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ABSTRACT

Learning causal structures from observational data remains a fundamental yet
computationally intensive task, particularly in high-dimensional settings where
existing methods face challenges such as the super-exponential growth of the
search space and increasing computational demands. To address this, we intro-
duce VISTA (Voting-based Integration of Subgraph Topologies for Acyclicity), a
modular framework that decomposes the global causal structure learning problem
into local subgraphs based on Markov Blankets. The global integration is achieved
through a weighted voting mechanism that penalizes low-support edges via ex-
ponential decay, filters unreliable ones with an adaptive threshold, and ensures
acyclicity using a Feedback Arc Set (FAS) algorithm. The framework is model-
agnostic, imposing no assumptions on the inductive biases of base learners, is
compatible with arbitrary data settings without requiring specific structural forms,
and fully supports parallelization. We also theoretically establish finite-sample er-
ror bounds for VISTA, and prove its asymptotic consistency under mild conditions.
Extensive experiments on both synthetic and real datasets consistently demonstrate
the effectiveness of VISTA, yielding notable improvements in both accuracy and
efficiency over a wide range of base learners.

1 INTRODUCTION

Understanding causal relationships from observational data Pearl (2009) is critical across numerous
fields such as biology Petersen et al. (2024), economics Hünermund & Bareinboim (2023), and
healthcare Sanchez et al. (2022b). Identifying causal structures enables reliable interventions and sci-
entific insights. A common modeling framework represents the system as a causal graph—a Directed
Acyclic Graph (DAG) where nodes are variables and directed edges denote causal links Spirtes et al.
(2000). While identifiability of the true DAG generally requires additional structural assumptions,
our VISTA framework inherits whatever identifiability guarantees each base learner provides. In
practice, large-scale observational datasets further complicate structure recovery, as most existing
algorithms struggle to scale efficiently. Constraint-based pipelines Spirtes et al. (2000); Meek (2013)
must search over large conditioning sets while the number of CI tests grows combinatorially with the
size of graph, and finite-sample CI tests become unreliable in high dimensions, so early mistakes can
easily propagate to later steps. Score-based learners Chickering (2002); Loh & Bühlmann (2014)
optimize over a super-exponential DAG space; practical solvers still require heavy global searches
or acyclicity constraints with repeated dense updates, driving time and memory up sharply. These
disadvantages make them difficult to perform well in large-scale datasets.

Given the challenges of learning large-scale causal structures, divide-and-conquer strategies have
emerged as a natural solution. By decomposing the global graph into smaller, tractable subgraphs,
these methods significantly reduce computational complexity, particularly in sparse settings, and
facilitate parallel or distributed computation. In addition, aggregating local structures often enhances
robustness relative to learning the full graph in a single pass. Early approaches expand neighborhoods
from a random node Gao et al. (2017) or apply hierarchical clustering Gu & Zhou (2020). More
recent work often partition the variable set into local neighborhoods, such as Markov Blankets, before
aggregating them Dong et al. (2024); Mokhtarian et al. (2021); Tsamardinos et al. (2003); Wu et al.
(2023; 2022). However, the majority of these “conquer” steps rely on fixed heuristics for merging,
such as voting thresholds, edge overlap rules, or manual conflict resolution. While simple, such
rule-based schemes lack adaptability to noise and offer limited theoretical guarantees for global
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consistency. DCILP Dong et al. (2024) formulates the merging process as an Integer Linear Program
(ILP) and introduces solver-based reconciliation. Although this approach benefits from advances
in ILP solvers and distributed optimization, it remains NP-hard and often incurs substantial solver
overhead. In practice, even moderate-sized subproblems can lead to high memory usage and long
runtimes. Alternatively, recent methods like Shah et al. (2024) retain heuristic-based fusion steps,
which are efficient but similarly sensitive to noise and lack theoretical support.

In this paper, we propose VISTA (Voting-based Integration of Subgraph Topologies for Acyclicity),
a novel modular framework for large-scale causal discovery. The method proceeds in three main
stages. First, for each variable we identify its Markov Blanket, thereby reducing the global problem
into tractable local neighborhoods. A base learner is then applied to each neighborhood using
the data restricted to that subset of variables, producing local subgraphs. Second, these local
subgraphs are aggregated through an adaptive voting mechanism that down-weights low-support
edges, suppressing statistical noise and inconsistencies. Finally, the aggregated graph is post-
processed with an efficient approximation algorithm that enforces acyclicity while preserving as
many high-confidence orientations as possible. We also establish a theoretical result showing that
the overall error rate of the procedure is bounded above by that of the subgraph-level aggregation,
ensuring soundness of the divide-and-conquer strategy.

Crucially, VISTA is strictly model-agnostic and highly efficient. It makes no assumptions about
the internal design or inductive biases of the base learners, places no restrictions on the choice
of Markov Blanket identification algorithm, and imposes no conditions on the underlying data
distribution beyond standard faithfulness assumptions. It operates purely on the edge-level outputs of
local subgraphs and requires only a one-time O(|V |2) aggregation without any additional solver or
training overhead. This lightweight design makes VISTA framework readily compatible with any
causal discovery method while enabling broad applicability across baselines and full parallelism in
the divide phase.

Our key contributions include:

• We propose VISTA, a model-agnostic and modular framework that decomposes global
DAG learning into node-centered Markov Blanket subgraphs. It is fully plug-and-play with
respect to MB identification and local learners, requiring no identifiability or distributional
assumptions on the chosen base learners.

• Our aggregation is lightweight, efficient, and edge-level, performing a one-pass weighted
voting instead of relying on expensive global searches or solver-based optimization. We de-
rive finite-sample error bounds and an asymptotic consistency guarantee for this aggregation,
which explicitly calibrates errors from imperfect base learners.

• Extensive experiments across diverse graphs and a wide range of base learners demonstrate
that VISTA remedies the typical performance drop of base learners, consistently improving
robustness and scalability over standalone baselines.

2 PRELIMINARIES

Setup and notation. Let V = {V1, . . . , Vn} be random variables generated by a structural causal
model with mutually independent noises ϵi:

Vi = fi(Pa(Vi), ϵi), ϵi ⊥⊥ Pa(Vi).

This induces a directed acyclic graph (DAG) G = (V ,E) where Vi→Vj ∈ E iff Vi appears in fj ,
and the observational distribution factorizes as P(V ) =

∏n
i=1 P(Vi | Pa(Vi)).

Markov Blanket locality. Assuming causal sufficiency for exposition, the Markov Blanket MB(V )
of a node V is the minimal set that renders V independent of all others given MB(V ); it consists of
parents, children, and spouses (other parents of the children). Equivalently, MB(V ) d-separates V
from V \ ({V } ∪MB(V )). This locality motivates our divide–conquer design: by learning MB(V ),
causal discovery can be restricted to the induced subgraph G[{V } ∪MB(V )], substantially reducing
search complexity while preserving relevant adjacencies for V .
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Existing Modular Causal Discovery Paradigms. For large-scale causal discovery, several local-to-
global or fusion-style schemes decompose a graph and then merge the pieces: a top-down CI-driven
partition with set-based stitching Xie & Geng (2008), global fusion over multiple full Bayesian
networks Puerta et al. (2021), a separation–reunion pipeline that repeatedly searches the structure Liu
et al. (2017), a PC-style progressive skeleton requiring iterative bootstraps Guo et al. (2024), and
DCILP, which formulates reconciliation as an ILP Dong et al. (2024). However, these methods are
typically algorithm-specific rather than modular frameworks; they either assume correct inputs at
merging time, depend on heavy global search or solver-based optimization, or perform essentially
uncalibrated frequency-based stitching. There also exists a SADA-based or extended model Cai et al.
(2013; 2018); Rahman et al. (2021), but it is limited to LiNGAM and lacks a calibration process
during merging. By contrast, our framework provides a lightweight, calibrated weighted-voting
aggregation that down-weights low-support directions and remains compatible with arbitrary base
learners. A more detailed related work discussion appears in Appendix B.

3 METHODOLOGY

We introduce VISTA (Voting-based Integration of Subgraph Topologies for Acyclicity), a novel
modular framework for large-scale DAG learning that is both model-agnostic and efficient. Instead
of searching the full graph, VISTA focuses on edge-level evidence: for each node V , we form
the subgraph induced by {V } ∪MB(V ) and run any off-the-shelf local learner, regardless of its
parametric form, identifiability assumptions, or internal design. The resulting local predictions are
reconciled by a lightweight weighted voting on each ordered pair (X,Y ), which calibrates errors
from imperfect base learners, and acyclicity is then enforced by a Feedback Arc Set heuristic Eades
et al. (1993). This modular design makes VISTA fully plug-and-play: MB identification and local
learning can be tailored to the data regime, while aggregation and acyclicity remain fixed, scalable,
and consistent.

Proposition 3.1 (Coverage of a DAG by Markov-Blanket Subgraphs). Let G = (V ,E) be a DAG.
For each V ∈ V , define

G′ =
⋃

Vi∈V

G [{Vi} ∪MB(Vi)] . (1)

Then every edge of G is present in G′, i.e., E ⊆ E(G′).

Proof. Take any edge (X,Y ) ∈ E. If X → Y , then Y is a child of X and X is a parent of Y ,
hence Y ∈ MB(X) and X ∈ MB(Y ). Therefore (X,Y ) appears in G[{X} ∪ MB(X)] and in
G[{Y } ∪MB(Y )], and thus in the union G′.

This coverage property is the foundation of VISTA: once MBs and their local subgraphs are correctly
identified, no true edge is lost in the decomposition. Importantly, our framework remains agnostic
to the specific MB estimator or local learner, that any method suitable for the data distribution
can be plugged in. All subsequent aggregation and acyclicity enforcement operate purely at the
edge level and rely only on this coverage guarantee. Besides, as shown in Figure 1, the accuracy
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Figure 1: F1 score comparison as the number of
nodes increases.

of MB identification remains relatively stable as
the number of nodes increases, whereas the per-
formance of base learners degrades more sharply.
This empirical observation is consistent with our
theoretical analysis in Section 3.2, where we
prove that the proposed merging scheme con-
verges to the correct edge orientations. Further-
more, across different graph sizes, the VISTA-
enhanced versions consistently outperform their
corresponding baselines, demonstrating the ro-
bustness of our framework.

Moreover, since our framework is agnostic to
the choice of MB identification methods, we
also provide a flexible interface in our imple-
mentation that allows practitioners to plug in any suitable MB estimator depending on the specific
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data distribution. Notably, we assume that each base learner outputs directed edges on local subgraphs
throughout this work. If an undirected adjacency X − Y is returned, it is treated as providing no
directional vote in the aggregation.

3.1 VISTA: VOTING-BASED INTEGRATION OF SUBGRAPH TOPOLOGIES FOR ACYCLICITY

Naive Voting (NV) To merge estimated subgraphs into a globally causal graph, we first consider a
naive voting strategy. For each pair of nodes X and Y , let A denote the number of times the directed
edge X → Y appears across all subgraphs, and B denote the number of times Y → X appears. The
directional support ratio for each orientation is computed as:

rX→Y =
A

A+B
, rY→X =

B

A+B
.

This NV rule serves to demonstrate an important property of our divide-and-conquer framework. By
Theorem 3.1, every ground-truth causal edge must appear in the union of MB subgraphs. Therefore,
even this unweighted scheme, which simply aggregates raw directional votes, already ensures that
all true edges are included in the candidate pool. In other words, NV validates that our subgraph
decomposition does not lose any causal edges, providing an essential guarantee for the global
reconstruction stage.

However, while NV does not distinguish between strong and weak statistical support. Edges appearing
rarely across subgraphs receive the same confidence as frequently supported ones, and directional
conflicts cannot be resolved in a principled manner. These issues motivate the introduction of
our weighted voting formulation, which incorporates frequency-based confidence to produce more
reliable global orientation decisions.

Weighted Voting (WV) For each pair of nodes X and Y , let A and B denote the number of times
X → Y and Y → X appear across all subgraphs, respectively, and let m = A + B be the total
occurrence. We define the confidence-adjusted score as:

s(X → Y ) =
(
1− e−λm

) A

m
, (2)

where λ > 0 is a tunable weighting parameter. An edge X → Y is retained if s(X → Y ) ≥ t, where
t ∈ (0, 1) is a global decision threshold.

Here, the weighting term
(
1− e−λm

)
serves as a soft confidence modulator that adapts to the

reliability of directional evidence. It plays a role analogous to smoothing priors in Bayesian estimation,
where rare events are regularized toward lower confidence. The details in illustrated in Appendix D.1.
The inclusion threshold t determines the minimum score required to retain an edge.

def VISTA(nodes, base_learner, ...,
MB_solver, lam, t):

local_graphs = []

for v in nodes:
MB_v = MB_solver(v)
G_v = base_learner(MB_v ∪ v)
local_graphs.append(G_v)

G_merged = WV(local_graphs, lam, t)
G_final = post_prune(G_merged)
return G_final

Figure 2: Pseudocode of VISTA framework

Compared to naive voting, which treats
all local decisions equally, the weighted
scheme jointly calibrates confidence and
sparsity. Specifically, the parameter λ pe-
nalizes edges with weak support, while
the threshold t determines the final inclu-
sion criterion. Together, the two parame-
ters govern the precision–recall trade-off,
since a larger λ tends to preserve edges
with limited but consistent evidence and
thus improves recall, while a higher t
enforces stricter acceptance and thereby
improves precision. This mechanism is
particularly beneficial in sparse graphs,
where many candidate edges receive only
minimal support; the exponential weight-
ing amplifies even small differences in frequency, effectively suppressing unreliable edges. As a result,
the aggregation remains robust without relying on strong parametric assumptions, and it provides
a tunable handle for balancing false discoveries and missed edges. Beyond the divide-and-conquer
efficiency of VISTA, the weighted voting strategy itself enhances the performance of base learners,
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yielding substantial gains in recall while tightening theoretical error bounds. A detailed analysis of
these effects is provided in Section 3.2 and Appendices D - E.

Acyclicity guarantee While the weighted voting improves robustness, the resulting merged graph
may still contain cycles. To ensure that the final output is a valid DAG, it is necessary to explicitly
break loops introduced during the merging process. So we explicitly enforce acyclicity by solving
a Feedback Arc Set (FAS) problem Simpson et al. (2016). As FAS is NP-hard, we adopt a fast
GreedyFAS heuristic Eades et al. (1993) adapted to weighted edges; the implementation is detailed in
Algorithm 2 in Appendix C.

Notably, an important implementation detail involves the ordering between GreedyFAS and threshold-
based filtering. In VISTA, cycles are first removed using GreedyFAS, after which edges with weights
below a global threshold t are filtered out. This ordering avoids forcing the cycle removal step to
act on already sparse graphs, where eliminating a cycle may require discarding high-confidence
edges. In contrast, applying filtering before GreedyFAS can lead to unnecessary precision loss, as
the remaining cycles must be resolved by removing stronger edges that would otherwise have been
preserved. Besides, taking a subset of nodes from a causal graph introduces unobserved confounding,
which will lead to additional edges in the subgraph; the post-processing step here can remove part of
these redundant edges.

In general, our VISTA offers several key advantages that make it particularly suited for large-scale
causal discovery. It operates purely on aggregated edge counts and requires only matrix-level
operations, with no reliance on optimization solvers or iterative training. Importantly, it is model-
agnostic, i.e., the aggregation is independent of the internal structure of base learners and can be
applied to any method that outputs directed subgraphs. This modularity allows seamless integration
with a broad class of causal discovery algorithms and supports parallel execution in the divide stage.
The complete procedure is implemented as a simple and modular pipeline, summarized in Figure 3.

 Centered node                                          Nodes in Markov Blanket                                               Subgraph                                                                   

Conquer

    

.

.

.

Subgraph 1

X
Y

Subgraph 2

X
Y

A set of nodes

MB Identification
(Divide)

X
Y

Vote

Compute the score:

X Y X Y

Merged Graph

X
Y

Subgraph n

X
Y

GreedyFAS

remove cycles

Filter

remove

Final Graph 

Merge

if

Figure 3: Overview of VISTA, a modular framework for causal discovery: (1) dividing via Markov
Blankets identification, (2) parallel subgraph structure identification using a base learner, and (3)
global aggregation through weighted voting. The framework then applies cycle resolution (Greedy-
FAS) and weight-based filtering to produce the final DAG.
Theoretical guarantees for Weighted Voting To ensure the reliability of our edge orientation
decisions based on the weighted voting mechanism described above, we provide theoretical guarantees
derived from concentration inequalities. The core idea is to determine the minimum number of votes
(subgraphs) m required to achieve a desired level of confidence 1− ϵ in our decision.
Theorem 3.2 (Sufficient Condition for Weighted Voting Accuracy). Let A ∼ Binomial(m, p)
represent the number of successful votes in m independent subgraphs for the edge direction X → Y ,
where each subgraph supports this direction independently with probability p ∈ (0, 1), a decision
threshold t ∈ (0, 1) and the weight function w(m) = 1 − e−λm, λ > 0. Assume the effective
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threshold for accepting the edge direction X → Y is r(m) = t
1−e−λm < p, i.e., the true support rate

p is above the effective threshold. Then, if

mp

2

(
1− t

p(1− e−λm)

)2

≥ log
1

ϵ
, (3)

it follows that P (s(A) ≥ t) ≥ 1− ϵ.

This theorem guarantees that if m is large enough to satisfy the given inequality, the weighted voting
procedure will correctly identify the edge direction with high probability. The condition highlights
that the required m depends on the squared relative difference between the true probability p and the
effective threshold r(m). Note that r(m) itself depends on m and λ. As m increases or λ increases,
1 − e−λm approaches 1, and r(m) approaches t. The inequality requires larger m and becomes
more difficult to satisfy when p is close to r(m) or when higher confidence is desired. This trade-off
illustrates the role of λ in controlling the conservativeness of the decision rule, which we will analyze
further in later sections. In practice, the true value of p is unknown, but we can empirically validate
the trend predicted by this condition using observed vote frequencies and measured recovery accuracy
across different values of λ and t.

Notably, Theorem 3.2 is stated under an idealized assumption that the votes from different local
subgraphs are independent. In practice, subgraphs learned from the same dataset can induce cor-
relations among votes, so the bound should be interpreted as a qualitative guide, and we expect
the same monotone trend to hold more effectively independent votes still reduce error and the gap
between p and the effective threshold continues to govern sample complexity. Extending the theory
to low-correlation weakly dependent votes will be an interesting future direction.
Corollary 3.3 (Lower bound on node in subgraphs). Let λ > 0, t ∈ (0, 1), and ϵ ∈ (0, 1) be fixed.
For a candidate edge (X,Y ), denote by m the number of local subgraphs whose Markov Blankets
contain both endpoints. Under the setting of Theorem 3.2, the sufficient condition (3) can be converted
into an explicit bound

m ≥ 2 log(1/ϵ)

p ((1− t/p)2 − 2(t/p)(1− t/p)e−λ)
. (4)

Generally, a lower error rate ϵ leads to a larger log(1/ϵ) term, which increases the required size of
m. When p is much greater than t, it results in a small required m. This aligns with intuition: if the
true voting rate p is far from the threshold t, the distinction is easier, and fewer votes are needed
for reliable decisions. Similarly, when the gap p− t is small, it will result in a significantly larger
required m. A large lower bound on m primarily indicates that the current setting yields a very small
gap between p and t, which, in turn, implies that the decision task has intrinsically high sample
complexity.

3.2 ERROR BOUND ANALYSIS

We analyze the edge-level errors of the weighted voting rule to understand how the weighting
parameter λ and the threshold t affect false positives and false negatives. We first characterize a
sufficient condition that converts t into a probability threshold and yields a feasible range for λ, and
then show that under this regime, weighted voting achieves asymptotic consistency as the graph size
grows.
Theorem 3.4 (Practical choice of λ). Fix a vote count m ≥ 1, a decision threshold t ∈ (0, 1), and a
target error level ϵ ∈ (0, 1). If λ satisfies

− 1

m
ln(1− t) < λ ≤ − 1

m
ln ϵ, (5)

then the weighted-vote rule achieves the prescribed error control under the union bound.

Theorem 3.4 establishes a feasible interval for λ that guarantees uniform control of edge-level errors.
While the confidence weight 1−e−λm down-weights low-support orientations at a fixed t, the smaller
λ values impose stricter thresholds rλ(m) to suppress low-support edges, while larger values retain
weaker true edges and improve recall. The proof of the theorem, as well as detailed discussions, is
in Appendix E.1. In practice, we adopt the relatively large admissible λ in (5), which lowers the
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effective threshold and reduces false negatives at the cost of more false positives. This choice is well
suited to sparse graphs since false positives typically dominate. The empirical behavior of varying λ
is further examined in Section 4.1. Notably, as λ→ 0, the rule reduces to naive voting with a fixed
threshold t. Building on the finite-sample guarantees above, we next analyze the asymptotic behavior
of the weighted voting rule as the number of variables grows. Similarly to p, let q ∈ (0, 1) denote
the probability that a false edge is erroneously included. In practice, both p and q can be empirically
estimated.
Theorem 3.5 (Asymptotic Consistency). Fix a threshold t ∈ (0, 1) and let δp = p− t and δq = t− q
denote the positive margins between t and the inclusion probabilities p, q of true and false edges
respectively. Assume δp, δq > 0 and that λ satisfies the conditions in Theorem 3.4. If the number of
local subgraphs per candidate edge is m = C logn with C > 2

min{δ2p,δ2q}
, then we have

Pr(global error) = o(1), as n→∞. (6)

Since most base solvers are reliable and can correctly identify a substantial fraction of true edges, our
assumptions are quite mild and practically easy to satisfy. Theorem 3.5 establishes that weighted
voting is asymptotically consistent: as the number of subgraph samples increases, the probability of
edge-level misclassification vanishes. Notably, the required number of independent subgraphs per
edge grows only logarithmically with the graph size, i.e., O(logn), making the approach efficient.
From a computational perspective, the global merging procedure involves only one pass of edge
counting and scoring, with an overall complexity O(n2) regardless of the base learner. These
guarantees jointly ensure that the method remains scalable and reliable for large-scale structure
discovery. The proof of the theorem is provided in Appendix E.3.

4 EXPERIMENTS

4.1 SYNTHETIC DATA

We empirically evaluate the performance of the proposed VISTA framework on a range of graph
structures and sizes, as well as diverse base learners. To demonstrate the improvement and effective-
ness of VISTA, we report representative results that highlight the structural recovery performance of
VISTA, its runtime benefits from our modular strategy, and the precision–recall trade-offs induced by
different values of λ. All experiments are conducted on a machine equipped with 13th Gen Intel(R)
Core(TM) i9-13900HX CPU (24 cores) and NVIDIA A30 GPU (24GB).

Baselines We benchmark VISTA against recent typical state-of-the-art causal discovery algorithms,
including CAM Bühlmann & Peters (2016), NOTEARS Zheng et al. (2018), DAG-GNN Yu et al.
(2019), and GOLEM Ng et al. (2020) for the linear setting, which we modeled as linear Structural
Equation Model (SEM) with Gaussian noise, as well as SCORE Rolland et al. (2022) and GraN-DAG
Lachapelle et al. (2020) for the nonlinear setting, defined as quadratic SEM. Each baseline is evaluated
both in isolation and when integrated with our modular framework VISTA. Additionally, in Appendix
F.2, we provide a comparison between VISTA and DCILP Dong et al. (2024), a recent distributed
framework for causal structure learning, where we also implemented the MB solver used in that work.

We evaluate the accuracy of our VISTA framework under the Naive Voting (NV) and the Weighted
Voting (WV) aggregation schemes. Each base learner is tested standalone and with both VISTA
variants. We evaluate the proposed method on synthetic datasets generated from Erdős–Rényi
(ER) and scale-free (SF) graphs, with average out-degree h ∈ {3, 5} and number of nodes n ∈
{30, 50, 100, 300}. Performance is assessed using False Discovery Rate (FDR), True Positive Rate
(TPR), Structural Hamming Distance (SHD), and F1 score, as well as runtime metrics. Experiments
are conducted under multiple simulation settings, and we report the average performance, with the ±
values indicating the corresponding standard deviations.
Results Table 1 shows two complementary roles of our aggregation. The NV variant already lifts
recall by pooling evidence from overlapping neighborhoods, recovering more true edges. Building
on this, WV acts as a principled edge-level filter. By down-weighting orientations with small or
inconsistent support and applying a single global threshold, it removes noisy connections and yields
substantially cleaner structures. Quantitatively, WV reduces FDR by 50 ∼ 80% relative to the
original baselines and by 40 ∼ 70% compared to NV, while generally keeping TPR no less than 0.70.
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Table 1: Results with linear and nonlinear synthetic datasets (n = 100, h = 5).
ER5 SF5

Method FDR↓ TPR↑ SHD↓ F1↑ FDR↓ TPR↑ SHD↓ F1↑

NOTEARS 0.21± 0.21 0.74± 0.26 208.80± 199.71 0.76± 0.24 0.37± 0.15 0.60± 0.14 352.60± 125.39 0.61± 0.14
+VISTA-NV 0.87± 0.01 0.97± 0.01 3171.80± 174.02 0.23± 0.01 0.84± 0.01 0.97± 0.01 2443.60± 143.74 0.27± 0.01
+VISTA-WV 0.08± 0.03 0.68± 0.01 182.40± 16.03 0.79± 0.02 0.18± 0.07 0.68± 0.03 233.00± 34.76 0.74± 0.03

GOLEM 0.61± 0.16 0.35± 0.17 567.00± 129.77 0.35± 0.15 0.70± 0.15 0.29± 0.19 610.10± 118.00 0.29± 0.17
+VISTA-NV 0.87± 0.01 0.91± 0.04 2891.00± 224.42 0.23± 0.01 0.86± 0.01 0.90± 0.02 2589.00± 270.09 0.25± 0.02
+VISTA-WV 0.23± 0.12 0.50± 0.13 306.70± 87.75 0.60± 0.14 0.33± 0.15 0.40± 0.12 371.10± 88.21 0.50± 0.13

DAG-GNN 0.66± 0.15 0.42± 0.23 739.20± 323.34 0.35± 0.17 0.64± 0.15 0.47± 0.22 731.40± 303.38 0.38± 0.17
+VISTA-NV 0.87± 0.01 0.95± 0.01 3065.00± 136.49 0.23± 0.01 0.85± 0.01 0.95± 0.00 2480.00± 203.65 0.27± 0.01
+VISTA-WV 0.36± 0.03 0.56± 0.05 377.00± 26.06 0.59± 0.02 0.35± 0.10 0.49± 0.08 363.00± 41.10 0.56± 0.09

GraN-DAG 0.92± 0.04 0.05± 0.03 715.00± 70.14 0.06± 0.04 0.94± 0.02 0.05± 0.03 1088.60± 31.49 0.05± 0.02
+VISTA-NV 0.86± 0.04 0.18± 0.06 656.60± 83.30 0.16± 0.03 0.89± 0.02 0.20± 0.04 947.20± 53.33 0.14± 0.02
+VISTA-WV 0.43± 0.06 0.10± 0.02 503.40± 46.68 0.17± 0.03 0.54± 0.05 0.11± 0.02 545.80± 65.54 0.18± 0.03

SCORE 0.92± 0.10 0.58± 0.03 4039.60± 123.3 0.14± 0.15 0.91± 0.03 0.62± 0.05 3166.40± 258.7 0.16± 0.05
+VISTA-NV 0.95± 0.08 0.76± 0.02 3464.20± 215.6 0.09± 0.14 0.95± 0.04 0.76± 0.05 2978.00± 367.3 0.08± 0.07
+VISTA-WV 0.80± 0.06 0.65± 0.07 838.00± 364.78 0.31± 0.09 0.81± 0.05 0.63± 0.04 892.60± 345.58 0.29± 0.06

The trend holds for both differentiable and combinatorial base learners, indicating that the gains stem
from the aggregation rule rather than any particular estimator.

Crucially, λ appears only in the final aggregation, so sweeping it is retraining-free: we reuse cached
votes, recompute rλ(m), and rerun the DAG projection to obtain the full curves. To avoid per-
dataset hyperparameter tuning and cherry-picking, all VISTA results in the main tables use a single,
fixed operating point: λ = 0.5 and t = 0.7. This choice lies within (5) and serves as a stable
compromise between precision and recall across settings. We report the full precision–recall curves
for transparency, but no post-hoc selection is performed for the tabulated results.

The observed improvement in WV cases against NV aligns with Theorem 3.4. Edges with limited
empirical support are selectively pruned while strongly supported ones are preserved, which is
exactly the filtering behavior reflected in Table 1. This validates our weighted voting scheme as
an effective, model-agnostic mechanism for stabilizing global structures. To further substantiate
this model-agnostic property, we next examine the impact of data standardization as it is known to
influence baseline performance Reisach et al. (2021).

Table 2: Results with normalized linear and nonlinear synthetic datasets (n = 50, h = 5).
ER5 SF5

Method FDR↓ TPR↑ SHD↓ F1↑ FDR↓ TPR↑ SHD↓ F1↑

NOTEARS 0.04± 0.02 0.39± 0.01 140.00± 4.90 0.56± 0.01 0.02± 0.02 0.38± 0.04 138.50± 9.87 0.55± 0.05
+VISTA-NV 0.27± 0.05 0.61± 0.03 135.20± 6.16 0.66± 0.02 0.35± 0.04 0.62± 0.04 132.80± 18.82 0.63± 0.03
+VISTA-WV 0.19± 0.05 0.58± 0.03 122.90± 7.54 0.68± 0.02 0.08± 0.04 0.54± 0.06 109.10± 19.91 0.68± 0.05

GOLEM 0.40± 0.03 0.22± 0.04 182.00± 15.51 0.32± 0.05 0.44± 0.07 0.20± 0.04 183.60± 6.55 0.29± 0.05
+VISTA-NV 0.31± 0.03 0.75± 0.03 129.50± 4.97 0.72± 0.02 0.29± 0.05 0.70± 0.05 122.80± 19.87 0.70± 0.04
+VISTA-WV 0.06± 0.03 0.62± 0.04 95.30± 9.88 0.75± 0.02 0.10± 0.04 0.60± 0.06 100.20± 15.69 0.72± 0.05

DAG-GNN 0.16± 0.03 0.41± 0.05 160.80± 53.55 0.55± 0.05 0.19± 0.05 0.48± 0.04 183.60± 45.37 0.60± 0.03
+VISTA-NV 0.85± 0.09 0.74± 0.14 609.80± 72.70 0.25± 0.12 0.79± 0.04 0.72± 0.09 538.40± 25.55 0.33± 0.05
+VISTA-WV 0.14± 0.05 0.50± 0.09 93.50± 29.12 0.63± 0.07 0.13± 0.08 0.56± 0.06 87.80± 16.56 0.68± 0.05

GraN-DAG 0.82± 0.01 0.06± 0.01 275.00± 18.50 0.09± 0.01 0.92± 0.02 0.02± 0.02 269.80± 45.50 0.03± 0.02
+VISTA-NV 0.66± 0.15 0.26± 0.06 219.20± 46.41 0.29± 0.07 0.68± 0.05 0.17± 0.04 223.00± 26.25 0.22± 0.04
+VISTA-WV 0.15± 0.06 0.18± 0.05 199.20± 13.64 0.32± 0.07 0.33± 0.03 0.13± 0.03 205.40± 59.15 0.23± 0.04

SCORE 0.71± 0.05 0.50± 0.05 386.80± 67.99 0.37± 0.04 0.65± 0.13 0.52± 0.15 340.40± 81.08 0.38± 0.05
+VISTA-NV 0.79± 0.03 0.60± 0.14 489.70± 123.82 0.31± 0.04 0.77± 0.03 0.56± 0.05 471.10± 16.68 0.33± 0.03
+VISTA-WV 0.64± 0.09 0.42± 0.11 305.80± 49.93 0.39± 0.07 0.57± 0.04 0.36± 0.06 244.20± 53.35 0.39± 0.04

The results show that, regardless of fluctuations in the performance of individual base learners,
the improvements brought by VISTA remain consistent. This stability further supports our claim
that VISTA does not rely on any inductive bias of the base learner or data distribution. Rather,
the edge-level aggregation mechanism provides robustness across settings. These findings further
highlight the model-agnostic nature of our framework. Additional experiments under alternative
parameter settings are provided in Appendix F.4.

Time efficiency To assess the scalability of our framework, we report the total computation time
for different base learners in Table 3. All results are presented as mean ± standard deviation over
repeated runs. Across all tested graph sizes, integrating VISTA consistently yields substantial runtime
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Table 3: Comparison of total computing time (s) under ER3 setting.

Method n = 50 n = 100 n = 300

NOTEARS 494.40± 98.24 1473.69± 395.59 12515.63± 1599.06
+VISTA 189.15± 65.37 339.90± 158.75 2136.72± 708.15

GOLEM 72.65± 15.41 108.82± 70.56 261.84± 30.44
+VISTA 21.93± 0.81 26.16± 2.68 43.40± 3.21

DAG-GNN 628.63± 55.29 2192.97± 323.59 17713.84± 2861.06
+VISTA 201.31± 43.36 371.25± 199.91 1960.43± 794.02

GraN-DAG 730.42± 89.95 3035.76± 481.85 25205.64± 2098.85
+VISTA 238.53± 51.36 472.30± 172.77 2336.32± 1028.04

SCORE 426.63± 61.15 10040.65± 209.31 ——–
+VISTA 105.64± 39.65 198.82± 34.12 225.16± 11.45

reductions compared to
the original methods.
These improvements are
not due to algorithm-
specific acceleration
but result directly from
our divide-and-conquer
design: since each local
subgraph is processed
independently, the learn-
ing procedure naturally
supports parallel execu-
tion. This decomposition
effectively reduces the
per-task computational load and alleviates memory bottlenecks, enabling scalable causal discovery
even with large node counts. Further results for other settings are included in Appendix F.3.

Sensitivity study of λ We sweep λ and plot precision/recall in Figure 4. By the conclusion of
Theorem 3.4 and Appendix E.1, larger λ shifts the method toward higher recall and lower precision
by relaxing the penalty on low-support edges. Within the theoretical range, this precision–recall
trade-off is smooth and yields informative voting thresholds rλ(m). The figure also substantiate
this point, Small λ strongly discounts low-support edges, yielding high precision and low recall.
Similarly, as λ increases, recall rises while precision falls. Beyond the upper end of (5) we have
(1 − e−λm) ≈ 1 and thus s(X → Y ) ≈ A/m, so the curves plateau and further increases of λ
have negligible effect. Therefore, to balance precision and recall in practice, a moderate value of the
hyperparameter could be fixed within the theoretical range, which serves as a stable operating point.
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Figure 4: Precision–recall trade-off under varying λ, where threshold t = 0.5.

4.2 REAL DATA

Table 4: Results on the Sachs protein-signaling net-
work.

Method FDR↓ TPR↑ SHD↓ SID↓

GOLEM 0.80 0.26 16 50
+VISTA 0.57 0.18 16 48

SCORE 0.81 0.18 18 57
+VISTA 0.60 0.12 15 53

DAG-GNN 0.50 0.12 15 54
+VISTA 0.25 0.18 14 52

GraN-DAG 0.82 0.53 16 48
+VISTA 0.00 0.29 12 45

We further evaluate all methods on the well-
known Sachs protein signaling network based
on expression levels of proteins and phospho-
lipids Sachs et al. (2005). This benchmark is
widely used in causal discovery research, and
the ground-truth graph with 11 nodes and 17
directed edges is consistently accepted by the
community.

Here we trained normalized data with 853
samples and reported the results in Table 4.
Incorporating VISTA consistently reduces
false discoveries and improves structural ac-
curacy, measured by SHD and SID Peters &
Bühlmann (2015) across different baselines. This highlights that VISTA is a plug-and-play module
that can reliably enhance the performance of arbitrary causal discovery algorithms.
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5 CONCLUSION

In this paper, we introduced VISTA, a scalable and model-agnostic framework for causal discovery
that decomposes global structure learning into Markov Blanket neighborhoods, aggregates them via a
weighted voting scheme, and enforces acyclicity through FAS post-processing. The design is fully
parallelizable, and the aggregation step operates only at the edge level, enabling efficient exploration
of operating points regardless of the base learner. Theoretically, we establish finite-sample error
guarantees and asymptotic consistency under mild conditions. Empirically, across diverse graph
families and base learners, VISTA improves accuracy and runtime efficiency, typically increasing
precision without sacrificing recall.

Despite the favorable performance of VISTA, the framework has several limitations. First, when
aggregating local graphs, latent confounding introduced by restricting the learner to subsets may
produce high-confidence redundant edges. In some cases these edges do not necessarily participate in
cycles and our current framework can only mitigate them through the combination of GreedyFAS
and threshold-based filtering. Moreover, although the FAS projection guarantees acyclicity, it may
also prune edges that are weakly supported yet correct, which can negatively affect downstream
tasks that are sensitive to edge directions. Future work includes incorporating interventional data to
improve orientation accuracy and extending the VISTA framework to online settings for large-scale
applications.

REPRODUCIBILITY STATEMENT

We provide the code in the supplementary material, together with a README file that allows
experimental results to be reproduced.

THE USE OF LLM

We used LLM to polish the writing and correct grammar in some paragraphs, but it did not contribute
to ideas or conceptual content.
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Alain Hauser and Peter Bühlmann. Characterization and greedy learning of interventional markov
equivalence classes of directed acyclic graphs. The Journal of Machine Learning Research, 13(1):
2409–2464, 2012.

Yang-Bo He and Zhi Geng. Active learning of causal networks with intervention experiments and
optimal designs. Journal of Machine Learning Research, 9(Nov):2523–2547, 2008.

Biwei Huang, Charles Jia Han Low, Feng Xie, Clark Glymour, and Kun Zhang. Latent hierarchical
causal structure discovery with rank constraints. Advances in neural information processing
systems, 35:5549–5561, 2022.

Paul Hünermund and Elias Bareinboim. Causal inference and data fusion in econometrics. The
Econometrics Journal, pp. utad008, 2023.

Maximilian Kaiser, Stefan Bauer, and Bernhard Schölkopf. Bootstrap aggregation and confidence
measures for time-series causal discovery. In Proceedings of the 41st International Conference on
Machine Learning (ICML), 2024.
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Sindy Löwe, David Madras, Richard Zemel, and Max Welling. Amortized causal discovery: Learning
to infer causal graphs from time-series data. In Conference on Causal Learning and Reasoning,
pp. 509–525. PMLR, 2022.

Christopher Meek. Causal inference and causal explanation with background knowledge. arXiv
preprint arXiv:1302.4972, 2013.

Ehsan Mokhtarian, Sina Akbari, AmirEmad Ghassami, and Negar Kiyavash. A recursive markov
boundary-based approach to causal structure learning. In The KDD’21 Workshop on Causal
Discovery, pp. 26–54. PMLR, 2021.

Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, and Francesco Locatello.
Causal discovery with score matching on additive models with arbitrary noise. In Conference on
Causal Learning and Reasoning, pp. 726–751. PMLR, 2023a.

Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, and Francesco Locatello.
Scalable causal discovery with score matching. In Conference on Causal Learning and Reasoning,
pp. 752–771. PMLR, 2023b.

Ivan Ng, Xun Zheng, and Bryon Aragam. Learning sparse causal models is not np-hard. In Advances
in Neural Information Processing Systems, volume 33, pp. 16888–16900, 2020.

Judea Pearl. Causality. Cambridge university press, 2009.
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A ALGORITHM OF VISTA

Algorithm 1 VISTA-Weighted Voting
Require: A set of local subgraphs {GV : V ∈ V }, each induced by the Markov Blanket of node V ;

hyperparameters λ and threshold t.
1: Initialize zero matrix EdgeCount to record counts for each edge Vi → Vj where Vi, Vj ∈ V .
2: for each local subgraph GV do
3: for each directed edge Vi → Vj in GV with i ̸= j do
4: Increment EdgeCount[Vi, Vj] by 1.
5: end for
6: end for
7: Compute the Occurrence matrix as Occurrence← EdgeCount+ EdgeCount⊤

8: Compute the coefficient matrix elementwise: Coef← 1− exp(−λ · Occurrence).
9: Compute the merged weighted directed graph G1 = Coef⊙ EdgeCount/Occurrence.

10: Use Algorithm 2 to break cycles in G1 and obtain a DAG G2.
11: Remove edges in G2 whose weights are less than threshold t to obtain the final DAG G.
12: return the global causal graph G.

B DETAILED RELATED WORKS

General Causal Discovery Methods: Classical algorithms recover Directed Acyclic Graphs (DAGs)
by either testing conditional independencies or maximizing a score on the discrete space of graphs.
Constraint–based methods such as PC and FCI Colombo et al. (2012); Spirtes et al. (2000) iteratively
remove edges whose endpoints become independent given bounded-size conditioning sets. Assuming
faithfulness, with only observational data, a common result in causal discovery shows that one can
only recover the causal graph up to its Markov Equivalence Class (MEC) Andersson et al. (1997);
Verma & Pearl (2022). Therefore, interventional data is usually required to fully recover the graph.
Many works propose algorithms that aim to learn the graph with minimal interventional data Choo
et al. (2022); Hauser & Bühlmann (2012); He & Geng (2008); Shanmugam et al. (2015); Squires et al.
(2020); Zhou et al. (2024). Score–based searches, e.g., GES Chickering (2002) and exact DP-based
optimizers Chickering et al. (2004), evaluate a decomposable metric (BIC, MDL) while heuristically
exploring the super-exponential DAG space. Hybrid strategies typified by MMHC Tsamardinos et al.
(2006) first identify each variable’s Markov Blanket and then run a restricted greedy search. Although
provably sound under the causal Markov and faithfulness assumptions, all three lines are NP-hard
and their run time or memory grows super-polynomially with node count, limiting practical use to
≲ 102 variables.

Ordering-based methods constitute a distinct and increasingly influential category. These approaches
first attempt to infer a topological ordering of variables and then determine parent sets accordingly.
Early examples such as DirectLiNGAM Shimizu et al. (2011) and RESIT Peters et al. (2014)
exploit non-Gaussianity or additive-noise assumptions to infer edge directions from regression
residuals. CAM Bühlmann & Peters (2016) extends this idea to nonlinear settings via generalized
additive models and greedy order search. More recently, SCORE Rolland et al. (2022) proposes
to identify causal ordering by minimizing the variance of the score function, which has inspired
several scalable extensions leveraging score-matching or diffusion-based estimation Montagna et al.
(2023a;b); Sanchez et al. (2022a). These methods achieve promising empirical results on graphs with
thousands of nodes, but typically rely on strong functional assumptions and remain sensitive to latent
confounders.

Besides, recent years have seen a growing emphasis on continuous and differentiable formulations in
causal structure learning, aiming to overcome the combinatorial challenges associated with discrete
DAG optimization. NOTEARS Zheng et al. (2018), DAG-GNN Yu et al. (2019), GraN-DAG
Lachapelle et al. (2020), and their low-rank or log-det variants Bello et al. (2022); Fang et al. (2023)
convert acyclicity into a smooth penalty and learn graphs via gradient descent. Reinforcement learning
and meta-learning schemes Wang et al. (2021); Zhu et al. (2019); Lippe et al. (2021) treat node
ordering as a policy and bypass explicit acyclicity constraints. These methods alleviate combinatorial
search but still entail an O(d2) adjacency parameterization or an O(d3) matrix exponential, so GPU
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memory becomes a bottleneck beyond a few hundred nodes. In summary, although continuous
optimization and ordering-based heuristics mitigate the need for discrete search, general-purpose
methods typically incur O(d2) memory overhead or rely on restrictive assumptions, which constrains
their applicability to graphs of moderate size.

Large-Scale Causal Discovery: To push causal discovery into the high-dimensional regime, re-
searchers have explored sparsity-aware and parallel variants of the above paradigms. Fast Greedy
Search (FGS) Ramsey et al. (2017) and parallel-PC Le et al. (2016) cache CI tests and distribute
computations over multi-core CPUs, handling tens of thousands of genes. In the continuous camp,
DAGMA Bello et al. (2022) and NOTEARS-LowRank Fang et al. (2023) reduce memory usage by
factorizing the weight matrix, achieving 5k–10k nodes on a single GPU, while Amortized Causal
Discovery Löwe et al. (2022) shares a latent decoder across samples to scale to massive time-series.
Bootstrap and bagging strategies aggregate multiple weak graphs to improve stability without in-
creasing per-run complexity Wu et al. (2023); Kaiser et al. (2024). Despite these advances, most
scalable algorithms either rely on heavy solvers (e.g., SDP/MILP), strong sparsity assumptions, or
lack finite-sample guarantees, motivating alternative divide-and-conquer solutions. As a comple-
mentary approach, our proposed VISTA framework addresses these challenges through modular
subgraph decomposition and lightweight aggregation, while providing finite-sample error control and
scalability to graphs with a large scale of nodes.

Scalable or Modular Structure Learning: Partition-based approaches decompose the global graph
into overlapping neighbourhoods, learn local substructures, and then reconcile conflicts. Early local-
to-global techniques grow random neighbourhoods until conditional independence saturates Gao et al.
(2017). Gu & Zhou (2020); Huang et al. (2022) apply hierarchical clustering before local search,
whereas Shah et al. (2024) first estimates a coarse skeleton and then partitions it to learn subgraphs in
parallel. DCILP Dong et al. (2024) formulates the fusion step as an integer program that guarantees
optimal conflict resolution but suffers from MILP infeasibility on dense regions. Recent ensemble
methods perform Markov-Blanket bootstrap with majority or confidence-weighted voting Wu et al.
(2023); Ban et al. (2024), yet provide limited theoretical analysis of the aggregated error.

Our method VISTA follows the divide-and-conquer paradigm but departs from prior work by inte-
grating a frequency-aware weighted voting mechanism that admits closed-form error analysis, and by
enforcing global acyclicity through a lightweight GreedyFAS post-processing step instead of solving
large-scale ILPs. These design choices lead to near-linear memory usage, full parallelizability, and
theoretical consistency guarantees, enabling scalable causal discovery on graphs with thousands of
nodes.

C PSEUDOCODE OF FEEDBACK ARC SET

After obtaining a directed graph with weighted edges from the voting stage, the final step is to enforce
acyclicity, formulated as a feedback arc set (FAS) problem. Since exact FAS is NP-hard, we adopt a
greedy approximation based on node degree imbalance.

For each node Vi ∈ V , let do(Vi) and di(Vi) be its out- and in-degrees, and define imbalance
δ(Vi) = do(Vi)−di(Vi). At each iteration, we remove one node: sources are appended to a sequence
s1, sinks are prepended to a sequence s2, and if neither exists, we select the node with the largest
absolute imbalance |δ(Vi)|. This process continues until all nodes are removed, yielding a topological
order s = s1//s2.

Given this order, any edge (Vi, Vj) ∈ E that points from a later node to an earlier node in s is marked
as a backward edge. These are sorted by weight and the lightest ones are iteratively removed until the
graph becomes acyclic. Algorithm 2 summarizes the procedure.

D STATISTICAL ACCURACY ANALYSIS OF WEIGHTED VOTING

This section provides a theoretical analysis of the statistical behavior of the weighted voting mecha-
nism introduced in Section 3.1. The goal is to characterize the conditions under which a candidate
edge is correctly retained or excluded based on its empirical directional support. The analysis builds
on a probabilistic interpretation of the weighted score as a posterior expectation, and derives sufficient
conditions for edge-level accuracy using concentration inequalities.
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Algorithm 2 Solve FAS to guarantee acyclicity on the weighted directed graph
Require: A weighted directed graph G = (V ,E), where EUV denotes the edge from U ∈ V to

V ∈ V and wUV > 0 is its weight.
1: For the ease of description, G′ is a copy of input graph G.
2: Initialize two empty sequences s1 ← ∅, s2 ← ∅, and a backward edge set b← ∅.
3: while G ̸= ∅ do
4: if G contains a source then
5: choose the sink u with maximum δ(U)
6: s1 ← s1//U
7: V ← V \ U ;E ← E \ {EUV , EV U}, ∀U ∈ V
8: G = (V ,E)
9: end if

10: if G contains a sink then
11: choose the sink U with minimum δ(U)
12: s2 ← U//s2
13: V ← V \ U ;E ← E \ {EUV , EV U}, ∀U ∈ V
14: G = (V ,E)
15: end if
16: end while
17: The topological ordering is s = s1//s2
18: for EUV in the input graph G′ do
19: if U is after V in s then
20: b← b//EUV

21: end if
22: end for
23: Sort b in ascending order according to wUV

24: while G′ is not a DAG do
25: remove the edge with smallest wUV from G′
26: end while
27: return The directed acyclic causal graph G′.

We begin by examining the relationship between the weighting parameter λ, the empirical support rate,
and the effective threshold. We then establish a general bound on the probability of edge-level error
under the weighted voting rule, and provide sufficient conditions under specific support distributions
that guarantee accurate recovery.

D.1 BAYESIAN MOTIVATION FOR THE WEIGHTED VOTING RULE

Specifically, we show that the score can be viewed as the posterior mean under a Beta prior whose
influence diminishes as the number of supporting subgraphs increases. We first consider each edge
direction X → Y as a binary decision problem. Suppose each local subgraph that includes both X
and Y independently votes for one of the two directions: X → Y or Y → X . Let A and B denote
the number of times each direction appears, and let m = A+B be the total number of subgraphs
providing directional evidence.

A natural approach is to model the true support probability p = Pr(X → Y ) using a Beta prior:

p ∼ Beta(α, β),

so that the posterior mean becomes

E[p | A] =
A+ α

m+ α+ β
. (7)

In classical Laplace smoothing, a fixed prior such as Beta(1, 1) adds uniform pseudo-counts re-
gardless of sample size. However, in our setting, most candidate edges are supported by very few
subgraphs. The fixed priors are therefore either too weak to suppress noise or too strong to allow
learning when evidence grows.
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We therefore introduce a data-dependent pseudo-count that decreases with m. Specifically, we set
α = 0, and define an effective prior strength:

β = κ(m) :=
me−λm

1− e−λm
, (8)

where λ > 0 is a tunable parameter. This yields the posterior mean:

E[p | A] =
A

m+ κ(m)
=

(
1− e−λm

)
· A
m
. (9)

Thus, our weighted score function s(X → Y ) can be viewed as the posterior mean under a Beta prior
whose strength vanishes exponentially as the number of supporting subgraphs increases. When m is
small, the exponential decay is slow, and the prior contributes a significant regularization, effectively
suppressing low-support edges. As m grows, the prior influence rapidly vanishes, and the score
approaches the empirical frequency A/m, recovering naive voting.

The hyperparameter λ controls how quickly the prior decays. A larger λ yields more aggressive
penalization for rare edges, while a smaller λ allows quicker adaptation to the empirical signal. This
dynamic pseudo-count interpretation explains the design of our exponential weight 1− e−λm and its
effectiveness in controlling false positives in sparse and noisy settings.

D.2 PROOF OF THEOREM 3.2

Theorem 3.2 (Sufficient Condition for Weighted Voting Accuracy) Let A ∼ Binomial(m, p) repre-
sent the number of successful votes in m independent subgraphs for the edge direction X1 → X2,
where each subgraph supports this direction independently with probability p ∈ (0, 1), decision
threshold t ∈ (0, 1) and the weight function w(m) = 1 − e−λm, λ > 0. Assume the effective
threshold for accept the edge direction X1 → X2 is r(m) = t

1−e−λm < p, i.e., the true support rate
p is above the effective threshold. Then, if

mp

2

(
1− t

p(1− e−λm)

)2

≥ log
1

ϵ
,

it follows that P (s(A) ≥ t) ≥ 1− ϵ.

Proof. Our goal is to show that

P
(
s =

[
1− exp(−λm)

]
· Am ≥ t

)
≥ 1− ϵ, (10)

where A ∼ Binomial(m, p) and m is the number of (independent) subgraphs or subsamples consid-
ered. Rewriting s ≥ t gives[

1− exp(−λm)
]
· A
m
≥ t ⇐⇒ A

m
≥ t

1− exp(−λm)
.

For notational simplicity, we define r = t
1−exp(−λm) . Hence, our goal becomes ensuring P (A ≥

mr) ≥ 1−ϵ. Since A is a binomial random variable A ∼ Binomial(m, p), E[A] = mp, we therefore
have the Chernoff bound, states that,

P
(
A ≤ (1− δ)mp

)
≤ exp

(
− δ2

2 mp
)
, (11)

for any 0 < δ < 1. Subsequently, we set (1− δ)mp = mr, i.e., δ = 1− r
p . Note that for this δ to be

positive (so that the Chernoff bound form applies), we need r < p. In other words,

t

1− exp(−λm)
= r < p,

which is the intuitive condition that the true probability p exceeds the effective threshold r. With the
above definition of δ,

P
(
A < mr

)
= P

(
A ≤ (1− δ)mp

)
≤ exp

(
−mp

2

(
1− r

p

)2)
.
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Hence
P
(
A ≥ mr

)
≥ 1− exp

(
−mp

2

(
1− r

p

)2)
. (12)

To ensure this probability is at least 1− ϵ, we impose

exp
(
−mp

2

(
1− r

p

)2) ≤ ϵ.

Since r = t
1−e−λm , this condition explicitly becomes

mp

2

(
1− t

p(1− e−λm)

)2

≥ log
1

ϵ
. (13)

Therefore, whenever (3) and r < p is satisfied, we have

P
([

1− e−λm
]
· Am ≥ t

)
= P

(
A ≥ mr

)
≥ 1− ϵ. (14)

Hence the theorem follows.

D.3 PROOF OF COROLLORY 3.3

Corollory 3.3 (Upper bound of node in subgraphs) Let λ > 0, t ∈ (0, 1), and ϵ ∈ (0, 1) be fixed. For
a candidate edge (X,Y ), denote by m the number of local subgraphs whose Markov Blankets contain
both endpoints. Under the setting of Theorem 3.2, the sufficient condition (3) can be converted into
the explicit bound

m ≥ 2 log(1/ϵ)

p ((1− t/p)2 − 2(t/p)(1− t/p)e−λ)
,

Proof. We first define y = exp(−λm). Then, by the conclusion of Theorem 4.4, we obtain

− p

2λ
log y

(
1− t

p(1− y)

)2

≥ log
1

ϵ
. (15)

Next, we consider the first-order Taylor expansion:(
1− t

p

1

1− y

)2

=

[
1− t

p
− t

p
y +O(y2)

]2
=

[
γ − θy +O(y2)

]2
= γ2 − 2θγy +O(y2),

(16)

where we set θ = t
p and γ = 1− t

p . Therefore, (15) becomes

log y
[
γ2 − 2θγy +O(y2)

]
≤ −2λ

p
log

1

ϵ
. (17)

Therefore, by substituting log y = −λm and dropping the O(y2) term (since y2 is small enough), we
get an approximate condition:

m(γ2 − 2θγe−λm) ≥ 2

p
log

1

ϵ
. (18)

This is an implicit condition on m. To derive an explicit and sufficient lower bound, we strengthen
the left-hand side. Since m ≥ 1, we have e−λm ≤ e−λ, therefore

γ2 − 2θγe−λm ≥ γ2 − 2θγe−λ.

Let Kλ = γ2 − 2θγe−λ. To ensure the lower bound is positive, we require γ2 > 2θγe−λ, or
equivalently γ > 2θe−λ (since γ = 1− t/p > 0). This condition simplifies to 1− t/p > 2(t/p)e−λ.

18
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By our Theorem 3.4, since λ > 1
m log(1− t), we have

t

p

(
2e−λ + 1

)
<

t

p

(
2(1− t)

1
m + 1

)
< 1.

This inequality is easily satisfied and thus represents a very mild condition. Consequently, we can
regard the lower bound Kλ > 0 as being established. Then the inequality (18) is satisfied under a
stronger condition:

m ·Kλ ≥
2

p
log

1

ϵ
.

Solving for m gives an explicit lower bound:

m ≥ 2 log(1/ϵ)

pKλ
=

2 log(1/ϵ)

p(γ2 − 2θγe−λ)
.

Substituting the definitions of γ and θ, we obtain:

m ≥ 2 log(1/ϵ)

p ((1− t/p)2 − 2(t/p)(1− t/p)e−λ)
.

E DISCUSSION OF THE STRUCTURE-AWARE ERROR BOUND

The weighted voting procedure serves as the core mechanism for aggregating local subgraph estimates
into a global DAG. While this method adjusts edge confidence based on empirical support, its
effectiveness ultimately depends on the ability to balance false positives and false negatives across
the merged graph. To better understand this behavior, we analyze the global error induced by the
weighted voting rule and how it interacts with the sparsity of the graph, the choice of voting threshold,
and the distribution of subgraph overlaps.

This section formalizes that analysis. We first derive a decomposition of the total error into false
positive and false negative components, followed by a structure-aware upper bound based on the
union bound. The role of the weighting parameter λ is then examined in detail, culminating in formal
proofs of Theorem 3.4 and Theorem 3.5, which establish a feasible range for λ and the asymptotic
vanishing of global error, respectively. These bounds are further instantiated under Erdős–Rényi
(ER) and scale-free (SF) graph models to characterize how graph topology influences the merging
accuracy.

To begin with, we formalize the decomposition of the global error into false negatives (FN) and false
positives (FP), and derive a structure-aware upper bound based on the union bound. We summarized
it into the following lemma:
Lemma E.1 (Structure-aware global error bound). Each candidate directed edge (Vi, Vj) is evaluated
in mij independent local sub-graphs whose Markov Blankets contain both endpoints.

• For a true edge, the vote count obeys Aij ∼ Binomial(mij , p).

• For a false edge, Aij ∼ Binomial(mij , q) with p > q.

Using the weighted rule

sij =
[
1− e−λmij

]Aij

mij
≥ t, rλ(mij) =

t

1− e−λmij
,

assume p > rλ(mij) and q < rλ(mij) for every edge. Then

Pr(global error) ≤
∑

(i,j)∈E∗

e−2mij [p−rλ(mij)]
2

︸ ︷︷ ︸
FN contribution

+
∑

(i,j)/∈E∗

e−2mij [rλ(mij)−q]2

︸ ︷︷ ︸
FP contribution

, (19)

where E∗ denotes the ground-truth edge set.
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Proof. For (Vi, Vj) ∈ E∗, we have

Pr
(
FN on (Vi, Vj)

)
= Pr

(
Aij/mij < rλ(mij)

)
≤ e−2mij [p−rλ(mij)]

2

(20)

by Hoeffding’s inequality. A symmetric argument gives the FP term for (Vi, Vj) /∈ E∗). Finally, the
union bound over all edges yields the claimed inequality.

Corollary E.2 (Worst-case simplification). If mij ≥ mmin for all edges, then

Pr(global error) ≤ NFN e−2mmin

[
p−rλ(mmin)

]2
+NFP e−2mmin

[
rλ(mmin)−q

]2
, (21)

where NFN = |E∗| and NFP =
(
n
2

)
−NFN for a graph with n nodes.

The error bound derived above depends on the effective threshold rλ(m), which is controlled by
the weighting parameter λ. To understand the role of this parameter, it is instructive to consider the
limiting case λ = 0, which corresponds to the naive voting scheme. In this case, the weight term
disappears, and the edge inclusion rule reduces to comparing the raw directional frequency A/m
against the fixed threshold t.
Remark E.3 (Naive voting baseline). If we drop the weight and decide solely on the unweighted
fraction Aij

mij
≥ t, Lemma E.1 specialises to

Pr(global error) ≤
∑

(i,j)∈E∗

e−2mij(p−t)2 +
∑

(i,j)/∈E∗

e−2mij(t−q)2 . (22)

In sparse graphs, where the number of candidate false positive edges vastly exceeds the number of
true positives (i.e., NFP ≫ NFN), the overall error is typically dominated by the first summation term.
Therefore, a moderate increase in λ can lead to a significant reduction in total error by aggressively
penalizing low-support spurious edges, even if it slightly increases the false negative rate. This
trade-off is particularly favorable in high-dimensional settings, where controlling the false discovery
rate is often more critical than maximizing recall. These insights align with the empirical results
reported in Section 4.1, where the weighted voting scheme consistently improves FDR without
severely compromising TPR across a wide range of base learners.

E.1 INFLUENCE AND PRACTICAL RANGE OF THE WEIGHT PARAMETER λ

To ensure that the weighted voting mechanism achieves a reliable trade-off between false positives
and false negatives, it is necessary to understand how the choice of the weighting parameter λ
affects the acceptance threshold and the overall error bound. The following derivation provides a
characterization of the feasible range of λ that satisfies the conditions used in the theoretical analysis
of edge decisions. This directly supports the proof of Theorem 3.4 in the main text.

Theorem 3.4 (Practical choice of λ) Fix a vote count m ≥ 1, a decision threshold t ∈ (0, 1), and a
target error level ϵ ∈ (0, 1). If λ satisfies

− 1

m
ln(1− t) < λ ≤ − 1

m
ln ϵ,

then the weighted-vote rule achieves the prescribed error control under the union bound.

Proof. Define the Hoeffding-based global error upper bound L(λ) = NFN e−2mmin(p−rλ)
2

+

NFP e−2mmin(rλ−q)2 , where NFN (NFP) is the number of true (false) candidate edges rescaled
by their respective cost coefficients. For notational simplicity, we omit the subscripts, and use m to
represent mmin in our later proof. We first differentiate L w.r.t. λ:

∂rλ
∂λ

=
tme−λm

(1− e−λm)2
= rλ

me−λm

1− e−λm
> 0,

∂L
∂λ

= 2m
te−λm

(1− e−λm)2

[
NFN δpe

−2mδ2p −NFP δqe
−2mδ2q

]
,

(23)

with δp = p− rλ > 0 and δq = rλ − q > 0.
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Because δp increases and δq decreases as λ grows, a larger λ lowers the false-negative term (higher
recall) but raises the false-positive term (lower precision). For sparse causal graphs we typically
have NFP ≫ NFN, making the second term dominant and hence ∂L/∂λ < 0 until the exponential
weight saturates. Consequently, increasing λ is beneficial only inside a finite interval.

Upper bound for λ. In the worst-case scenario where all candidate edges are consistently supported
in the same direction, the voting scores for both true and false edges become uniformly close to
1−e−λm. If 1−e−λm ≥ 1− ϵ (0 < ϵ≪ 1), then even false edges can exceed the decision threshold
t, leading to a large number of number of false positives. Therefore To avoid such indiscriminate
acceptance, λ must be chosen to ensure that 1−e−λm remains sufficiently below 1. Solving e−λm = ϵ
gives

0 < λ ≤ λmax(ϵ) = −
1

m
ln ϵ

(
e.g., ϵ = 0.01⇒ λmax ≈ 4.6/m

)
. (24)

Lower bound for λ. The effective threshold rλ(m) =
t

1− e−λm
must satisfy 0 < rλ < 1;

otherwise the acceptance condition A/m ≥ rλ can never be met because A/m ≤ 1 by definition.
Solving the inequality rλ < 1 yields

t

1− e−λm
< 1 ⇐⇒ e−λm < 1− t ⇐⇒ λ > λmin := − 1

m
ln(1− t) . (25)

Intuitively, when λ falls below this bound the exponential weight is so close to 1 that the prefactor
1−e−λm becomes smaller than t, inflating rλ beyond 1 and blocking every candidate edge, including
true ones. Hence λmin is the viability threshold: only for λ > λmin does the weighted-voting rule
retain a non-zero recall. Therefore a practical search range is

λ ∈
[
− 1

m
ln(1− t),

1

m
ln ϵ

]
, (26)

within which cross-validation or the closed-form condition ∂L/∂λ = 0 can be used to pinpoint an
optimal λ⋆.

Exponentially vanishing reversal error. For any λ in this range and any true edge with support
probability p > rλ, the probability of being accepted in the reverse direction is Pr(reverse) ≤
exp[−2m (p− rλ)

2],which decays exponentially with the number of independent subgraphs m. This
guarantees that the weighted-voting merger remains statistically consistent as data grow, while a
properly chosen λ suppresses spurious edges in finite-sample regimes.

The general error bound depends on the number of subgraphs in which each edge appears. This
quantity is influenced by the underlying graph topology. In the following, the behavior of the bound
is examined under two commonly used random graph models: Erdős–Rényi and scale-free graphs.
The analysis characterizes typical support counts and their implications for the error terms derived in
Lemma E.1.

E.2 ERDŐS–RÉNYI AND SCALE-FREE GRAPHS

The error bounds derived in the previous section depend not only on the weighting parameter λ, but
also on the empirical support count mij which measures the number of subgraphs in which each edge
appear. This quantity is influenced by the underlying graph topology and the statistical properties of
the Markov Blanket construction.

To understand how mij behaves in practice, we analyze two representative random graph models:
Erdős–Rényi (ER) and scale-free (SF) networks. These models differ significantly in their degree
distributions, which in turn affect the overlap patterns among Markov Blankets and the expected
frequency with which edges are covered by local subgraphs. The analysis below characterizes
typical support rates under each model, providing context for interpreting the global error bounds and
informing the expected sample complexity of reliable aggregation.
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Theorem E.4 (ER-h graph). Let G ∼ ER(n, θ) with edge probability θ = h/(n− 1), and assign
directions by a random topological order so that the expected out-degree is h. Denote

δp := p− rλ(2), δq := rλ(2)− q (δp, δq > 0).

Then, with probability at least 1−O(θ2) over the graph draw,

Pr(global error) ≤ nh

2
e−4δ2p +

n(n− 1)− nh

2
e−4δ2q +O(θ2). (27)

The O(θ2) term covers the negligible fraction of edges whose vote count mij > 2.

Proof. In a directed ER graph each vertex has degin, degout ∼ Pois(θ/2), so E
[
|MB(v)|

]
=

E[degin +degout +spouses] ≈ 2h, where the “spouse” term (co-parents) shares the same mean
as degout.

For an oriented edge (i, j), it appears in both MB(Vi) and MB(Vj), giving a baseline mij ≥ 2.
Additionally, it appears in MB(Vk) for every common child Vk of Vi and Vj . For fixed Vk, the events
“Vi → Vk” and “Vj → Vk” are independent with probability θ2. Hence the number of common
children follows Pois(λc) with λc = (n− 2)θ2 ≈ h2/n.

Thus,
mij = 2 +X, X ∼ Pois(λc).

When h = O(1), λc = O(θ2)≪ 1, whence

Pr(mij = 2) = 1−O(θ2), Pr(mij ≥ 3) = O(θ2).

For the overwhelming majority of edges (mij = 2), lemma E.1 gives:

Pr(FN on (i, j)) ≤ e−4δ2p , Pr(FP on (i, j)) ≤ e−4δ2q .

Counting edges:

NFN ≈
nh

2
, NFP =

(
n

2

)
−NFN.

Summing the two contributions yields

nh

2
e−4δ2p +

n(n− 1)− nh

2
e−4δ2q . (28)

We can obtain similar results from the SF graph.

Theorem E.5 (SF-h graph). Let G be a directed scale-free graph on n nodes, obtained by sampling
an undirected Chung–Lu (or Barabási–Albert) graph whose degree sequence (d1, . . . , dn) satisfies

Pr
(
d ≥ k

)
≤ Cαk

1−α, 2 < α < 3, (29)

and whose mean degree is h; and orienting edges according to a random topological order. Then, for
a universal constant Cα that depends only on α,

Pr(global error) ≤ nh

2
e−4δ2p +

n(n− 1)

2
− nh

2
e−4δ2q +

n(n− 1)

2
Cαn

−(α−2). (30)

Proof. For an oriented edge (Vi, Vj) let di, dj be its endpoint degrees. Exactly as in the ER case each
edge appears at least twice; additional occurrences come from every common child k with probability(
di/n

)(
dj/n

)
. Hence

mij = 2 +X, X ∼ Pois
(
λij

)
, λij :=

didj
n

.
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For any fixed λ and δ ∈ {δp, δq}

E
[
e−2mijδ

2

| λij

]
= e−4λ2

ijE
[
e−2Xδ2

]
= e−4δ2eλij(e

−2δ2−1).

(31)

Since the value of e−2δ2 − 1 varies, we splitted the expectation (31) into two regimes:

E
[
e−2mijδ

2]
= E

[
e−2mijδ

2

1{λij≤1}
]
+ E

[
e−2mijδ

2

1{λij>1}
]
. (32)

• Non-hub regime λij ≤ 1:

E
[
e−2mijδ

2

| λij

]
≤ e−4δ2 . (33)

• Hub regime λij > 1. By (31) the conditional term is ≤ e−4δ2e−λij/2 ≤ 1, but the
probability of this event can be bounded with the degree tail:

E
[
e−2mijδ

2

1{λij>1}
]
≤ Pr

(
λij > 1

)
= Pr

(
didj

n > 1
)
≤ Cαn

−(α−2),

where we apply the union bound to decompose the event didj > n into two simpler events,
di > n1/2 or dj > n1/2, control each using the degree tail bound Pr(d ≥ k) ≤ Cαk

1−α,
and then combine the two estimates.

Therefore, for either δ = δp or δq ,

E
[
e−2mijδ

2]
≤ e−4δ2 + Cαn

−(α−2). (34)

There are NFN ≈ nh/2 true and NFP =
(
n
2

)
−NFN false edges on average. Multiplying the expectation

(34) by these counts and plugging into Lemma E.1 yields inequality (30).

Theorem E.5 completes the structure-aware error analysis by characterizing the influence of hetero-
geneous degree distributions on the residual error bound. While the dominant exponential terms
governing false positive and false negative rates are structurally similar to those in Theorem E.4, the
residual term exhibits a slower decay due to the presence of high-degree nodes. These hub-related
structures lead to greater variability in the support count mij across candidate edges.

This variability has practical implications. In networks where edge supports are highly non-uniform,
the weighted voting mechanism implicitly induces a form of confidence calibration: high-support
edges, typically associated with structurally central nodes, retain larger weights and are more likely
to be preserved. In contrast, low-support edges often arising from sparse or weakly connected
regions, will be heavily penalized by the exponential weighting term. This differential treatment
improves robustness to statistical noise and helps suppress false positives without uniformly raising
the threshold for all decisions.

As a result, the error reduction effect of the weighting scheme is not solely determined by the average
support level, but also by the variance in subgraph overlap. Networks with broader support distribu-
tions provide more opportunities for selective edge retention, which enhances the overall effectiveness
of the aggregation procedure. This observation complements the earlier asymptotic result, and offers
a finer-grained explanation of the empirical precision gains observed in our experiments.

To complete the analysis, we examine how the global error behaves asymptotically under increasing
graph size.

E.3 ASYMPTOTIC ANALYSIS

Theorem 3.5 (Asymptotic Consistency) Fix a threshold t ∈ (0, 1) and let δp = p− t and δq = t− q
denote the positive margins between t and the inclusion probabilities p, q of true and false edges

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

respectively. Assume δp, δq > 0 and that λ satisfies the conditions in Theorem 3.4. If the number of
local subgraphs per candidate edge is m = C logn with C > 2

min{δ2p,δ2q}
, then we have

Pr(global error) = o(1), as n→∞. (35)

Proof. By the conclusion of Lemma E.1, the global error probability is bounded by

Pr(global error) ≤
∑

(i,j)∈E∗

e−2mij(p−t)2 +
∑

(i,j)/∈E∗

e−2mij(t−q)2 . (36)

Since the number of true edges satisfies NFN = |E∗| = O(n), and the number of false edges is
NFP =

(
n
2

)
−NFN = O(n2), we can simplify the above bound by letting mij ≡ m for all edges:

Pr(global error) ≤ NFN e−2mδ2p +NFP e−2mδ2q ,

where we denote δp = p− t > 0 and δq = t− q > 0.

To ensure that both terms remain bounded by a constant, we require

e−2mδ2p ≤ n−1 ⇒ m ≥ 1

2δ2p
log n,

and
e−2mδ2q ≤ n−2 ⇒ m ≥ 1

δ2q
log n.

Therefore, it suffices to set

m = C logn, C > max

{
1

2δ2p
,
1

δ2q

}
,

which guarantees that

Pr(global error) ≤ O(n · n−1)︸ ︷︷ ︸
=O(1)

+O(n2 · n−2)︸ ︷︷ ︸
=O(1)

= O(1).

In fact, choosing a slightly larger constant C makes both terms decay to zero, which establishes
asymptotic consistency as n→∞.

Complexity. Finally, we analyze the computational complexity, which consists of two parts:

• The local structure learning phase takes O(m3) per node, and there are n nodes, resulting in
O(nm3) total cost.

• The voting and merging phase requires computing pairwise edge counts and resolving cycles
over O(n2) edge pairs, leading to an additional O(n2) term.

Substituting m = O(log n), the total runtime becomes

O
(
n(log n)3 + n2

)
= Õ(n2),

where the soft-O notation hides polylogarithmic factors. Thus, the proposed divide-and-conquer
method achieves both statistical consistency and near-quadratic scalability.

F IMPLEMENTATION DETAILS

Our code is based on two open-source packages: gcastle, which provides implementations of
score-based and continuous causal discovery methods such as NOTEARS, GOLEM, GraN-DAG
and DAG-GNN, and dodiscover, which implements ordering-based methods. These packages
form the backbone of our experimental framework. On top of them, we implement our own modules
for subgraph construction, weighted voting aggregation, and cycle removal. The full pipeline with
configuration scripts and reproducibility controls is described in detail below. Subsequent subsections
provide additional implementation details for baseline configuration, extended experimental results,
runtime breakdown, and comparison against DCILP.
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F.1 BASELINES

All baseline methods are implemented using publicly available code and configured with recom-
mended hyperparameters. For methods involving continuous optimization, the primary computational
bottleneck lies in gradient-based acyclicity constraints, which requireO(d3) time andO(d2) memory
due to matrix operations over the full graph. Discrete search–based methods such as SCORE and
CAM incur combinatorial overhead when handling larger node counts. In all cases, integrating these
methods into the VISTA framework significantly reduces both runtime and memory usage, as the
local subgraphs are orders of magnitude smaller and can be processed independently.

NOTEARS This method reformulates the combinatorial problem of DAG structure learning into a
purely continuous optimization problem. It introduces a novel, smooth, and exact characterization of
acyclicity using a matrix exponential function h(W ) = tr(W ◦W )− d = 0. This transformation
allows the problem to be solved efficiently using standard gradient-based optimization techniques,
avoiding discrete search over graph structures.

GOLEM This work analyzes the role of sparsity and DAG constraints in learning linear DAGs,
noting potential optimization issues with hard DAG constraints required by prior methods like
NOTEARS. It proposes GOLEM (Gradient-based Optimization of dag-penalized Likelihood for
learning linEar dag Models), which uses a likelihood-based score function instead of least squares.
The key finding is that applying soft sparsity and DAG penalties to this likelihood objective suffices
to recover the ground truth DAG structure asymptotically, resulting in an unconstrained optimization
problem that is easier to solve.

DAG-GNN This method employs a deep generative model, specifically a Variational Autoencoder
(VAE), to learn DAG structures, extending beyond linear models. It parameterizes the VAE’s encoder
and decoder using a novel Graph Neural Network (GNN) architecture, designed to capture complex
non-linear relationships inherent in data. The approach learns the graph’s weighted adjacency matrix
alongside the neural network parameters, enforcing acyclicity through a continuous polynomial
constraint, and naturally handles both continuous and discrete variables.

GraN-DAG This work extends continuous DAG learning to nonlinear settings by parameterizing
each conditional distribution with neural networks and constructing a weighted adjacency matrix
from network connectivity. Acyclicity is enforced through a smooth matrix-exponential constraint,
enabling gradient-based optimization of the likelihood objective. Post-processing with thresholding
and pruning helps recover sparse graphs.

SCORE This method recovers causal graphs for non-linear additive noise models by utilizing the
score function (∇ log p(x)) of the observational data distribution. It establishes that the Jacobian
of the score function reveals information sufficient to identify leaf nodes in the causal graph. By
iteratively identifying and removing leaves based on the variance of the score’s Jacobian diagonal
elements, a topological ordering is estimated. The SCORE algorithm employs score matching
techniques, specifically an extension of Stein’s identity, to approximate the necessary score Jacobian
components from data samples.

CAM This approach estimates additive SEMs by decoupling the task into order search and edge
selection. It first estimates a causal ordering of the variables using (potentially restricted) maximum
likelihood, exploiting the identifiability property of additive models. Given the estimated order,
sparse additive regression methods are then applied to select relevant parent variables (edges) for
each node and estimate the corresponding additive functions. For high-dimensional data, an initial
neighborhood selection step can reduce the search space before estimating the order.

In addition to the above baselines, we also include DCILP Dong et al. (2024), a recently proposed
divide-and-conquer method that combines Markov Blanket estimation with global structure recovery
via integer linear programming. While DCILP shares a similar high-level motivation with VISTA,
it suffers from several practical limitations. Most notably, its final merging step relies on solving a
large-scale ILP problem, which becomes computationally infeasible as the graph size increases. In
many of our experimental settings, DCILP either fails to complete within a reasonable time window
or produces no feasible solution at all. These issues highlight the need for a more lightweight and
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scalable integration procedure, which motivates the design of VISTA. We provide a direct comparison
with DCILP in the following section.

F.2 COMPARISON WITH DCILP

We provide a detailed comparison between VISTA and DCILP, two methods that share a high-level
divide-and-conquer strategy based on Markov Blanket decomposition. Although both approaches
follow a similar decomposition principle, they differ notably in how they perform the aggregation
step and enforce global acyclicity.

DCILP formulates the merging process as an integer linear program that guarantees the removal of
2-cycles, but relies on iterative post-processing to eliminate larger cycles. This procedure can be
computationally intensive and may not always yield globally consistent solutions without additional
refinement. In contrast, VISTA enforces acyclicity using a feedback arc set–based heuristic, which is
algorithmically simpler and ensures a valid DAG by construction. Another distinction lies in how the
two frameworks handle local estimation errors: DCILP applies aggressive pruning to Markov Blanket
outputs before global optimization, which may propagate early-stage errors. VISTA instead retains
a broader set of subgraph information and applies confidence-aware filtering during aggregation,
providing more flexibility and robustness to local variability.

For empirical evaluation, we followed DCILP’s implementation baseline by using DAGMA Bello
et al. (2022) as the phase-2 solver in both frameworks. This matched setup enables a controlled
comparison under consistent base learners and subgraph configurations.

Table 5: Comparison of DCILP and VISTA under DAGMA baseline.
Scenario Model FDR↓ TPR↑ SHD↓ F1↑

ER5, n = 30
DCILP 0.74± 0.04 0.52± 0.06 227.00± 27.17 0.35± 0.04
VISTA-NV 0.63± 0.02 0.98± 0.01 236.80± 14.86 0.54± 0.02
VISTA-WV 0.09± 0.07 0.75± 0.11 45.80± 23.57 0.82± 0.09

SF5, n = 30
DCILP 0.81± 0.04 0.49± 0.07 309.70± 60.87 0.27± 0.04
VISTA-NV 0.63± 0.01 0.97± 0.01 208.20± 7.98 0.54± 0.01
VISTA-WV 0.13± 0.09 0.85± 0.06 35.00± 16.97 0.86± 0.07

ER3, n = 50
DCILP 0.79± 0.02 0.49± 0.05 282.50± 26.23 0.29± 0.02
VISTA-NV 0.74± 0.02 0.97± 0.02 397.20± 41.38 0.40± 0.03
VISTA-WV 0.06± 0.01 0.76± 0.04 39.00± 3.22 0.84± 0.02

SF3, n = 50
DCILP 0.91± 0.01 0.52± 0.03 820.40± 110.23 0.15± 0.01
VISTA-NV 0.71± 0.05 0.95± 0.02 345.00± 71.05 0.44± 0.05
VISTA-WV 0.14± 0.04 0.84± 0.06 40.80± 12.38 0.81± 0.08

ER5, n = 50
DCILP 0.80± 0.01 0.52± 0.04 520.20± 29.51 0.29± 0.01
VISTA-NV 0.76± 0.01 0.98± 0.01 730.80± 24.85 0.38± 0.01
VISTA-WV 0.09± 0.03 0.83± 0.03 59.20± 10.32 0.86± 0.02

SF5, n = 50
DCILP 0.90± 0.01 0.49± 0.03 1019.90± 57.87 0.17± 0.01
VISTA-NV 0.75± 0.01 0.97± 0.01 665.50± 42.65 0.40± 0.02
VISTA-WV 0.10± 0.02 0.80± 0.02 64.50± 6.50 0.85± 0.02

Results in Table 5 show that, under the same configuration using DAGMA as the local structure
learner, both VISTA variants (NV and WV) consistently outperform DCILP across all benchmark
settings. Even the naive voting variant achieves lower FDR and SHD while maintaining competitive
or higher TPR and F1 scores, suggesting that the ILP-based merging step in DCILP may introduce
additional overhead without proportional accuracy gains. The weighted voting variant further
improves performance by adaptively resolving directional conflicts based on edge support. We also
note that as graph size increases such as n = 100, DCILP occasionally encounters solver infeasibility
or produces solutions with substantially higher error rates, likely due to the combinatorial complexity
of ILP formulation. In contrast, VISTA maintains stable performance with reduced computational
demands. These comparisons underscore the scalability and robustness benefits of our framework in
large-graph causal discovery settings.
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F.3 TIME COMPARISON

Since each local structure is learned independently based on a variable’s Markov Blanket, the entire
divide phase can be executed in parallel across variables or computing nodes. This distributed strategy
significantly reduces total runtime, especially when base learners are computationally intensive,
such as neural network based models such as DAG-GNN and GraN-DAG or algorithms involving
topological sorting such as SCORE.

Table 6, 7 and 8 confirm that VISTA consistently reduces the total execution time across a variety of
settings. In large-scale graphs, where direct application of base methods may be computationally
prohibitive, our framework provides a scalable alternative that decomposes the original problem into
tractable subproblems. The integration step is lightweight and adds negligible overhead relative to
the base learners. These results demonstrate that the benefits of VISTA are not limited to statistical
performance, but also extend to practical runtime efficiency, enabling the application of complex
causal discovery methods to larger and more realistic graphs.

Table 6: Comparison of total computing time (s) under ER5 setting.
Method n = 50 n = 100 n = 300

NOTEARS 510.73± 84.15 2465.33± 58.02 22407.77± 940.32
+VISTA 213.73± 149.68 1096.51± 142.87 3714.30± 908.81

GOLEM 76.16± 7.59 115.01± 35.82 276.80± 11.03
+VISTA 23.25± 0.67 37.57± 1.36 46.53± 4.61

DAG-GNN 794.42± 72.61 3137.68± 214.75 29801.46± 1105.64
+VISTA 311.34± 54.23 818.52± 501.88 3313.86± 945.29

GraN-DAG 919.26± 106.65 5613.13± 1068.14 25684.95± 2035.14
+VISTA 208.43± 26.62 934.72± 50.64 2851.04± 376.84

SCORE 629.88± 93.72 15876.42± 807.89 ——–
+VISTA 191.84± 33.49 479.60± 38.19 945.45± 72.27

Table 7: Comparison of total computing time (s) under SF3 setting.
Method n = 50 n = 100 n = 300

NOTEARS 713.30± 58.81 2813.36± 804.27 16631.62± 632.76
+VISTA 400.82± 83.65 652.59± 57.99 1714.09± 237.32

GOLEM 100.73± 45.25 169.20± 16.68 398.58± 45.03
+VISTA 23.63± 1.61 35.47± 2.26 60.20± 13.66

DAG-GNN 697.78± 93.37 3555.95± 2050.91 21242.03± 2178.95
+VISTA 282.70± 297.75 645.77± 308.88 2020.79± 811.42

GraN-DAG 890.96± 135.84 4978.95± 656.25 19372.84± 3037.94
+VISTA 319.29± 389.88 817.63± 145.63 2849.62± 1558.40

SCORE 495.12± 62.44 18643.16± 970.22 ——–
+VISTA 153.65± 46.35 354.37± 86.45 5080.02± 3674.36

F.4 ADDITIONAL EXPERIMENTS

To assess the effectiveness and scalability of VISTA, we conduct extensive experiments across a
diverse set of synthetic graph families, varying both in size and structural complexity. This part is a
detailed supplement of our Section 4.1. Specifically, we evaluate performance on 14 different graph
configurations derived from ER and SF graphs, each instantiated with average degrees of 3 and 5, and
node sizes n ∈ {30, 50, 100, 300}. This results in a comprehensive benchmark covering both sparse
and dense regimes under varying dimensionalities. For each configuration, we benchmark recent
representative causal discovery methods. Each method is tested under three settings: the original
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Table 8: Comparison of total computing time (s) under SF5 setting.
Method n = 50 n = 100 n = 300

NOTEARS 808.15± 102.23 2842.83± 312.22 18676.80± 6873.83
+VISTA 501.96± 62.14 1200.41± 536.14 3041.62± 1003.68

GOLEM 77.82± 11.90 217.95± 73.36 446.16± 30.04
+VISTA 23.71± 2.37 99.20± 132.68 167.89± 214.19

DAG-GNN 911.14± 315.63 5762.00± 1714.01 31106.3± 452.12
+VISTA 356.46± 101.18 1133.18± 306.12 2641.62± 541.84

GraN-DAG 853.75± 98.54 4944.93± 2325.58 38163.22± 3919.71
+VISTA 313.24± 120.79 934.83± 218.82 2999.39± 485.66

SCORE 637.37± 48.40 18904.31± 344.10 ——–
+VISTA 187.91± 38.43 2003.45± 882.48 4124.09± 1311.74

baseline, VISTA with naive voting (+VISTA-NV), and VISTA with weighted voting (+VISTA-WV).
Notably, CAM does not scale well with graph size and GraN-DAG fails when n reaches 300, so we
do not report the results here. Due to the increasing computational cost with graph size, we ran each
experimental configuration 10 times for n = 30 and n = 50, 5 times for n = 100, and 3 times for
n = 300, and report the average and standard deviation across trials.

Although the advantages of VISTA are most pronounced in high-dimensional or structurally com-
plex settings, it is important to note that for some small-scale graphs, particularly relative sparse
configurations such as ER3 with low node counts, the original base learners already achieve high
accuracy. In these cases, the benefits of decomposition are less clear. Errors introduced during
Markov Blanket identification and aggregation, as analyzed in Appendix D, may offset any gains
from the divide-and-conquer process. When the true structure is relatively simple and well-recovered
by the base model, additional processing may be unnecessary.

By contrast, as the graph size increases, structural coverage from local subgraphs becomes more
reliable, and the advantages of localized inference and confidence-aware aggregation become more
pronounced. In particular, VISTA consistently improves structural accuracy and reduces false
discoveries for base learners that face scalability challenges in large and complex graphs, providing a
practical approach to mitigating the curse of dimensionality in causal structure learning.

The remaining experimental results are as follows:

Table 9: Results with linear and nonlinear synthetic datasets (n = 30, h = 5).
ER5 SF5

Method FDR↓ TPR↑ SHD↓ F1↑ FDR↓ TPR↑ SHD↓ F1↑

NOTEARS 0.21± 0.08 0.73± 0.07 64.70± 18.22 0.76± 0.05 0.24± 0.13 0.70± 0.10 64.30± 29.24 0.73± 0.08
+VISTA-NV 0.63± 0.00 0.97± 0.01 236.60± 7.32 0.53± 0.01 0.56± 0.02 0.98± 0.01 155.20± 11.90 0.61± 0.02
+VISTA-WV 0.12± 0.04 0.75± 0.03 50.00± 8.64 0.81± 0.03 0.03± 0.02 0.86± 0.03 20.20± 2.62 0.84± 0.02

GOLEM 0.24± 0.08 0.79± 0.07 63.50± 23.61 0.77± 0.05 0.15± 0.11 0.85± 0.09 35.30± 23.39 0.85± 0.07
+VISTA-NV 0.65± 0.01 0.97± 0.01 251.00± 2.62 0.52± 0.01 0.56± 0.02 0.99± 0.01 158.40± 3.09 0.61± 0.02
+VISTA-WV 0.17± 0.03 0.79± 0.05 53.00± 8.73 0.81± 0.04 0.01± 0.01 0.89± 0.03 15.00± 4.32 0.94± 0.02

DAG-GNN 0.29± 0.06 0.77± 0.19 77.50± 20.08 0.74± 0.09 0.29± 0.19 0.72± 0.25 65.50± 36.60 0.72± 0.16
+VISTA-NV 0.64± 0.00 0.98± 0.01 250.30± 4.78 0.52± 0.00 0.60± 0.02 0.99± 0.01 189.70± 14.06 0.56± 0.02
+VISTA-WV 0.27± 0.03 0.84± 0.07 60.00± 7.85 0.78± 0.05 0.03± 0.02 0.87± 0.04 20.00± 7.26 0.92± 0.03

CAM 0.77± 0.04 0.53± 0.08 267.50± 23.32 0.32± 0.04 0.77± 0.06 0.54± 0.11 241.20± 37.51 0.32± 0.06
+VISTA-NV 0.78± 0.04 0.66± 0.12 327.00± 24.39 0.33± 0.06 0.82± 0.02 0.57± 0.07 335.60± 9.06 0.27± 0.03
+VISTA-WV 0.63± 0.08 0.40± 0.10 158.00± 16.87 0.39± 0.09 0.17± 0.04 0.59± 0.05 122.00± 5.35 0.69± 0.04

GraN-DAG 0.67± 0.12 0.18± 0.10 159.60± 24.52 0.22± 0.10 0.72± 0.38 0.26± 0.03 187.80± 80.73 0.27± 0.18
+VISTA-NV 0.90± 0.08 0.39± 0.12 211.70± 49.91 0.16± 0.10 0.85± 0.29 0.41± 0.15 239.50± 46.61 0.22± 0.31
+VISTA-WV 0.31± 0.06 0.14± 0.07 134.50± 35.55 0.23± 0.09 0.25± 0.10 0.18± 0.05 128.60± 52.47 0.29± 0.07

SCORE 0.66± 0.08 0.43± 0.05 117.40± 47.71 0.38± 0.05 0.55± 0.40 0.71± 0.24 153.30± 76.60 0.55± 0.31
+VISTA-NV 0.80± 0.06 0.83± 0.05 399.60± 36.65 0.32± 0.08 0.76± 0.25 0.88± 0.04 440.60± 49.79 0.38± 0.31
+VISTA-WV 0.34± 0.09 0.56± 0.08 95.50± 28.86 0.61± 0.06 0.36± 0.16 0.79± 0.05 88.80± 11.60 0.71± 0.10
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Table 10: Results with linear and nonlinear synthetic datasets (n = 50, h = 3).
ER3 SF3

Method FDR↓ TPR↑ SHD↓ F1↑ FDR↓ TPR↑ SHD↓ F1↑

NOTEARS 0.09± 0.08 0.90± 0.05 24.90± 17.75 0.90± 0.05 0.22± 0.13 0.76± 0.11 62.80± 33.53 0.77± 0.08
+VISTA-NV 0.72± 0.03 0.97± 0.01 353.40± 57.19 0.44± 0.04 0.68± 0.04 0.97± 0.01 304.40± 52.48 0.48± 0.04
+VISTA-WV 0.09± 0.03 0.86± 0.03 30.50± 5.43 0.89± 0.02 0.07± 0.03 0.80± 0.07 36.90± 11.73 0.85± 0.05

GOLEM 0.04± 0.04 0.97± 0.02 8.10± 6.98 0.97± 0.03 0.15± 0.06 0.84± 0.03 36.00± 11.81 0.84± 0.03
+VISTA-NV 0.76± 0.03 0.93± 0.03 431.60± 63.02 0.38± 0.04 0.75± 0.04 0.93± 0.03 397.70± 68.22 0.40± 0.05
+VISTA-WV 0.12± 0.05 0.76± 0.04 47.90± 9.80 0.81± 0.04 0.09± 0.11 0.85± 0.08 20.20± 16.75 0.88± 0.07

DAG-GNN 0.14± 0.08 0.86± 0.14 38.80± 26.22 0.86± 0.08 0.26± 0.10 0.73± 0.11 75.40± 24.08 0.73± 0.07
+VISTA-NV 0.73± 0.02 0.98± 0.00 380.00± 48.64 0.42± 0.03 0.73± 0.03 0.98± 0.00 378.00± 50.22 0.42± 0.04
+VISTA-WV 0.07± 0.04 0.84± 0.02 29.30± 2.05 0.89± 0.01 0.05± 0.03 0.84± 0.05 41.00± 8.01 0.89± 0.03

CAM —— —— —— —— —— —— —— ——
+VISTA-NV 0.87± 0.02 0.66± 0.06 641.30± 67.62 0.22± 0.03 0.86± 0.02 0.71± 0.05 611.20± 64.82 0.24± 0.03
+VISTA-WV 0.66± 0.05 0.51± 0.07 192.00± 34.23 0.40± 0.05 0.65± 0.06 0.51± 0.10 181.80± 21.12 0.41± 0.07

GraN-DAG 0.74± 0.32 0.09± 0.04 209.00± 54.45 0.11± 0.05 0.34± 0.42 0.08± 0.04 166.60± 42.38 0.12± 0.03
+VISTA-NV 0.67± 0.15 0.31± 0.06 158.80± 33.13 0.32± 0.08 0.48± 0.30 0.34± 0.09 195.20± 29.46 0.41± 0.11
+VISTA-WV 0.29± 0.08 0.26± 0.05 123.40± 15.51 0.38± 0.05 0.22± 0.21 0.20± 0.09 118.80± 23.75 0.32± 0.12

SCORE 0.69± 0.05 0.67± 0.08 166.20± 59.57 0.42± 0.03 0.64± 0.06 0.64± 0.10 115.30± 31.50 0.45± 0.02
+VISTA-NV 0.86± 0.06 0.95± 0.03 980.80± 79.12 0.24± 0.09 0.90± 0.04 0.91± 0.05 923.70± 146.32 0.18± 0.07
+VISTA-WV 0.33± 0.04 0.74± 0.02 56.40± 19.95 0.70± 0.02 0.49± 0.40 0.80± 0.06 74.60± 22.43 0.62± 0.30

Table 11: Results with linear and nonlinear synthetic datasets (n = 50, h = 5).
ER5 SF5

Method FDR↓ TPR↑ SHD↓ F1↑ FDR↓ TPR↑ SHD↓ F1↑

NOTEARS 0.16± 0.09 0.81± 0.06 81.80± 34.23 0.82± 0.05 0.23± 0.08 0.75± 0.04 105.90± 26.65 0.76± 0.04
+VISTA-NV 0.75± 0.02 0.98± 0.01 685.60± 68.09 0.40± 0.02 0.72± 0.02 0.98± 0.01 585.30± 71.56 0.43± 0.03
+VISTA-WV 0.08± 0.04 0.76± 0.04 72.90± 13.75 0.83± 0.03 0.15± 0.06 0.82± 0.04 71.90± 12.54 0.84± 0.02

GOLEM 0.34± 0.18 0.73± 0.14 156.20± 88.04 0.72± 0.14 0.30± 0.17 0.75± 0.12 130.20± 71.76 0.72± 0.11
+VISTA-NV 0.75± 0.02 0.96± 0.02 706.90± 66.89 0.39± 0.02 0.74± 0.03 0.94± 0.01 618.90± 91.19 0.41± 0.04
+VISTA-WV 0.20± 0.11 0.77± 0.08 99.40± 47.64 0.79± 0.10 0.16± 0.09 0.77± 0.06 84.40± 34.04 0.80± 0.08

DAG-GNN 0.29± 0.15 0.70± 0.17 141.10± 63.30 0.71± 0.11 0.32± 0.11 0.74± 0.07 142.40± 45.01 0.71± 0.07
+VISTA-NV 0.76± 0.01 0.98± 0.01 720.70± 37.85 0.38± 0.02 0.74± 0.01 0.98± 0.01 633.00± 39.65 0.41± 0.01
+VISTA-WV 0.22± 0.07 0.79± 0.04 99.00± 26.95 0.79± 0.05 0.27± 0.05 0.76± 0.03 116.60± 11.84 0.75± 0.01

CAM —— —— —— —— —— —— —— ——
+VISTA-NV 0.86± 0.01 0.69± 0.05 978.00± 5.25 0.23± 0.02 0.86± 0.01 0.67± 0.06 941.60± 50.21 0.23± 0.02
+VISTA-WV 0.75± 0.02 0.49± 0.08 426.40± 26.82 0.32± 0.03 0.75± 0.03 0.47± 0.08 400.80± 41.11 0.33± 0.05

GraN-DAG 0.62± 0.28 0.05± 0.03 265.80± 35.61 0.08± 0.04 0.64± 0.33 0.07± 0.05 271.80± 29.98 0.10± 0.06
+VISTA-NV 0.51± 0.08 0.17± 0.09 213.40± 82.48 0.25± 0.10 0.56± 0.15 0.26± 0.05 229.20± 63.68 0.32± 0.06
+VISTA-WV 0.36± 0.05 0.13± 0.02 204.00± 47.76 0.22± 0.03 0.27± 0.05 0.18± 0.04 193.00± 57.21 0.29± 0.05

SCORE 0.73± 0.05 0.61± 0.15 431.60± 114.55 0.34± 0.02 0.71± 0.04 0.42± 0.04 365.00± 68.00 0.34± 0.03
+VISTA-NV 0.84± 0.01 0.47± 0.32 686.00± 62.50 0.24± 0.04 0.81± 0.03 0.54± 0.06 582.50± 57.50 0.28± 0.03
+VISTA-WV 0.64± 0.07 0.38± 0.06 271.00± 43.00 0.37± 0.05 0.35± 0.15 0.25± 0.04 210.50± 11.50 0.36± 0.04

Table 12: Results with linear and nonlinear synthetic datasets (n = 100, h = 3).
ER3 SF3

Method FDR↓ TPR↑ SHD↓ F1↑ FDR↓ TPR↑ SHD↓ F1↑

NOTEARS 0.09± 0.09 0.91± 0.06 54.60± 44.78 0.91± 0.08 0.15± 0.08 0.75± 0.06 108.80± 36.84 0.80± 0.06
+VISTA-NV 0.81± 0.04 0.95± 0.01 1245.60± 349.77 0.32± 0.05 0.75± 0.04 0.95± 0.03 864.00± 146.07 0.39± 0.05
+VISTA-WV 0.09± 0.02 0.73± 0.02 99.00± 3.77 0.81± 0.01 0.11± 0.03 0.80± 0.05 92.00± 9.67 0.85± 0.03

GOLEM 0.09± 0.10 0.95± 0.05 39.80± 43.52 0.93± 0.08 0.22± 0.05 0.72± 0.04 137.00± 22.24 0.75± 0.04
+VISTA-NV 0.84± 0.01 0.91± 0.02 1373.80± 202.28 0.28± 0.02 0.81± 0.03 0.90± 0.02 1180.20± 163.44 0.31± 0.04
+VISTA-WV 0.22± 0.02 0.65± 0.04 147.60± 17.55 0.71± 0.03 0.18± 0.13 0.78± 0.06 91.80± 72.13 0.80± 0.07

DAG-GNN 0.15± 0.11 0.71± 0.17 119.40± 63.78 0.77± 0.15 0.31± 0.14 0.54± 0.09 215.60± 47.23 0.59± 0.06
+VISTA-NV 0.63± 0.03 0.95± 0.01 1239.60± 131.07 0.53± 0.03 0.78± 0.04 0.94± 0.01 1058.40± 259.74 0.34± 0.06
+VISTA-WV 0.12± 0.02 0.82± 0.03 87.20± 15.30 0.85± 0.02 0.23± 0.10 0.70± 0.08 151.20± 25.35 0.73± 0.03

GraN-DAG 0.90± 0.03 0.04± 0.02 463.40± 22.94 0.04± 0.02 0.83± 0.07 0.02± 0.02 366.40± 118.26 0.05± 0.02
+VISTA-NV 0.88± 0.06 0.25± 0.06 390.80± 73.58 0.17± 0.06 0.78± 0.06 0.26± 0.08 308.40± 49.60 0.24± 0.05
+VISTA-WV 0.38± 0.05 0.16± 0.03 250.60± 82.64 0.25± 0.04 0.44± 0.08 0.18± 0.05 266.68± 67.76 0.27± 0.06

SCORE 0.91± 0.05 0.62± 0.04 2859.40± 839.4 0.16± 0.08 0.92± 0.03 0.66± 0.04 3131.20± 1002 0.14± 0.05
+VISTA-NV 0.94± 0.04 0.95± 0.12 2614.80± 566.5 0.11± 0.07 0.91± 0.05 0.70± 0.05 2727.60± 505.6 0.16± 0.08
+VISTA-WV 0.53± 0.05 0.75± 0.06 339.00± 189.43 0.58± 0.04 0.51± 0.10 0.68± 0.08 408.80± 205.64 0.57± 0.07

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 13: Results with linear and nonlinear synthetic datasets (n = 300, h = 3).
ER3 SF3

Method FDR↓ TPR↑ SHD↓ F1↑ FDR↓ TPR↑ SHD↓ F1↑

NOTEARS 0.13± 0.03 0.89± 0.02 202.33± 48.98 0.88± 0.03 0.16± 0.06 0.72± 0.04 519.33± 71.15 0.78± 0.04
+VISTA-NV 0.88± 0.01 0.91± 0.00 6177.00± 372.80 0.21± 0.02 0.89± 0.00 0.91± 0.01 6917.67± 998.81 0.20± 0.00
+VISTA-WV 0.23± 0.02 0.66± 0.03 462.00± 54.31 0.71± 0.02 0.21± 0.03 0.55± 0.03 363.00± 76.53 0.65± 0.02

GOLEM 0.23± 0.15 0.76± 0.18 375.67± 258.67 0.77± 0.16 0.56± 0.19 0.34± 0.22 913.33± 304.25 0.38± 0.21
+VISTA-NV 0.88± 0.00 0.85± 0.01 5389.67± 46.91 0.22± 0.00 0.86± 0.03 0.48± 0.28 3248.67± 1304.26 0.18± 0.08
+VISTA-WV 0.17± 0.02 0.45± 0.01 628.33± 11.90 0.50± 0.01 0.21± 0.06 0.44± 0.04 597.00± 53.59 0.56± 0.04

DAG-GNN 0.55± 0.34 0.19± 0.19 1288.33± 832.49 0.21± 0.20 0.72± 0.17 0.23± 0.22 1264.33± 484.00 0.22± 0.19
+VISTA-NV 0.89± 0.01 0.93± 0.00 6449.00± 89.16 0.19± 0.01 0.89± 0.01 0.89± 0.02 6627.00± 651.98 0.19± 0.02
+VISTA-WV 0.18± 0.06 0.57± 0.07 494.67± 50.22 0.66± 0.04 0.34± 0.06 0.49± 0.07 633.33± 111.52 0.55± 0.03

SCORE —— —— —— —— —— —— —— ——
+VISTA-NV 0.95± 0.00 0.76± 0.04 11064.00± 371.63 0.09± 0.01 0.97± 0.01 0.44± 0.13 13057.00± 3556.57 0.06± 0.02
+VISTA-WV 0.19± 0.02 0.32± 0.03 666.67± 18.66 0.46± 0.03 0.61± 0.29 0.08± 0.04 970.67± 141.74 0.13± 0.07

Table 14: Results with linear and nonlinear synthetic datasets (n = 300, h = 5).
ER5 SF5

Method FDR↓ TPR↑ SHD↓ F1↑ FDR↓ TPR↑ SHD↓ F1↑

NOTEARS 0.30± 0.05 0.68± 0.12 875.33± 205.07 0.69± 0.09 0.50± 0.09 0.22± 0.12 1402.33± 70.59 0.29± 0.14
+VISTA-NV 0.93± 0.02 0.94± 0.01 6520.33± 1357.12 0.10± 0.02 0.90± 0.01 0.78± 0.04 12180.00± 1008.42 0.18± 0.02
+VISTA-WV 0.15± 0.04 0.67± 0.05 689.67± 98.89 0.75± 0.03 0.24± 0.02 0.38± 0.03 890.33± 166.61 0.51± 0.03

GOLEM 0.81± 0.05 0.10± 0.03 1921.33± 111.21 0.13± 0.04 0.93± 0.03 0.02± 0.01 1839.67± 139.17 0.03± 0.02
+VISTA-NV 0.92± 0.01 0.28± 0.14 5551.00± 1310.12 0.12± 0.03 0.92± 0.00 0.77± 0.09 13437.00± 1562.43 0.14± 0.00
+VISTA-WV 0.20± 0.23 0.23± 0.02 1225.00± 38.79 0.36± 0.03 0.37± 0.11 0.10± 0.06 1391.00± 61.65 0.17± 0.10

DAG-GNN 0.91± 0.06 0.33± 0.17 3858.00± 1558.37 0.17± 0.04 0.91± 0.04 0.15± 0.06 4617.33± 3064.50 0.10± 0.04
+VISTA-NV 0.90± 0.03 0.86± 0.04 8988.00± 910.33 0.18± 0.05 0.91± 0.03 0.81± 0.04 14578.67± 4342.92 0.16± 0.05
+VISTA-WV 0.37± 0.14 0.25± 0.05 1920.33± 809.62 0.36± 0.06 0.41± 0.03 0.21± 0.06 2191.33± 656.02 0.31± 0.09

SCORE —— —— —— —— —— —— —— ——
+VISTA-NV 0.96± 0.00 0.17± 0.07 18762.67± 2501.28 0.06± 0.01 0.98± 0.00 0.13± 0.15 22039.00± 2028.89 0.03± 0.01
+VISTA-WV 0.93± 0.00 0.10± 0.03 1698.33± 103.76 0.07± 0.01 0.95± 0.02 0.08± 0.06 2582.67± 830.34 0.06± 0.02
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Figure 5: Performance of DAG-GNN on SF5 Graphs.
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Figure 6: Performance of GOLEM on SF5 Graphs.
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Figure 7: Performance of NOTEARS on SF5 Graphs.
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Figure 8: Performance of DAG-GNN on ER5 Graphs.
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Figure 9: Performance of GOLEM on ER5 Graphs.
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Figure 10: Performance of NOTEARS on ER5 Graphs.
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