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Abstract
State-of-the-art machine learning models are001
prone to adversarial attacks: maliciously002
crafted inputs to fool the model into making a003
wrong prediction, often with high confidence.004
While defense strategies have been extensively005
explored in the computer vision domain, re-006
search in natural language processing still007
lacks techniques to make models resilient to008
adversarial text inputs. We propose an adver-009
sarial detector leveraging Shapley additive ex-010
planations against text attacks. Our approach011
outperforms the current state-of-the-art detec-012
tor by around 19% F1-score on the IMDb and013
14% on the SST-2 datasets while also show-014
ing competitive performance on AG_News and015
Yelp Polarity. Furthermore, we prove the de-016
tector to only require a low amount of training017
samples and, in some cases, to generalize to018
different datasets without needing to retrain.019

1 Introduction020

Adversarial examples were first discovered by021

Szegedy et al. (2014) and are input samples pur-022

posely crafted to fool the model. This is often023

done by carefully adding perturbations to the in-024

put. Despite being extremely similar to the original025

samples, they are often misclassified with high con-026

fidence by the model (Goodfellow et al., 2015).027

Without advanced defense techniques to tackle this028

issue, machine learning models become unusable029

in high-stakes situations and safety-critical tasks030

like autonomous driving (Sharma et al., 2019).031

Research in computer vision has extensively032

worked on better understanding adversarial image033

attacks and developing more robust models (Madry034

et al., 2018). While the problem is not solved yet,035

efforts have substantially contributed towards cre-036

ating actionable defenses strategies (Ozdag, 2018).037

Unfortunately, a much smaller amount of research038

has focused on this issue in the Natural Language039

Processing (NLP) domain. For the majority of at-040

tack and defense techniques in computer vision,041

Zhang et al. (2020) showed that they cannot be 042

directly transferred due to intrinsic differences be- 043

tween image and text data. 044

In contrast to images, text data needs to fulfill 045

a large variety of properties such as lexical, gram- 046

matical, and semantic constraints. Without them, 047

the altered input presents substantial inconsisten- 048

cies and can be easily detected by human users 049

or automatic language spell checkers (Alshemali 050

and Kalita, 2019). This makes the development of 051

text attacks harder. For example, applying gradient- 052

based adversarial attacks is proven to be highly 053

efficient in computer vision as the perturbations 054

are hardly visible (Ian J Goodfellow and Szegedy, 055

2015). For text data, however, it generates exam- 056

ples with incorrect characters and word sequences 057

since there is no smooth gradient on sentences. 058

Nevertheless, several techniques have been pro- 059

posed to generate high-quality text attacks (Gao 060

et al., 2018; Ebrahimi et al., 2018; Ren et al., 2019). 061

Thanks to recent advances in NLP, the employ- 062

ment of language-based classifiers has been on the 063

rise. The lack of defense strategies against text 064

attacks motivates our research as this is a major ob- 065

stacle to the safe deployment of NLP models. We 066

propose an adversarial attack detector that lever- 067

ages model explainability to accurately recognize 068

input manipulations. For each input, the detector 069

identifies patterns in the corresponding explanation 070

retrieved by applying SHapley Additive exPlana- 071

tions (SHAP) to the classifier’s prediction (Lund- 072

berg and Lee, 2017). The same idea has already 073

been shown to work for adversarial attacks on im- 074

ages (Fidel et al., 2020). 075

Our detector is fully automatic and considerably 076

outperforms previous defenses against text attacks. 077

For our contribution, we also analyze our method 078

in terms of data efficiency and generalization. We 079

show that our proposed approach still offers com- 080

petitive performance when trained on very little 081

data and can even be transferred to unseen datasets 082
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while almost matching the previous state of the art.083

Alongside the quantitative analysis and its results,084

we visualize the space of generated Shapley-value-085

based explanations. This qualitative analysis sheds086

light on the reasons behind our method’s high per-087

formance and desirable properties.088

2 Related Work089

2.1 Adversarial Text Attacks090

An adversarial text attack is an artificial input091

obtained by modifying a sample from the avail-092

able data. Normally, the altered text is similar—093

syntactically, semantically, or both—to the original094

one. However, their corresponding classification095

output substantially differs. Attacks can be either096

targeted or untargeted (Tao et al., 2018). Attacks097

of the first type aim to create misclassification re-098

sults w.r.t. a specific class whereas the latter type099

wants to generate a misclassification regardless of100

the exact class.101

Methods like DeepWordBug (Gao et al., 2018)102

or Hotflip (Ebrahimi et al., 2018) introduce103

character-level noise to create typos and grammat-104

ical inconsistencies in the sentence. These adver-105

sarial examples appear very similar to the origi-106

nal samples, but do not perfectly preserve their107

meaning and can be recognized due to their lexical108

incorrectness.109

Other types of attacks instead alter the text at110

the word level and produce semantically equivalent111

and grammatically correct sentences to the initial112

input. Examples of techniques using this strategy113

are PWWS (Ren et al., 2019) and TextFooler (Jin114

et al., 2020).115

2.2 Defense Strategies for Computer Vision116

Robustness against adversarial attacks—and espe-117

cially their automatic detection—has been more118

exhaustively researched for computer vision ap-119

plications rather than for text inputs. Hence, we120

briefly present a selection of the most promising121

approaches.122

Xu et al. (2018) propose Feature Squeezing,123

based on the assumption that feature spaces are124

often unnecessarily large and leave extensive pos-125

sibilities for an attacker to generate adversarial ex-126

amples. Their approach leverages this fact by com-127

paring the prediction of the original input image128

with a simplified one. When this difference sur-129

passes a specific threshold, the input is classified130

as adversarial.131

Roth et al. (2019) detect adversarial examples by 132

measuring statistical differences between original 133

and perturbed logits. According to their results, 134

output logits corresponding to adversarial examples 135

exhibit a much larger variation than normal samples 136

when the input is perturbed. 137

Integrating explainability to detect adversarial 138

examples has already been shown to be beneficial. 139

Fidel et al. (2020) detect patterns in the SHAP sig- 140

natures of input images (Lundberg and Lee, 2017). 141

For normal samples, the inter-class SHAP signa- 142

tures share common characteristics. For adversarial 143

examples, however, the SHAP signatures show a 144

mixture between two classes which can easily be 145

detected using an additional classification model. 146

2.3 Defense Strategies for Natural Language 147

Processing 148

Only a few approaches exist to defend models 149

against adversarial text attacks. Soll et al. (2019) 150

adapt the concept of defensive distillation from 151

computer vision to enhance model robustness (Pa- 152

pernot et al., 2016). This is done by using soft 153

labels, i.e. the softmax probability output of a previ- 154

ously trained model. Unfortunately, their approach 155

only leads to a minimal increase in robustness: 0.1- 156

2.3% depending on the configuration. 157

Alshemali and Kalita (2019) exploit a spell 158

checking system that utilizes contextual and fre- 159

quency information for correcting misspelled 160

words to create a more robust model. Their ap- 161

proach is successful in the task-at-hand (16.3- 162

26.6% robustness increase) but does not apply to 163

more advanced text attacks. 164

The most recent approach was developed by 165

Mozes et al. (2021). The authors propose 166

frequency-guided word substitutions. Their ap- 167

proach has shown medium to high F1 detection 168

scores in a range from 62.2-91.4%, varying on the 169

type of attack and target model. 170

2.4 Feature Relevance Explainability 171

Methods 172

Among explainability techniques, feature relevance 173

methods are often used to explain predictions pro- 174

duced by black-box models (Arrieta et al., 2020). 175

Their goal is to attribute a relevance score to each 176

input feature. Such value should quantify the ef- 177

fect that the feature has on the output, i.e. their 178

contribution to the model’s prediction. 179

Some of these methods rely on computing the 180

gradient of the output w.r.t. the input features (Si- 181
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Input Text 
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Adversarial
Detector

 looks fine

 is adversarial

Post-Hoc
Explainability

(a) Goal Pipeline

(1) Train Target
Classifier

(2) Generate Text
Attacks (PWWS)

(3) Generate
Explanations (SHAP)

(4) Train
Adversarial Detector

Original
Samples

(b) Construction Steps

Figure 1: Our detector for recognizing adversarial examples: the overall pipeline once the detector is trained (a)
and the necessary steps in order to train it (b). While generating many adversarial attacks and explanations is
required for training, the detector can then be simply "plugged in" and deployed together with the classifier f .

monyan et al., 2014; Sundararajan et al., 2017).182

Others, such as LRP (Bach et al., 2015) and183

DeepLIFT (Shrikumar et al., 2017), are specifi-184

cally designed for neural networks and follow the185

information flow in a backward fashion through the186

model’s architecture. The procedure continues one187

layer at a time until the input features are reached.188

LIME (Ribeiro et al., 2016) explains black-box189

models via a local surrogate that approximates their190

behavior around a single instance. The surrogate191

can be then interpreted directly to estimate each192

feature’s relevance.193

Lundberg and Lee (2017) prove that several pop-194

ular feature relevance methods—including LIME,195

LRP, and DeepLIFT—belong to a broader class196

of approaches: additive feature relevance methods.197

The authors propose a unified view of such meth-198

ods that, combined with the game-theoretic concept199

of Shapley values (Shapley, 1952), constitutes the200

SHAP framework. SHAP-based explanations are201

covered more in detail in Section 3.2 as they rep-202

resent a fundamental component of our proposed203

method.204

3 Methodology205

Our approach is strongly inspired by the work of206

Fidel et al. (2020), which detects image-based ad-207

versarial attacks for computer vision models by208

using SHAP signatures. Our work, instead, stud-209

ies the application of this idea to text attacks for210

NLP classifiers. As sketched in Figure 1a, our goal 211

pipeline consists of multiple stages. First, the input 212

is fed to a classifier trained on the task-at-hand, 213

which outputs a prediction. Shapley values are 214

then computed w.r.t. the outcome and passed onto 215

a machine-learning detector that predicts whether 216

the sample is an adversarial attack. Note that our 217

detector does not make any assumption on the clas- 218

sifier and is hence model-agnostic. 219

The classifier targeted by the attacks becomes 220

considerably more robust when used in combina- 221

tion with the adversarial detector. To achieve our 222

goal, we have to take several steps in order to train 223

our detector. These steps—also summarized in Fig- 224

ure 1b for the reader—are described in detail in the 225

next sections. 226

3.1 Crafting Adversarial Text Attacks 227

To train and test our detector, we choose to craft 228

attacks semantically similar to the original input. 229

This choice preserves lexical and grammatical co- 230

herence also in adversarial sentences. We believe 231

that such attacks are more subtle as they cannot be 232

detected by spell checkers. In practice, for each 233

sample x in the dataset, we generate 234

x∗ = x+ ∆x, ‖∆x‖ < ε (1) 235

where ∆x is a semantic perturbation and the 236

classes predicted for x and x∗ are different. To 237

this end, we utilize the untargeted Probability 238
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Use synonym that causes most 
significant change

Replace word that causes most 
significant change in classification

US loses 140,000 jobs due to covid-
19 pandemic.

United States, United States of 
America, America, US, USA, …

Greedily iterate until classification changes

Figure 2: A simplified view of the generation of adversarial examples using PWWS (Ren et al., 2019)

Weighted Word Saliency (PWWS) method by Ren239

et al. (2019). This approach shows high effec-240

tiveness with good transferability. According to241

human evaluation, PWWS provides realistic ex-242

amples with lexical correctness and only sporadic243

grammatical errors or semantic shifting (Ren et al.,244

2019).245

The technique selects the word to be replaced246

based on two factors. The first is the change in247

the classification probability after substitution. The248

second, called word saliency, measures the varia-249

tion in the output probability of the classifier if the250

word is set to unknown (out of vocabulary). The251

chosen word is then replaced by a word from a syn-252

onym set which causes the most significant change253

of classification probability. The algorithm greed-254

ily iterates until enough words have been replaced255

to change the final classification label. Figure 2256

sketches the core idea behind the method.257

3.2 Generating Model Explanations258

Whenever classifying an input sentence as either259

regular or adversarial, our detector needs access to260

its corresponding feature relevance explanation. In261

other words, the detector takes its decision based on262

how much each feature—in our case each word—263

influences the final model prediction. The assump-264

tion is that the model’s reaction to original and265

adversarial samples is different even if the inputs266

are similar. Thus, the model explanations for the267

two samples should also substantially differ from268

each other (Fidel et al., 2020).269

To train our detector to distinguish explanations270

generated with adversarial samples from normal271

ones, we need to pick an approach to produce an272

extensive amount of instance-level explanations.273

Despite the large number of techniques built for274

this purpose (Ribeiro et al., 2016; Shrikumar et al.,275

2017; Bach et al., 2015), SHAP became promi-276

nent thanks to its solid theoretical foundation and277

its empirical superiority proven by its developers278

(Lundberg and Lee, 2017). For these reasons and 279

its previous successful applications in detecting at- 280

tacks in computer vision (Fidel et al., 2020), we 281

pick it to generate explanations for our inputs. 282

SHAP is based on a game theory concept— 283

called Shapley values (Shapley, 1952)—originally 284

used to fairly distribute a reward to a set of players 285

that contributed to a certain outcome. In our case, 286

the outcome is the model’s prediction whereas the 287

input features, i.e. the input words, are the players 288

involved. Since the players most likely contributed 289

differently to the turnout, their payout should differ 290

based on their impact. Given a text classifier f 291

and the set of all available features M , the Shapley 292

value corresponding to each feature i is computed 293

independently. More precisely, it is a weighted 294

average of the relative outcome differences 295

f(S ∪ {i})− f(S) (2) 296

across all feature subsets S ⊆M \ {i}. 297

As there are 2|M | possible choices for S, exact 298

Shapley values are exponentially complex to com- 299

pute. However, the SHAP framework offers several 300

methods to approximate them accurately and effi- 301

ciently (Lundberg and Lee, 2017). In our work, we 302

utilize DeepSHAP as it is tailored to deep learn- 303

ing models, which we utilize as targets for the text 304

attacks (Lundberg and Lee, 2017). An official im- 305

plementation has been made publicly available by 306

the SHAP authors. 1 307

Figure 3 shows two examples of explanations 308

generated for IMDb, a movie review dataset (Maas 309

et al., 2011), with DeepSHAP. The base value in- 310

dicates the average model’s prediction across the 311

whole dataset and f(x) represents the probability 312

for a specific class. In Subfigure 3a, the SHAP 313

signature was created for the output node corre- 314

sponding to the positive class (=class 1). Only a 315

tiny probability of 0.01 is predicted for it. Features 316

1https://github.com/slundberg/shap
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(a) Original SHAP signature

(b) Adversarial SHAP signature

Figure 3: Force plots generated for a sample of the IMDb dataset and its corresponding adversarial attack. Red
attributes drive the predictions towards class 1 (i.e. a positive review) and blue ones towards class 0 (i.e. a negative
review). Notice the very small probability for the original sample to be positive. In the adversarial SHAP signature
most negative words were replaced by synonyms such that the prediction is now positive.

colored in red have a positive influence and push317

the prediction towards class 1. Features in blue, on318

the other hand, apply a force in the opposite direc-319

tion: towards class 0. Starting from the base value320

(∼ 0.48) and adding up all contributions leads to321

the final prediction of 0.01. The adversarial signa-322

ture, as shown in Subfigure 3b, indicates that the323

sample now is predicted to be a positive review.324

PWWS achieves this by carefully replacing highly325

influential negative words with synonyms until the326

predicted class eventually changes.327

3.3 Target Model and Detector Architectures328

Our pipeline includes two machine learning mod-329

els: the text classifier trained for the task-at-hand330

and the adversarial detector.331

For consistency with Mozes et al. (2021), used332

later for performance comparison, we choose a333

Bidirectional LSTM (Bi-LSTM) (Schuster and Pali-334

wal, 1997) as architecture to be targeted by the ad-335

versarial attacks. However, other NLP models can336

also be utilized as the detector does not make any337

assumption on the classifier. The text inputs are338

first trimmed and padded to an equal length of 100.339

Increasing the input length drastically increases340

complexity along the pipeline while only yielding341

minor accuracy gains. Tokens are transformed into342

GloVe embeddings (Pennington et al., 2014) before343

being fed to the Bi-LSTM core layer. We attach a344

fully connected head layer to compute output prob-345

abilities. We adjust the number of output neurons346

based on the dataset currently in use.347

We do not pick any particular architecture for348

our adversarial detector. Instead, we experiment349

with a variety of relatively simple machine learning350

models to test their performance. We include a 351

random forest (Breiman, 2001), a Support Vector 352

Machine (SVM) (Boser et al., 1992), and a simple 353

two-layer-feed-forward neural network (Rumelhart 354

et al., 1985). 355

3.4 Overall Pipeline and Experimental Setup 356

With the methodology for the main steps outlined 357

in the previous sections, we now describe in greater 358

detail how those steps are combined, following 359

what we initially presented in Figure 1b. We repeat 360

the procedure for each text dataset utilized for test- 361

ing. These will be presented later in our evaluation 362

section (4). 363

To begin with, we train the Bi-LSTM model on 364

the given dataset. We consider this step concluded 365

once the model converges to a satisfactory accu- 366

racy. This is usually around 90% accuracy, depend- 367

ing on the dataset. After that, we utilize PWWS 368

as proposed by Ren et al. (2019)—implemented 369

in the TextAttack library 2—to produce adversar- 370

ial attacks targeting our trained NLP model. We 371

generate one attack for each sample in the dataset. 372

Instance-level explanations—i.e. Shapley value 373

approximations—are then created via SHAP, both 374

for normal and adversarial samples (Lundberg and 375

Lee, 2017). 376

We combine all explanations to compose a bal- 377

anced dataset for our adversarial detector. The 378

data is split into training and test sets following an 379

80/20-ratio. We further used the default hyperpa- 380

rameters for all models in the framework. To allow 381

for optimal reproducibility, we seeded all of our ex- 382

periments. For the neural network-based detector, 383

2https://github.com/QData/TextAttack
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Method AG_News IMDb SST-2 Yelp Polarity Metric

Our
Neural Network 0.90 / 0.90 0.96 / 0.96 0.75 / 0.75 0.94 / 0.94 F1 score / Accuracy
Random Forest 0.91 / 0.91 0.87 / 0.87 0.77 / 0.77 0.84 / 0.84 F1 score / Accuracy
SVM 0.90 / 0.90 0.90 / 0.90 0.74 / 0.74 0.89 / 0.89 F1 score / Accuracy

SotA Detector FGWS (Mozes et al., 2021) - 0.77 0.63 - F1 score

Other Defenses
DNE (Zhou et al., 2020) 0.91 0.82 - - Accuracy
SEM (Wang et al., 2019) 0.76 0.85 - - Accuracy
ASCC (Dong et al., 2021) - 0.77 - - Accuracy

Table 1: Performance of different detector architectures on the AG_News, IMDb, SST-2 and Yelp Polarity datasets.
For comparison, we report also the defense performance of Frequency-Guided Word Substitutions (FGWS), Dirich-
let Neighbourhood Ensemble (DNE), Synonym Encoding Method (SEM) and Adversarial Sparse Convex Combi-
nations (ASCC).

we pick layers of size 400 using a ReLU activation384

and an L1 weight regularizer to avoid overfitting.385

To further increase regularization, Dropout is used386

(Srivastava et al., 2014). The model is then trained387

for 10 epochs using the Adam optimizer with a388

learning rate of 0.001 and β1, β2 set to their default389

values of 0.9 and 0.99 respectively (Kingma and390

Ba, 2015).391

4 Evaluation392

4.1 Performance Results393

We evaluate our approach on four major datasets394

often used in research, namely IMDb (Maas et al.,395

2011), SST-2 (Socher et al., 2013), AG_News and396

Yelp Polarity (Zhang et al., 2015). While the first397

one classifies news articles into four distinct cate-398

gories, the other three are binary sentiment analysis399

tasks on movie review data. The reviews are not400

fed into the detector directly but their correspond-401

ing SHAP signatures are instead. The number of402

samples in the datasets used for the experiment is403

reported in Table 2. Every dataset consists of a404

50:50 split between original and adversarial sam-405

ples and the sizes are varying between 940 (Yelp406

Polarity) and 100,000 (AG_News) samples.407

Dataset Size #Normal #Adversarial
AG_News 100,000 50,000 50,000
IMDb 3,580 1,790 1,790
SST-2 3,162 1,581 1,581
Yelp Polarity 940 470 470

Table 2: Sizes of the individual SHAP signature
datasets used for training the adversarial detector. All
datasets consist of 50% normal and 50% adversarial
signatures.

Table 1 shows the performance of various de-408

tector architectures on the four datasets together409

alongside results achieved by previously proposed410

methods. To the best of our knowledge, the FGWS411

method proposed by Mozes et al. (2021) is the 412

best detector currently available. With our SHAP- 413

based classifiers, we significantly outperform their 414

method on the IMDb dataset by 19% with an F1- 415

score of 96% and on the SST-2 dataset by 14% with 416

an F1-score of 77%. Both Mozes et al. (2021) and 417

our work evaluate their defenses against PWWS 418

targeting a Bi-LSTM model. 419

Besides adversarial detectors, we also outper- 420

form all other existing defenses to the best of our 421

knowledge. On IMDb, our approach improves by 422

11% accuracy compared to the best method (Wang 423

et al., 2019). On AG_News, it is matched only 424

by the DNE method from Zhou et al. (2020). For 425

each approach considered, we report the result w.r.t. 426

the configuration achieving the best performance 427

against PWWS from their corresponding original 428

work. For completeness, we mention that Zhou 429

et al. (2019) reports great results but their perfor- 430

mance is not comparable as they do not test their 431

method against any well-established attack. 432

Relatively simple machine learning models like 433

a random forest or a support vector machine are 434

able to classify the data very accurately. We further 435

noticed that the detector only needs very little data 436

to train on. Although the set of normal and adver- 437

sarial SHAP signatures for the AG_News dataset 438

has over 100,000 instances, we did not observe a 439

significant difference when training with a much 440

smaller set of samples. We further explore data 441

efficiency in Section 4.3. 442

Classifier Unnormalized
SHAP

Unnorm. SHAP +
Predicted Class

Normalized
SHAP

Neural Network 0.90 0.90 0.90
Random Forest 0.91 0.91 0.92
SVM 0.90 0.90 0.90
Linear SVM 0.67 0.67 0.65

Table 3: F1-scores of input modifications for the detec-
tors on the AG_News dataset.

To further improve the predictive performance 443
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Figure 4: F1-scores for independent runs on the AG_News dataset using differently sized subsets of the training
data. The F1-score starts to plateau after a few thousand samples for all detectors which shows data efficiency.

of the model, we also included the predicted class444

coming from the base model. As shown in Table 3,445

this had neither a positive nor a negative influence446

on the performance of the model. Normalizing the447

SHAP signatures only led to minor improvements448

for random forests and neural networks. This can449

be explained by the fact that all input features are450

Shapley values and are therefore in the same range.451

4.2 Transferability452

Base-Model IMDb (Test) SST-2 (Test)
IMDb - 0.56
SST-2 0.42 -
Yelp Polarity 0.71 0.66

Table 4: F1-scores of the inference step with IMDb and
SST-2 datasets on neural network base-models which
were trained on IMDb, SST-2 and Yelp Polarity.

During our research the question arose whether453

the detectors are agnostic to the dataset or highly454

specialized. To evaluate this property, we trained455

three base-models with a neural network backbone456

on the IMDb, SST-2 and Yelp Polarity datasets. We457

then performed the inference step with the IMDb458

and SST-2 test sets on all three detectors and ob-459

served how the performance varies with different460

dataset combinations.461

The results can be seen in Table 4. We report the462

strongest results when the detector was tested on463

the same dataset that was also used during training.464

This resulted in our competitive F1-scores of 94%465

on IMDb and 77% on SST-2. Interestingly, there466

existed other combinations which also produced 467

results comparable to the state of the art, although 468

the performance dropped compared to our strongest 469

detectors. To be precise, the base-model which 470

was trained on Yelp Polarity achieved good F1- 471

scores on test sets of IMDb with 71.5% and of SST- 472

2 with 66%. In comparison, the state-of-the-art 473

detector tested with similarly generated adversarial 474

samples on a LSTM with PWWS by Mozes et al. 475

(2021) achieved F1-scores of 77.4% on IMDb and 476

of 63.4% on SST-2. 477

Such results are yet not strong enough to prove 478

full generalization capabilities. However, we find 479

them promising as they indicate that our detectors 480

are in some cases actually transferable to other 481

datasets once trained. Future research is crucial as 482

in practice it allows to reuse models for different 483

tasks. 484

4.3 Data efficiency 485

While our approach offers state-of-the-art detection 486

performance of adversarial attacks, the correspond- 487

ing detector model can be trained with a surpris- 488

ingly low amount of data. To evaluate this property, 489

we trained a neural network and a random forest 490

on incremental subsets of the IMDb dataset where 491

all runs were conducted independently from each 492

other. We started with a dataset size of 100 and 493

incrementally increased the number of samples up 494

to 10,000. From Figure 4 one can directly observe 495

the limited amount of data needed for the model 496

to converge. For a neural network about 4,000 497

samples are needed before the F1-score starts to 498
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plateau. For a random forest classifier even less499

data is sufficient with around 3,000 samples.500

4.4 Qualitative Results501

UMAP: n_neighbors=500, min_dist=0.001

Adversarial
Normal

Figure 5: Visualization of the SHAP signatures of the
AG_News dataset using UMAP. We randomly selected
10% of the samples to avoid overplotting.

In order to understand how the detector is able502

to distinguish between normal and adversarial in-503

puts, we visualized the SHAP signatures in a two-504

dimensional space. To project the samples we rely505

on the UMAP dimensionality reduction algorithm506

proposed by McInnes et al. (2020). It is based on507

the fact that most high-dimensional data actually508

lies on a much lower-dimensional manifold and509

can be explained by a reduced number of variables.510

Figure 5 clearly shows four distinct red clusters511

corresponding to the four classes of the AG_News512

dataset. Regardless of their original class, most of513

the adversarial samples collapse into a single clus-514

ter which is clearly separable from the others. This515

explains why rather simple detector models are suf-516

ficient to accurately differentiate between normal517

and adversarial inputs. Our result is consistent with518

the experiments done by Fidel et al. (2020) which519

performed a similar analysis on SHAP signatures520

for images from the CIFAR-10 dataset (Krizhevsky521

et al., 2009).522

5 Conclusion523

Adversarial text examples are a major challenge524

for current research and represent an obstacle for525

safely deploying NLP models in high-stakes appli-526

cations. While attacks are hard to be distinguished527

from their corresponding original, patterns in the528

model’s reaction can be recognized and leveraged529

for detecting manipulated input samples. 530

Our work trains a machine learning detector us- 531

ing SHAP explanations of normal- and adversar- 532

ial samples generated with PWWS. The proposed 533

method is both intuitive and effective since it allows 534

to detect parts of a sentence that have a suspiciously 535

high impact on the model prediction. Furthermore, 536

our detector is model-agnostic as it does not make 537

any assumption on the classifier targeted by the 538

attacks. 539

Our approach achieves high accuracy and consid- 540

erably outperforms the previous state of the art. In 541

terms of data efficiency, we prove that the method 542

can achieve nearly optimal performance also when 543

using a small portion of the available data for train- 544

ing. A qualitative analysis of the SHAP signature 545

landscape shows most adversarial samples con- 546

tained in a single cluster, suggesting that model 547

explanations explicitly encode information to sep- 548

arate attacks from their counterpart. We believe 549

this result explains why relatively simple detector 550

architectures suffice to achieve great performance 551

results. 552

In terms of transferability to multiple datasets, 553

our results are promising but yet not sufficient to 554

prove full generalization capabilities. Although in 555

some cases we match state-of-the-art performance 556

even when training on one dataset and testing on 557

another, our results are highly dependent on the 558

dataset pair. 559

We encourage future research to continue work- 560

ing on generalization across multiple data sources 561

and to evaluate performance against multiple types 562

of attacks. We believe our contribution can help 563

researchers to develop better defense strategies 564

against attacks and thus promoting the safe deploy- 565

ment of NLP models in practice. We release our 566

code to the public to facilitate further research and 567

development 3. 568
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