en-
379 coder models, which are generally more parameter-efficient than generative models. By focusing

386 Figure 3: ComPaSS performance with different context formats and ensemble settings.
387

Model	CoDa	Color	Shape	Material
GPT-3.5	94.05	92.25	90.08	89.60
GPT-4	94.63	93.29	89.24	88.76
Mistral _{w/CL}	94.97	86.06	91.50	91.27
Qwen2 _{w/CL}	94.71	86.79	94.04	90.42
EVA-CLIP	95.39	93.29	94.33	90.79

396 Table 3: Binary comparison accuracy on CoDa and ViComTe. The best results are highlighted in
397 bold. All results are shown in percentage. Both Mistral and EVA-CLIP use the ComPaSS method.
398400 on representation-level semantics rather than token generation, ComPaSS aligns closely with the
401 pre-training objectives of encoder models, maximizing their representation power.402 **The ability to discern semantic nuances in sentence representations is crucial for ComPaSS**
403 **performance.** As shown in Table 2, experiments with different RoBERTa variants reveal that applying
404 ComPaSS to vanilla RoBERTa leads to performance degradation due to its weaker representation
405 capabilities. However, incorporating contrastive learning (even via unsupervised training) significantly
406 improves performance by enabling subtle plausibility distinctions to manifest as measurable
407 embedding space shifts. Crucially, ComPaSS does not require custom contrastive pre-training in
408 practice. It directly leverages contrastively pre-trained SOTA embedding models, enabling continuous
409 performance gains from evolving embedding techniques without task-specific fine-tuning or
410 architectural modifications.411
412

6.2 FURTHER ANALYSES

413
414

6.2.1 COMPARISONS TO CLOSED-SOURCE MODELS

415 We extend our evaluation to include state-of-the-art closed-source models, with results presented
416 in Table 3. Notably, our method outperforms even GPT-4 across multiple tasks, demonstrating
417 its effectiveness in fine-grained CSPE. This performance gap further highlights the limitations of
418 verbalization-based approaches in capturing subtle distinctions required for precise plausibility esti-
419 mation.420
421

6.2.2 GRANULAR ANALYSIS OF ATTRIBUTE TYPES

423 We analyze binary comparison results on CoDa and ViComTe across three attribute groups: *single*:
424 includes objects with one dominant attribute value (e.g., snow’s color), *multi*: includes objects with
425 attributes mainly distributed among the top four values (e.g., a penguin’s color), and *any*: includes
426 objects with a broader attribute distribution (e.g., a T-shirt’s color). As shown in Figure 3, VLMs
427 demonstrate particular strength in the *single* group. We attribute this advantage to visual grounding
428 overcoming textual reporting bias: stereotypical attributes are rarely explicitly stated in text due to
429 their commonsense nature, creating a reporting bias in language data. However, these attributes are
430 consistently and explicitly depicted in images, enabling VLMs to overcome linguistic omissions.
431 This finding demonstrates that visual grounding serves as a critical compensator for missing com-
432 monsense in text-based training.

432	Task	: Rank the candidate colors according to the frequency with which a sheep is observed in each color.
433	Human	: white, gray, <u>black</u> , brown
434	GPT-3.5	: white, <u>black</u> , brown, gray
435	GPT-4	: white, <u>black</u> , brown, gray
436	E5-Mistral*	: white, gray, <u>black</u> , brown
437	get-Qwen2*	: white, brown, gray, <u>black</u>
438	EVA-CLIP*	: white, gray, <u>black</u> , brown



439
440 Figure 4: The ranking of sheep colors by humans and different models, along with corresponding
441 images from the physical world (from Google). The ‘*’ in the upper right represents the model with
442 ComPaSS method.

444 6.2.3 EFFECT OF CONTEXT FORMAT

445
446 We investigate the importance of sentence-level context in semantic shift measurement by comparing
447 two approaches: *word collocation* comparison (e.g., ‘penguin’ and ‘black penguin’) and *full*
448 *sentence construction* (e.g., ‘There is a penguin’ and ‘There is a black penguin’). As shown in Figure
449 3(a), sentence-level inputs consistently outperform word-level comparisons for both LLMs and
450 VLMs. This performance gap underscores the importance of complete sentence construction for
451 ComPaSS, as sentence-level inputs better align with models’ pre-training data formats.

452 6.2.4 TEMPLATE ENSEMBLE METHODS

453
454 For the template-based method, we investigate three ensemble strategies: The *single-optimal ensemble*
455 approach uses the unified best-performing template, serving as an implicit ensemble. For explicit
456 ensemble methods, *score-level ensemble* averages prediction scores across multiple templates, and
457 *representation-level ensemble* fuses sentence representations from several templates before computing
458 the final score. As shown in Figure 3 (b), both explicit ensemble strategies significantly
459 further improve LLM performance, with the score-level ensemble showing more consistent gains.
460 However, VLM shows limited improvement from ensemble methods, likely due to its simpler pre-
461 training data structure. This contrast highlights LLMs’ sensitivity to linguistic variations and their
462 ability to benefit from diverse syntactic structures.

463 6.3 CASE STUDY

464
465 We use the classic ‘black sheep problem’ to intuitively explain why ComPaSS is effective. Since
466 ‘black sheep’ is an idiom, one is much more likely to mention a ‘black sheep’ than to specify the
467 color of a sheep. Such reporting bias confuses the LMs that learn knowledge through probabilistic
468 modeling. As shown in Figure 4, GPT-3.5 and GPT-4 both overestimate the probability of ‘black’
469 being the color of sheep even though sheep in black are rare. In contrast, our approach relies on
470 semantic rather than probabilistic likelihood is able to distinguish between the linguistic meaning
471 and the visual recognition of ‘a black sheep’, resulting in a more accurate estimation of the sheep’s
472 color. In addition, VLM calibrates the color distribution well by incorporating visual information.

474 7 CONCLUSION

475
476 We introduce ComPaSS, a discriminative framework for fine-grained commonsense plausibility es-
477 timation via semantic shift measurement. By leveraging the idea that plausible commonsense aug-
478 mentations cause minimal semantic deviation, ComPaSS offers a generalizable approach for vari-
479 ous tasks and model architectures. Our experiments show that discriminative methods outperform
480 generative approaches in capturing nuanced plausibility distinctions, with ComPaSS consistently
481 surpassing likelihood-based and verbalization-based baselines. Vision-language models also excel
482 on visually-grounded commonsense tasks, addressing reporting bias through multimodal alignment.
483 Finally, we emphasize the role of contrastive pre-training in improving semantic representation qual-
484 ity, directly enhancing plausibility estimation accuracy. Overall, ComPaSS highlights the value of
485 utilizing semantic embeddings to extract commonsense knowledge from pre-trained models.

486 8 ETHICAL CONSIDERATIONS
487

488 As our method relies on LLMs and VLMs, it inherits potential biases present in the training data.
489 These biases, whether related to societal stereotypes or uneven distribution of information across
490 certain attributes, could affect the model’s judgment in ranking attribute plausibility. Consequently,
491 our method may inadvertently perpetuate or amplify these biases, especially in scenarios where the
492 model’s understanding of an attribute is skewed by biased representations in the data. Addressing
493 these biases is an important avenue for future work.

494
495 REFERENCES
496

497 Qwen2 technical report. 2024.

498 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
499 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
500 report. *arXiv preprint arXiv:2303.08774*, 2023.

501 Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and
502 Yejin Choi. Comet: Commonsense transformers for automatic knowledge graph construction.
503 In *Annual Meeting of the Association for Computational Linguistics*, 2019. URL <https://api.semanticscholar.org/CorpusID:189762527>.

504 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
505 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
506 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

507 Jiangjie Chen, Wei Shi, Ziquan Fu, Sijie Cheng, Lei Li, and Yanghua Xiao. Say what you mean!
508 large language models speak too positively about negative commonsense knowledge. In *The 61st*
509 *Annual Meeting Of The Association For Computational Linguistics*, 2023.

510 Qi Cheng, Michael Boratko, Pranay Kumar Yelugam, Tim O’Gorman, Nalini Singh, Andrew Mc-
511 Callum, and Xiang Li. Every answer matters: Evaluating commonsense with probabilistic mea-
512 sures. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual*
513 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 493–506,
514 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.29. URL <https://aclanthology.org/2024.acl-long.29/>.

515 Byeongmin Choi, Yong-Sook Lee, Yeunwoong Kyung, and Eunchan Kim. Albert with
516 knowledge graph encoder utilizing semantic similarity for commonsense question answer-
517 ing. *ArXiv*, abs/2211.07065, 2022. URL <https://api.semanticscholar.org/CorpusID:252633429>.

518 Herbert H Clark. *Using language*. Cambridge university press, 1996.

519 Joe Davison, Joshua Feldman, and Alexander M Rush. Commonsense knowledge mining from pre-
520 trained models. In *Proceedings of the 2019 conference on empirical methods in natural language*
521 *processing and the 9th international joint conference on natural language processing (EMNLP-
522 IJCNLP)*, pp. 1173–1178, 2019.

523 Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard H. Hovy, Hinrich
524 Schütze, and Yoav Goldberg. Measuring and improving consistency in pretrained language mod-
525 els. *Transactions of the Association for Computational Linguistics*, 9:1012–1031, 2021. URL
526 <https://api.semanticscholar.org/CorpusID:231740560>.

527 Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
528 embeddings. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language*
529 *Processing*, pp. 6894–6910, 2021.

530 Sarik Ghazarian, Yijia Shao, Rujun Han, A. G. Galstyan, and Nanyun Peng. Accent: An au-
531 tomatic event commonsense evaluation metric for open-domain dialogue systems. In *An-
532 nual Meeting of the Association for Computational Linguistics*, 2023. URL <https://api.semanticscholar.org/CorpusID:258686558>.

540 Jonathan Gordon and Benjamin Van Durme. Reporting bias and knowledge acquisition. In
 541 *Conference on Automated Knowledge Base Construction*, 2013. URL <https://api.semanticscholar.org/CorpusID:16567195>.

542

543 Jerry R Hobbs. Granularity. In *Readings in qualitative reasoning about physical systems*, pp. 542–
 544 545. Elsevier, 1990.

545

546 Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi, and Luke Zettlemoyer. Surface form com-
 547 petition: Why the highest probability answer isn't always right. In *Proceedings of the 2021*
 548 *Conference on Empirical Methods in Natural Language Processing*, pp. 7038–7051, 2021.

549

550 Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sakaguchi, Antoine
 551 Bosselut, and Yejin Choi. Comet-atomic 2020: On symbolic and neural commonsense knowl-
 552 edge graphs. In *AAAI Conference on Artificial Intelligence*, 2020. URL <https://api.semanticscholar.org/CorpusID:222310337>.

553

554 Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 555 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
 556 Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.

557

558 Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras,
 559 and Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive explanations.
 560 In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*,
 561 pp. 1266–1279, 2022.

562

563 Stefanie Krause and Frieder Stolzenburg. From data to commonsense reasoning: the use of large
 564 language models for explainable ai. *arXiv preprint arXiv:2407.03778*, 2024.

565

566 Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
 567 Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting lan-
 568 guage and vision using crowdsourced dense image annotations. *International journal of computer
 569 vision*, 123:32–73, 2017.

570

571 Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
 572 general text embeddings with multi-stage contrastive learning. *arXiv preprint arXiv:2308.03281*,
 573 2023.

574

575 Jiacheng Liu, Wenya Wang, Dianzhuo Wang, Noah A Smith, Yejin Choi, and Hannaneh Hajishirzi.
 576 Vera: A general-purpose plausibility estimation model for commonsense statements. In *Pro-
 577 ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp.
 578 1264–1287, 2023.

579

580 Yixian Liu, Liwen Zhang, Wenjuan Han, Yue Zhang, and Kewei Tu. Constrained text generation
 581 with global guidance—case study on commongen. *arXiv preprint arXiv:2103.07170*, 2021a.

582

583 Zhuang Liu, Wayne Lin, Ya Shi, and Jun Zhao. A robustly optimized bert pre-training approach with
 584 post-training. In *China National Conference on Chinese Computational Linguistics*, pp. 471–484.
 585 Springer, 2021b.

586

587 Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy Kanwisher, Joshua B Tenenbaum, and
 588 Evelina Fedorenko. Dissociating language and thought in large language models. *Trends in
 589 Cognitive Sciences*, 2024.

590

591 Gary F. Marcus. The next decade in ai: Four steps towards robust artificial intelli-
 592 gence. *ArXiv*, abs/2002.06177, 2020. URL <https://api.semanticscholar.org/CorpusID:211126492>.

592

593 Imanol Miranda, Ander Salaberria, Eneko Agirre, and Gorka Azkune. Bivlc: Extend-
 594 ing vision-language compositionality evaluation with text-to-image retrieval. *arXiv preprint
 595 arXiv:2406.09952*, 2024.

596

597 Ira Noveck and Dan Sperber. *Experimental pragmatics*. Springer, 2004.

598

599 OpenAI. Introducing chatgpt. <https://openai.com/blog/chatgpt>, 2022.

594 Cory Paik, Stéphane Aroca-Ouellette, Alessandro Roncone, and Katharina Kann. The world of an
 595 octopus: How reporting bias influences a language model’s perception of color. In *Proceedings of*
 596 *the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 823–835, 2021.
 597

598 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 599 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 600 models from natural language supervision. In *International conference on machine learning*, pp.
 601 8748–8763. PMLR, 2021.

602 Maarten Sap, Ronan Le Bras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah
 603 Rashkin, Brendan Roof, Noah A Smith, and Yejin Choi. Atomic: An atlas of machine com-
 604 monsense for if-then reasoning. In *Proceedings of the AAAI conference on artificial intelligence*,
 605 volume 33, pp. 3027–3035, 2019.

606 Darshana Saravanan, Darshan Singh, Varun Gupta, Zeeshan Khan, Vineet Gandhi, and Makarand
 607 Tapaswi. Velociti: Benchmarking video-language compositional reasoning with strict entailment.
 608 2024.

609 Roger C Schank. *Dynamic memory: A theory of reminding and learning in computers and people*.
 610 cambridge university press, 1983.

611 Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph of
 612 general knowledge. In *AAAI Conference on Artificial Intelligence*, 2016. URL <https://api.semanticscholar.org/CorpusID:15206880>.

613 Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training
 614 techniques for clip at scale. *arXiv preprint arXiv:2303.15389*, 2023.

615 Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. Entailer: Answering questions with faithful and
 616 truthful chains of reasoning. In *Conference on Empirical Methods in Natural Language Process-
 617 ing*, 2022. URL <https://api.semanticscholar.org/CorpusID:253097865>.

618 Alexandre Tamborrino, Nicola Pellicanò, Baptiste Pannier, Pascal Voitot, and Louise Naudin. Pre-
 619 training is (almost) all you need: An application to commonsense reasoning. In *Proceedings of
 620 the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 3878–3887, 2020.

621 Yufei Tian, Felix Zhang, and Nanyun Peng. Harnessing black-box control to boost commonsense
 622 in lm’s generation. In *Proceedings of the 2023 Conference on Empirical Methods in Natural
 623 Language Processing*, pp. 5417–5432, 2023.

624 Trieu H. Trinh and Quoc V. Le. A simple method for commonsense reasoning. *ArXiv*,
 625 abs/1806.02847, 2018. URL <https://api.semanticscholar.org/CorpusID:47015717>.

626 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Ma-
 627 jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv
 628 preprint arXiv:2212.03533*, 2022.

629 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improv-
 630 ing text embeddings with large language models. *arXiv preprint arXiv:2401.00368*, 2023.

631 T Winograd. Understanding computers and cognition: A new foundation for design, 1986.

632 W. Yu, Chenguang Zhu, Zhihan Zhang, Shuohang Wang, Zhuosheng Zhang, Yuwei Fang, and
 633 Meng Jiang. Retrieval augmentation for commonsense reasoning: A unified approach. In
 634 *Conference on Empirical Methods in Natural Language Processing*, 2022. URL <https://api.semanticscholar.org/CorpusID:253098034>.

635 Chenyu Zhang, Benjamin Van Durme, Zhuowan Li, and Elias Stengel-Eskin. Visual commonsense
 636 in pretrained unimodal and multimodal models. In *Proceedings of the 2022 Conference of the
 637 North American Chapter of the Association for Computational Linguistics: Human Language
 638 Technologies*, pp. 5321–5335, 2022.

648 Yi Zhang, Lei Li, Yunfang Wu, Qi Su, and Xu Sun. Alleviating the knowledge-language inconsistency:
 649 A study for deep commonsense knowledge. *IEEE/ACM Transactions on Audio, Speech,*
 650 *and Language Processing*, 30:594–604, 2021. URL <https://api.semanticscholar.org/CorpusID:235248317>.

652 Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
 653 large-scale task planning. *Advances in Neural Information Processing Systems*, 36, 2024.

655 Shengyao Zhuang, Xueguang Ma, Bevan Koopman, Jimmy Lin, and Guido Zuccon. Promptreps:
 656 Prompting large language models to generate dense and sparse representations for zero-shot doc-
 657 ument retrieval. *arXiv preprint arXiv:2404.18424*, 2024.

659 A APPENDIX

662 B PROMPT FOR VERBALIZATION-BASED METHOD

664 The prompt we use for the verbalization-based method can be found in Figure 5.

666 The Prompt of Verbalization-based Method for Attribute Value Ranking

667 Sort all the <PROP>s in candidate set based on how frequently the object is observed to be each <PROP>. The higher the <PROP> is ranked, the more commonly the object is of that <PROP>. The candidate set is <PROP_LIST>. The output must be a sorted result that includes all candidate <PROP>s as in the example.

670 Here are some samples:

671 object: <OBJ0>
 672 result: <RES0>
 673 object: <OBJ1>
 674 result: <RES1>
 675 object: <OBJ2>
 676 result: <RES2>

677 New Task:
 678 object: <OBJ>
 679 result:

680 The Prompt of Verbalization-based Method for Commonsense Frame Completion

681 Answer the question based on commonsense. Your answer should be brief. You cannot refuse to answer
 682 for any reason.

684 Example 1:

685 Question: who was driving through the night, shooting blurred lights out of focus?

686 Answer: person

687 Example 2:

688 Question: why would an aircraft receive fuel from a cargo aircraft?

689 Answer: to fly

690 Example 3:

691 Question: where's the heart-shaped hot dog and some pizza on a big tray?

692 Answer: restaurant

693 New Task:

694 Question: <Q>

695 Your answer:

696 Figure 5: The prompt for attribute value ranking task and commonsense frame completion task.

698 C PROMPT FOR SENTENCE TRANSFORMATION

701 The prompt we use for converting question-answer pair can be found in Figure 6. For the Commonsense Frame Completion (CFC) task, answers with similar semantics (e.g., “person” vs. “a person”)

702 will be further grouped into equivalence clusters during evaluation rather than being considered as
 703 individual answers. Following the dataset's official protocol, each question is asked multiple times
 704 to estimate the sampling probability of the model as accurately as possible, and different expressions
 705 of the same type of answer are allowed to avoid the influence of vocabulary selection on the model.
 706

707

708 Transform the problem into declarative sentence based on each answer with minimal modifications. Do not
 709 introduce more information, and do not lose any information in the questions and answers.

710

For Example:

711

Question 1:

who was driving through the night, shooting blurred lights out of focus?

Answers 1:

1. person, 2. chauffeur, 3. taxi driver, 4. a person, 5. or a driver.

Sentences 1:

1. A person was driving through the night, shooting blurred lights out of focus.
 2. A chauffeur was driving through the night, shooting blurred lights out of focus.
 3. A taxi driver was driving through the night, shooting blurred lights out of focus.
 4. A person was driving through the night, shooting blurred lights out of focus.
 5. A driver was driving through the night, shooting blurred lights out of focus.

Question 2:

why would a goat eat hay in a stable?

Answers 2:

1. gain energy, 2. to fulfill hunger, 3. to get nutrition, 4. get nutrition

Sentences 2:

1. a goat eats hay in a stable to gain energy.
 2. a goat eats hay in a stable to fulfill hunger.
 3. a goat eats hay in a stable to get nutrition.
 4. a goat eats hay in a stable to get nutrition.

Question 3:

why would an aircraft receive fuel from a cargo aircraft?

Answers 3:

1. longer flight times, 2. takeoff, 3. traveling, 4. enable travel, 5. refill fuel

Sentences 3:

1. an aircraft receives fuel from a cargo aircraft because of longer flight times.
 2. an aircraft receives fuel from a cargo aircraft for takeoff.
 3. an aircraft receives fuel from a cargo aircraft for traveling.
 4. an aircraft receives fuel from a cargo aircraft to enable travel.
 5. an aircraft receives fuel from a cargo aircraft to refill fuel.

New Task:

Question 4:

<Q>

Answers 4:

<A>

Sentences 4:

739

740

Figure 6: The prompt for converting question-answer pair into sentence. The blue part is the instruction, the green part is the 3-shot example, and the red part is the placeholder for the specific input.

743

744

745

746

747

748

749

750

751

752

753

754

755

756 D TEMPLATES FOR SENTENCE CONSTRUCTION
757758 The templates we used to construct anchor sentences and candidate sentences of different property
759 are shown in Table D.
760

761 Property	762 Templates for anchor	763 Templates for candidate
764 Color	A photo of a [o].	A photo of a [c] [o].
	A picture of a [o].	A picture of a [c] [o].
	An image of a [o].	An image of a [c] [o].
	An image of a [o].	An image of a [o] which is [c].
	There is an image of a [o].	There is an image of a [c] [o].
	There is a photo of a [o].	There is a photo of a [c] [o].
	There is a picture of a [o].	There is a picture of a [c] [o].
	There is an image of a [o].	There is an image of a [o] which is [c].
	There is a photo of a [o].	There is a photo of a [o] which is [c].
	It is an image of a [o].	It is an image of a [o] which is [c].
	It is a photo of a [o].	It is a photo of a [o] which is [c].
	There is a [o].	There is a [o] in [c].
765 Shape	There is a [o].	There is a [o] which is [c].
	Everyone knows [o].	Everyone knows that [o] is [c].
	Everyone knows [o].	Everyone knows that [o] is [c].
	This is a [o].	This is a [o] with [c] shape.
	There is a [o].	There is a [c] [o].
	There is a [o].	There is a [o] which shape is [c].
	It is an image of a [o].	It is an image of a [o] which shape is [c].
	There is an image of a [o].	It is an image of a [o] which shape is [c].
	There is an image of a [o].	There is an image of a [c] [o].
	There is a picture of a [o].	There is a picture of a [c] [o].
	There is a picture of a [o].	There is an picture of a [o] which shape is [c].
	There is a picture of a [o].	There is an picture of a [c] [o].
766 Material	This is a picture of a [o].	This is a picture of a [o] has [c] shape.
	A picture of a [o].	A picture of a [o] has [c] shape.
	An image of a [o].	An image of a [c] [o].
	A photo of a [o].	A photo of a [c] [o].
	A picture of a [o].	A picture of a [c] [o].
	[o] is of shape .	[o] is of shape [c].
	The shape of [o].	The shape of [o] can be [c].
	The shape of the [o].	The shape of the [o] is [c].
	This is an image of a [o].	This is an image of a [o] made of [c].
	This is an image of a [o].	This is an image of a [o] which made from [c].
	This is an image of a [o].	This is an image of a [o] which made of [c].
	This is a photo of a [o].	This is a photo of a [o] made of [c].

808 Table 4: Templates we used for constructing anchor sentences and candidate sentences. The tem-
809 plates for CoDa are the same as Color.

810 E MORE EXPERIMENTAL RESULTS
811

812 Since not all models are compatible with all methods, we exclude the results of incompatible model-
813 method combinations from the main text. The complete results are provided in Table 5. Notably,
814 the results of Mistral_{w/ CL} with the verbalization-based method is 0, as this model, trained via
815 contrastive learning, has significantly lost its ability to follow instructions, preventing it from generating
816 reasonable responses based on prompts.

818	819	820	Model (#Inference Parameters)	CoDa	Color	Shape	Material	CFC
Baselines								
821 CSM			ACCENT (440M)	10.07	10.35	-2.10	16.99	35.04
			COMET-Atomic-2020-Bart (440M)	22.91	26.98	40.44	25.72	-
			VERA-T5-XXL (5B)	58.93	45.08	30.31	33.51	45.81
824 LM			RoBERTa+likelihood (355M)	24.37	33.63	36.12	24.23	42.46
			RoBERTa _{w/ CL} +likelihood (355M)	23.36	31.51	26.69	22.23	38.03
			Mistral+verbal. (7B)	46.64	38.63	30.46	36.34	32.06
			Mistral+likelihood (7B)	51.30	34.31	26.70	37.03	47.98
			Mistral _{w/ CL} +verbal. (7B)	0.0	0.0	0.0	0.0	0.0
			Mistral _{w/ CL} +likelihood (7B)	25.70	4.72	18.81	5.96	35.46
			Qwen2+verbal. (7B)	57.40	41.59	38.3	36.76	29.32
			Qwen2+likelihood (7B)	50.25	40.99	32.52	37.13	45.10
			Qwen2 _{w/ CL} +verbal. (7B)	11.12	15.28	-24.21	0.45	21.39
			Qwen2 _{w/ CL} +likelihood (7B)	49.65	41.75	32.8	37.3	43.00
ComPASS								
834 LM			RoBERTa _{w/ CL} (355M)	44.59	38.92	42.92	33.55	44.46
			Mistral _{w/ CL} (7B)	58.54	42.20	43.75	38.77	49.01
			Qwen2 _{w/ CL} (7B)	59.16	44.61	<u>47.51</u>	38.49	46.41
			CLIP (124M)	58.10	<u>45.55</u>	45.82	33.56	35.13
837 VLM			EVA-CLIP (695M)	62.87	51.73	48.05	<u>38.67</u>	41.46

838
839
840 Table 5: Spearman’s rank correlation coefficient ρ between the predicted ranks of candidates and
841 their ground-truth on CoDa, ViComTe (Color, Shape, and Material), and CFC, shown in percentage.
842 The **best** and second best results are highlighted in bold and underlined, respectively. ‘+likelihood’
843 indicates using the likelihood-based method and ‘+verbal.’ indicates using the verbalization-based
844 method.

845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863