

EFFICIENT CAUSAL STRUCTURE LEARNING VIA MODULAR SUBGRAPH INTEGRATION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Learning causal structures from observational data remains a fundamental yet
012 computationally intensive task, particularly in high-dimensional settings where
013 existing methods face challenges such as the super-exponential growth of the
014 search space and increasing computational demands. To address this, we intro-
015 duce VISTA (Voting-based Integration of Subgraph Topologies for Acyclicity), a
016 modular framework that decomposes the global causal structure learning problem
017 into local subgraphs based on Markov Blankets. The global integration is achieved
018 through a weighted voting mechanism that penalizes low-support edges via ex-
019 ponential decay, filters unreliable ones with an adaptive threshold, and ensures
020 acyclicity using a Feedback Arc Set (FAS) algorithm. The framework is model-
021 agnostic, imposing no assumptions on the inductive biases of base learners, is
022 compatible with arbitrary data settings without requiring specific structural forms,
023 and fully supports parallelization. We also theoretically establish finite-sample er-
024 rror bounds for VISTA, and prove its asymptotic consistency under mild conditions.
025 Extensive experiments on both synthetic and real datasets consistently demonstrate
026 the effectiveness of VISTA, yielding notable improvements in both accuracy and
027 efficiency over a wide range of base learners.

1 INTRODUCTION

028
029
030 Understanding causal relationships from observational data Pearl (2009) is critical across numerous
031 fields such as biology Petersen et al. (2024), economics Hünermund & Bareinboim (2023), and
032 healthcare Sanchez et al. (2022b). Identifying causal structures enables reliable interventions and sci-
033 entific insights. A common modeling framework represents the system as a causal graph—a Directed
034 Acyclic Graph (DAG) where nodes are variables and directed edges denote causal links Spirtes et al.
035 (2000). While identifiability of the true DAG generally requires additional structural assumptions,
036 our VISTA framework inherits whatever identifiability guarantees each base learner provides. In
037 practice, large-scale observational datasets further complicate structure recovery, as most existing
038 algorithms struggle to scale efficiently. Constraint-based pipelines Spirtes et al. (2000); Meek (2013)
039 must search over large conditioning sets while the number of CI tests grows combinatorially with the
040 size of graph, and finite-sample CI tests become unreliable in high dimensions, so early mistakes can
041 easily propagate to later steps. Score-based learners Chickering (2002); Loh & Bühlmann (2014)
042 optimize over a super-exponential DAG space; practical solvers still require heavy global searches
043 or acyclicity constraints with repeated dense updates, driving time and memory up sharply. These
044 disadvantages make them difficult to perform well in large-scale datasets.

045 Given the challenges of learning large-scale causal structures, divide-and-conquer strategies have
046 emerged as a natural solution. By decomposing the global graph into smaller, tractable subgraphs,
047 these methods significantly reduce computational complexity, particularly in sparse settings, and
048 facilitate parallel or distributed computation. In addition, aggregating local structures often enhances
049 robustness relative to learning the full graph in a single pass. Early approaches expand neighborhoods
050 from a random node Gao et al. (2017) or apply hierarchical clustering Gu & Zhou (2020). More
051 recent work often partition the variable set into local neighborhoods, such as Markov Blankets, before
052 aggregating them Dong et al. (2024); Mokhtarian et al. (2021); Tsamardinos et al. (2003); Wu et al.
053 (2023; 2022). However, the majority of these “conquer” steps rely on fixed heuristics for merging,
such as voting thresholds, edge overlap rules, or manual conflict resolution. While simple, such
rule-based schemes lack adaptability to noise and offer limited theoretical guarantees for global

054 consistency. DCILP Dong et al. (2024) formulates the merging process as an Integer Linear Program
 055 (ILP) and introduces solver-based reconciliation. Although this approach benefits from advances
 056 in ILP solvers and distributed optimization, it remains NP-hard and often incurs substantial solver
 057 overhead. In practice, even moderate-sized subproblems can lead to high memory usage and long
 058 runtimes. Alternatively, recent methods like Shah et al. (2024) retain heuristic-based fusion steps,
 059 which are efficient but similarly sensitive to noise and lack theoretical support.

060 In this paper, we propose VISTA (Voting-based Integration of Subgraph Topologies for Acyclicity),
 061 a novel modular framework for large-scale causal discovery. The method proceeds in three main
 062 stages. First, for each variable we identify its Markov Blanket, thereby reducing the global problem
 063 into tractable local neighborhoods. A base learner is then applied to each neighborhood using
 064 the data restricted to that subset of variables, producing local subgraphs. Second, these local
 065 subgraphs are aggregated through an adaptive voting mechanism that down-weights low-support
 066 edges, suppressing statistical noise and inconsistencies. Finally, the aggregated graph is post-
 067 processed with an efficient approximation algorithm that enforces acyclicity while preserving as
 068 many high-confidence orientations as possible. We also establish a theoretical result showing that
 069 the overall error rate of the procedure is bounded above by that of the subgraph-level aggregation,
 070 ensuring soundness of the divide-and-conquer strategy.

071 Crucially, VISTA is strictly model-agnostic and highly efficient. It makes no assumptions about
 072 the internal design or inductive biases of the base learners, places no restrictions on the choice
 073 of Markov Blanket identification algorithm, and imposes no conditions on the underlying data
 074 distribution beyond standard faithfulness assumptions. It operates purely on the edge-level outputs of
 075 local subgraphs and requires only a one-time $\mathcal{O}(|V|^2)$ aggregation without any additional solver or
 076 training overhead. This lightweight design makes VISTA framework readily compatible with any
 077 causal discovery method while enabling broad applicability across baselines and full parallelism in
 078 the divide phase.

079 Our key contributions include:

- 080 • We propose VISTA, a model-agnostic and modular framework that decomposes global
 081 DAG learning into node-centered Markov Blanket subgraphs. It is fully plug-and-play with
 082 respect to MB identification and local learners, requiring no identifiability or distributional
 083 assumptions on the chosen base learners.
- 084 • Our aggregation is lightweight, efficient, and edge-level, performing a one-pass weighted
 085 voting instead of relying on expensive global searches or solver-based optimization. We de-
 086 rive finite-sample error bounds and an asymptotic consistency guarantee for this aggregation,
 087 which explicitly calibrates errors from imperfect base learners.
- 088 • Extensive experiments across diverse graphs and a wide range of base learners demonstrate
 089 that VISTA remedies the typical performance drop of base learners, consistently improving
 090 robustness and scalability over standalone baselines.

093 2 PRELIMINARIES

095 **Setup and notation.** Let $\mathbf{V} = \{V_1, \dots, V_n\}$ be random variables generated by a structural causal
 096 model with mutually independent noises ϵ_i :

$$098 \quad V_i = f_i(\text{Pa}(V_i), \epsilon_i), \quad \epsilon_i \perp\!\!\!\perp \text{Pa}(V_i).$$

100 This induces a directed acyclic graph (DAG) $\mathcal{G} = (\mathbf{V}, \mathbf{E})$ where $V_i \rightarrow V_j \in \mathbf{E}$ iff V_i appears in f_j ,
 101 and the observational distribution factorizes as $\mathbb{P}(\mathbf{V}) = \prod_{i=1}^n \mathbb{P}(V_i \mid \text{Pa}(V_i))$.

102 **Markov Blanket locality.** Assuming causal sufficiency for exposition, the *Markov Blanket* $\text{MB}(V)$
 103 of a node V is the minimal set that renders V independent of all others given $\text{MB}(V)$; it consists of
 104 parents, children, and *spouses* (other parents of the children). Equivalently, $\text{MB}(V)$ *d-separates* V
 105 from $\mathbf{V} \setminus (\{V\} \cup \text{MB}(V))$. This locality motivates our divide-conquer design: by learning $\text{MB}(V)$,
 106 causal discovery can be restricted to the induced subgraph $\mathcal{G}[\{V\} \cup \text{MB}(V)]$, substantially reducing
 107 search complexity while preserving relevant adjacencies for V .

108 **Existing Modular Causal Discovery Paradigms.** For large-scale causal discovery, several local-to-
 109 global or fusion-style schemes decompose a graph and then merge the pieces: a top-down CI-driven
 110 partition with set-based stitching Xie & Geng (2008), global fusion over multiple full Bayesian
 111 networks Puerta et al. (2021), a separation–reunion pipeline that repeatedly searches the structure Liu
 112 et al. (2017), a PC-style progressive skeleton requiring iterative bootstraps Guo et al. (2024), and
 113 DCILP, which formulates reconciliation as an ILP Dong et al. (2024). However, these methods are
 114 typically algorithm-specific rather than modular frameworks; they either assume correct inputs at
 115 merging time, depend on heavy global search or solver-based optimization, or perform essentially
 116 uncalibrated frequency-based stitching. There also exists a SADA-based or extended model Cai et al.
 117 (2013; 2018); Rahman et al. (2021), but it is limited to LiNGAM and lacks a calibration process
 118 during merging. By contrast, our framework provides a lightweight, calibrated weighted-voting
 119 aggregation that down-weights low-support directions and remains compatible with arbitrary base
 120 learners. A more detailed related work discussion appears in Appendix B.

3 METHODOLOGY

121 We introduce VISTA (Voting-based Integration of Subgraph Topologies for Acyclicity), a novel
 122 modular framework for large-scale DAG learning that is both model-agnostic and efficient. Instead
 123 of searching the full graph, VISTA focuses on edge-level evidence: for each node V , we form
 124 the subgraph induced by $\{V\} \cup \text{MB}(V)$ and run any off-the-shelf local learner, regardless of its
 125 parametric form, identifiability assumptions, or internal design. The resulting local predictions are
 126 reconciled by a lightweight weighted voting on each ordered pair (X, Y) , which calibrates errors
 127 from imperfect base learners, and acyclicity is then enforced by a Feedback Arc Set heuristic Eades
 128 et al. (1993). This modular design makes VISTA fully plug-and-play: MB identification and local
 129 learning can be tailored to the data regime, while aggregation and acyclicity remain fixed, scalable,
 130 and consistent.

131 **Proposition 3.1** (Coverage of a DAG by Markov-Blanket Subgraphs). *Let $\mathcal{G} = (\mathbf{V}, \mathbf{E})$ be a DAG.
 132 For each $V \in \mathbf{V}$, define*

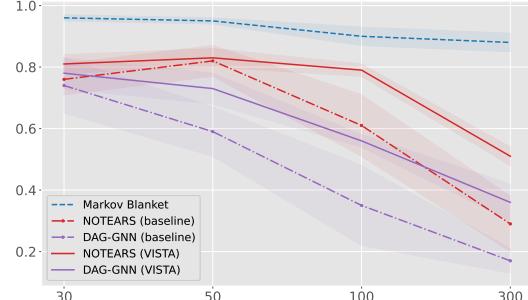
$$133 \mathcal{G}' = \bigcup_{V_i \in \mathbf{V}} \mathcal{G}[\{V_i\} \cup \text{MB}(V_i)]. \quad (1)$$

134 Then every edge of \mathcal{G} is present in \mathcal{G}' , i.e., $\mathbf{E} \subseteq \mathbf{E}(\mathcal{G}')$.

135 *Proof.* Take any edge $(X, Y) \in \mathbf{E}$. If $X \rightarrow Y$, then Y is a child of X and X is a parent of Y ,
 136 hence $Y \in \text{MB}(X)$ and $X \in \text{MB}(Y)$. Therefore (X, Y) appears in $\mathcal{G}[\{X\} \cup \text{MB}(X)]$ and in
 137 $\mathcal{G}[\{Y\} \cup \text{MB}(Y)]$, and thus in the union \mathcal{G}' . \square

138 This coverage property is the foundation of VISTA: once MBs and their local subgraphs are correctly
 139 identified, no true edge is lost in the decomposition. Importantly, our framework remains *agnostic*
 140 to the specific MB estimator or local learner, that any method suitable for the data distribution
 141 can be plugged in. All subsequent aggregation and acyclicity enforcement operate purely at the
 142 edge level and rely only on this coverage guarantee. Besides, as shown in Figure 1, the accuracy
 143 of MB identification remains relatively stable as
 144 the number of nodes increases, whereas the per-
 145 formance of base learners degrades more sharply.
 146 This empirical observation is consistent with our
 147 theoretical analysis in Section 3.2, where we
 148 prove that the proposed merging scheme con-
 149 verges to the correct edge orientations. Further-
 150 more, across different graph sizes, the VISTA-
 151 enhanced versions consistently outperform their
 152 corresponding baselines, demonstrating the ro-
 153 bustness of our framework.

154 Moreover, since our framework is agnostic to
 155 the choice of MB identification methods, we
 156 also provide a flexible interface in our imple-
 157 mentation that allows practitioners to plug in any suitable MB estimator depending on the specific



158 Figure 1: F1 score comparison as the number of
 159 nodes increases.

162 data distribution. Notably, we assume that each base learner outputs directed edges on local subgraphs
 163 throughout this work. If an undirected adjacency $X - Y$ is returned, it is treated as providing no
 164 directional vote in the aggregation.
 165

166 3.1 VISTA: VOTING-BASED INTEGRATION OF SUBGRAPH TOPOLOGIES FOR ACYCLICITY

168 **Naive Voting (NV)** To merge estimated subgraphs into a globally causal graph, we first consider a
 169 naive voting strategy. For each pair of nodes X and Y , let A denote the number of times the directed
 170 edge $X \rightarrow Y$ appears across all subgraphs, and B denote the number of times $Y \rightarrow X$ appears. The
 171 directional support ratio for each orientation is computed as:

$$172 \quad r_{X \rightarrow Y} = \frac{A}{A + B}, \quad r_{Y \rightarrow X} = \frac{B}{A + B}.$$

174 This NV rule serves to demonstrate an important property of our divide-and-conquer framework. By
 175 Theorem 3.1, every ground-truth causal edge must appear in the union of MB subgraphs. Therefore,
 176 even this unweighted scheme, which simply aggregates raw directional votes, already ensures that
 177 all true edges are included in the candidate pool. In other words, NV validates that our subgraph
 178 decomposition does not lose any causal edges, providing an essential guarantee for the global
 179 reconstruction stage.

180 However, while NV does not distinguish between strong and weak statistical support. Edges appearing
 181 rarely across subgraphs receive the same confidence as frequently supported ones, and directional
 182 conflicts cannot be resolved in a principled manner. These issues motivate the introduction of
 183 our weighted voting formulation, which incorporates frequency-based confidence to produce more
 184 reliable global orientation decisions.

186 **Weighted Voting (WV)** For each pair of nodes X and Y , let A and B denote the number of times
 187 $X \rightarrow Y$ and $Y \rightarrow X$ appear across all subgraphs, respectively, and let $m = A + B$ be the total
 188 occurrence. We define the confidence-adjusted score as:

$$189 \quad s(X \rightarrow Y) = (1 - e^{-\lambda m}) \frac{A}{m}, \quad (2)$$

190 where $\lambda > 0$ is a tunable weighting parameter. An edge $X \rightarrow Y$ is retained if $s(X \rightarrow Y) \geq t$, where
 191 $t \in (0, 1)$ is a global decision threshold.

194 Here, the weighting term $(1 - e^{-\lambda m})$ serves as a soft confidence modulator that adapts to the
 195 reliability of directional evidence. It plays a role analogous to smoothing priors in Bayesian estimation,
 196 where rare events are regularized toward lower confidence. The details are illustrated in Appendix D.1.
 197 The inclusion threshold t determines the minimum score required to retain an edge.

198 Compared to naive voting, which treats
 199 all local decisions equally, the weighted
 200 scheme jointly calibrates confidence and
 201 sparsity. Specifically, the parameter λ pen-
 202 alizes edges with weak support, while
 203 the threshold t determines the final inclu-
 204 sion criterion. Together, the two parame-
 205 ters govern the precision-recall trade-off,
 206 since a larger λ tends to preserve edges
 207 with limited but consistent evidence and
 208 thus improves recall, while a higher t
 209 enforces stricter acceptance and thereby
 210 improves precision. This mechanism is
 211 particularly beneficial in sparse graphs,
 212 where many candidate edges receive only
 213 minimal support; the exponential weight-
 214 ing amplifies even small differences in frequency, effectively suppressing unreliable edges. As a result,
 215 the aggregation remains robust without relying on strong parametric assumptions, and it provides
 a tunable handle for balancing false discoveries and missed edges. Beyond the divide-and-conquer
 efficiency of VISTA, the weighted voting strategy itself enhances the performance of base learners,

```

def VISTA(nodes, base_learner, ...,
           MB_solver, lam, t):
    local_graphs = []

    for v in nodes:
        MB_v = MB_solver(v)
        G_v = base_learner(MB_v  $\cup$  v)
        local_graphs.append(G_v)

    G_merged = WV(local_graphs, lam, t)
    G_final = post_prune(G_merged)
    return G_final
  
```

Figure 2: Pseudocode of VISTA framework

yielding substantial gains in recall while tightening theoretical error bounds. A detailed analysis of these effects is provided in Section 3.2 and Appendices D - E.

Acyclicity guarantee While the weighted voting improves robustness, the resulting merged graph may still contain cycles. To ensure that the final output is a valid DAG, it is necessary to explicitly break loops introduced during the merging process. So we explicitly enforce acyclicity by solving a Feedback Arc Set (FAS) problem Simpson et al. (2016). As FAS is NP-hard, we adopt a fast GreedyFAS heuristic Eades et al. (1993) adapted to weighted edges; the implementation is detailed in Algorithm 2 in Appendix C.

Notably, an important implementation detail involves the ordering between GreedyFAS and threshold-based filtering. In VISTA, cycles are first removed using GreedyFAS, after which edges with weights below a global threshold t are filtered out. This ordering avoids forcing the cycle removal step to act on already sparse graphs, where eliminating a cycle may require discarding high-confidence edges. In contrast, applying filtering before GreedyFAS can lead to unnecessary precision loss, as the remaining cycles must be resolved by removing stronger edges that would otherwise have been preserved. **Besides, taking a subset of nodes from a causal graph introduces unobserved confounding, which will lead to additional edges in the subgraph; the post-processing step here can remove part of these redundant edges.**

In general, our VISTA offers several key advantages that make it particularly suited for large-scale causal discovery. It operates purely on aggregated edge counts and requires only matrix-level operations, with no reliance on optimization solvers or iterative training. Importantly, it is model-agnostic, i.e., the aggregation is independent of the internal structure of base learners and can be applied to any method that outputs directed subgraphs. This modularity allows seamless integration with a broad class of causal discovery algorithms and supports parallel execution in the divide stage. The complete procedure is implemented as a simple and modular pipeline, summarized in Figure 3.

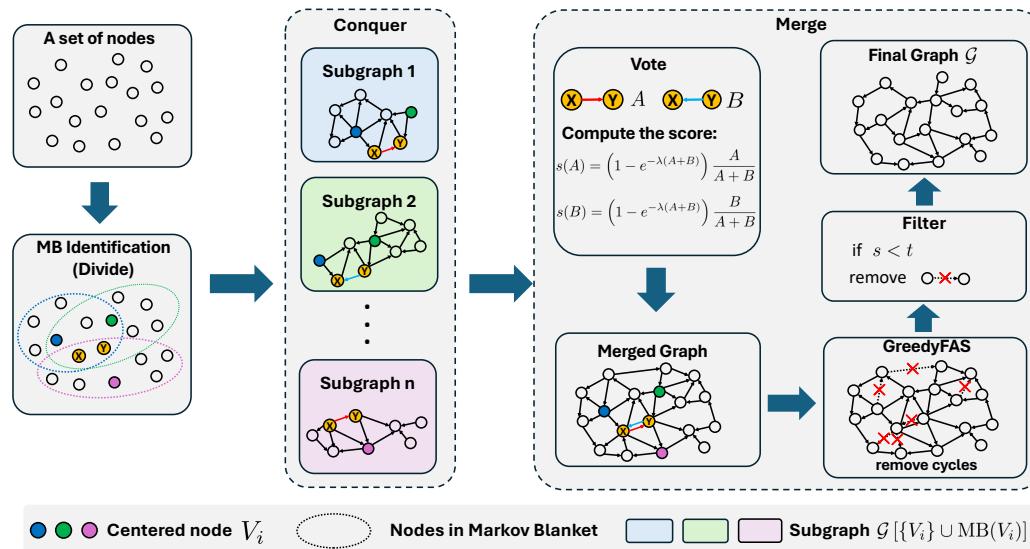


Figure 3: Overview of VISTA, a modular framework for causal discovery: (1) dividing via Markov Blankets identification, (2) parallel subgraph structure identification using a base learner, and (3) global aggregation through weighted voting. The framework then applies cycle resolution (GreedyFAS) and weight-based filtering to produce the final DAG.

Theoretical guarantees for Weighted Voting To ensure the reliability of our edge orientation decisions based on the weighted voting mechanism described above, we provide theoretical guarantees derived from concentration inequalities. The core idea is to determine the minimum number of votes (subgraphs) m required to achieve a desired level of confidence $1 - \epsilon$ in our decision.

Theorem 3.2 (Sufficient Condition for Weighted Voting Accuracy). *Let $A \sim \text{Binomial}(m, p)$ represent the number of successful votes in m independent subgraphs for the edge direction $X \rightarrow Y$, where each subgraph supports this direction independently with probability $p \in (0, 1)$, a decision threshold $t \in (0, 1)$ and the weight function $w(m) = 1 - e^{-\lambda m}$, $\lambda > 0$. Assume the effective*

270 threshold for accepting the edge direction $X \rightarrow Y$ is $r(m) = \frac{t}{1-e^{-\lambda m}} < p$, i.e., the true support rate
 271 p is above the effective threshold. Then, if
 272

$$273 \frac{mp}{2} \left(1 - \frac{t}{p(1-e^{-\lambda m})}\right)^2 \geq \log \frac{1}{\epsilon}, \quad (3)$$

274 it follows that $P(s(A) \geq t) \geq 1 - \epsilon$.
 275

276 This theorem guarantees that if m is large enough to satisfy the given inequality, the weighted voting
 277 procedure will correctly identify the edge direction with high probability. The condition highlights
 278 that the required m depends on the squared relative difference between the true probability p and the
 279 effective threshold $r(m)$. Note that $r(m)$ itself depends on m and λ . As m increases or λ increases,
 280 $1 - e^{-\lambda m}$ approaches 1, and $r(m)$ approaches t . The inequality requires larger m and becomes
 281 more difficult to satisfy when p is close to $r(m)$ or when higher confidence is desired. This trade-off
 282 illustrates the role of λ in controlling the conservativeness of the decision rule, which we will analyze
 283 further in later sections. In practice, the true value of p is unknown, but we can empirically validate
 284 the trend predicted by this condition using observed vote frequencies and measured recovery accuracy
 285 across different values of λ and t .
 286

287 Notably, Theorem 3.2 is stated under an idealized assumption that the votes from different local
 288 subgraphs are independent. In practice, subgraphs learned from the same dataset can induce cor-
 289 relations among votes, so the bound should be interpreted as a qualitative guide, and we expect
 290 the same monotone trend to hold more effectively independent votes still reduce error and the gap
 291 between p and the effective threshold continues to govern sample complexity. Extending the theory
 292 to low-correlation weakly dependent votes will be an interesting future direction.

293 **Corollary 3.3** (Lower bound on node in subgraphs). *Let $\lambda > 0$, $t \in (0, 1)$, and $\epsilon \in (0, 1)$ be fixed.
 294 For a candidate edge (X, Y) , denote by m the number of local subgraphs whose Markov Blankets
 295 contain both endpoints. Under the setting of Theorem 3.2, the sufficient condition (3) can be converted
 296 into an explicit bound*

$$297 m \geq \frac{2 \log(1/\epsilon)}{p((1-t/p)^2 - 2(t/p)(1-t/p)e^{-\lambda})}. \quad (4)$$

298 Generally, a lower error rate ϵ leads to a larger $\log(1/\epsilon)$ term, which increases the required size of
 299 m . When p is much greater than t , it results in a small required m . This aligns with intuition: if the
 300 true voting rate p is far from the threshold t , the distinction is easier, and fewer votes are needed
 301 for reliable decisions. Similarly, when the gap $p - t$ is small, it will result in a significantly larger
 302 required m . A large lower bound on m primarily indicates that the current setting yields a very small
 303 gap between p and t , which, in turn, implies that the decision task has intrinsically high sample
 304 complexity.
 305

3.2 ERROR BOUND ANALYSIS

306 We analyze the edge-level errors of the weighted voting rule to understand how the weighting
 307 parameter λ and the threshold t affect false positives and false negatives. We first characterize a
 308 sufficient condition that converts t into a probability threshold and yields a feasible range for λ , and
 309 then show that under this regime, weighted voting achieves asymptotic consistency as the graph size
 310 grows.
 311

312 **Theorem 3.4** (Practical choice of λ). *Fix a vote count $m \geq 1$, a decision threshold $t \in (0, 1)$, and a
 313 target error level $\epsilon \in (0, 1)$. If λ satisfies*

$$314 -\frac{1}{m} \ln(1-t) < \lambda \leq -\frac{1}{m} \ln \epsilon, \quad (5)$$

315 then the weighted-vote rule achieves the prescribed error control under the union bound.

316 Theorem 3.4 establishes a feasible interval for λ that guarantees uniform control of edge-level errors.
 317 While the confidence weight $1 - e^{-\lambda m}$ down-weights low-support orientations at a fixed t , the smaller
 318 λ values impose stricter thresholds $r_\lambda(m)$ to suppress low-support edges, while larger values retain
 319 weaker true edges and improve recall. The proof of the theorem, as well as detailed discussions, is
 320 in Appendix E.1. In practice, we adopt the relatively large admissible λ in (5), which lowers the
 321

324 effective threshold and reduces false negatives at the cost of more false positives. This choice is well
 325 suited to sparse graphs since false positives typically dominate. The empirical behavior of varying λ
 326 is further examined in Section 4.1. Notably, as $\lambda \rightarrow 0$, the rule reduces to naive voting with a fixed
 327 threshold t . Building on the finite-sample guarantees above, we next analyze the asymptotic behavior
 328 of the weighted voting rule as the number of variables grows. Similarly to p , let $q \in (0, 1)$ denote
 329 the probability that a false edge is erroneously included. In practice, both p and q can be empirically
 330 estimated.

331 **Theorem 3.5** (Asymptotic Consistency). *Fix a threshold $t \in (0, 1)$ and let $\delta_p = p - t$ and $\delta_q = t - q$
 332 denote the positive margins between t and the inclusion probabilities p, q of true and false edges
 333 respectively. Assume $\delta_p, \delta_q > 0$ and that λ satisfies the conditions in Theorem 3.4. If the number of
 334 local subgraphs per candidate edge is $m = C \log n$ with $C > \frac{2}{\min\{\delta_p^2, \delta_q^2\}}$, then we have*

$$335 \Pr(\text{global error}) = o(1), \quad \text{as } n \rightarrow \infty. \quad (6)$$

336 Since most base solvers are reliable and can correctly identify a substantial fraction of true edges, our
 337 assumptions are quite mild and practically easy to satisfy. Theorem 3.5 establishes that weighted
 338 voting is asymptotically consistent: as the number of subgraph samples increases, the probability of
 339 edge-level misclassification vanishes. Notably, the required number of independent subgraphs per
 340 edge grows only logarithmically with the graph size, i.e., $\mathcal{O}(\log n)$, making the approach efficient.
 341 From a computational perspective, the global merging procedure involves only one pass of edge
 342 counting and scoring, with an overall complexity $\mathcal{O}(n^2)$ regardless of the base learner. These
 343 guarantees jointly ensure that the method remains scalable and reliable for large-scale structure
 344 discovery. The proof of the theorem is provided in Appendix E.3.

347 4 EXPERIMENTS

349 4.1 SYNTHETIC DATA

351 We empirically evaluate the performance of the proposed VISTA framework on a range of graph
 352 structures and sizes, as well as diverse base learners. To demonstrate the improvement and effective-
 353 ness of VISTA, we report representative results that highlight the structural recovery performance of
 354 VISTA, its runtime benefits from our modular strategy, and the precision–recall trade-offs induced by
 355 different values of λ . All experiments are conducted on a machine equipped with 13th Gen Intel(R)
 356 Core(TM) i9-13900HX CPU (24 cores) and NVIDIA A30 GPU (24GB).

357 **Baselines** We benchmark VISTA against recent typical state-of-the-art causal discovery algorithms,
 358 including CAM Bühlmann & Peters (2016), NOTEARS Zheng et al. (2018), DAG-GNN Yu et al.
 359 (2019), and GOLEM Ng et al. (2020) for the linear setting, which we modeled as linear Structural
 360 Equation Model (SEM) with Gaussian noise, as well as SCORE Rolland et al. (2022) and GraN-DAG
 361 Lachapelle et al. (2020) for the nonlinear setting, defined as quadratic SEM. Each baseline is evaluated
 362 both in isolation and when integrated with our modular framework VISTA. Additionally, in Appendix
 363 F.2, we provide a comparison between VISTA and DCILP Dong et al. (2024), a recent distributed
 364 framework for causal structure learning, where we also implemented the MB solver used in that work.

365 We evaluate the accuracy of our VISTA framework under the Naive Voting (NV) and the Weighted
 366 Voting (WV) aggregation schemes. Each base learner is tested standalone and with both VISTA
 367 variants. We evaluate the proposed method on synthetic datasets generated from Erdős–Rényi
 368 (ER) and scale-free (SF) graphs, with average out-degree $h \in \{3, 5\}$ and number of nodes $n \in$
 369 $\{30, 50, 100, 300\}$. Performance is assessed using False Discovery Rate (FDR), True Positive Rate
 370 (TPR), Structural Hamming Distance (SHD), and F1 score, as well as runtime metrics. Experiments
 371 are conducted under multiple simulation settings, and we report the average performance, with the \pm
 372 values indicating the corresponding standard deviations.

373 **Results** Table 1 shows two complementary roles of our aggregation. The NV variant already lifts
 374 recall by pooling evidence from overlapping neighborhoods, recovering more true edges. Building
 375 on this, WV acts as a principled edge-level filter. By down-weighting orientations with small or
 376 inconsistent support and applying a single global threshold, it removes noisy connections and yields
 377 substantially cleaner structures. Quantitatively, WV reduces FDR by $50 \sim 80\%$ relative to the
 original baselines and by $40 \sim 70\%$ compared to NV, while generally keeping TPR no less than 0.70.

378

379

Table 1: Results with linear and nonlinear synthetic datasets ($n = 100, h = 5$).

Method	ER5				SF5			
	FDR↓	TPR↑	SHD↓	F1↑	FDR↓	TPR↑	SHD↓	F1↑
NOTEARS	0.21 ± 0.21	0.74 ± 0.26	208.80 ± 199.71	0.76 ± 0.24	0.37 ± 0.15	0.60 ± 0.14	352.60 ± 125.39	0.61 ± 0.14
+VISTA-NV	0.87 ± 0.01	0.97 ± 0.01	3171.80 ± 174.02	0.23 ± 0.01	0.84 ± 0.01	0.97 ± 0.01	2443.60 ± 143.74	0.27 ± 0.01
+VISTA-WV	0.08 ± 0.03	0.68 ± 0.01	182.40 ± 16.03	0.79 ± 0.02	0.18 ± 0.07	0.68 ± 0.03	233.00 ± 34.76	0.74 ± 0.03
GOLEM	0.61 ± 0.16	0.35 ± 0.17	567.00 ± 129.77	0.35 ± 0.15	0.70 ± 0.15	0.29 ± 0.19	610.10 ± 118.00	0.29 ± 0.17
+VISTA-NV	0.87 ± 0.01	0.91 ± 0.04	2891.00 ± 224.42	0.23 ± 0.01	0.86 ± 0.01	0.90 ± 0.02	2589.00 ± 270.09	0.25 ± 0.02
+VISTA-WV	0.23 ± 0.12	0.50 ± 0.13	306.70 ± 87.75	0.60 ± 0.14	0.33 ± 0.15	0.40 ± 0.12	371.10 ± 88.21	0.50 ± 0.13
DAG-GNN	0.66 ± 0.15	0.42 ± 0.23	739.20 ± 323.34	0.35 ± 0.17	0.64 ± 0.15	0.47 ± 0.22	731.40 ± 303.38	0.38 ± 0.17
+VISTA-NV	0.87 ± 0.01	0.95 ± 0.01	3065.00 ± 136.49	0.23 ± 0.01	0.85 ± 0.01	0.95 ± 0.00	2480.00 ± 203.65	0.27 ± 0.01
+VISTA-WV	0.36 ± 0.03	0.56 ± 0.05	377.00 ± 26.06	0.59 ± 0.02	0.35 ± 0.10	0.49 ± 0.08	363.00 ± 41.10	0.56 ± 0.09
Gra-DAG	0.92 ± 0.04	0.05 ± 0.03	715.00 ± 70.14	0.06 ± 0.04	0.94 ± 0.02	0.05 ± 0.03	1088.60 ± 31.49	0.05 ± 0.02
+VISTA-NV	0.86 ± 0.04	0.18 ± 0.06	656.60 ± 83.30	0.16 ± 0.03	0.89 ± 0.02	0.20 ± 0.04	947.20 ± 53.33	0.14 ± 0.02
+VISTA-WV	0.43 ± 0.06	0.10 ± 0.02	503.40 ± 46.68	0.17 ± 0.03	0.54 ± 0.05	0.11 ± 0.02	545.80 ± 65.54	0.18 ± 0.03
SCORE	0.92 ± 0.10	0.58 ± 0.03	4039.60 ± 123.3	0.14 ± 0.15	0.91 ± 0.03	0.62 ± 0.05	3166.40 ± 258.7	0.16 ± 0.05
+VISTA-NV	0.95 ± 0.08	0.76 ± 0.02	3464.20 ± 215.6	0.09 ± 0.14	0.95 ± 0.04	0.76 ± 0.05	2978.00 ± 367.3	0.08 ± 0.07
+VISTA-WV	0.80 ± 0.06	0.65 ± 0.07	838.00 ± 364.78	0.31 ± 0.09	0.81 ± 0.05	0.63 ± 0.04	892.60 ± 345.58	0.29 ± 0.06

391

392

393

The trend holds for both differentiable and combinatorial base learners, indicating that the gains stem from the aggregation rule rather than any particular estimator.

394

395

Crucially, λ appears only in the final aggregation, so sweeping it is retraining-free: we reuse cached votes, recompute $r_\lambda(m)$, and rerun the DAG projection to obtain the full curves. To avoid per-dataset hyperparameter tuning and cherry-picking, all VISTA results in the main tables use a single, fixed operating point: $\lambda = 0.5$ and $t = 0.7$. This choice lies within (5) and serves as a stable compromise between precision and recall across settings. We report the full precision–recall curves for transparency, but no post-hoc selection is performed for the tabulated results.

401

402

The observed improvement in WV cases against NV aligns with Theorem 3.4. Edges with limited empirical support are selectively pruned while strongly supported ones are preserved, which is exactly the filtering behavior reflected in Table 1. This validates our weighted voting scheme as an effective, model-agnostic mechanism for stabilizing global structures. To further substantiate this model-agnostic property, we next examine the impact of data standardization as it is known to influence baseline performance Reisach et al. (2021).

407

408

409

Table 2: Results with normalized linear and nonlinear synthetic datasets ($n = 50, h = 5$).

Method	ER5				SF5			
	FDR↓	TPR↑	SHD↓	F1↑	FDR↓	TPR↑	SHD↓	F1↑
NOTEARS	0.04 ± 0.02	0.39 ± 0.01	140.00 ± 4.90	0.56 ± 0.01	0.02 ± 0.02	0.38 ± 0.04	138.50 ± 9.87	0.55 ± 0.05
+VISTA-NV	0.27 ± 0.05	0.61 ± 0.03	135.20 ± 6.16	0.66 ± 0.02	0.35 ± 0.04	0.62 ± 0.04	132.80 ± 18.82	0.63 ± 0.03
+VISTA-WV	0.19 ± 0.05	0.58 ± 0.03	122.90 ± 7.54	0.68 ± 0.02	0.08 ± 0.04	0.54 ± 0.06	109.10 ± 19.91	0.68 ± 0.05
GOLEM	0.40 ± 0.03	0.22 ± 0.04	182.00 ± 15.51	0.32 ± 0.05	0.44 ± 0.07	0.20 ± 0.04	183.60 ± 6.55	0.29 ± 0.05
+VISTA-NV	0.31 ± 0.03	0.75 ± 0.03	129.50 ± 4.97	0.72 ± 0.02	0.29 ± 0.05	0.70 ± 0.05	122.80 ± 19.87	0.70 ± 0.04
+VISTA-WV	0.06 ± 0.03	0.62 ± 0.04	95.30 ± 9.88	0.75 ± 0.02	0.10 ± 0.04	0.60 ± 0.06	100.20 ± 15.69	0.72 ± 0.05
DAG-GNN	0.16 ± 0.03	0.41 ± 0.05	160.80 ± 53.55	0.55 ± 0.05	0.19 ± 0.05	0.48 ± 0.04	183.60 ± 45.37	0.60 ± 0.03
+VISTA-NV	0.85 ± 0.09	0.74 ± 0.14	609.80 ± 72.70	0.25 ± 0.12	0.79 ± 0.04	0.72 ± 0.09	538.40 ± 25.55	0.33 ± 0.05
+VISTA-WV	0.14 ± 0.05	0.50 ± 0.09	93.50 ± 29.12	0.63 ± 0.07	0.13 ± 0.08	0.56 ± 0.06	87.80 ± 16.56	0.68 ± 0.05
Gra-DAG	0.82 ± 0.01	0.06 ± 0.01	275.00 ± 18.50	0.09 ± 0.01	0.92 ± 0.02	0.02 ± 0.02	269.80 ± 45.50	0.03 ± 0.02
+VISTA-NV	0.66 ± 0.15	0.26 ± 0.06	219.20 ± 46.41	0.29 ± 0.07	0.68 ± 0.05	0.17 ± 0.04	223.00 ± 26.25	0.22 ± 0.04
+VISTA-WV	0.15 ± 0.06	0.18 ± 0.05	199.20 ± 13.64	0.32 ± 0.07	0.33 ± 0.03	0.13 ± 0.03	205.40 ± 59.15	0.23 ± 0.04
SCORE	0.71 ± 0.05	0.50 ± 0.05	386.80 ± 67.99	0.37 ± 0.04	0.65 ± 0.13	0.52 ± 0.15	340.40 ± 81.08	0.38 ± 0.05
+VISTA-NV	0.79 ± 0.03	0.60 ± 0.14	489.70 ± 123.82	0.31 ± 0.04	0.77 ± 0.03	0.56 ± 0.05	471.10 ± 16.68	0.33 ± 0.03
+VISTA-WV	0.64 ± 0.09	0.42 ± 0.11	305.80 ± 49.93	0.39 ± 0.07	0.57 ± 0.04	0.36 ± 0.06	244.20 ± 53.35	0.39 ± 0.04

421

422

The results show that, regardless of fluctuations in the performance of individual base learners, the improvements brought by VISTA remain consistent. This stability further supports our claim that VISTA does not rely on any inductive bias of the base learner or data distribution. Rather, the edge-level aggregation mechanism provides robustness across settings. These findings further highlight the model-agnostic nature of our framework. Additional experiments under alternative parameter settings are provided in Appendix F.4.

428

429

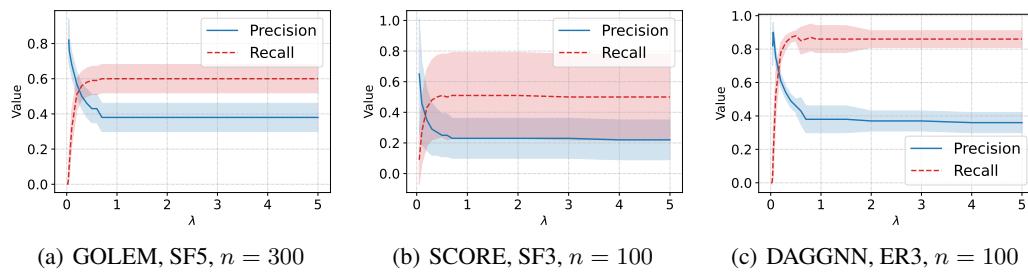
430

431

Time efficiency To assess the scalability of our framework, we report the total computation time for different base learners in Table 3. All results are presented as mean ± standard deviation over repeated runs. Across all tested graph sizes, integrating VISTA consistently yields substantial runtime

432 reductions compared to
 433 the original methods.
 434 These improvements are
 435 not due to algorithm-
 436 specific acceleration
 437 but result directly from
 438 our divide-and-conquer
 439 design: since each local
 440 subgraph is processed
 441 independently, the learning
 442 procedure naturally
 443 supports parallel execu-
 444 tion. This decomposition
 445 effectively reduces the
 446 per-task computational load and alleviates memory bottlenecks, enabling scalable causal discovery
 447 even with large node counts. Further results for other settings are included in Appendix F.3.

448 **Sensitivity study of λ** We sweep λ and plot precision/recall in Figure 4. By the conclusion of
 449 Theorem 3.4 and Appendix E.1, larger λ shifts the method toward higher recall and lower precision
 450 by relaxing the penalty on low-support edges. Within the theoretical range, this precision–recall
 451 trade-off is smooth and yields informative voting thresholds $r_\lambda(m)$. The figure also substantiate
 452 this point, Small λ strongly discounts low-support edges, yielding high precision and low recall.
 453 Similarly, as λ increases, recall rises while precision falls. Beyond the upper end of (5) we have
 454 $(1 - e^{-\lambda m}) \approx 1$ and thus $s(X \rightarrow Y) \approx A/m$, so the curves plateau and further increases of λ
 455 have negligible effect. Therefore, to balance precision and recall in practice, a moderate value of the
 456 hyperparameter could be fixed within the theoretical range, which serves as a stable operating point.

468 Figure 4: Precision–recall trade-off under varying λ , where threshold $t = 0.5$.470

4.2 REAL DATA

472 We further evaluate all methods on the well-
 473 known Sachs protein signaling network based
 474 on expression levels of proteins and phospho-
 475 lipids Sachs et al. (2005). This benchmark is
 476 widely used in causal discovery research, and
 477 the ground-truth graph with 11 nodes and 17
 478 directed edges is consistently accepted by the
 479 community.

480 Here we trained normalized data with 853
 481 samples and reported the results in Table 4.
 482 Incorporating VISTA consistently reduces
 483 false discoveries and improves structural ac-
 484 curacy, measured by SHD and SID Peters &
 485 Bühlmann (2015) across different baselines. This highlights that VISTA is a plug-and-play module
 that can reliably enhance the performance of arbitrary causal discovery algorithms.

Table 3: Comparison of total computing time (s) under ER3 setting.

Method	$n = 50$	$n = 100$	$n = 300$
NOTEARS	494.40 ± 98.24	1473.69 ± 395.59	12515.63 ± 1599.06
+VISTA	189.15 ± 65.37	339.90 ± 158.75	2136.72 ± 708.15
GOLEM	72.65 ± 15.41	108.82 ± 70.56	261.84 ± 30.44
+VISTA	21.93 ± 0.81	26.16 ± 2.68	43.40 ± 3.21
DAG-GNN	628.63 ± 55.29	2192.97 ± 323.59	17713.84 ± 2861.06
+VISTA	201.31 ± 43.36	371.25 ± 199.91	1960.43 ± 794.02
GraN-DAG	730.42 ± 89.95	3035.76 ± 481.85	25205.64 ± 2098.85
+VISTA	238.53 ± 51.36	472.30 ± 172.77	2336.32 ± 1028.04
SCORE	426.63 ± 61.15	10040.65 ± 209.31	—
+VISTA	105.64 ± 39.65	198.82 ± 34.12	225.16 ± 11.45

486

5 CONCLUSION

488 In this paper, we introduced VISTA, a scalable and model-agnostic framework for causal discovery
 489 that decomposes global structure learning into Markov Blanket neighborhoods, aggregates them via a
 490 weighted voting scheme, and enforces acyclicity through FAS post-processing. The design is fully
 491 parallelizable, and the aggregation step operates only at the edge level, enabling efficient exploration
 492 of operating points regardless of the base learner. Theoretically, we establish finite-sample error
 493 guarantees and asymptotic consistency under mild conditions. Empirically, across diverse graph
 494 families and base learners, VISTA improves accuracy and runtime efficiency, typically increasing
 495 precision without sacrificing recall.

496 **Despite the favorable performance of VISTA, the framework has several limitations. First, when**
 497 **aggregating local graphs, latent confounding introduced by restricting the learner to subsets may**
 498 **produce high-confidence redundant edges. In some cases these edges do not necessarily participate in**
 499 **cycles and our current framework can only mitigate them through the combination of GreedyFAS**
 500 **and threshold-based filtering. Moreover, although the FAS projection guarantees acyclicity, it may**
 501 **also prune edges that are weakly supported yet correct, which can negatively affect downstream**
 502 **tasks that are sensitive to edge directions. Future work includes incorporating interventional data to**
 503 **improve orientation accuracy and extending the VISTA framework to online settings for large-scale**
 504 **applications.**

505

REPRODUCIBILITY STATEMENT

508 We provide the code in the supplementary material, together with a README file that allows
 509 experimental results to be reproduced.

511

THE USE OF LLM

513 We used LLM to polish the writing and correct grammar in some paragraphs, but it did not contribute
 514 to ideas or conceptual content.

516

REFERENCES

518 Steen A Andersson, David Madigan, and Michael D Perlman. A characterization of markov equivalence
 519 classes for acyclic digraphs. *The Annals of Statistics*, 25(2):505–541, 1997.

521 Taiyu Ban, Lyuzhou Chen, Xiangyu Wang, Xin Wang, Derui Lyu, and Huanhuan Chen. Differentiable
 522 structure learning with partial orders. In *The Thirty-eighth Annual Conference on Neural*
 523 *Information Processing Systems*, 2024.

524 Kevin Bello, Bryon Aragam, and Pradeep Ravikumar. Dagma: Learning dags via m-matrices and a
 525 log-determinant acyclicity characterization. *Advances in Neural Information Processing Systems*,
 526 35:8226–8239, 2022.

528 Peter Bühlmann and Jonas Peters. CAM: Causal additive models, high-dimensional order search and
 529 penalized regression. *The Annals of Statistics*, 44(1):243–274, 2016.

531 Ruichu Cai, Zhenjie Zhang, and Zhifeng Hao. Sada: A general framework to support robust causation
 532 discovery. In Sanjoy Dasgupta and David McAllester (eds.), *Proceedings of the 30th International*
 533 *Conference on Machine Learning*, volume 28 of *Proceedings of Machine Learning Research*, pp.
 534 208–216, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

535 Ruichu Cai, Zhenjie Zhang, Zhifeng Hao, and Marianne Winslett. Sophisticated merging over
 536 random partitions: A scalable and robust causal discovery approach. *IEEE Transactions on Neural*
 537 *Networks and Learning Systems*, 29(8):3623–3635, 2018. doi: 10.1109/TNNLS.2017.2734804.

539 David Maxwell Chickering. Optimal structure identification with greedy search. *Journal of machine*
 learning research

540 David Maxwell Chickering, David Heckerman, and Christopher Meek. Large-sample learning of
 541 bayesian networks is np-hard. *Journal of Machine Learning Research*, 5:1287–1330, 2004.
 542

543 Davin Choo, Kirankumar Shiragur, and Arnab Bhattacharyya. Verification and search algorithms for
 544 causal dags. *Advances in Neural Information Processing Systems*, 35:12787–12799, 2022.

545 Diego Colombo, Marloes H Maathuis, Markus Kalisch, and Thomas S Richardson. Learning high-
 546 dimensional directed acyclic graphs with latent and selection variables. *The Annals of Statistics*,
 547 pp. 294–321, 2012.
 548

549 Shuyu Dong, Michèle Sebag, Kento Uemura, Akito Fujii, Shuang Chang, Yusuke Koyanagi, and Koji
 550 Maruhashi. DCDILP: a distributed learning method for large-scale causal structure learning. *arXiv*
 551 preprint [arXiv:2406.10481](https://arxiv.org/abs/2406.10481), 2024.

552 Peter Eades, Xuemin Lin, and William F Smyth. A fast and effective heuristic for the feedback arc
 553 set problem. *Information Processing Letters*, 47(6):319–323, 1993. doi: 10.1016/0020-0190(93)
 554 90079-O.
 555

556 Zhuangyan Fang, Shengyu Zhu, Jiji Zhang, Yue Liu, Zhitang Chen, and Yangbo He. On low-rank
 557 directed acyclic graphs and causal structure learning. *IEEE Transactions on Neural Networks and*
 558 *Learning Systems*, 35(4):4924–4937, 2023.

559 Tian Gao, Kshitij Fadnis, and Murray Campbell. Local-to-global bayesian network structure learning.
 560 In *International Conference on Machine Learning*, pp. 1193–1202. PMLR, 2017.
 561

562 Jiaying Gu and Qing Zhou. Learning big Gaussian Bayesian networks: Partition, estimation and
 563 fusion. *Journal of machine learning research*, 21(158):1–31, 2020.

564 Xianjie Guo, Kui Yu, Lin Liu, Jiuyong Li, Jiye Liang, Fuyuan Cao, and Xindong Wu. Progressive
 565 skeleton learning for effective local-to-global causal structure learning. *IEEE Transactions on*
 566 *Knowledge and Data Engineering*, 36(12):9065–9079, 2024.
 567

568 Alain Hauser and Peter Bühlmann. Characterization and greedy learning of interventional markov
 569 equivalence classes of directed acyclic graphs. *The Journal of Machine Learning Research*, 13(1):
 570 2409–2464, 2012.

571 Yang-Bo He and Zhi Geng. Active learning of causal networks with intervention experiments and
 572 optimal designs. *Journal of Machine Learning Research*, 9(Nov):2523–2547, 2008.
 573

574 Biwei Huang, Charles Jia Han Low, Feng Xie, Clark Glymour, and Kun Zhang. Latent hierarchical
 575 causal structure discovery with rank constraints. *Advances in neural information processing*
 576 *systems*, 35:5549–5561, 2022.

577 Paul Hünermund and Elias Bareinboim. Causal inference and data fusion in econometrics. *The*
 578 *Econometrics Journal*, pp. utad008, 2023.
 579

580 Maximilian Kaiser, Stefan Bauer, and Bernhard Schölkopf. Bootstrap aggregation and confidence
 581 measures for time-series causal discovery. In *Proceedings of the 41st International Conference on*
 582 *Machine Learning (ICML)*, 2024.

583 Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-Julien. Gradient-based
 584 neural dag learning. In *International Conference on Learning Representations*, 2020.
 585

586 Thuc Duy Le, Tao Hoang, Jiuyong Li, Lin Liu, Huawen Liu, and Shu Hu. A fast PC algorithm for
 587 high dimensional causal discovery with multi-core pcs. *IEEE/ACM transactions on computational*
 588 *biology and bioinformatics*, 16(5):1483–1495, 2016.

589 Phillip Lippe, Taco Cohen, and Efstratios Gavves. Efficient neural causal discovery without acyclicity
 590 constraints. *arXiv preprint arXiv:2107.10483*, 2021.
 591

592 Hui Liu, Shuigeng Zhou, Wai Lam, and Jihong Guan. A new hybrid method for learning bayesian
 593 networks: Separation and reunion. *Knowledge-Based Systems*, 121:185–197, 2017. ISSN 0950-
 7051.

594 Po-Ling Loh and Peter Bühlmann. High-dimensional learning of linear causal networks via inverse
 595 covariance estimation. *Journal of Machine Learning Research*, 15(140):3065–3105, 2014.
 596

597 Sindy Löwe, David Madras, Richard Zemel, and Max Welling. Amortized causal discovery: Learning
 598 to infer causal graphs from time-series data. In *Conference on Causal Learning and Reasoning*,
 599 pp. 509–525. PMLR, 2022.

600 Christopher Meek. Causal inference and causal explanation with background knowledge. *arXiv
 601 preprint arXiv:1302.4972*, 2013.
 602

603 Ehsan Mokhtarian, Sina Akbari, AmirEmad Ghassami, and Negar Kiyavash. A recursive markov
 604 boundary-based approach to causal structure learning. In *The KDD’21 Workshop on Causal
 605 Discovery*, pp. 26–54. PMLR, 2021.

606 Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, and Francesco Locatello.
 607 Causal discovery with score matching on additive models with arbitrary noise. In *Conference on
 608 Causal Learning and Reasoning*, pp. 726–751. PMLR, 2023a.
 609

610 Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, and Francesco Locatello.
 611 Scalable causal discovery with score matching. In *Conference on Causal Learning and Reasoning*,
 612 pp. 752–771. PMLR, 2023b.
 613

614 Ivan Ng, Xun Zheng, and Bryon Aragam. Learning sparse causal models is not np-hard. In *Advances
 615 in Neural Information Processing Systems*, volume 33, pp. 16888–16900, 2020.
 616

617 Judea Pearl. *Causality*. Cambridge university press, 2009.
 618

619 Jonas Peters and Peter Bühlmann. Structural intervention distance for evaluating causal graphs.
Neural Computation, 27(3):771–799, 2015. doi: 10.1162/NECO_a_00708.
 620

621 Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with
 622 continuous additive noise models. *The Journal of Machine Learning Research*, 15(1):2009–2053,
 2014.
 623

624 Anne Helby Petersen, Claus Thorn Ekstrøm, Peter Spirtes, and Merete Osler. Causal discovery and
 625 epidemiology: A potential for synergy. *American Journal of Epidemiology*, pp. kwae101, 2024.
 626

627 José M. Puerta, Juan A. Aledo, José A. Gámez, and Jorge D. Laborda. Efficient and accurate structural
 628 fusion of bayesian networks. *Information Fusion*, 66:155–169, 2021. ISSN 1566-2535.
 629

630 Md Musfiqur Rahman, Ayman Rasheed, Md Mosaddek Khan, Mohammad Ali Javidian, Pooyan
 631 Jamshidi, and Md Mamun-Or-Rashid. Accelerating recursive partition-based causal structure
 632 learning. *arXiv preprint arXiv:2102.11545*, 2021.
 633

634 Joseph Ramsey, Madelyn Glymour, Ruben Sanchez-Romero, and Clark Glymour. A million variables
 635 and more: the fast greedy equivalence search algorithm for learning high-dimensional graphical
 636 causal models, with an application to functional magnetic resonance images. *International Journal
 637 of Data Science and Analytics*, 3(2):121–129, 2017. doi: 10.1007/s41060-016-0032-z.
 638

639 Alexander Reisach, Christof Seiler, and Sebastian Weichwald. Beware of the simulated dag! causal
 640 discovery benchmarks may be easy to game. *Advances in Neural Information Processing Systems*,
 641 34:27772–27784, 2021.
 642

643 Paul Rolland, Volkan Cevher, Matthäus Kleindessner, Chris Russell, Dominik Janzing, Bernhard
 644 Schölkopf, and Francesco Locatello. Score matching enables causal discovery of nonlinear additive
 645 noise models. In *International Conference on Machine Learning*, pp. 18741–18753. PMLR, 2022.
 646

647 Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and Garry P. Nolan. Causal
 648 protein-signaling networks derived from multiparameter single-cell data. *Science*, 308(5721):
 649 523–529, 2005. doi: 10.1126/science.1105809.
 650

651 Pedro Sanchez, Xiao Liu, Alison Q O’Neil, and Sotirios A Tsaftaris. Diffusion models for causal
 652 discovery via topological ordering. *arXiv preprint arXiv:2210.06201*, 2022a.
 653

648 Pedro Sanchez, Jeremy P Voisey, Tian Xia, Hannah I Watson, Alison Q O’Neil, and Sotirios A
 649 Tsafaris. Causal machine learning for healthcare and precision medicine. *Royal Society Open*
 650 *Science*, 9(8):220638, 2022b.

651 Ashka Shah, Adela DePavia, Nathaniel Hudson, Ian Foster, and Rick Stevens. Causal discovery
 652 over high-dimensional structured hypothesis spaces with causal graph partitioning. *arXiv preprint*
 653 *arXiv:2406.06348*, 2024.

654 Karthikeyan Shanmugam, Murat Kocaoglu, Alexandros G Dimakis, and Sriram Vishwanath. Learning
 655 causal graphs with small interventions. *Advances in Neural Information Processing Systems*, 28,
 656 2015.

657 Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo Hyvärinen, Yoshinobu Kawahara,
 658 Takashi Washio, Patrik O Hoyer, Kenneth Bollen, and Patrik Hoyer. Directlingam: A direct
 659 method for learning a linear non-Gaussian structural equation model. *Journal of Machine Learning*
 660 *Research-JMLR*, 12(Apr):1225–1248, 2011.

661 Michael Simpson, Venkatesh Srinivasan, and Alex Thomo. Efficient computation of feedback arc set
 662 at web-scale. *Proceedings of the VLDB Endowment*, 10(3):133–144, 2016.

663 Peter Spirtes, Clark N Glymour, and Richard Scheines. *Causation, Prediction, and Search*. MIT
 664 press, 2nd edition, 2000.

665 Chandler Squires, Sara Magliacane, Kristjan Greenewald, Dmitriy Katz, Murat Kocaoglu, and
 666 Karthikeyan Shanmugam. Active structure learning of causal dags via directed clique trees.
 667 *Advances in Neural Information Processing Systems*, 33:21500–21511, 2020.

668 Ioannis Tsamardinos, Constantin F Aliferis, Alexander R Statnikov, and Er Statnikov. Algorithms for
 669 large scale markov blanket discovery. In *FLAIRS*, volume 2, pp. 376–81, 2003.

670 Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis. The max-min hill-climbing
 671 bayesian network structure learning algorithm. *Machine Learning*, 65(1):31–78, 2006. doi:
 672 10.1007/s10994-006-6889-7.

673 Thomas S Verma and Judea Pearl. Equivalence and synthesis of causal models. In *Probabilistic and*
 674 *causal inference: The works of Judea Pearl*, pp. 221–236. 2022.

675 Xiaoqiang Wang, Yali Du, Shengyu Zhu, Liangjun Ke, Zhitang Chen, Jianye Hao, and Jun Wang.
 676 Ordering-based causal discovery with reinforcement learning. *arXiv preprint arXiv:2105.06631*,
 677 2021.

678 Xingyu Wu, Bingbing Jiang, Yan Zhong, and Huanhuan Chen. Multi-target markov boundary
 679 discovery: Theory, algorithm, and application. *IEEE Transactions on Pattern Analysis and*
 680 *Machine Intelligence*, 45(4):4964–4980, 2022.

681 Xingyu Wu, Bingbing Jiang, Tianhao Wu, and Huanhuan Chen. Practical markov boundary learning
 682 without strong assumptions. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 683 volume 37, pp. 10388–10398, 2023.

684 Xianchao Xie and Zhi Geng. A recursive method for structural learning of directed acyclic graphs.
 685 *Journal of Machine Learning Research*, 9(14):459–483, 2008.

686 Yuhuai Yu, Xun Zheng, Yichong Cheng, Tengyu Zhao, Oluwasanmi Koyejo, Bo Huang, and Yi-
 687 fan Wang. DAG-GNN: DAG structure learning with graph neural networks. In *International*
 688 *Conference on Machine Learning*, pp. 7154–7163. PMLR, 2019.

689 Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P Xing. DAGs with NO TEARS: Continu-
 690 ous optimization for structure learning. In *Advances in Neural Information Processing Systems*,
 691 volume 31, 2018.

692 Zihan Zhou, Muhammad Qasim Elahi, and Murat Kocaoglu. Sample efficient bayesian learning of
 693 causal graphs from interventions. In *The Thirty-eighth Annual Conference on Neural Information*
 694 *Processing Systems*, 2024.

695 Shengyu Zhu, Ignavier Ng, and Zhitang Chen. Causal discovery with reinforcement learning. *arXiv*
 696 *preprint arXiv:1906.04477*, 2019.

702 **A ALGORITHM OF VISTA**
703704 **Algorithm 1** VISTA-Weighted Voting
705

706 **Require:** A set of local subgraphs $\{\mathcal{G}_V : V \in \mathbf{V}\}$, each induced by the Markov Blanket of node V ;
707 hyperparameters λ and threshold t .
708 1: Initialize zero matrix EdgeCount to record counts for each edge $V_i \rightarrow V_j$ where $V_i, V_j \in \mathbf{V}$.
709 2: **for** each local subgraph \mathcal{G}_V **do**
710 3: **for** each directed edge $V_i \rightarrow V_j$ in \mathcal{G}_V **with** $i \neq j$ **do**
711 4: Increment EdgeCount[V_i, V_j] by 1.
712 5: **end for**
713 6: **end for**
714 7: Compute the Occurrence matrix as $\text{Occurrence} \leftarrow \text{EdgeCount} + \text{EdgeCount}^\top$
715 8: Compute the coefficient matrix elementwise: $\text{Coef} \leftarrow 1 - \exp(-\lambda \cdot \text{Occurrence})$.
716 9: Compute the merged weighted directed graph $\mathcal{G}_1 = \text{Coef} \odot \text{EdgeCount} / \text{Occurrence}$.
717 10: Use Algorithm 2 to break cycles in \mathcal{G}_1 and obtain a DAG \mathcal{G}_2 .
718 11: Remove edges in \mathcal{G}_2 whose weights are less than threshold t to obtain the final DAG \mathcal{G} .
719 12: **return** the global causal graph \mathcal{G} .

720
721 **B DETAILED RELATED WORKS**
722

723 **General Causal Discovery Methods:** Classical algorithms recover Directed Acyclic Graphs (DAGs)
724 by either testing conditional independencies or maximizing a score on the discrete space of graphs.
725 Constraint-based methods such as PC and FCI Colombo et al. (2012); Spirtes et al. (2000) iteratively
726 remove edges whose endpoints become independent given bounded-size conditioning sets. Assuming
727 faithfulness, with only observational data, a common result in causal discovery shows that one can
728 only recover the causal graph up to its Markov Equivalence Class (MEC) Andersson et al. (1997);
729 Verma & Pearl (2022). Therefore, interventional data is usually required to fully recover the graph.
730 Many works propose algorithms that aim to learn the graph with minimal interventional data Choo
731 et al. (2022); Hauser & Bühlmann (2012); He & Geng (2008); Shanmugam et al. (2015); Squires et al.
732 (2020); Zhou et al. (2024). Score-based searches, e.g., GES Chickering (2002) and exact DP-based
733 optimizers Chickering et al. (2004), evaluate a decomposable metric (BIC, MDL) while heuristically
734 exploring the super-exponential DAG space. Hybrid strategies typified by MMHC Tsamardinos et al.
735 (2006) first identify each variable’s Markov Blanket and then run a restricted greedy search. Although
736 provably sound under the causal Markov and faithfulness assumptions, all three lines are NP-hard
737 and their run time or memory grows super-polynomially with node count, limiting practical use to
738 $\lesssim 10^2$ variables.

739 Ordering-based methods constitute a distinct and increasingly influential category. These approaches
740 first attempt to infer a topological ordering of variables and then determine parent sets accordingly.
741 Early examples such as DirectLiNGAM Shimizu et al. (2011) and RESIT Peters et al. (2014)
742 exploit non-Gaussianity or additive-noise assumptions to infer edge directions from regression
743 residuals. CAM Bühlmann & Peters (2016) extends this idea to nonlinear settings via generalized
744 additive models and greedy order search. More recently, SCORE Rolland et al. (2022) proposes
745 to identify causal ordering by minimizing the variance of the score function, which has inspired
746 several scalable extensions leveraging score-matching or diffusion-based estimation Montagna et al.
747 (2023a;b); Sanchez et al. (2022a). These methods achieve promising empirical results on graphs with
748 thousands of nodes, but typically rely on strong functional assumptions and remain sensitive to latent
749 confounders.

750 Besides, recent years have seen a growing emphasis on continuous and differentiable formulations in
751 causal structure learning, aiming to overcome the combinatorial challenges associated with discrete
752 DAG optimization. NOTEARS Zheng et al. (2018), DAG-GNN Yu et al. (2019), GraN-DAG
753 Lachapelle et al. (2020), and their low-rank or log-det variants Bello et al. (2022); Fang et al. (2023)
754 convert acyclicity into a smooth penalty and learn graphs via gradient descent. Reinforcement learning
755 and meta-learning schemes Wang et al. (2021); Zhu et al. (2019); Lippe et al. (2021) treat node
ordering as a policy and bypass explicit acyclicity constraints. These methods alleviate combinatorial
756 search but still entail an $O(d^2)$ adjacency parameterization or an $O(d^3)$ matrix exponential, so GPU

756 memory becomes a bottleneck beyond a few hundred nodes. In summary, although continuous
 757 optimization and ordering-based heuristics mitigate the need for discrete search, general-purpose
 758 methods typically incur $\mathcal{O}(d^2)$ memory overhead or rely on restrictive assumptions, which constrains
 759 their applicability to graphs of moderate size.

760 **Large-Scale Causal Discovery:** To push causal discovery into the high-dimensional regime, re-
 761 searchers have explored sparsity-aware and parallel variants of the above paradigms. Fast Greedy
 762 Search (FGS) Ramsey et al. (2017) and parallel-PC Le et al. (2016) cache CI tests and distribute
 763 computations over multi-core CPUs, handling tens of thousands of genes. In the continuous camp,
 764 DAGMA Bello et al. (2022) and NOTEARS-LowRank Fang et al. (2023) reduce memory usage by
 765 factorizing the weight matrix, achieving 5k–10k nodes on a single GPU, while Amortized Causal
 766 Discovery Löwe et al. (2022) shares a latent decoder across samples to scale to massive time-series.
 767 Bootstrap and bagging strategies aggregate multiple weak graphs to improve stability without in-
 768 creasing per-run complexity Wu et al. (2023); Kaiser et al. (2024). Despite these advances, most
 769 scalable algorithms either rely on heavy solvers (e.g., SDP/MILP), strong sparsity assumptions, or
 770 lack finite-sample guarantees, motivating alternative divide-and-conquer solutions. As a comple-
 771 mentary approach, our proposed VISTA framework addresses these challenges through modular
 772 subgraph decomposition and lightweight aggregation, while providing finite-sample error control and
 773 scalability to graphs with a large scale of nodes.

774 **Scalable or Modular Structure Learning:** Partition-based approaches decompose the global graph
 775 into overlapping neighbourhoods, learn local substructures, and then reconcile conflicts. Early local-
 776 to-global techniques grow random neighbourhoods until conditional independence saturates Gao et al.
 777 (2017). Gu & Zhou (2020); Huang et al. (2022) apply hierarchical clustering before local search,
 778 whereas Shah et al. (2024) first estimates a coarse skeleton and then partitions it to learn subgraphs in
 779 parallel. DCILP Dong et al. (2024) formulates the fusion step as an integer program that guarantees
 780 optimal conflict resolution but suffers from MILP infeasibility on dense regions. Recent ensemble
 781 methods perform Markov-Blanket bootstrap with majority or confidence-weighted voting Wu et al.
 782 (2023); Ban et al. (2024), yet provide limited theoretical analysis of the aggregated error.

783 Our method VISTA follows the divide-and-conquer paradigm but departs from prior work by inte-
 784 grating a frequency-aware weighted voting mechanism that admits closed-form error analysis, and by
 785 enforcing global acyclicity through a lightweight GreedyFAS post-processing step instead of solving
 786 large-scale ILPs. These design choices lead to near-linear memory usage, full parallelizability, and
 787 theoretical consistency guarantees, enabling scalable causal discovery on graphs with thousands of
 788 nodes.

789 C PSEUDOCODE OF FEEDBACK ARC SET

790 After obtaining a directed graph with weighted edges from the voting stage, the final step is to enforce
 791 acyclicity, formulated as a *feedback arc set (FAS)* problem. Since exact FAS is NP-hard, we adopt a
 792 greedy approximation based on node degree imbalance.

793 For each node $V_i \in \mathcal{V}$, let $d^o(V_i)$ and $d^i(V_i)$ be its out- and in-degrees, and define imbalance
 794 $\delta(V_i) = d^o(V_i) - d^i(V_i)$. At each iteration, we remove one node: sources are appended to a sequence
 795 s_1 , sinks are prepended to a sequence s_2 , and if neither exists, we select the node with the largest
 796 absolute imbalance $|\delta(V_i)|$. This process continues until all nodes are removed, yielding a topological
 797 order $s = s_1 // s_2$.

798 Given this order, any edge $(V_i, V_j) \in \mathcal{E}$ that points from a later node to an earlier node in s is marked
 799 as a backward edge. These are sorted by weight and the lightest ones are iteratively removed until the
 800 graph becomes acyclic. Algorithm 2 summarizes the procedure.

801 D STATISTICAL ACCURACY ANALYSIS OF WEIGHTED VOTING

802 This section provides a theoretical analysis of the statistical behavior of the weighted voting mecha-
 803 nism introduced in Section 3.1. The goal is to characterize the conditions under which a candidate
 804 edge is correctly retained or excluded based on its empirical directional support. The analysis builds
 805 on a probabilistic interpretation of the weighted score as a posterior expectation, and derives sufficient
 806 conditions for edge-level accuracy using concentration inequalities.

810 **Algorithm 2** Solve FAS to guarantee acyclicity on the weighted directed graph

811 **Require:** A weighted directed graph $\mathcal{G} = (\mathbf{V}, \mathbf{E})$, where E_{UV} denotes the edge from $U \in \mathbf{V}$ to
812 $V \in \mathbf{V}$ and $w_{UV} > 0$ is its weight.

813 1: For the ease of description, \mathcal{G}' is a copy of input graph \mathcal{G} .

814 2: Initialize two empty sequences $s_1 \leftarrow \emptyset$, $s_2 \leftarrow \emptyset$, and a backward edge set $b \leftarrow \emptyset$.

815 3: **while** $\mathcal{G} \neq \emptyset$ **do**

816 4: **if** \mathcal{G} contains a source **then**

817 5: choose the sink u with maximum $\delta(U)$

818 6: $s_1 \leftarrow s_1 // U$

819 7: $\mathbf{V} \leftarrow \mathbf{V} \setminus U$; $\mathbf{E} \leftarrow \mathbf{E} \setminus \{E_{UV}, E_{VU}\}$, $\forall U \in \mathbf{V}$

820 8: $\mathcal{G} = (\mathbf{V}, \mathbf{E})$

821 9: **end if**

822 10: **if** \mathcal{G} contains a sink **then**

823 11: choose the sink U with minimum $\delta(U)$

824 12: $s_2 \leftarrow U // s_2$

825 13: $\mathbf{V} \leftarrow \mathbf{V} \setminus U$; $\mathbf{E} \leftarrow \mathbf{E} \setminus \{E_{UV}, E_{VU}\}$, $\forall U \in \mathbf{V}$

826 14: $\mathcal{G} = (\mathbf{V}, \mathbf{E})$

827 15: **end if**

828 16: **end while**

829 17: The topological ordering is $s = s_1 // s_2$

830 18: **for** E_{UV} in the input graph \mathcal{G}' **do**

831 19: **if** U is after V in s **then**

832 20: $b \leftarrow b // E_{UV}$

833 21: **end if**

834 22: **end for**

835 23: Sort b in ascending order according to w_{UV}

836 24: **while** \mathcal{G}' is not a DAG **do**

837 25: remove the edge with smallest w_{UV} from \mathcal{G}'

838 26: **end while**

839 27: **return** The directed acyclic causal graph \mathcal{G}' .

840 We begin by examining the relationship between the weighting parameter λ , the empirical support rate,
841 and the effective threshold. We then establish a general bound on the probability of edge-level error
842 under the weighted voting rule, and provide sufficient conditions under specific support distributions
843 that guarantee accurate recovery.

845 D.1 BAYESIAN MOTIVATION FOR THE WEIGHTED VOTING RULE

846 Specifically, we show that the score can be viewed as the posterior mean under a Beta prior whose
847 influence diminishes as the number of supporting subgraphs increases. We first consider each edge
848 direction $X \rightarrow Y$ as a binary decision problem. Suppose each local subgraph that includes both X
849 and Y independently votes for one of the two directions: $X \rightarrow Y$ or $Y \rightarrow X$. Let A and B denote
850 the number of times each direction appears, and let $m = A + B$ be the total number of subgraphs
851 providing directional evidence.

852 A natural approach is to model the true support probability $p = \Pr(X \rightarrow Y)$ using a Beta prior:

$$853 \quad p \sim \text{Beta}(\alpha, \beta),$$

854 so that the posterior mean becomes

$$855 \quad \mathbb{E}[p \mid A] = \frac{A + \alpha}{m + \alpha + \beta}. \quad (7)$$

856 In classical Laplace smoothing, a fixed prior such as Beta(1, 1) adds uniform pseudo-counts re-
857 gardless of sample size. However, in our setting, most candidate edges are supported by very few
858 subgraphs. The fixed priors are therefore either too weak to suppress noise or too strong to allow
859 learning when evidence grows.

We therefore introduce a data-dependent pseudo-count that decreases with m . Specifically, we set $\alpha = 0$, and define an effective prior strength:

$$\beta = \kappa(m) := \frac{me^{-\lambda m}}{1 - e^{-\lambda m}}, \quad (8)$$

where $\lambda > 0$ is a tunable parameter. This yields the posterior mean:

$$\mathbb{E}[p | A] = \frac{A}{m + \kappa(m)} = (1 - e^{-\lambda m}) \cdot \frac{A}{m}. \quad (9)$$

Thus, our weighted score function $s(X \rightarrow Y)$ can be viewed as the posterior mean under a Beta prior whose strength vanishes exponentially as the number of supporting subgraphs increases. When m is small, the exponential decay is slow, and the prior contributes a significant regularization, effectively suppressing low-support edges. As m grows, the prior influence rapidly vanishes, and the score approaches the empirical frequency A/m , recovering naive voting.

The hyperparameter λ controls how quickly the prior decays. A larger λ yields more aggressive penalization for rare edges, while a smaller λ allows quicker adaptation to the empirical signal. This dynamic pseudo-count interpretation explains the design of our exponential weight $1 - e^{-\lambda m}$ and its effectiveness in controlling false positives in sparse and noisy settings.

D.2 PROOF OF THEOREM 3.2

Theorem 3.2 (Sufficient Condition for Weighted Voting Accuracy) *Let $A \sim \text{Binomial}(m, p)$ represent the number of successful votes in m independent subgraphs for the edge direction $X_1 \rightarrow X_2$, where each subgraph supports this direction independently with probability $p \in (0, 1)$, decision threshold $t \in (0, 1)$ and the weight function $w(m) = 1 - e^{-\lambda m}$, $\lambda > 0$. Assume the effective threshold for accept the edge direction $X_1 \rightarrow X_2$ is $r(m) = \frac{t}{1 - e^{-\lambda m}} < p$, i.e., the true support rate p is above the effective threshold. Then, if*

$$\frac{mp}{2} \left(1 - \frac{t}{p(1 - e^{-\lambda m})}\right)^2 \geq \log \frac{1}{\epsilon},$$

it follows that $P(s(A) \geq t) \geq 1 - \epsilon$.

Proof. Our goal is to show that

$$P\left(s = [1 - \exp(-\lambda m)] \cdot \frac{A}{m} \geq t\right) \geq 1 - \epsilon, \quad (10)$$

where $A \sim \text{Binomial}(m, p)$ and m is the number of (independent) subgraphs or subsamples considered. Rewriting $s \geq t$ gives

$$[1 - \exp(-\lambda m)] \cdot \frac{A}{m} \geq t \iff \frac{A}{m} \geq \frac{t}{1 - \exp(-\lambda m)}.$$

For notational simplicity, we define $r = \frac{t}{1 - \exp(-\lambda m)}$. Hence, our goal becomes ensuring $P(A \geq mr) \geq 1 - \epsilon$. Since A is a binomial random variable $A \sim \text{Binomial}(m, p)$, $\mathbb{E}[A] = mp$, we therefore have the Chernoff bound, states that,

$$P\left(A \leq (1 - \delta)mp\right) \leq \exp\left(-\frac{\delta^2}{2}mp\right), \quad (11)$$

for any $0 < \delta < 1$. Subsequently, we set $(1 - \delta)mp = mr$, i.e., $\delta = 1 - \frac{r}{p}$. Note that for this δ to be positive (so that the Chernoff bound form applies), we need $r < p$. In other words,

$$\frac{t}{1 - \exp(-\lambda m)} = r < p,$$

which is the intuitive condition that the true probability p exceeds the effective threshold r . With the above definition of δ ,

$$P\left(A < mr\right) = P\left(A \leq (1 - \delta)mp\right) \leq \exp\left(-\frac{mp}{2}\left(1 - \frac{r}{p}\right)^2\right).$$

918 Hence

919
$$P(A \geq mr) \geq 1 - \exp\left(-\frac{mp}{2}\left(1 - \frac{r}{p}\right)^2\right). \quad (12)$$
 920

921 To ensure this probability is at least $1 - \epsilon$, we impose

922
$$\exp\left(-\frac{mp}{2}\left(1 - \frac{r}{p}\right)^2\right) \leq \epsilon. \quad (13)$$
 923

924 Since $r = \frac{t}{1-e^{-\lambda m}}$, this condition explicitly becomes

925
$$\frac{mp}{2}\left(1 - \frac{t}{p(1-e^{-\lambda m})}\right)^2 \geq \log \frac{1}{\epsilon}. \quad (14)$$
 926

927 Therefore, whenever (3) and $r < p$ is satisfied, we have

928
$$P\left([1 - e^{-\lambda m}] \cdot \frac{A}{m} \geq t\right) = P(A \geq mr) \geq 1 - \epsilon. \quad (15)$$
 929

930 Hence the theorem follows. \square 931

D.3 PROOF OF COROLLARY 3.3

932 **Corollary 3.3** (Upper bound of node in subgraphs) *Let $\lambda > 0$, $t \in (0, 1)$, and $\epsilon \in (0, 1)$ be fixed. For a candidate edge (X, Y) , denote by m the number of local subgraphs whose Markov Blankets contain both endpoints. Under the setting of Theorem 3.2, the sufficient condition (3) can be converted into the explicit bound*

933
$$m \geq \frac{2 \log(1/\epsilon)}{p((1-t/p)^2 - 2(t/p)(1-t/p)e^{-\lambda})},$$
 934

935 *Proof.* We first define $y = \exp(-\lambda m)$. Then, by the conclusion of Theorem 4.4, we obtain

936
$$-\frac{p}{2\lambda} \log y \left(1 - \frac{t}{p(1-y)}\right)^2 \geq \log \frac{1}{\epsilon}. \quad (16)$$
 937

938 Next, we consider the first-order Taylor expansion:

939
$$\begin{aligned} \left(1 - \frac{t}{p} \frac{1}{1-y}\right)^2 &= \left[1 - \frac{t}{p} - \frac{t}{p}y + O(y^2)\right]^2 \\ &= [\gamma - \theta y + O(y^2)]^2 \\ &= \gamma^2 - 2\theta\gamma y + O(y^2), \end{aligned} \quad (17)$$
 940

941 where we set $\theta = \frac{t}{p}$ and $\gamma = 1 - \frac{t}{p}$. Therefore, (15) becomes

942
$$\log y [\gamma^2 - 2\theta\gamma y + O(y^2)] \leq -\frac{2\lambda}{p} \log \frac{1}{\epsilon}. \quad (18)$$
 943

944 Therefore, by substituting $\log y = -\lambda m$ and dropping the $O(y^2)$ term (since y^2 is small enough), we 945 get an approximate condition:

946
$$m(\gamma^2 - 2\theta\gamma e^{-\lambda m}) \geq \frac{2}{p} \log \frac{1}{\epsilon}. \quad (19)$$
 947

948 This is an implicit condition on m . To derive an explicit and sufficient lower bound, we strengthen 949 the left-hand side. Since $m \geq 1$, we have $e^{-\lambda m} \leq e^{-\lambda}$, therefore

950
$$\gamma^2 - 2\theta\gamma e^{-\lambda m} \geq \gamma^2 - 2\theta\gamma e^{-\lambda}.$$
 951

952 Let $K_\lambda = \gamma^2 - 2\theta\gamma e^{-\lambda}$. To ensure the lower bound is positive, we require $\gamma^2 > 2\theta\gamma e^{-\lambda}$, or 953 equivalently $\gamma > 2\theta e^{-\lambda}$ (since $\gamma = 1 - t/p > 0$). This condition simplifies to $1 - t/p > 2(t/p)e^{-\lambda}$.

972 By our Theorem 3.4, since $\lambda > \frac{1}{m} \log(1 - t)$, we have
 973

$$974 \frac{t}{p} (2e^{-\lambda} + 1) < \frac{t}{p} \left(2(1 - t)^{\frac{1}{m}} + 1 \right) < 1. \\ 975$$

976 This inequality is easily satisfied and thus represents a very mild condition. Consequently, we can
 977 regard the lower bound $K_\lambda > 0$ as being established. Then the inequality (18) is satisfied under a
 978 stronger condition:

$$980 m \cdot K_\lambda \geq \frac{2}{p} \log \frac{1}{\epsilon}. \\ 981$$

982 Solving for m gives an explicit lower bound:
 983

$$984 m \geq \frac{2 \log(1/\epsilon)}{p K_\lambda} = \frac{2 \log(1/\epsilon)}{p(\gamma^2 - 2\theta\gamma e^{-\lambda})}. \\ 985$$

986 Substituting the definitions of γ and θ , we obtain:
 987

$$988 m \geq \frac{2 \log(1/\epsilon)}{p((1 - t/p)^2 - 2(t/p)(1 - t/p)e^{-\lambda})}. \\ 989$$

□

993 E DISCUSSION OF THE STRUCTURE-AWARE ERROR BOUND

994
 995 The weighted voting procedure serves as the core mechanism for aggregating local subgraph estimates
 996 into a global DAG. While this method adjusts edge confidence based on empirical support, its
 997 effectiveness ultimately depends on the ability to balance false positives and false negatives across
 998 the merged graph. To better understand this behavior, we analyze the global error induced by the
 999 weighted voting rule and how it interacts with the sparsity of the graph, the choice of voting threshold,
 1000 and the distribution of subgraph overlaps.

1001 This section formalizes that analysis. We first derive a decomposition of the total error into false
 1002 positive and false negative components, followed by a structure-aware upper bound based on the
 1003 union bound. The role of the weighting parameter λ is then examined in detail, culminating in formal
 1004 proofs of Theorem 3.4 and Theorem 3.5, which establish a feasible range for λ and the asymptotic
 1005 vanishing of global error, respectively. These bounds are further instantiated under Erdős–Rényi
 1006 (ER) and scale-free (SF) graph models to characterize how graph topology influences the merging
 1007 accuracy.

1008 To begin with, we formalize the decomposition of the global error into *false negatives* (FN) and *false*
 1009 *positives* (FP), and derive a structure-aware upper bound based on the union bound. We summarized
 1010 it into the following lemma:

1011 **Lemma E.1** (Structure-aware global error bound). *Each candidate directed edge (V_i, V_j) is evaluated*
 1012 *in m_{ij} independent local sub-graphs whose Markov Blankets contain both endpoints.*

- 1013 • For a **true** edge, the vote count obeys $A_{ij} \sim \text{Binomial}(m_{ij}, p)$.
- 1014 • For a **false** edge, $A_{ij} \sim \text{Binomial}(m_{ij}, q)$ with $p > q$.

1015 Using the weighted rule

$$1016 s_{ij} = [1 - e^{-\lambda m_{ij}}] \frac{A_{ij}}{m_{ij}} \geq t, \quad r_\lambda(m_{ij}) = \frac{t}{1 - e^{-\lambda m_{ij}}}, \\ 1017$$

1018 assume $p > r_\lambda(m_{ij})$ and $q < r_\lambda(m_{ij})$ for every edge. Then

$$1019 \Pr(\text{global error}) \leq \underbrace{\sum_{(i,j) \in E^*} e^{-2m_{ij}[p - r_\lambda(m_{ij})]^2}}_{\text{FN contribution}} + \underbrace{\sum_{(i,j) \notin E^*} e^{-2m_{ij}[r_\lambda(m_{ij}) - q]^2}}_{\text{FP contribution}}, \quad (19) \\ 1020 \\ 1021$$

1022 where E^* denotes the ground-truth edge set.

1026 *Proof.* For $(V_i, V_j) \in \mathbf{E}^*$, we have
 1027

$$1028 \Pr(\text{FN on } (V_i, V_j)) = \Pr(A_{ij}/m_{ij} < r_\lambda(m_{ij})) \leq e^{-2m_{ij}[p-r_\lambda(m_{ij})]^2} \quad (20)$$

1029 by Hoeffding's inequality. A symmetric argument gives the FP term for $(V_i, V_j) \notin \mathbf{E}^*$). Finally, the
 1030 union bound over all edges yields the claimed inequality. \square
 1031

1032 **Corollary E.2** (Worst-case simplification). *If $m_{ij} \geq m_{\min}$ for all edges, then*

$$1034 \Pr(\text{global error}) \leq N_{FN} e^{-2m_{\min}[p-r_\lambda(m_{\min})]^2} + N_{FP} e^{-2m_{\min}[r_\lambda(m_{\min})-q]^2}, \quad (21)$$

1035 where $N_{FN} = |\mathbf{E}^*|$ and $N_{FP} = \binom{n}{2} - N_{FN}$ for a graph with n nodes.
 1036

1037 The error bound derived above depends on the effective threshold $r_\lambda(m)$, which is controlled by
 1038 the weighting parameter λ . To understand the role of this parameter, it is instructive to consider the
 1039 limiting case $\lambda = 0$, which corresponds to the naive voting scheme. In this case, the weight term
 1040 disappears, and the edge inclusion rule reduces to comparing the raw directional frequency A/m
 1041 against the fixed threshold t .

1042 *Remark E.3* (Naive voting baseline). If we drop the weight and decide solely on the unweighted
 1043 fraction $\frac{A_{ij}}{m_{ij}} \geq t$, Lemma E.1 specialises to
 1044

$$1045 \Pr(\text{global error}) \leq \sum_{(i,j) \in \mathbf{E}^*} e^{-2m_{ij}(p-t)^2} + \sum_{(i,j) \notin \mathbf{E}^*} e^{-2m_{ij}(t-q)^2}. \quad (22)$$

1046 In sparse graphs, where the number of candidate false positive edges vastly exceeds the number of
 1047 true positives (i.e., $N_{FP} \gg N_{FN}$), the overall error is typically dominated by the first summation term.
 1048 Therefore, a moderate increase in λ can lead to a significant reduction in total error by aggressively
 1049 penalizing low-support spurious edges, even if it slightly increases the false negative rate. This
 1050 trade-off is particularly favorable in high-dimensional settings, where controlling the false discovery
 1051 rate is often more critical than maximizing recall. These insights align with the empirical results
 1052 reported in Section 4.1, where the weighted voting scheme consistently improves FDR without
 1053 severely compromising TPR across a wide range of base learners.
 1054

1056 E.1 INFLUENCE AND PRACTICAL RANGE OF THE WEIGHT PARAMETER λ

1057 To ensure that the weighted voting mechanism achieves a reliable trade-off between false positives
 1058 and false negatives, it is necessary to understand how the choice of the weighting parameter λ
 1059 affects the acceptance threshold and the overall error bound. The following derivation provides a
 1060 characterization of the feasible range of λ that satisfies the conditions used in the theoretical analysis
 1061 of edge decisions. This directly supports the proof of Theorem 3.4 in the main text.
 1062

1063 **Theorem 3.4** (Practical choice of λ) *Fix a vote count $m \geq 1$, a decision threshold $t \in (0, 1)$, and a
 1064 target error level $\epsilon \in (0, 1)$. If λ satisfies*

$$1066 -\frac{1}{m} \ln(1-t) < \lambda \leq -\frac{1}{m} \ln \epsilon,$$

1067 *then the weighted-vote rule achieves the prescribed error control under the union bound.*

1069 *Proof.* Define the Hoeffding-based global error upper bound $\mathcal{L}(\lambda) = N_{FN} e^{-2m_{\min}(p-r_\lambda)^2} +$
 1070 $N_{FP} e^{-2m_{\min}(r_\lambda-q)^2}$, where N_{FN} (N_{FP}) is the number of true (false) candidate edges rescaled
 1071 by their respective cost coefficients. For notational simplicity, we omit the subscripts, and use m to
 1072 represent m_{\min} in our later proof. We first differentiate \mathcal{L} w.r.t. λ :
 1073

$$1075 \frac{\partial r_\lambda}{\partial \lambda} = \frac{tme^{-\lambda m}}{(1-e^{-\lambda m})^2} = r_\lambda \frac{me^{-\lambda m}}{1-e^{-\lambda m}} > 0, \quad (23)$$

$$1077 \frac{\partial \mathcal{L}}{\partial \lambda} = 2m \frac{te^{-\lambda m}}{(1-e^{-\lambda m})^2} \left[N_{FN} \delta_p e^{-2m\delta_p^2} - N_{FP} \delta_q e^{-2m\delta_q^2} \right],$$

1079 with $\delta_p = p - r_\lambda > 0$ and $\delta_q = r_\lambda - q > 0$.

Because δ_p increases and δ_q decreases as λ grows, a larger λ lowers the false-negative term (higher **recall**) but raises the false-positive term (lower **precision**). For sparse causal graphs we typically have $N_{\text{FP}} \gg N_{\text{FN}}$, making the second term dominant and hence $\partial\mathcal{L}/\partial\lambda < 0$ until the exponential weight saturates. Consequently, increasing λ is beneficial *only* inside a finite interval.

1084

Upper bound for λ . In the worst-case scenario where all candidate edges are consistently supported in the same direction, the voting scores for both true and false edges become uniformly close to $1 - e^{-\lambda m}$. If $1 - e^{-\lambda m} \geq 1 - \epsilon$ ($0 < \epsilon \ll 1$), then even false edges can exceed the decision threshold t , leading to a large number of number of false positives. Therefore To avoid such indiscriminate acceptance, λ must be chosen to ensure that $1 - e^{-\lambda m}$ remains sufficiently below 1. Solving $e^{-\lambda m} = \epsilon$ gives

$$0 < \lambda \leq \lambda_{\max}(\epsilon) = -\frac{1}{m} \ln \epsilon \quad (\text{e.g., } \epsilon = 0.01 \Rightarrow \lambda_{\max} \approx 4.6/m). \quad (24)$$

1093

1094

Lower bound for λ . The effective threshold $r_\lambda(m) = \frac{t}{1 - e^{-\lambda m}}$ must satisfy $0 < r_\lambda < 1$; otherwise the acceptance condition $A/m \geq r_\lambda$ can never be met because $A/m \leq 1$ by definition. Solving the inequality $r_\lambda < 1$ yields

$$\frac{t}{1 - e^{-\lambda m}} < 1 \iff e^{-\lambda m} < 1 - t \iff \lambda > \lambda_{\min} := -\frac{1}{m} \ln(1 - t). \quad (25)$$

1101

1102

Intuitively, when λ falls below this bound the exponential weight is so close to 1 that the prefactor $1 - e^{-\lambda m}$ becomes *smaller* than t , inflating r_λ beyond 1 and blocking every candidate edge, including true ones. Hence λ_{\min} is the *viability threshold*: only for $\lambda > \lambda_{\min}$ does the weighted-voting rule retain a non-zero recall. Therefore a practical search range is

$$\lambda \in \left[-\frac{1}{m} \ln(1 - t), \frac{1}{m} \ln \epsilon \right], \quad (26)$$

within which cross-validation or the closed-form condition $\partial\mathcal{L}/\partial\lambda = 0$ can be used to pinpoint an optimal λ^* . \square

1111

Exponentially vanishing reversal error. For any λ in this range and any true edge with support probability $p > r_\lambda$, the probability of being accepted in the reverse direction is $\Pr(\text{reverse}) \leq \exp[-2m(p - r_\lambda)^2]$, which decays exponentially with the number of independent subgraphs m . This guarantees that the weighted-voting merger remains statistically consistent as data grow, while a properly chosen λ suppresses spurious edges in finite-sample regimes.

The general error bound depends on the number of subgraphs in which each edge appears. This quantity is influenced by the underlying graph topology. In the following, the behavior of the bound is examined under two commonly used random graph models: Erdős–Rényi and scale-free graphs. The analysis characterizes typical support counts and their implications for the error terms derived in Lemma E.1.

1122

E.2 ERDŐS–RÉNYI AND SCALE-FREE GRAPHS

The error bounds derived in the previous section depend not only on the weighting parameter λ , but also on the empirical support count m_{ij} which measures the number of subgraphs in which each edge appear. This quantity is influenced by the underlying graph topology and the statistical properties of the Markov Blanket construction.

To understand how m_{ij} behaves in practice, we analyze two representative random graph models: Erdős–Rényi (ER) and scale-free (SF) networks. These models differ significantly in their degree distributions, which in turn affect the overlap patterns among Markov Blankets and the expected frequency with which edges are covered by local subgraphs. The analysis below characterizes typical support rates under each model, providing context for interpreting the global error bounds and informing the expected sample complexity of reliable aggregation.

1134 **Theorem E.4** (ER- h graph). *Let $G \sim ER(n, \theta)$ with edge probability $\theta = h/(n-1)$, and assign*
 1135 *directions by a random topological order so that the expected out-degree is h . Denote*

$$1137 \quad \delta_p := p - r_\lambda(2), \quad \delta_q := r_\lambda(2) - q \quad (\delta_p, \delta_q > 0).$$

1138 *Then, with probability at least $1 - O(\theta^2)$ over the graph draw,*

$$1140 \quad \Pr(\text{global error}) \leq \frac{nh}{2} e^{-4\delta_p^2} + \frac{n(n-1)-nh}{2} e^{-4\delta_q^2} + O(\theta^2). \quad (27)$$

1142 *The $O(\theta^2)$ term covers the negligible fraction of edges whose vote count $m_{ij} > 2$.*

1144 *Proof.* In a directed ER graph each vertex has $\deg^{\text{in}}, \deg^{\text{out}} \sim \text{Pois}(\theta/2)$, so $\mathbb{E}[\lvert \text{MB}(v) \rvert] =$
 1146 $\mathbb{E}[\deg^{\text{in}} + \deg^{\text{out}} + \text{spouses}] \approx 2h$, where the “spouse” term (*co-parents*) shares the same mean
 1147 as \deg^{out} .

1148 For an oriented edge (i, j) , it appears in *both* $\text{MB}(V_i)$ and $\text{MB}(V_j)$, giving a baseline $m_{ij} \geq 2$.
 1149 Additionally, it appears in $\text{MB}(V_k)$ for every common child V_k of V_i and V_j . For fixed V_k , the events
 1150 “ $V_i \rightarrow V_k$ ” and “ $V_j \rightarrow V_k$ ” are independent with probability θ^2 . Hence the number of common
 1151 children follows $\text{Pois}(\lambda_c)$ with $\lambda_c = (n-2)\theta^2 \approx h^2/n$.

1153 Thus,

$$1154 \quad m_{ij} = 2 + X, \quad X \sim \text{Pois}(\lambda_c).$$

1155 When $h = O(1)$, $\lambda_c = O(\theta^2) \ll 1$, whence

$$1157 \quad \Pr(m_{ij} = 2) = 1 - O(\theta^2), \quad \Pr(m_{ij} \geq 3) = O(\theta^2).$$

1158 For the overwhelming majority of edges ($m_{ij} = 2$), lemma E.1 gives:

$$1160 \quad \Pr(\text{FN on } (i, j)) \leq e^{-4\delta_p^2}, \quad \Pr(\text{FP on } (i, j)) \leq e^{-4\delta_q^2}.$$

1162 Counting edges:

$$1163 \quad N_{\text{FN}} \approx \frac{nh}{2}, \quad N_{\text{FP}} = \binom{n}{2} - N_{\text{FN}}.$$

1165 Summing the two contributions yields

$$1167 \quad \frac{nh}{2} e^{-4\delta_p^2} + \frac{n(n-1)-nh}{2} e^{-4\delta_q^2}. \quad (28)$$

1170 \square

1172 We can obtain similar results from the SF graph.

1173 **Theorem E.5** (SF- h graph). *Let \mathcal{G} be a directed scale-free graph on n nodes, obtained by sampling*
 1174 *an undirected Chung–Lu (or Barabási–Albert) graph whose degree sequence (d_1, \dots, d_n) satisfies*

$$1176 \quad \Pr(d \geq k) \leq C_\alpha k^{1-\alpha}, \quad 2 < \alpha < 3, \quad (29)$$

1178 *and whose mean degree is h ; and orienting edges according to a random topological order. Then, for*
 1179 *a universal constant C_α that depends only on α ,*

$$1181 \quad \Pr(\text{global error}) \leq \frac{nh}{2} e^{-4\delta_p^2} + \frac{n(n-1)}{2} - \frac{nh}{2} e^{-4\delta_q^2} + \frac{n(n-1)}{2} C_\alpha n^{-(\alpha-2)}. \quad (30)$$

1183 *Proof.* For an oriented edge (V_i, V_j) let d_i, d_j be its endpoint degrees. Exactly as in the ER case each
 1184 edge appears at least twice; additional occurrences come from every *common child* k with probability
 1185 $(d_i/n)(d_j/n)$. Hence

$$1187 \quad m_{ij} = 2 + X, \quad X \sim \text{Pois}(\lambda_{ij}), \quad \lambda_{ij} := \frac{d_i d_j}{n}.$$

1188 For any fixed λ and $\delta \in \{\delta_p, \delta_q\}$
 1189

$$\begin{aligned} \mathbb{E}[e^{-2m_{ij}\delta^2} \mid \lambda_{ij}] &= e^{-4\lambda_{ij}^2} \mathbb{E}[e^{-2X\delta^2}] \\ &= e^{-4\delta^2} e^{\lambda_{ij}(e^{-2\delta^2} - 1)}. \end{aligned} \quad (31)$$

1194 Since the value of $e^{-2\delta^2} - 1$ varies, we splitted the expectation (31) into two regimes:
 1195

$$\mathbb{E}[e^{-2m_{ij}\delta^2}] = \mathbb{E}[e^{-2m_{ij}\delta^2} \mathbf{1}_{\{\lambda_{ij} \leq 1\}}] + \mathbb{E}[e^{-2m_{ij}\delta^2} \mathbf{1}_{\{\lambda_{ij} > 1\}}]. \quad (32)$$

- 1199 • Non-hub regime $\lambda_{ij} \leq 1$:

$$\mathbb{E}[e^{-2m_{ij}\delta^2} \mid \lambda_{ij}] \leq e^{-4\delta^2}. \quad (33)$$

- 1203 • Hub regime $\lambda_{ij} > 1$. By (31) the conditional term is $\leq e^{-4\delta^2} e^{-\lambda_{ij}/2} \leq 1$, but the
 1204 probability of this event can be bounded with the degree tail:
 1205

$$\mathbb{E}[e^{-2m_{ij}\delta^2} \mathbf{1}_{\{\lambda_{ij} > 1\}}] \leq \Pr(\lambda_{ij} > 1) = \Pr\left(\frac{d_i d_j}{n} > 1\right) \leq C_\alpha n^{-(\alpha-2)},$$

1208 where we apply the union bound to decompose the event $d_i d_j > n$ into two simpler events,
 1209 $d_i > n^{1/2}$ or $d_j > n^{1/2}$, control each using the degree tail bound $\Pr(d \geq k) \leq C_\alpha k^{1-\alpha}$,
 1210 and then combine the two estimates.

1212 Therefore, for either $\delta = \delta_p$ or δ_q ,

$$\mathbb{E}[e^{-2m_{ij}\delta^2}] \leq e^{-4\delta^2} + C_\alpha n^{-(\alpha-2)}. \quad (34)$$

1216 There are $N_{\text{FN}} \approx nh/2$ true and $N_{\text{FP}} = \binom{n}{2} - N_{\text{FN}}$ false edges on average. Multiplying the expectation
 1217 by these counts and plugging into Lemma E.1 yields inequality (30). \square
 1218

1219 Theorem E.5 completes the structure-aware error analysis by characterizing the influence of hetero-
 1220 geneous degree distributions on the residual error bound. While the dominant exponential terms
 1221 governing false positive and false negative rates are structurally similar to those in Theorem E.4, the
 1222 residual term exhibits a slower decay due to the presence of high-degree nodes. These hub-related
 1223 structures lead to greater variability in the support count m_{ij} across candidate edges.

1224 This variability has practical implications. In networks where edge supports are highly non-uniform,
 1225 the weighted voting mechanism implicitly induces a form of confidence calibration: high-support
 1226 edges, typically associated with structurally central nodes, retain larger weights and are more likely
 1227 to be preserved. In contrast, low-support edges often arising from sparse or weakly connected
 1228 regions, will be heavily penalized by the exponential weighting term. This differential treatment
 1229 improves robustness to statistical noise and helps suppress false positives without uniformly raising
 1230 the threshold for all decisions.

1231 As a result, the error reduction effect of the weighting scheme is not solely determined by the average
 1232 support level, but also by the variance in subgraph overlap. Networks with broader support distribu-
 1233 tions provide more opportunities for selective edge retention, which enhances the overall effectiveness
 1234 of the aggregation procedure. This observation complements the earlier asymptotic result, and offers
 1235 a finer-grained explanation of the empirical precision gains observed in our experiments.

1236 To complete the analysis, we examine how the global error behaves asymptotically under increasing
 1237 graph size.

1239 E.3 ASYMPTOTIC ANALYSIS

1241 **Theorem 3.5** (Asymptotic Consistency) *Fix a threshold $t \in (0, 1)$ and let $\delta_p = p - t$ and $\delta_q = t - q$ denote the positive margins between t and the inclusion probabilities p, q of true and false edges*

1242 respectively. Assume $\delta_p, \delta_q > 0$ and that λ satisfies the conditions in Theorem 3.4. If the number of
 1243 local subgraphs per candidate edge is $m = C \log n$ with $C > \frac{2}{\min\{\delta_p^2, \delta_q^2\}}$, then we have
 1244

$$1245 \quad \Pr(\text{global error}) = o(1), \quad \text{as } n \rightarrow \infty. \quad (35)$$

1247 *Proof.* By the conclusion of Lemma E.1, the global error probability is bounded by
 1248

$$1249 \quad \Pr(\text{global error}) \leq \sum_{(i,j) \in E^*} e^{-2m_{ij}(p-t)^2} + \sum_{(i,j) \notin E^*} e^{-2m_{ij}(t-q)^2}. \quad (36)$$

1252 Since the number of true edges satisfies $N_{\text{FN}} = |E^*| = \mathcal{O}(n)$, and the number of false edges is
 1253 $N_{\text{FP}} = \binom{n}{2} - N_{\text{FN}} = \mathcal{O}(n^2)$, we can simplify the above bound by letting $m_{ij} \equiv m$ for all edges:
 1254

$$1255 \quad \Pr(\text{global error}) \leq N_{\text{FN}} e^{-2m\delta_p^2} + N_{\text{FP}} e^{-2m\delta_q^2},$$

1256 where we denote $\delta_p = p - t > 0$ and $\delta_q = t - q > 0$.
 1257

To ensure that both terms remain bounded by a constant, we require

$$1259 \quad e^{-2m\delta_p^2} \leq n^{-1} \Rightarrow m \geq \frac{1}{2\delta_p^2} \log n,$$

1261 and

$$1262 \quad e^{-2m\delta_q^2} \leq n^{-2} \Rightarrow m \geq \frac{1}{\delta_q^2} \log n.$$

1264 Therefore, it suffices to set

$$1266 \quad m = C \log n, \quad C > \max \left\{ \frac{1}{2\delta_p^2}, \frac{1}{\delta_q^2} \right\},$$

1268 which guarantees that

$$1269 \quad \Pr(\text{global error}) \leq \underbrace{\mathcal{O}(n \cdot n^{-1})}_{=\mathcal{O}(1)} + \underbrace{\mathcal{O}(n^2 \cdot n^{-2})}_{=\mathcal{O}(1)} = \mathcal{O}(1).$$

1272 In fact, choosing a slightly larger constant C makes both terms decay to zero, which establishes
 1273 asymptotic consistency as $n \rightarrow \infty$. \square
 1274

Complexity. Finally, we analyze the computational complexity, which consists of two parts:

- 1276 • The local structure learning phase takes $\mathcal{O}(m^3)$ per node, and there are n nodes, resulting in
 1277 $\mathcal{O}(nm^3)$ total cost.
- 1279 • The voting and merging phase requires computing pairwise edge counts and resolving cycles
 1280 over $\mathcal{O}(n^2)$ edge pairs, leading to an additional $\mathcal{O}(n^2)$ term.

1281 Substituting $m = \mathcal{O}(\log n)$, the total runtime becomes

$$1283 \quad \mathcal{O}(n(\log n)^3 + n^2) = \tilde{\mathcal{O}}(n^2),$$

1284 where the soft- \mathcal{O} notation hides polylogarithmic factors. Thus, the proposed divide-and-conquer
 1285 method achieves both statistical consistency and near-quadratic scalability.
 1286

1287 F IMPLEMENTATION DETAILS

1289 Our code is based on two open-source packages: `gcastle`, which provides implementations of
 1290 score-based and continuous causal discovery methods such as NOTEARS, GOLEM, GraN-DAG
 1291 and DAG-GNN, and `dodiscover`, which implements ordering-based methods. These packages
 1292 form the backbone of our experimental framework. On top of them, we implement our own modules
 1293 for subgraph construction, weighted voting aggregation, and cycle removal. The full pipeline with
 1294 configuration scripts and reproducibility controls is described in detail below. Subsequent subsections
 1295 provide additional implementation details for baseline configuration, extended experimental results,
 1296 runtime breakdown, and comparison against DCILP.

1296
1297

F.1 BASELINES

1298 All baseline methods are implemented using publicly available code and configured with recom-
 1299 mended hyperparameters. For methods involving continuous optimization, the primary computational
 1300 bottleneck lies in gradient-based acyclicity constraints, which require $\mathcal{O}(d^3)$ time and $\mathcal{O}(d^2)$ memory
 1301 due to matrix operations over the full graph. Discrete search-based methods such as SCORE and
 1302 CAM incur combinatorial overhead when handling larger node counts. In all cases, integrating these
 1303 methods into the VISTA framework significantly reduces both runtime and memory usage, as the
 1304 local subgraphs are orders of magnitude smaller and can be processed independently.

1305 **NOTEARS** This method reformulates the combinatorial problem of DAG structure learning into a
 1306 purely continuous optimization problem. It introduces a novel, smooth, and exact characterization of
 1307 acyclicity using a matrix exponential function $h(W) = \text{tr}(W \circ W) - d = 0$. This transformation
 1308 allows the problem to be solved efficiently using standard gradient-based optimization techniques,
 1309 avoiding discrete search over graph structures.

1310
 1311 **GOLEM** This work analyzes the role of sparsity and DAG constraints in learning linear DAGs,
 1312 noting potential optimization issues with hard DAG constraints required by prior methods like
 1313 NOTEARS. It proposes GOLEM (Gradient-based Optimization of dag-penalized Likelihood for
 1314 learning linEar dag Models), which uses a likelihood-based score function instead of least squares.
 1315 The key finding is that applying soft sparsity and DAG penalties to this likelihood objective suffices
 1316 to recover the ground truth DAG structure asymptotically, resulting in an unconstrained optimization
 1317 problem that is easier to solve.

1318
 1319 **DAG-GNN** This method employs a deep generative model, specifically a Variational Autoencoder
 1320 (VAE), to learn DAG structures, extending beyond linear models. It parameterizes the VAE’s encoder
 1321 and decoder using a novel Graph Neural Network (GNN) architecture, designed to capture complex
 1322 non-linear relationships inherent in data. The approach learns the graph’s weighted adjacency matrix
 1323 alongside the neural network parameters, enforcing acyclicity through a continuous polynomial
 1324 constraint, and naturally handles both continuous and discrete variables.

1325
 1326 **GraN-DAG** This work extends continuous DAG learning to nonlinear settings by parameterizing
 1327 each conditional distribution with neural networks and constructing a weighted adjacency matrix
 1328 from network connectivity. Acyclicity is enforced through a smooth matrix-exponential constraint,
 1329 enabling gradient-based optimization of the likelihood objective. Post-processing with thresholding
 1330 and pruning helps recover sparse graphs.

1331
 1332 **SCORE** This method recovers causal graphs for non-linear additive noise models by utilizing the
 1333 score function ($\nabla \log p(x)$) of the observational data distribution. It establishes that the Jacobian
 1334 of the score function reveals information sufficient to identify leaf nodes in the causal graph. By
 1335 iteratively identifying and removing leaves based on the variance of the score’s Jacobian diagonal
 1336 elements, a topological ordering is estimated. The SCORE algorithm employs score matching
 1337 techniques, specifically an extension of Stein’s identity, to approximate the necessary score Jacobian
 1338 components from data samples.

1339
 1340 **CAM** This approach estimates additive SEMs by decoupling the task into order search and edge
 1341 selection. It first estimates a causal ordering of the variables using (potentially restricted) maximum
 1342 likelihood, exploiting the identifiability property of additive models. Given the estimated order,
 1343 sparse additive regression methods are then applied to select relevant parent variables (edges) for
 1344 each node and estimate the corresponding additive functions. For high-dimensional data, an initial
 1345 neighborhood selection step can reduce the search space before estimating the order.

1346 In addition to the above baselines, we also include DCILP Dong et al. (2024), a recently proposed
 1347 divide-and-conquer method that combines Markov Blanket estimation with global structure recovery
 1348 via integer linear programming. While DCILP shares a similar high-level motivation with VISTA,
 1349 it suffers from several practical limitations. Most notably, its final merging step relies on solving a
 1350 large-scale ILP problem, which becomes computationally infeasible as the graph size increases. In
 1351 many of our experimental settings, DCILP either fails to complete within a reasonable time window
 1352 or produces no feasible solution at all. These issues highlight the need for a more lightweight and

scalable integration procedure, which motivates the design of VISTA. We provide a direct comparison with DCILP in the following section.

F.2 COMPARISON WITH DCILP

We provide a detailed comparison between VISTA and DCILP, two methods that share a high-level divide-and-conquer strategy based on Markov Blanket decomposition. Although both approaches follow a similar decomposition principle, they differ notably in how they perform the aggregation step and enforce global acyclicity.

DCILP formulates the merging process as an integer linear program that guarantees the removal of 2-cycles, but relies on iterative post-processing to eliminate larger cycles. This procedure can be computationally intensive and may not always yield globally consistent solutions without additional refinement. In contrast, VISTA enforces acyclicity using a feedback arc set-based heuristic, which is algorithmically simpler and ensures a valid DAG by construction. Another distinction lies in how the two frameworks handle local estimation errors: DCILP applies aggressive pruning to Markov Blanket outputs before global optimization, which may propagate early-stage errors. VISTA instead retains a broader set of subgraph information and applies confidence-aware filtering during aggregation, providing more flexibility and robustness to local variability.

For empirical evaluation, we followed DCILP’s implementation baseline by using DAGMA Bello et al. (2022) as the phase-2 solver in both frameworks. This matched setup enables a controlled comparison under consistent base learners and subgraph configurations.

Table 5: Comparison of DCILP and VISTA under DAGMA baseline.

Scenario	Model	FDR \downarrow	TPR \uparrow	SHD \downarrow	F1 \uparrow
ER5, $n = 30$	DCILP	0.74 ± 0.04	0.52 ± 0.06	227.00 ± 27.17	0.35 ± 0.04
	VISTA-NV	0.63 ± 0.02	0.98 ± 0.01	236.80 ± 14.86	0.54 ± 0.02
	VISTA-WV	0.09 ± 0.07	0.75 ± 0.11	45.80 ± 23.57	0.82 ± 0.09
SF5, $n = 30$	DCILP	0.81 ± 0.04	0.49 ± 0.07	309.70 ± 60.87	0.27 ± 0.04
	VISTA-NV	0.63 ± 0.01	0.97 ± 0.01	208.20 ± 7.98	0.54 ± 0.01
	VISTA-WV	0.13 ± 0.09	0.85 ± 0.06	35.00 ± 16.97	0.86 ± 0.07
ER3, $n = 50$	DCILP	0.79 ± 0.02	0.49 ± 0.05	282.50 ± 26.23	0.29 ± 0.02
	VISTA-NV	0.74 ± 0.02	0.97 ± 0.02	397.20 ± 41.38	0.40 ± 0.03
	VISTA-WV	0.06 ± 0.01	0.76 ± 0.04	39.00 ± 3.22	0.84 ± 0.02
SF3, $n = 50$	DCILP	0.91 ± 0.01	0.52 ± 0.03	820.40 ± 110.23	0.15 ± 0.01
	VISTA-NV	0.71 ± 0.05	0.95 ± 0.02	345.00 ± 71.05	0.44 ± 0.05
	VISTA-WV	0.14 ± 0.04	0.84 ± 0.06	40.80 ± 12.38	0.81 ± 0.08
ER5, $n = 50$	DCILP	0.80 ± 0.01	0.52 ± 0.04	520.20 ± 29.51	0.29 ± 0.01
	VISTA-NV	0.76 ± 0.01	0.98 ± 0.01	730.80 ± 24.85	0.38 ± 0.01
	VISTA-WV	0.09 ± 0.03	0.83 ± 0.03	59.20 ± 10.32	0.86 ± 0.02
SF5, $n = 50$	DCILP	0.90 ± 0.01	0.49 ± 0.03	1019.90 ± 57.87	0.17 ± 0.01
	VISTA-NV	0.75 ± 0.01	0.97 ± 0.01	665.50 ± 42.65	0.40 ± 0.02
	VISTA-WV	0.10 ± 0.02	0.80 ± 0.02	64.50 ± 6.50	0.85 ± 0.02

Results in Table 5 show that, under the same configuration using DAGMA as the local structure learner, both VISTA variants (NV and WV) consistently outperform DCILP across all benchmark settings. Even the naive voting variant achieves lower FDR and SHD while maintaining competitive or higher TPR and F1 scores, suggesting that the ILP-based merging step in DCILP may introduce additional overhead without proportional accuracy gains. The weighted voting variant further improves performance by adaptively resolving directional conflicts based on edge support. We also note that as graph size increases such as $n = 100$, DCILP occasionally encounters solver infeasibility or produces solutions with substantially higher error rates, likely due to the combinatorial complexity of ILP formulation. In contrast, VISTA maintains stable performance with reduced computational demands. These comparisons underscore the scalability and robustness benefits of our framework in large-graph causal discovery settings.

1404
1405 F.3 TIME COMPARISON1406 Since each local structure is learned independently based on a variable’s Markov Blanket, the entire
1407 divide phase can be executed in parallel across variables or computing nodes. This distributed strategy
1408 significantly reduces total runtime, especially when base learners are computationally intensive,
1409 such as neural network based models such as DAG-GNN and GraN-DAG or algorithms involving
1410 topological sorting such as SCORE.1411 Table 6, 7 and 8 confirm that VISTA consistently reduces the total execution time across a variety of
1412 settings. In large-scale graphs, where direct application of base methods may be computationally
1413 prohibitive, our framework provides a scalable alternative that decomposes the original problem into
1414 tractable subproblems. The integration step is lightweight and adds negligible overhead relative to
1415 the base learners. These results demonstrate that the benefits of VISTA are not limited to statistical
1416 performance, but also extend to practical runtime efficiency, enabling the application of complex
1417 causal discovery methods to larger and more realistic graphs.1418
1419 Table 6: Comparison of total computing time (s) under ER5 setting.

Method	$n = 50$	$n = 100$	$n = 300$
NOTEARS	510.73 ± 84.15	2465.33 ± 58.02	22407.77 ± 940.32
+VISTA	213.73 ± 149.68	1096.51 ± 142.87	3714.30 ± 908.81
GOLEM	76.16 ± 7.59	115.01 ± 35.82	276.80 ± 11.03
+VISTA	23.25 ± 0.67	37.57 ± 1.36	46.53 ± 4.61
DAG-GNN	794.42 ± 72.61	3137.68 ± 214.75	29801.46 ± 1105.64
+VISTA	311.34 ± 54.23	818.52 ± 501.88	3313.86 ± 945.29
GraN-DAG	919.26 ± 106.65	5613.13 ± 1068.14	25684.95 ± 2035.14
+VISTA	208.43 ± 26.62	934.72 ± 50.64	2851.04 ± 376.84
SCORE	629.88 ± 93.72	15876.42 ± 807.89	—
+VISTA	191.84 ± 33.49	479.60 ± 38.19	945.45 ± 72.27

1435
1436 Table 7: Comparison of total computing time (s) under SF3 setting.

Method	$n = 50$	$n = 100$	$n = 300$
NOTEARS	713.30 ± 58.81	2813.36 ± 804.27	16631.62 ± 632.76
+VISTA	400.82 ± 83.65	652.59 ± 57.99	1714.09 ± 237.32
GOLEM	100.73 ± 45.25	169.20 ± 16.68	398.58 ± 45.03
+VISTA	23.63 ± 1.61	35.47 ± 2.26	60.20 ± 13.66
DAG-GNN	697.78 ± 93.37	3555.95 ± 2050.91	21242.03 ± 2178.95
+VISTA	282.70 ± 297.75	645.77 ± 308.88	2020.79 ± 811.42
GraN-DAG	890.96 ± 135.84	4978.95 ± 656.25	19372.84 ± 3037.94
+VISTA	319.29 ± 389.88	817.63 ± 145.63	2849.62 ± 1558.40
SCORE	495.12 ± 62.44	18643.16 ± 970.22	—
+VISTA	153.65 ± 46.35	354.37 ± 86.45	5080.02 ± 3674.36

1450
1451 F.4 ADDITIONAL EXPERIMENTS1452 To assess the effectiveness and scalability of VISTA, we conduct extensive experiments across a
1453 diverse set of synthetic graph families, varying both in size and structural complexity. This part is a
1454 detailed supplement of our Section 4.1. Specifically, we evaluate performance on 14 different graph
1455 configurations derived from ER and SF graphs, each instantiated with average degrees of 3 and 5, and
1456 node sizes $n \in \{30, 50, 100, 300\}$. This results in a comprehensive benchmark covering both sparse
1457 and dense regimes under varying dimensionalities. For each configuration, we benchmark recent
1458 representative causal discovery methods. Each method is tested under three settings: the original

1458

1459

Table 8: Comparison of total computing time (s) under SF5 setting.

1460

1461

Method	$n = 50$	$n = 100$	$n = 300$
NOTEARS	808.15 ± 102.23	2842.83 ± 312.22	18676.80 ± 6873.83
+VISTA	501.96 ± 62.14	1200.41 ± 536.14	3041.62 ± 1003.68
GOLEM	77.82 ± 11.90	217.95 ± 73.36	446.16 ± 30.04
+VISTA	23.71 ± 2.37	99.20 ± 132.68	167.89 ± 214.19
DAG-GNN	911.14 ± 315.63	5762.00 ± 1714.01	31106.3 ± 452.12
+VISTA	356.46 ± 101.18	1133.18 ± 306.12	2641.62 ± 541.84
GraN-DAG	853.75 ± 98.54	4944.93 ± 2325.58	38163.22 ± 3919.71
+VISTA	313.24 ± 120.79	934.83 ± 218.82	2999.39 ± 485.66
SCORE	637.37 ± 48.40	18904.31 ± 344.10	—
+VISTA	187.91 ± 38.43	2003.45 ± 882.48	4124.09 ± 1311.74

1472

1473

baseline, VISTA with naive voting (+VISTA-NV), and VISTA with weighted voting (+VISTA-WV). Notably, CAM does not scale well with graph size and GraN-DAG fails when n reaches 300, so we do not report the results here. Due to the increasing computational cost with graph size, we ran each experimental configuration 10 times for $n = 30$ and $n = 50$, 5 times for $n = 100$, and 3 times for $n = 300$, and report the average and standard deviation across trials.

1479

1480

Although the advantages of VISTA are most pronounced in high-dimensional or structurally complex settings, it is important to note that for some small-scale graphs, particularly relative sparse configurations such as ER3 with low node counts, the original base learners already achieve high accuracy. In these cases, the benefits of decomposition are less clear. Errors introduced during Markov Blanket identification and aggregation, as analyzed in Appendix D, may offset any gains from the divide-and-conquer process. When the true structure is relatively simple and well-recovered by the base model, additional processing may be unnecessary.

1486

1487

By contrast, as the graph size increases, structural coverage from local subgraphs becomes more reliable, and the advantages of localized inference and confidence-aware aggregation become more pronounced. In particular, VISTA consistently improves structural accuracy and reduces false discoveries for base learners that face scalability challenges in large and complex graphs, providing a practical approach to mitigating the curse of dimensionality in causal structure learning.

1491

The remaining experimental results are as follows:

1492

1493

Table 9: Results with linear and nonlinear synthetic datasets ($n = 30, h = 5$).

Method	ER5				SF5			
	FDR↓	TPR↑	SHD↓	F1↑	FDR↓	TPR↑	SHD↓	F1↑
NOTEARS	0.21 ± 0.08	0.73 ± 0.07	64.70 ± 18.22	0.76 ± 0.05	0.24 ± 0.13	0.70 ± 0.10	64.30 ± 29.24	0.73 ± 0.08
+VISTA-NV	0.63 ± 0.00	0.97 ± 0.01	236.60 ± 7.32	0.53 ± 0.01	0.56 ± 0.02	0.98 ± 0.01	155.20 ± 11.90	0.61 ± 0.02
+VISTA-WV	0.12 ± 0.04	0.75 ± 0.03	50.00 ± 8.64	0.81 ± 0.03	0.03 ± 0.02	0.86 ± 0.03	20.20 ± 2.62	0.84 ± 0.02
GOLEM	0.24 ± 0.08	0.79 ± 0.07	63.50 ± 23.61	0.77 ± 0.05	0.15 ± 0.11	0.85 ± 0.09	35.30 ± 23.39	0.85 ± 0.07
+VISTA-NV	0.65 ± 0.01	0.97 ± 0.01	251.00 ± 2.62	0.52 ± 0.01	0.56 ± 0.02	0.99 ± 0.01	158.40 ± 3.09	0.61 ± 0.02
+VISTA-WV	0.17 ± 0.03	0.79 ± 0.05	53.00 ± 8.73	0.81 ± 0.04	0.01 ± 0.01	0.89 ± 0.03	15.00 ± 4.32	0.94 ± 0.02
DAG-GNN	0.29 ± 0.06	0.77 ± 0.19	77.50 ± 20.08	0.74 ± 0.09	0.29 ± 0.19	0.72 ± 0.25	65.50 ± 36.60	0.72 ± 0.16
+VISTA-NV	0.64 ± 0.00	0.98 ± 0.01	250.30 ± 4.78	0.52 ± 0.00	0.60 ± 0.02	0.99 ± 0.01	189.70 ± 14.06	0.56 ± 0.02
+VISTA-WV	0.27 ± 0.03	0.84 ± 0.07	60.00 ± 7.85	0.78 ± 0.05	0.03 ± 0.02	0.87 ± 0.04	20.00 ± 7.26	0.92 ± 0.03
CAM	0.77 ± 0.04	0.53 ± 0.08	267.50 ± 23.32	0.32 ± 0.04	0.77 ± 0.06	0.54 ± 0.11	241.20 ± 37.51	0.32 ± 0.06
+VISTA-NV	0.78 ± 0.04	0.66 ± 0.12	327.00 ± 24.39	0.33 ± 0.06	0.82 ± 0.02	0.57 ± 0.07	335.60 ± 9.06	0.27 ± 0.03
+VISTA-WV	0.63 ± 0.08	0.40 ± 0.10	158.00 ± 16.87	0.39 ± 0.09	0.17 ± 0.04	0.59 ± 0.05	122.00 ± 5.35	0.69 ± 0.04
GraN-DAG	0.67 ± 0.12	0.18 ± 0.10	159.60 ± 24.52	0.22 ± 0.10	0.72 ± 0.38	0.26 ± 0.03	187.80 ± 80.73	0.27 ± 0.18
+VISTA-NV	0.90 ± 0.08	0.39 ± 0.12	211.70 ± 49.91	0.16 ± 0.10	0.85 ± 0.29	0.41 ± 0.15	239.50 ± 46.61	0.22 ± 0.31
+VISTA-WV	0.31 ± 0.06	0.14 ± 0.07	134.50 ± 35.55	0.23 ± 0.09	0.25 ± 0.10	0.18 ± 0.05	128.60 ± 52.47	0.29 ± 0.07
SCORE	0.66 ± 0.08	0.43 ± 0.05	117.40 ± 47.71	0.38 ± 0.05	0.55 ± 0.40	0.71 ± 0.24	153.30 ± 76.60	0.55 ± 0.31
+VISTA-NV	0.80 ± 0.06	0.83 ± 0.05	399.60 ± 36.65	0.32 ± 0.08	0.76 ± 0.25	0.88 ± 0.04	440.60 ± 49.79	0.38 ± 0.31
+VISTA-WV	0.34 ± 0.09	0.56 ± 0.08	95.50 ± 28.86	0.61 ± 0.06	0.36 ± 0.16	0.79 ± 0.05	88.80 ± 11.60	0.71 ± 0.10

1509

1510

1511

1512

1513

1514

1515

Table 10: Results with linear and nonlinear synthetic datasets ($n = 50, h = 3$).

Method	ER3				SF3			
	FDR↓	TPR↑	SHD↓	F1↑	FDR↓	TPR↑	SHD↓	F1↑
NOTEARS	0.09 ± 0.08	0.90 ± 0.05	24.90 ± 17.75	0.90 ± 0.05	0.22 ± 0.13	0.76 ± 0.11	62.80 ± 33.53	0.77 ± 0.08
+VISTA-NV	0.72 ± 0.03	0.97 ± 0.01	353.40 ± 57.19	0.44 ± 0.04	0.68 ± 0.04	0.97 ± 0.01	304.40 ± 52.48	0.48 ± 0.04
+VISTA-WV	0.09 ± 0.03	0.86 ± 0.03	30.50 ± 5.43	0.89 ± 0.02	0.07 ± 0.03	0.80 ± 0.07	36.90 ± 11.73	0.85 ± 0.05
GOLEM	0.04 ± 0.04	0.97 ± 0.02	8.10 ± 6.98	0.97 ± 0.03	0.15 ± 0.06	0.84 ± 0.03	36.00 ± 11.81	0.84 ± 0.03
+VISTA-NV	0.76 ± 0.03	0.93 ± 0.03	431.60 ± 63.02	0.38 ± 0.04	0.75 ± 0.04	0.93 ± 0.03	397.70 ± 68.22	0.40 ± 0.05
+VISTA-WV	0.12 ± 0.05	0.76 ± 0.04	47.90 ± 9.80	0.81 ± 0.04	0.09 ± 0.11	0.85 ± 0.08	20.20 ± 16.75	0.88 ± 0.07
DAG-GNN	0.14 ± 0.08	0.86 ± 0.14	38.80 ± 26.22	0.86 ± 0.08	0.26 ± 0.10	0.73 ± 0.11	75.40 ± 24.08	0.73 ± 0.07
+VISTA-NV	0.73 ± 0.02	0.98 ± 0.00	380.00 ± 48.64	0.42 ± 0.03	0.73 ± 0.03	0.98 ± 0.00	378.00 ± 50.22	0.42 ± 0.04
+VISTA-WV	0.07 ± 0.04	0.84 ± 0.02	29.30 ± 2.05	0.89 ± 0.01	0.05 ± 0.03	0.84 ± 0.05	41.00 ± 8.01	0.89 ± 0.03
CAM	—	—	—	—	—	—	—	—
+VISTA-NV	0.87 ± 0.02	0.66 ± 0.06	641.30 ± 67.62	0.22 ± 0.03	0.86 ± 0.02	0.71 ± 0.05	611.20 ± 64.82	0.24 ± 0.03
+VISTA-WV	0.66 ± 0.05	0.51 ± 0.07	192.00 ± 34.23	0.40 ± 0.05	0.65 ± 0.06	0.51 ± 0.10	181.80 ± 21.12	0.41 ± 0.07
Gran-DAG	0.74 ± 0.32	0.09 ± 0.04	209.00 ± 54.45	0.11 ± 0.05	0.34 ± 0.42	0.08 ± 0.04	166.60 ± 42.38	0.12 ± 0.03
+VISTA-NV	0.67 ± 0.15	0.31 ± 0.06	158.80 ± 33.13	0.32 ± 0.08	0.48 ± 0.30	0.34 ± 0.09	195.20 ± 29.46	0.41 ± 0.11
+VISTA-WV	0.29 ± 0.08	0.26 ± 0.05	123.40 ± 15.51	0.38 ± 0.05	0.22 ± 0.21	0.20 ± 0.09	118.80 ± 23.75	0.32 ± 0.12
SCORE	0.69 ± 0.05	0.67 ± 0.08	166.20 ± 59.57	0.42 ± 0.03	0.64 ± 0.06	0.64 ± 0.10	115.30 ± 31.50	0.45 ± 0.02
+VISTA-NV	0.86 ± 0.06	0.95 ± 0.03	980.80 ± 79.12	0.24 ± 0.09	0.90 ± 0.04	0.91 ± 0.05	923.70 ± 146.32	0.18 ± 0.07
+VISTA-WV	0.33 ± 0.04	0.74 ± 0.02	56.40 ± 19.95	0.70 ± 0.02	0.49 ± 0.40	0.80 ± 0.06	74.60 ± 22.43	0.62 ± 0.30

1529

1530

1531

1532

1533

Table 11: Results with linear and nonlinear synthetic datasets ($n = 50, h = 5$).

Method	ER5				SF5			
	FDR↓	TPR↑	SHD↓	F1↑	FDR↓	TPR↑	SHD↓	F1↑
NOTEARS	0.16 ± 0.09	0.81 ± 0.06	81.80 ± 34.23	0.82 ± 0.05	0.23 ± 0.08	0.75 ± 0.04	105.90 ± 26.65	0.76 ± 0.04
+VISTA-NV	0.75 ± 0.02	0.98 ± 0.01	685.60 ± 68.09	0.40 ± 0.02	0.72 ± 0.02	0.98 ± 0.02	585.30 ± 71.56	0.43 ± 0.03
+VISTA-WV	0.08 ± 0.04	0.76 ± 0.04	72.90 ± 13.75	0.83 ± 0.03	0.15 ± 0.06	0.82 ± 0.04	71.90 ± 12.54	0.84 ± 0.02
GOLEM	0.34 ± 0.18	0.73 ± 0.14	156.20 ± 88.04	0.72 ± 0.14	0.30 ± 0.17	0.75 ± 0.12	130.20 ± 71.76	0.72 ± 0.11
+VISTA-NV	0.75 ± 0.02	0.96 ± 0.02	706.90 ± 66.89	0.39 ± 0.02	0.74 ± 0.03	0.94 ± 0.01	618.90 ± 91.19	0.41 ± 0.04
+VISTA-WV	0.20 ± 0.11	0.77 ± 0.08	99.40 ± 47.64	0.79 ± 0.10	0.16 ± 0.09	0.77 ± 0.06	84.40 ± 34.04	0.80 ± 0.08
DAG-GNN	0.29 ± 0.15	0.70 ± 0.17	141.10 ± 63.30	0.71 ± 0.11	0.32 ± 0.11	0.74 ± 0.07	142.40 ± 45.01	0.71 ± 0.07
+VISTA-NV	0.76 ± 0.01	0.98 ± 0.01	720.70 ± 37.85	0.38 ± 0.02	0.74 ± 0.01	0.98 ± 0.01	633.00 ± 39.65	0.41 ± 0.01
+VISTA-WV	0.22 ± 0.07	0.79 ± 0.04	99.00 ± 26.95	0.79 ± 0.05	0.27 ± 0.05	0.76 ± 0.03	116.60 ± 11.84	0.75 ± 0.01
CAM	—	—	—	—	—	—	—	—
+VISTA-NV	0.86 ± 0.01	0.69 ± 0.05	978.00 ± 5.25	0.23 ± 0.02	0.86 ± 0.01	0.67 ± 0.06	941.60 ± 50.21	0.23 ± 0.02
+VISTA-WV	0.75 ± 0.02	0.49 ± 0.08	426.40 ± 26.82	0.32 ± 0.03	0.75 ± 0.03	0.47 ± 0.08	400.80 ± 41.11	0.33 ± 0.05
Gran-DAG	0.62 ± 0.28	0.05 ± 0.03	265.80 ± 35.61	0.08 ± 0.04	0.64 ± 0.33	0.07 ± 0.05	271.80 ± 29.98	0.10 ± 0.06
+VISTA-NV	0.51 ± 0.08	0.17 ± 0.09	213.40 ± 82.48	0.25 ± 0.10	0.56 ± 0.15	0.26 ± 0.05	229.20 ± 63.68	0.32 ± 0.06
+VISTA-WV	0.36 ± 0.05	0.13 ± 0.02	204.00 ± 47.76	0.22 ± 0.03	0.27 ± 0.05	0.18 ± 0.04	193.00 ± 57.21	0.29 ± 0.05
SCORE	0.73 ± 0.05	0.61 ± 0.15	431.60 ± 114.55	0.34 ± 0.02	0.71 ± 0.04	0.42 ± 0.04	365.00 ± 68.00	0.34 ± 0.03
+VISTA-NV	0.84 ± 0.01	0.47 ± 0.32	686.00 ± 62.50	0.24 ± 0.04	0.81 ± 0.03	0.54 ± 0.06	582.50 ± 57.50	0.28 ± 0.03
+VISTA-WV	0.64 ± 0.07	0.38 ± 0.06	271.00 ± 43.00	0.37 ± 0.05	0.35 ± 0.15	0.25 ± 0.04	210.50 ± 11.50	0.36 ± 0.04

1548

1549

1550

1551

1552

1553

Table 12: Results with linear and nonlinear synthetic datasets ($n = 100, h = 3$).

Method	ER3				SF3			
	FDR↓	TPR↑	SHD↓	F1↑	FDR↓	TPR↑	SHD↓	F1↑
NOTEARS	0.09 ± 0.09	0.91 ± 0.06	54.60 ± 44.78	0.91 ± 0.08	0.15 ± 0.08	0.75 ± 0.06	108.80 ± 36.84	0.80 ± 0.06
+VISTA-NV	0.81 ± 0.04	0.95 ± 0.01	1245.60 ± 349.77	0.32 ± 0.05	0.75 ± 0.04	0.95 ± 0.03	864.00 ± 146.07	0.39 ± 0.05
+VISTA-WV	0.09 ± 0.02	0.73 ± 0.02	99.00 ± 3.77	0.81 ± 0.01	0.11 ± 0.03	0.80 ± 0.05	92.00 ± 9.67	0.85 ± 0.03
GOLEM	0.09 ± 0.10	0.95 ± 0.05	39.80 ± 43.52	0.93 ± 0.08	0.22 ± 0.05	0.72 ± 0.04	137.00 ± 22.24	0.75 ± 0.04
+VISTA-NV	0.84 ± 0.01	0.91 ± 0.02	1373.80 ± 202.28	0.28 ± 0.02	0.81 ± 0.03	0.90 ± 0.02	1180.20 ± 163.44	0.31 ± 0.04
+VISTA-WV	0.22 ± 0.02	0.65 ± 0.04	147.60 ± 17.55	0.71 ± 0.03	0.18 ± 0.13	0.78 ± 0.06	91.80 ± 72.13	0.80 ± 0.07
DAG-GNN	0.15 ± 0.11	0.71 ± 0.17	119.40 ± 63.78	0.77 ± 0.15	0.31 ± 0.14	0.54 ± 0.09	215.60 ± 47.23	0.59 ± 0.06
+VISTA-NV	0.63 ± 0.03	0.95 ± 0.01	1239.60 ± 131.07	0.53 ± 0.03	0.78 ± 0.04	0.94 ± 0.01	1058.40 ± 259.74	0.34 ± 0.06
+VISTA-WV	0.12 ± 0.02	0.82 ± 0.03	87.20 ± 15.30	0.85 ± 0.02	0.23 ± 0.10	0.70 ± 0.08	151.20 ± 25.35	0.73 ± 0.03
Gran-DAG	0.90 ± 0.03	0.04 ± 0.02	463.40 ± 22.94	0.04 ± 0.02	0.83 ± 0.07	0.02 ± 0.02	366.40 ± 118.26	0.05 ± 0.02
+VISTA-NV	0.88 ± 0.06	0.25 ± 0.06	390.80 ± 73.58	0.17 ± 0.06	0.78 ± 0.06	0.26 ± 0.08	308.40 ± 49.60	0.24 ± 0.05
+VISTA-WV	0.38 ± 0.05	0.16 ± 0.03	250.60 ± 82.64	0.25 ± 0.04	0.44 ± 0.08	0.18 ± 0.05	266.68 ± 67.76	0.27 ± 0.06
SCORE	0.91 ± 0.05	0.62 ± 0.04	2859.40 ± 839.4	0.16 ± 0.08	0.92 ± 0.03	0.66 ± 0.04	3131.20 ± 1002	0.14 ± 0.05
+VISTA-NV	0.94 ± 0.04	0.95 ± 0.12	2614.80 ± 566.5	0.11 ± 0.07	0.91 ± 0.05	0.70 ± 0.05	2727.60 ± 505.6	0.16 ± 0.08
+VISTA-WV	0.53 ± 0.05	0.75 ± 0.06	339.00 ± 189.43	0.58 ± 0.04	0.51 ± 0.10	0.68 ± 0.08	408.80 ± 205.64	0.57 ± 0.07

1565

1566

1567

1568 Table 13: Results with linear and nonlinear synthetic datasets ($n = 300, h = 3$).

Method	ER3				SF3			
	FDR↓	TPR↑	SHD↓	F1↑	FDR↓	TPR↑	SHD↓	F1↑
NOTEARS	0.13 ± 0.03	0.89 ± 0.02	202.33 ± 48.98	0.88 ± 0.03	0.16 ± 0.06	0.72 ± 0.04	519.33 ± 71.15	0.78 ± 0.04
+VISTA-NV	0.88 ± 0.01	0.91 ± 0.00	6177.00 ± 372.80	0.21 ± 0.02	0.89 ± 0.00	0.91 ± 0.01	6917.67 ± 998.81	0.20 ± 0.00
+VISTA-WV	0.23 ± 0.02	0.66 ± 0.03	462.00 ± 54.31	0.71 ± 0.02	0.21 ± 0.03	0.55 ± 0.03	363.00 ± 76.53	0.65 ± 0.02
GOLEM	0.23 ± 0.15	0.76 ± 0.18	375.67 ± 258.67	0.77 ± 0.16	0.56 ± 0.19	0.34 ± 0.22	913.33 ± 304.25	0.38 ± 0.21
+VISTA-NV	0.88 ± 0.00	0.85 ± 0.01	5389.67 ± 46.91	0.22 ± 0.00	0.86 ± 0.03	0.48 ± 0.28	3248.67 ± 1304.26	0.18 ± 0.08
+VISTA-WV	0.17 ± 0.02	0.45 ± 0.01	628.33 ± 11.90	0.50 ± 0.01	0.21 ± 0.06	0.44 ± 0.04	597.00 ± 53.59	0.56 ± 0.04
DAG-GNN	0.55 ± 0.34	0.19 ± 0.19	1288.33 ± 832.49	0.21 ± 0.20	0.72 ± 0.17	0.23 ± 0.22	1264.33 ± 484.00	0.22 ± 0.19
+VISTA-NV	0.89 ± 0.01	0.93 ± 0.00	6449.00 ± 89.16	0.19 ± 0.01	0.89 ± 0.01	0.89 ± 0.02	6627.00 ± 651.98	0.19 ± 0.02
+VISTA-WV	0.18 ± 0.06	0.57 ± 0.07	494.67 ± 50.22	0.66 ± 0.04	0.34 ± 0.06	0.49 ± 0.07	633.33 ± 111.52	0.55 ± 0.03
SCORE	—	—	—	—	—	—	—	—
+VISTA-NV	0.95 ± 0.00	0.76 ± 0.04	11064.00 ± 371.63	0.09 ± 0.01	0.97 ± 0.01	0.44 ± 0.13	13057.00 ± 3556.57	0.06 ± 0.02
+VISTA-WV	0.19 ± 0.02	0.32 ± 0.03	666.67 ± 18.66	0.46 ± 0.03	0.61 ± 0.29	0.08 ± 0.04	970.67 ± 141.74	0.13 ± 0.07

1579

1580

1581

1582 Table 14: Results with linear and nonlinear synthetic datasets ($n = 300, h = 5$).

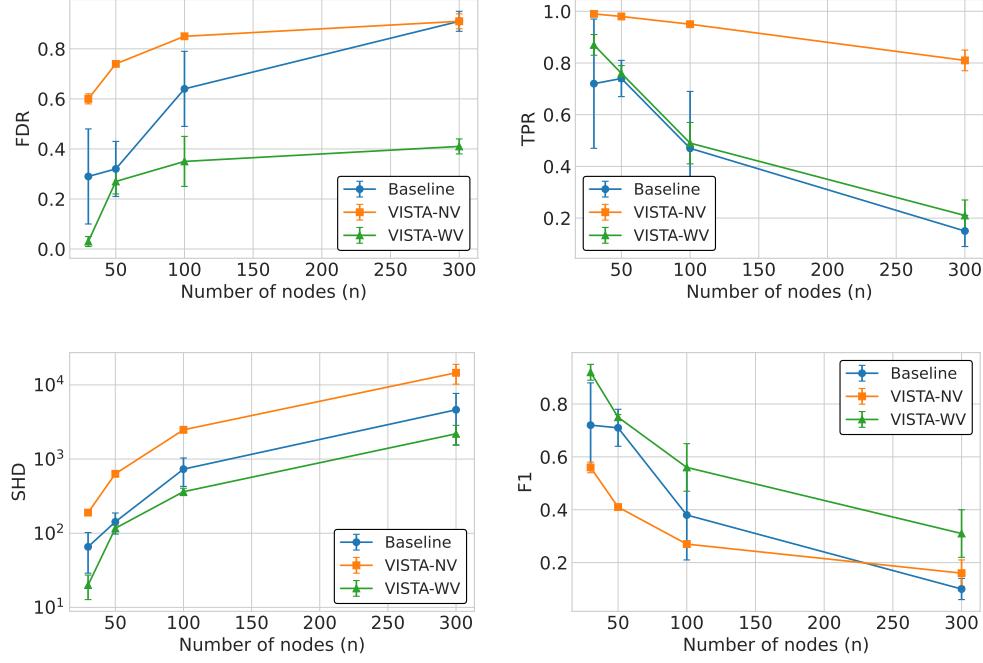
Method	ER5				SF5			
	FDR↓	TPR↑	SHD↓	F1↑	FDR↓	TPR↑	SHD↓	F1↑
NOTEARS	0.30 ± 0.05	0.68 ± 0.12	875.33 ± 205.07	0.69 ± 0.09	0.50 ± 0.09	0.22 ± 0.12	1402.33 ± 70.59	0.29 ± 0.14
+VISTA-NV	0.93 ± 0.02	0.94 ± 0.01	6520.33 ± 1357.12	0.10 ± 0.02	0.90 ± 0.01	0.78 ± 0.04	12180.00 ± 1008.42	0.18 ± 0.02
+VISTA-WV	0.15 ± 0.04	0.67 ± 0.05	689.67 ± 98.89	0.75 ± 0.03	0.24 ± 0.02	0.38 ± 0.03	890.33 ± 166.61	0.51 ± 0.03
GOLEM	0.81 ± 0.05	0.10 ± 0.03	1921.33 ± 111.21	0.13 ± 0.04	0.93 ± 0.03	0.02 ± 0.01	1839.67 ± 139.17	0.03 ± 0.02
+VISTA-NV	0.92 ± 0.01	0.28 ± 0.14	5551.00 ± 1310.12	0.12 ± 0.03	0.92 ± 0.00	0.77 ± 0.09	13437.00 ± 1562.43	0.14 ± 0.00
+VISTA-WV	0.20 ± 0.23	0.23 ± 0.02	1225.00 ± 38.79	0.36 ± 0.03	0.37 ± 0.11	0.10 ± 0.06	1391.00 ± 61.65	0.17 ± 0.10
DAG-GNN	0.91 ± 0.06	0.33 ± 0.17	3858.00 ± 1558.37	0.17 ± 0.04	0.91 ± 0.04	0.15 ± 0.06	4617.33 ± 3064.50	0.10 ± 0.04
+VISTA-NV	0.90 ± 0.03	0.86 ± 0.04	8988.00 ± 910.33	0.18 ± 0.05	0.91 ± 0.03	0.81 ± 0.04	14578.67 ± 4342.92	0.16 ± 0.05
+VISTA-WV	0.37 ± 0.14	0.25 ± 0.05	1920.33 ± 809.62	0.36 ± 0.06	0.41 ± 0.03	0.21 ± 0.06	2191.33 ± 656.02	0.31 ± 0.09
SCORE	—	—	—	—	—	—	—	—
+VISTA-NV	0.96 ± 0.00	0.17 ± 0.07	18762.67 ± 2501.28	0.06 ± 0.01	0.98 ± 0.00	0.13 ± 0.15	22039.00 ± 2028.89	0.03 ± 0.01
+VISTA-WV	0.93 ± 0.00	0.10 ± 0.03	1698.33 ± 103.76	0.07 ± 0.01	0.95 ± 0.02	0.08 ± 0.06	2582.67 ± 830.34	0.06 ± 0.02

1592

1593

1594

1595

1618 Figure 5: Performance of DAG-GNN on SF5 Graphs.
1619

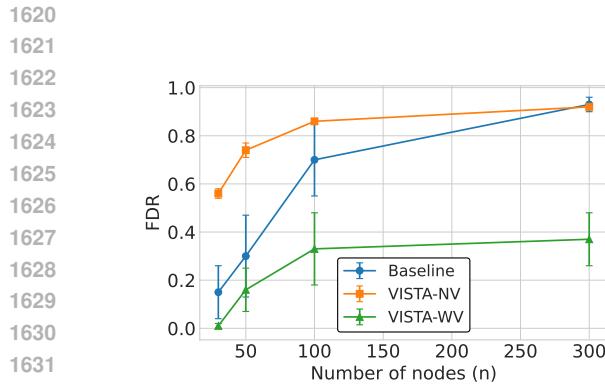


Figure 6: Performance of GOLEM on SF5 Graphs.

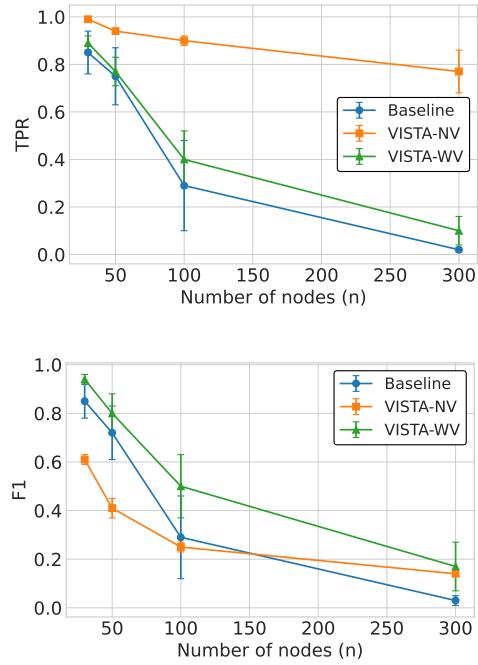
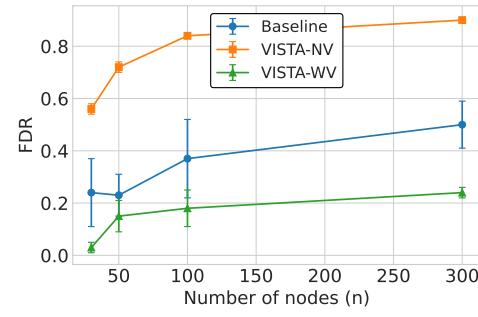
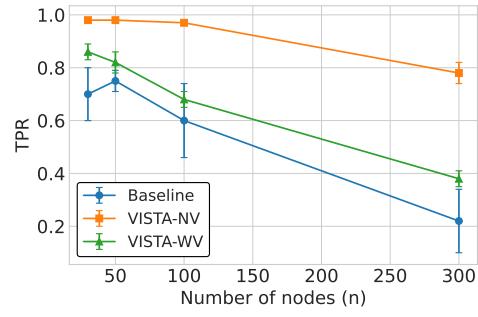
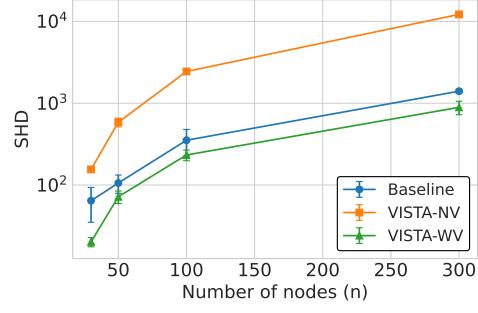
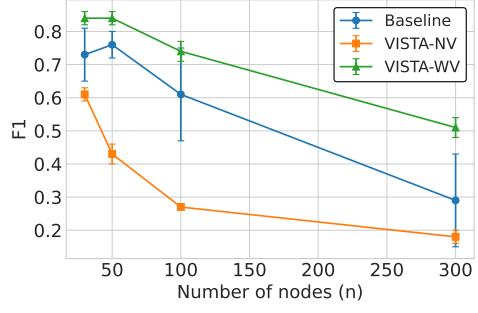


Figure 7: Performance of NOTEARS on SF5 Graphs.

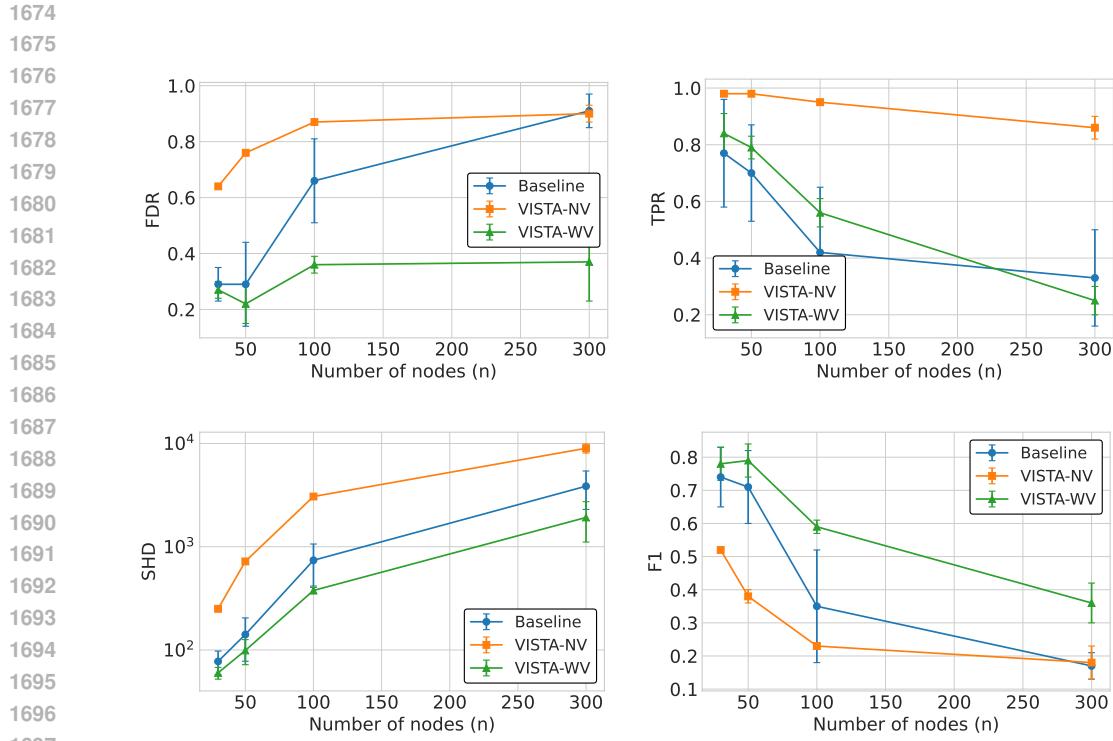


Figure 8: Performance of DAG-GNN on ER5 Graphs.

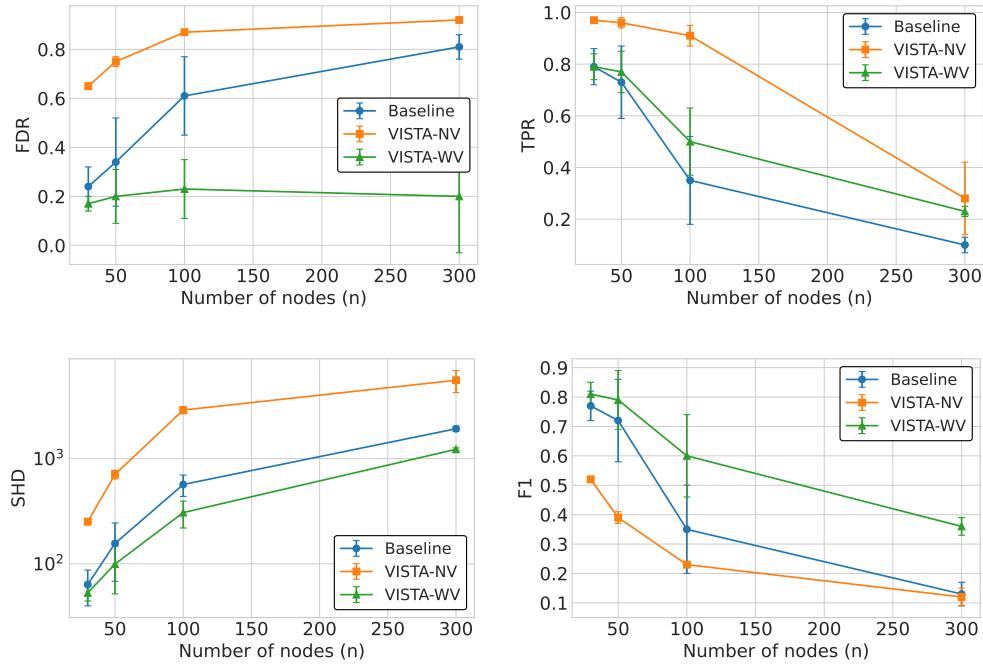


Figure 9: Performance of GOLEM on ER5 Graphs.

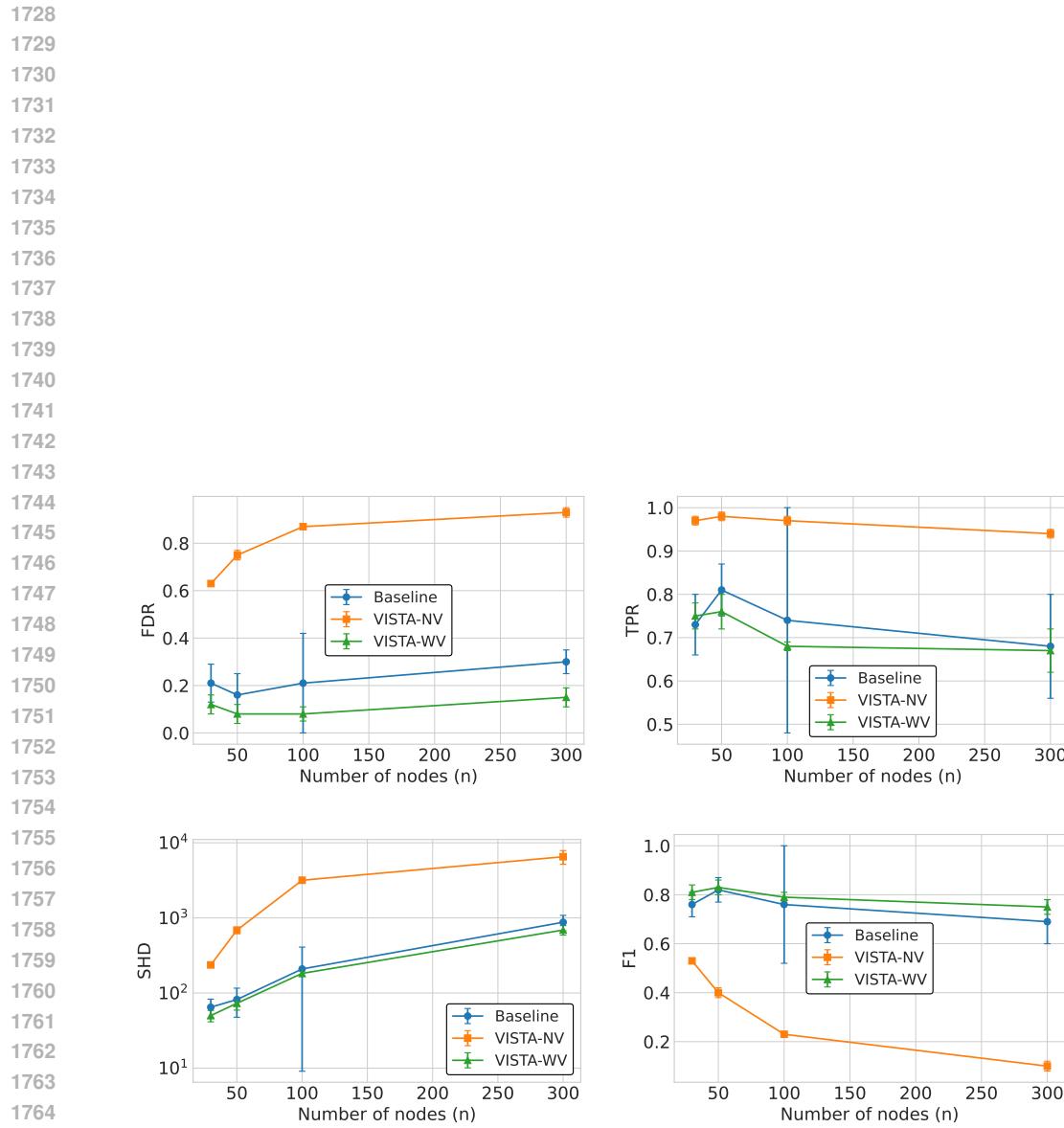


Figure 10: Performance of NOTEARS on ER5 Graphs.