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ABSTRACT

Geometric tempering is a popular approach to sampling from challenging multi-
modal probability distributions by instead sampling from a sequence of distribu-
tions which interpolate, using the geometric mean, between an easier proposal
distribution and the target distribution. In this paper, we theoretically investigate
the soundness of this approach when the sampling algorithm is Langevin dynam-
ics, proving both upper and lower bounds. Our upper bounds are the first analysis
in the literature under functional inequalities. They assert the convergence of tem-
pered Langevin in continuous and discrete-time, and their minimization leads to
closed-form optimal tempering schedules for some pairs of proposal and target
distributions. Our lower bounds demonstrate a simple case where the geometric
tempering takes exponential time, and further reveal that the geometric tempering
can suffer from poor functional inequalities and slow convergence, even when the
target distribution is well-conditioned. Overall, our results indicate that geometric
tempering may not help, and can even be harmful for convergence.

1 INTRODUCTION

Sampling from a target distribution π whose density is known up to a normalizing constant is a chal-
lenging problem in statistics and machine learning, and is currently the subject of intense interest
due to applications in Bayesian statistics (Dai et al., 2020) and energy-based models in deep learn-
ing (Song et al., 2021a), among other areas. In these settings, the normalizing constant of the target
distribution π is typically intractable, and Markov Chain Monte Carlo (MCMC) algorithms (Roberts
and Rosenthal, 2004; Robert and Casella, 2004) are commonly used to generate Markov chains in
the ambient space, whose law eventually approximates the target distribution.

Among MCMC algorithms, the Unadjusted Langevin Algorithm (ULA), which corresponds to a
time discretization of a Langevin diffusion process, has attracted considerable attention due to its
simplicity, theoretical grounding, and utility in practice (Roberts and Tweedie, 1996; Wibisono,
2018; Durmus et al., 2019; Song and Ermon, 2019). For example, ULA can be proven to converge
quickly when the target distribution π is smooth and strongly log-concave (Durmus et al., 2019).
However, many cases in practice require to sample from distributions which are not log-concave,
and indeed potentially even multi-modal (Parisi, 1981; Zhang et al., 2020). In such settings, the
convergence of ULA is governed by functional inequalities which effectively quantify the convex-
ity, or lack thereof, of the target distribution (Vempala and Wibisono, 2019). Nonetheless, truly
multi-modal target distributions generally have poor functional inequalities, thus leading to weak
convergence guarantees for ULA. This phenomenon is not merely a theoretical artifact, and it is
well-known amongst practitioners that when sampling from multi-modal distributions, algorithms
based on ULA can get stuck in local modes and suffer from slow convergence (Deng et al., 2020).

Tempering or annealing is a popular technique (Neal, 1998; Gelman and Meng, 1998a; Syed et al.,
2022) to overcome the deficiencies of ULA and other MCMC methods in the multimodal setting.
Rather than sample directly from the target distribution π, tempering samples from a sequence of
distributions that interpolate between an easier, unimodal proposal distribution ν and the more chal-
lenging π. Intuitively, tempering may help escape local modes and explore the entire target distribu-
tion (Syed et al., 2022). Many possible interpolating paths for tempering exist, but to be practically
useful the path must be implementable with the chosen MCMC scheme, and should improve con-
vergence when compared the latter run directly against the target π.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

One of the most popular choices for the tempering path is the geometric tempering Gelman and
Meng (1998a); Neal (1998), where the intermediate distributions are defined to be the geometric
averages µλ ∝ ν1−λπλ with λ ∈ [0, 1] the (inverse) temperature parameter. At a “hot” temperature,
λ is close to 0 and the distribution µλ is close to the proposal which can be chosen with large vari-
ance for better exploration, and when the temperature is gradually “cooled” to λ = 1, µλ recovers
the original target π. In practice, the geometric tempering does not require access to the normal-
izing constants, and has accordingly been widely applied to various MCMC methods (Dai et al.,
2020; Chopin and Papaspiliopoulos, 2020). However, theoretical understanding of the geometric
tempering is limited. This includes identifying situations where it improves upon standard sampling
procedures as well as offering guidance for the selection of the temperature schedule, a crucial ques-
tion in practice where a number of heuristics have been proposed (Chopin and Papaspiliopoulos,
2020; Jasra et al., 2011; Chopin et al., 2024; Kiwaki, 2015).

Contributions. In this paper, we develop theoretical understanding of geometric tempering com-
bined with Langevin dynamics: we refer to this as tempered Langevin dynamics. We make three
main contributions:

1. We provide in Theorems 1 and 3 the first convergence result for this algorithm in Kullback-
Leibler divergence (KL). Our results here are for general tempering schedules and depend
on the functional inequalities (log-Sobolev) of the intermediate distributions along the tem-
pering sequence. In Proposition 6 we derive the optimal tempering schedule for our con-
tinuous time upper bound in the strongly log-concave setting.

2. To go beyond the strongly-log concave setting, we must understand the behavior of func-
tional inequalities along the geometric tempering. Our result here, Theorem 4, is negative,
and shows that, surprisingly, even when the proposal and target have favorable functional
inequalities, the geometric tempering can exponentially worsen these inequalities.

3. Although the poor functional inequalities in Theorem 4 are a worrying sign for the geo-
metric tempering, they do not yet rule out fast convergence since functional inequalities
only govern worst-case convergence. We thus analyze a simple bi-modal example where
we show in Theorem 8 that the geometric path takes exponential time to converge in total
variation (TV), and then show in Theorem 9 that, surprisingly, similar results even hold for
a uni-modal target with favorable functional inequalities.

In sum, our results establish sufficient conditions for the tempered Langevin dynamics to converge
in KL divergence. We find some limited situations where these improve upon the rates of standard
Langevin dynamics, but we also find that the geometric tempering can worsen functional inequalities
and suffer from slow convergence, both in the setting of multi-modal target and even for uni-modal
targets with reasonable functional inequalities.

Organization. This paper is organized as follows. In the remainder of this section we discuss re-
lated work and describe our notation. In section 2, we discuss background about ULA and geometric
tempering. In section 3, we state our upper bounds in KL on the convergence of the geometric tem-
pering with Langevin dynamics under functional inequalities, both in continuous and discrete time.
In section 4, we show that the geometric path can have poor functional inequalities even when the
proposal and target do not; yet, in the strongly-concave case, we derive explicit results from our
upper bounds and highlight situations where tempering may be beneficial. In section 5, we describe
two examples where geometric tempering with ULA provably has slow convergence in TV. Proofs
and additional numerical validations are collected in the Appendix.

Related work. Given the empirical success of ULA with a sequence of tempered target distribu-
tions it is desirable to obtain theoretical guarantees on the convergence of the scheme, and especially
to understand when and why certain sequences of moving targets can guide or misguide the sampling
process towards the final target. Closely related to our setting, Tang et al. (2024) also study the con-
vergence of tempered Langevin dynamics for the geometric sequence. However, they focus on the
simulated annealing setting. In this case the geometric sequence is taken as πλ, that degenerates to a
target distribution which is a Dirac located at the global maximum of the log density of π as λ goes
to infinity, so that sampling actually becomes an optimization task (Kirkpatrick et al., 1983; Cerný,
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1985). Using an explicit temperature schedule, they measure convergence in probability. For an-
other sequence of intermediate targets obtained by convolving the target and proposal distributions,
and using an explicit schedule, Lee et al. (2022) prove fast convergence in TV. Finally, for a general
sequence of intermediate targets, Guo et al. (2024) very recently obtained a rate of convergence that
depends on Wasserstein metric derivative along the path of distributions: their result suggests that an
optimal path can be obtained as a Wasserstein geodesic between the initial and target distributions.
A modification of tempered Langevin dynamics, called Sequential Monte Carlo, that importantly in-
cludes resampling of particles, has been shown to achieve fast convergence in TV (Schweizer, 2012;
Paulin et al., 2018; Mathews and Schmidler, 2024; Lee and Santana-Gijzen, 2024). These results
apply to different sampling processes and rely on strong assumptions, effectively modeling far-away
modes by disjoint sets (Schweizer, 2012; Mathews and Schmidler, 2024), using a specific path that
interpolates between a uniform and target distribution by increasing the number of components that
follow the target’s law Paulin et al. (2018), or assuming uniformly bounded consecutive distributions
along the path (Lee and Santana-Gijzen, 2024). In contrast, our results are specific to the geometric
sequence, but we obtain upper and lower bounds on convergence that explicitly depend on the time.

The tempered iterates defined by the geometric path are also at the basis of simulated or parallel tem-
pering schemes(Geyer, 1991; Marinari and Parisi, 1992; Hukushima and Nemoto, 1996; Syed et al.,
2021), which are MCMC algorithms where the temperature is a random variable instead of a mono-
tonic function of time. Both schemes produce samples at all temperatures and involve swapping
particles between hotter and colder temperatures. In that setting, some works have investigated the
spectral gap of these methods, which is related to the rate of convergence in TV distance (Madras
and Zheng, 2003; Woodard et al., 2009a;b). When that rate is polynomially (resp. exponentially)
decreasing in the problem size, convergence is said to be fast (resp. ‘torpid’). These rates are studied
for arbitrary target distributions, using lower and upper bounds. Namely, Woodard et al. (2009a;b)
show that for target distributions which have modes with different weights or shapes, convergence
can be slow, and that symmetric modes are required for fast convergence. This generalizes previous
findings that for specific targets with two symmetric and equally weighted modes, convergence is
fast (Madras and Zheng, 2003), whereas for another specific target with three asymmetric modes,
convergence is slow for any schedule (Bhatnagar and Randall, 2015). Ge et al. (2018) also prove
fast convergence when the target is a Gaussian mixture. More recently, Chen et al. (2020) study the
Poincaré constant in parallel tempering, which governs the rate of convergence in χ2 divergence:
they show it improves upon standard Langevin, and relate this improvement to the exchange rate
of particles between different temperatures. Our work differs in several important ways: we study
a different sampling algorithm (Unadjusted Langevin algorithm), obtain upper and lower bounds
directly in time rather than on the spectral gap, and prove explicit rates of convergence, as well as
lower bounds, for simple choices of proposal and target distributions.

Notation. C∞
c (Rd) denotes the set of infinitely differentiable functions with compact support.

P(Rd) denotes the set of probability measures p on Rd. For p ∈ P(Rd), we denote that p is
absolutely continuous w.r.t. q using p ≪ q and we use dp/dq to denote the Radon-Nikodym
derivative. The set of probability measures which are absolutely continuous with respect to the
Lebesgue measure is written Pac(Rd). The Total Variation (TV) distance is defined as TV(p, q) :=
supA⊂Rd |p(A)− q(A)|, where the supremum runs over all Borel sets. For any p ∈ P(Rd), L2(p) is
the space of functions f : Rd → R such that

∫
∥f∥2dp <∞. We denote by ∥ · ∥L2(p) and ⟨·, ·⟩L2(p)

respectively the norm and the inner product of the Hilbert space L2(p). For p ≪ q, the Kullback-
Leibler (KL) divergence is defined as KL(p, q) =

∫
log

(
dp
dq

)
dp, the χ2-divergence as χ2(p, q) :=∫ (

dp
dq − 1

)2
dq and the Fisher-divergence as FD(p, q) =

∥∥∥∇ log
Ä
dp
dπ

ä∥∥∥2
L2(p)

, and +∞ otherwise.

For a measurable function f : Rd → R we define the variance Varp(f) := Ep[(f − Ep[f ])2] for
p ∈ P(Rd). We write the standard Gaussian on R with mean a and variance σ2 as N (a, σ2), and
the uniform measure on a Borel set A ⊂ Rd with finite and positive Lebesgue measure as unifA.

2 BACKGROUND

In this section, we provide some background on functional inequalities, Langevin dynamics, and
geometric tempering.
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Functional inequalities. Let q ∈ Pac(Rd). We say that q satisfies the Poincaré inequality with
constant CP ≥ 0 if for all f ∈ C∞

c (Rd),

Varq(f) ≤ CP ∥∇f∥2L2(q), (1)

and let CP (q) be the best constant in Eq. 1, or +∞ if it does not exist. We say that q satisfies the
log-Sobolev inequality with constant CLS if for all f ∈ C∞

c (Rd),

entq(f
2) := Eq

ï
f2 ln

Å
f2

Eq[f2]

ãò
≤ 2CLS∥∇f∥2L2(q), (2)

and let CLS(q) be the best constant in Eq. 2, or +∞ if it does not exist. Note that log-Sobolev
implies Poincaré with the same constant (Bakry et al., 2014), so that CLS(q) ≥ CP (q). If q ∝ e−V

and the potential V is αq-strongly convex, then q satisfies Eq. 2 with constant 1
αq

. However, the latter
is more general, including for instance distributions q whose potential are bounded perturbations of
a strongly convex potential (Bakry et al., 2014; Cattiaux and Guillin, 2022).

Langevin dynamics. Let π ∈ Pac(Rd). The Unadjusted Langevin Algorithm (ULA) (Parisi,
1981; Besag, 1994) consists in sampling a target distribution π using noisy gradient ascent

Xk+1 = Xk + hk∇ log π(Xk) +
√

2hkϵk, ϵk ∼ N (0, Id) (3)

with step size hk > 0 at iteration k ∈ N. Setting time as t = hkk and taking the continuous
limit obtained as h → 0, Eq. 3 defines a continuous process known as the Langevin diffusion. The
convergence of the law of the Langevin diffusion to the equilibrium measure π is then governed
by the Poincaré and log-Sobolev inequalities. In particular, if we denote the law of the Langevin
diffusion at time t by pt, then pt converges to π in KL with exponential rate determined by the
log-Sobolev constant of π (Vempala and Wibisono, 2019, Theorem 2), namely

KL(pt, π) ≤ e−2CLS(π)−1tKL(p0, π) . (4)

However, for multimodal distributions such as Gaussian mixtures, the log-Sobolev constant can
grow exponentially with the distance between modes (Chen et al., 2021).Nevertheless, ULA remains
a popular choice, due to its computational simplicity: simulating Eq. 3 only requires access to the
score ∇ log π which does not depend on the target’s normalizing constant.

Langevin with moving targets. Many heuristics broadly known as annealing or tempering consist
in using ULA to sample a path, or sequence of distributions (µt)t∈R+

instead of the single target
π. The hope is that this sequence of intermediate distributions will improve the convergence of the
ULA sampler. Different tempering algorithms sample the path sequentially in time (Dai et al., 2020;
Neal, 1998; Rubin, 1987), back-and-forth in time (Lee et al., 2021; Neal, 1996; Zhang et al., 2020),
or at all times jointly (Marinari and Parisi, 1992; Geyer, 1991). This paper deals with the first case,
i.e.,

Xk+1 = Xk + hk∇ logµk(Xk) +
√

2hkϵk, ϵk ∼ N (0, 1) (5)

where the target now is updated (“moved”) at each iteration. This generic sampling method has
been used in high-dimensional spaces (Wu et al., 2020; Thin et al., 2021; Geffner and Domke, 2023;
Song and Ermon, 2019) and has achieved state-of-the-art results for sampling images, where it is
sometimes known by the names Annealed Langevin Dynamics (Song and Ermon, 2019) or the “cor-
rector” sampler (Song et al., 2021b). It is therefore of interest to find moving targets whose geometry
is well-suited to ULA’s convergence properties. A number of paths (µt)t∈R+ can be used to guide
the process toward the final target π. Many of them interpolate between a proposal distribution ν
that is easy to sample and the target distribution π, for example by taking their convolution (Song
and Ermon, 2019; Song et al., 2021b; Albergo et al., 2023), their geometric mean (Neal, 1998), or
following the gradient flow of a loss from proposal to target (Tieleman, 2008; Carbone et al., 2024;
Marion et al., 2024). The path obtained by convolving the two distributions is the default choice
for sampling from so-called “diffusion models”, yet the scores ∇ logµt along that path are not an-
alytically tractable in our setting when the density of π is known up to a normalization constant,
and estimating them is the subject of current research (Huang et al., 2024; He et al., 2024; Grenioux
et al., 2024; Saremi et al., 2024).
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Geometric tempering. The path obtained by taking the geometric mean of the proposal and tar-
get distributions has distinguished itself in the sampling literature (Neal, 1998; Gelman and Meng,
1998b). It is written as

µt(x) = cλt
ν(x)1−λtπ(x)λt , t ∈ R+, (6)

where cλt
is a normalizing factor, ν ∈ Pac(Rd) is a proposal distribution and λ(·) : R+ → [0, 1]

is an increasing function called the tempering schedule. It has recently been shown that the ge-
ometric path can be identified to a time-discretized gradient flow of the Kullback-Leibler diver-
gence to the target, with respect to the Fisher-Rao distance (Chopin et al., 2024; Domingo-Enrich
and Pooladian, 2023). Its main advantage is its computational tractability, since the score of
∇ logµt = (1−λt)∇ log ν+λt∇ log π is known in closed-form. This path is a default in some sam-
pling libraries (Cabezas et al., 2023) and remains a popular choice in recent sampling literature (Thin
et al., 2021; Geffner and Domke, 2023; Dai et al., 2020) and applications (Bradley and Nakkiran,
2024; Ramesh et al., 2022; Saharia et al., 2022; Dieleman, 2022). A special case of the geometric
path is especially popular, choosing a “uniform” ν: πt(x) = ctπ1(x)

λt ; this choice is commonly
used in practice to sample from un-normalized distributions parameterized by a deep neural net-
work (Wu et al., 2020; Grathwohl et al., 2020; Nijkamp et al., 2019; Ye et al., 2017) or for global
optimization (Marinari and Parisi, 1992). Otherwise, ν is often chosen as a simple distribution, such
as a Gaussian Cabezas et al. (2023); Zhang et al. (2021); Thin et al. (2021).

3 CONVERGENCE RATE FOR TEMPERED LANGEVIN DYNAMICS

Throughout, we take as given proposal and target distributions ν and π, as well as a temperature
schedule λ : R+ → [0, 1], which we assume satisfy the following conditions.
Assumption 1 (Regularity of proposal, target, and tempering) The proposal ν and the target π have
densities with respect to Lebesgue, which we write ν ∝ e−Vν and π ∝ e−Vπ . The tempering sched-
ule (λt)t≥0 is such that λ : R+ → [0, 1] and λt is non-decreasing in t and weakly differentiable.

In addition to this basic regularity, we also make the following quantitative assumptions on the
negative log densities.
Assumption 2 (Lipschitz gradients and dissipativity) The negative log densities Vν , Vπ have Lips-
chitz continuous gradients on all of Rd, with Lipschitz constants Lν , Lπ , respectively. In addition,
Vν and Vπ satisfy the dissipativity inequalities

⟨∇Vν(x), x⟩ ≥ aν∥x∥2 − bν , ⟨∇Vπ(x), x⟩ ≥ aπ∥x∥2 − bπ, (7)
with constants aν , aπ, bν , bπ > 0.

The Lipschitz assumption is used both for our discrete time results as well as in guaranteeing exis-
tence and uniqueness of the continuous time dynamics; see Appendix A.1 for more discussion on
this latter point. The dissipativity condition is common in the sampling literature (Conforti, 2024;
Erdogdu et al., 2022) as it implies a finite log-Sobolev constant under Lipschitz gradients Cattiaux
et al. (2010). In particular, dissipativity of both Vν and Vπ implies dissipativity along the geometric
path µt, as defined in Eq. 6, so that CLS(µt) < ∞. Our results will crucially rely on the size of the
inverse of these log-Sobolev constants, so we define the notation

αt := CLS(µt)
−1 > 0, ∀t ≥ 0. (8)

We emphasize that while the dissipativity assumption does yield a positive lower bound on αt, it
may happen that αt is significantly larger than this lower bound; for example, if Vν is αν-strongly
convex and Vπ is απ-strongly convex, then αt ≥ (1− t)αν + tαπ . In the next section we investigate
the behavior of αt in less favorable settings than this, and here continue with the statement of our
convergence results.

Given the proposal ν and target π, as well as a tempering schedule (λt)t≥0, we are interested in the
tempered Langevin dynamics, where the moving target is the geometric path µt, as defined in Eq. 6.
In continuous time, this is the stochastic differential equation

dXt = −
(
(1− λt)∇Vν + λt∇Vπ

)
dt+

√
2dWt, (9)

with initialization X0 ∼ p0 for some p0 ∈ P(Rd), and where Wt is a standard d-dimensional
Brownian motion. We denote by pt the density of Xt given by the continuous time dynamics Eq. 9.
Our main upper bound in continuous time follows.
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Theorem 1 (Continuous time) Suppose Assumption 1 and 2 hold, and let (αt)t≥0 be the inverse log-
Sobolev constants as in Eq. 8, assumed to be integrable. Let pt be the law of Eq. 9 with initialization
p0 and denote by λ̇t the (weak) time derivative of the tempering schedule. Then, for all t ≥ 0:

KL(pt, π) ≤ exp

Ç
−2

∫ t

0

αsds

å
KL(p0, µ0) +A(1− λt) +A

∫ t

0

λ̇s exp

Ç
−2

∫ t

s

αvdv

å
ds

(10)

where A = 2(Lπ + Lν)
Ä
2(d+bν+bπ)
aν∧aπ + Ep0 [∥x∥2]

ä
depends on the constants from Assumption 2,

the second moment of the initial distribution p0, and linearly on the dimension d.

The proof of Theorem 1 can be found in Appendix A.2. To the best of our knowledge, Theorem 1
is the first convergence analysis of Tempered Langevin dynamics, namely Eq. 9, in the literature.
The first two terms of the upper bound deal with the start and end of the tempering: the first one
measures the convergence rate to the first tempered distribution µ0 and the second one measures
how far the current tempered distribution is from the target. The first term is set to zero when the
schedule starts with λt = 0 and the sampling process Eq. 9 is initialized with the proposal p0 = ν.
The second term is null when λt = 1 at the time when convergence is evaluated. The last term in the
upper bound involves the tempering speed λ̇, as well as the geometry of the moving targets µt via
their inverse log-Sobolev constants αt between inverse temperatures λ0 and λt, and, in particular, is
null when the annealing schedule is constant. Note that, in Appendix A.3, we translate Theorem 1
to give sufficient conditions for convergence to the target at precision KL(pt, π) < ϵ.
Remark 2 (Recovering standard upper bound for Langevin dynamics without tempering) Notice
that Eq. 9 recovers standard Langevin dynamics when we set λt ≡ 1 for all t ∈ R+. In this case,
only the first term in the upper bound is non-zero, and the bound recovers the standard continuous-
time upper bound for Langevin dynamics e−2tαπ KL(p0, π), as recalled in Eq. 4.

Next, we analyze the Euler-Maruyama discretization of the continuous time Tempered Langevin
Dynamics Eq. 9. Namely, we take X0 ∼ p0 and then, for a tempering sequence (λk)k≥0 and a
sequence of step-sizes (hk)k≥0, we follow the iteration

Xk+1 = Xk − hk+1((1− λk+1)∇Vν + λk+1∇Vπ) +
√
2hk+1ϵk+1, (11)

where ϵk+1 is independent standard Gaussian noise. In other words, at each iteration k we take a
Langevin step of size hk+1 towards µk+1 := ck+1ν

1−λk+1πλk+1 .
Theorem 3 (Discrete time) Suppose Assumptions 1 and 2 hold, and let (αk)k≥1 be the inverse log-
Sobolev constants as in Eq. 8. Define the smoothness constant of the tempered path to be Lk :=
(1− λk)Lν + λkLπ , and let pk be the law of Eq. 5 with initialization p0. Then, so long as

hk ≤ min(
αk
4L2

k

,
aπ ∧ aν

2(Lπ + Lν)2
, 1)

for all k, we have

KL(pk, π) ≤ exp
(
−

k∑
j=1

αjhj

)
KL(p0, µ0) +A′(1− λk)

+ (λi − λi−1) exp
(
−

k∑
j=i

αjhj

)
+ 6

k∑
i=1

h2kdL
2
k exp

(
−

k∑
j=i+1

αjhj

)
(12)

where A′ = 2(Lπ + Lν)
Ä
max

(
Ep0 [∥x∥2],

2(3(bπ+bν)/2+d)
aπ∧aν∧1

)
+ 3(d+bν+bπ)

aπ∧aν

ä
depends on the con-

stants from Assumption 2,the second moment of the initial distribution p0, and linearly on the di-
mensional d.

The proof of Theorem 3 can be found in Appendix B. The first three terms are the discrete-time
equivalent of those obtained in the continuous-time setup of Theorem 1. The novelty is the fourth
term which is the bias from the discretization: it becomes null as the step sizes hk tend to zero.
Otherwise, it involves the geometry of the intermediate target distributions via their smoothness
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constants Lk, additionally to their inverse log-Sobolev constants αk. Again, when there is no tem-
pering, i.e. setting λk ≡ 1, since the second and third term cancel, we recover the known upper
bound on the convergence of ULA (Vempala and Wibisono, 2019, Th. 2) up to a multiplicative
constant. Similarly to the continuous case, we derive in Appendix B.2 sufficient conditions for
converging to the target with a given precision KL(pk, π) < ϵ.

Understanding the upper bounds in this section mainly involves two key points: the geometry of the
moving targets via their inverse log-Sobolev constants αt, and the tempering schedule λ(·). These
will be the focus of the next sections.

4 ANALYSIS AND OPTIMIZATION OF THE UPPER-BOUNDS

In this section we explore the continuous-time upper bound from Theorem 1. We first present
in section 4.1 a simple example where the log-Sobolev constants of the intermediate distributions
along the geometric mean path can be exponentially worse than those of the target and proposal.
Motivated by this result, we then conduct a detailed study of the optimal tempering schedule in
section 4.2 in the setting where both ν and π are strongly log-concave.

4.1 GEOMETRIC TEMPERING CAN EXPONENTIALLY WORSEN FUNCTIONAL INEQUALITIES

Because of the fundamental role that log-Sobolev constants play in governing the convergence of
Langevin dynamics without tempering, it is natural that our upper bounds for tempered Langevin
dynamics depend on the log-Sobolev constants of the intermediate distributions. Nonetheless, the
size of these log-Sobolev constants is crucial for ensuring rapid convergence of tempered Langevin
dynamics. We are thus led to ask a fascinating yet, to the best of our knowledge, new question: how
do the log-Sobolev constants along the geometric tempering path depend on the proposal and target
distributions?

2.5 0.0 2.5 5.0 7.5 10.0 12.5

x
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ns

ity

Bi-modality in geometric tempering
Proposal
Target

0.45

Figure 1: Bi-modal intermediate distri-
bution at λ = 0.45 with ν, π as in Eq. 13
for m = 10.

Answering this question in full generality is an interest-
ing direction for future work, but here we provide a sim-
ple example which shows that, in general, the geometric
path can actually make functional inequalities exponen-
tially worse. As is commonly done in practice, we take
the proposal distribution ν to be Gaussian (Cabezas et al.,
2023; Zhang et al., 2021; Thin et al., 2021). For the target,
we take a parameter m > 0 and put

π := (1− e−m
2/4)N (m, 1)

∣∣
[−m,2m]

+ e−m
2/4unif [−m,2m], (13)

where the notation N (m, 1)
∣∣
[−m,2m]

indicates N (m, 1)

conditioned to lie in [−m, 2m]. Note that without the small mixing with the uniform distribution
in Eq. 13, the target π would be strongly log-concave, and the geometric path would remain well-
conditioned. The next result shows that while this small mixing does not greatly worsen the log-
Sobolev inequality of ν, it causes the geometric tempering to have exponentially worse log-Sobolev
constant, in fact even Poincaré constant.
Theorem 4 Let ν := N (0, 1) and π be as defined in Eq. 13 for m ≥ 10. Then CLS(ν) = 1 and
CLS(π) ≤ 15m5, yet for all λ ∈ [ 12 , 1],

CP (µλ) ≥
1

2 · 104m
em

2(1−λ)/100 −m2 .

Since CLS(·) ≥ CP (·), the above holds, in particular, with CLS(µλ) on the left-hand side.

The proof of Theorem 4 can be found in Appendix D.3. This example is plotted in Figure 1; the
intuition is that while both distributions are unimodal and thus well-conditioned, the small mix-
ing with the uniform measure creates multimodality in the geometric tempering. The proof relies
on careful analysis to characterize this multimodality, and then uses a test function which simply
linearly interpolates between the modes to witness the exponentially large Poincaré constant.
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Theorem 4 rules out the possibility that the geometric tempering generically improves, or even
preserves, functional inequalities. Since our upper bounds depend on the log-Sobolev constants of
the geometric tempering, they also can suffer from such exponentially poor conditioning. But since
log-Sobolev inequalities only govern worst-case convergence, it is still at least a priori possible that
geometric tempering nonetheless achieves fast convergence. We investigate this question further in
section 5, and here instead continue exploring our upper bounds.

4.2 ANALYSIS IN THE STRONGLY LOG-CONCAVE CASE

Other than the log-Sobolev constants αt, the main input to our upper bounds is the tempering sched-
ule λ, and in this section we use our upper bounds to shed light on the optimal schedule, an impor-
tant question in practice (Grosse et al., 2013; Song and Ermon, 2020). Both to make our analysis
tractable and because of the degeneracy in the non log-concave case identified in the previous sec-
tion, we here restrict to the strongly log-concave setting. Specifically, we assume that both the
proposal ν and the target π are log-concave with strong-concavity parameters απ, αν > 0. In this
case, αt ≥ (1− λt)αν + λtαπ .

We start by reformulating the continuous time result that we obtained in Theorem 1, in the case
where both the proposal ν and target π are log-concave.
Corollary 5 Assume ν and π are αν and απ-strongly log-concave respectively, so that αt ≥ λtαπ+
(1−λt)αν , and that the process is initialized at the proposal distribution p0 = ν. Then for all t ≥ 0,
we have

KL(pt, π) ≤ AGt(λ), Gt(λ) := 1− 2

∫ t

0

λsαs exp
(
− 2

∫ t

s

αvdv
)
ds, (14)

where A is as in Theorem 1. Suppose additionally that απ ≥ αν . Then Gt(λ) is minimized by the
vanilla Langevin scheme λ(t) ≡ 1.

The proof of Corollary 5 is in Appendix C.1 and relies on integration by parts. This new expression
allows us to optimize on the schedule λ independently of the unknown quantity A. As one could ex-
pect, the corollary above states that when the target π is already better conditioned than the proposal
ν, so απ ≥ αν , there is no need to temper and the optimal tempering scheme is given by vanilla
Langevin λ ≡ 1. In the next proposition, we show on the contrary that if π is too poorly conditioned
with respect to ν, then one should indeed use a custom tempering scheme other than Langevin.
Proposition 6 Suppose απ < αν . Then the functional Gt(λ) is minimized for the scheme

λ(s) = min

Å
αν

αν − απ

1 + ανs

2 + ανs
, 1

ã
. (15)

In particular, the optimal schedule does not depend on the horizon t, and when απ ≥ αν/2, vanilla
Langevin λ(t) ≡ 1 is optimal.

Proposition 6 is proven in Appendix C.2. Hence when the target is sufficiently peakier than the
proposal απ ≥ αν/2, tempering does not improve convergence beyond that of vanilla Langevin.
Conversely, when the target is flat enough απ < αν/2, then tempered Langevin with the schedule
in Eq. 15 does improve convergence over vanilla Langevin. While the optimal schedule is provided
analytically in Eq. 15, it cannot be computed exactly in practice given that the constant απ that
describes the geometry of the target distribution are unknown. On the other hand, in the limit of a
flat and log-concave target απ → 0, the optimal schedule tends to λ(s) = 1− 1

2+ανs
, which can be

implemented in practice.

A natural question follows: can other schedules, which may not be optimal but are feasible to
implement in general, actually improve convergence beyond that of vanilla Langevin? A simple
example is the linear schedule, where obtain an explicit convergence rate that does not improve on
standard Langevin at large times, but that is faster than standard Langevin at small times for small
απ .
Proposition 7 Assume αν > απ . Let t > 0 until which the continuous process 9 is run. Then, with
the linear tempering scheme λ(s) ≡ s

t defined on [0,t], Gt in the upper-bound of Corollary 5 writes

Gt(λ) =

…
π

4t(αν − απ)

ï
erfcx
Å
απ

 
t

αν − απ

ã
− e−(αν+απ)terfcx

Å
αν

 
t

αν − απ

ãò
,
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where erfcx is the complementary scaled error function erfcx(x) = ex
2

(1 − erf(x)). In particular,
as t grows to infinity, we recover Gt(λ) ∼ 1

2απt
.

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

1.0 Optimal upper bound
Vanilla Langevin upper bound
Linear Tempering upper bound

Figure 2: Value of upper-bound G using the
optimal tempering scheme, the linear tempering
scheme and standard Langevin. Optimal temper-
ing converges faster than standard Langevin.

The proof of Proposition 7 is deferred to Ap-
pendix C.3.

Finally, we compare in Figure 2 the value of
the upper-bound G at different time horizons
t optimal using the tempering scheme given in
Eq. 15, the linear tempering scheme λ(s) ≡ s

t
and vanilla Langevin λ(s) ≡ 1 and where we
took απ = 0.01 and αν = 1.0. We ob-
serve that the optimal schedule always yields
a lower value of G (as it should) and that it pro-
vides a clear advantage over vanilla Langevin
at short horizons t. However, as the horizon
grows, this edge is eventually lost. Similarly,
we observe that the linear tempering schedule
improves over vanilla Langevin at short time
horizons yet is eventually beaten as the horizon
grows.

5 EXPONENTIALLY SLOW CONVERGENCE FOR TEMPERED LANGEVIN
DYNAMICS

The upper bounds in Theorem 3 show that, so long as the log-Sobolev constants remain well-behaved
along the geometric tempering, Langevin with moving target can successfully sample from the target
distribution. While this assumption holds in favorable cases where the proposal and target are both
strongly log-concave, it may fail even when both distributions are well-conditioned yet not log-
concave, as demonstrated in Theorem 4. Nevertheless, such poor functional inequalities do not
necessarily rule out fast convergence of the geometric tempering because functional inequalities
only govern mixing in the worst case, and so it is still possible a priori that our upper bounds are
loose in such cases. The purpose of this section is to develop rigorous lower bounds for the geometric
tempering in two simple examples where the log-Sobolev constants of the intermediate distributions
are poor.

Setup. Throughout this section, we let the proposal distribution be the standard Gaussian ν :=
N (0, 1), as is common for the geometric tempering Cabezas et al. (2023); Dai et al. (2020); Zhang
et al. (2021); Thin et al. (2021). We work in the setting of a discrete temperature schedule but with
continuous time inner Langevin iterations. In particular, we take as fixed a discrete temperature
schedule λ0 = 0 < λ1 < · · · < λK−1 < λK = 1 and a sequence of times T1, . . . , TK that the inner
Langevin iteration is run for. We then put p0T0

:= ν and define inductively pkt to be the law at time
t of Langevin initialized at pk−1

Tk−1
and run towards µk. Our goal is then to study the convergence of

the final output pKTK
towards π, as a function of the temperature and time sequences, as well as the

target π.

Bi-modal target. Since annealing is designed to overcome multimodality and associated poor
mixing in the target, we begin by studying a toy model of multimodality. Specifically, we take a
parameter m > 0, and consider

ν := N (0, 1), π :=
1

2
N (0, 1) +

1

2
N (m, 1). (16)

It can be checked that π, as well as some of the intermediate distributions in the geometric tempering,
have log-Sobolev constant exponential in the mode separationm. However, as we mentioned above,
it remains possible a priori that the geometric tempering avoids this exponentially poor conditioning
by following non-worst case distributions. The following result shows that this is not the case,
and indeed that the total time spent on Langevin dynamics must be exponential in m to ensure
convergence.
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Theorem 8 Suppose ν, π are as in Eq. 16 for m ≥ 11. Then

TV(pKTK
, π) ≥ 1

20
− 16 · e−m

2/64 ·
( K∑
k=1

Tk
)
.

The proof of Theorem 8 can be found in Appendix D.2. Several remarks are in order. First, we em-
phasize that this result has no dependence whatsoever on the tempering schedule. Second, the same
result of course also holds with

»
1
2 KL(ρT , µk),

»
1
2χ

2(ρT , µk) on the left-hand side. And finally,
we remark that other works have studied related tempering algorithms with a uniform, rather than
Gaussian, proposal, and shown that in this case tempered dynamics can successfully sample from
Gaussians with the same variance Woodard et al. (2009b); Ge et al. (2018). Theorem 8 therefore
additionally suggests an unfavorable property of Gaussian proposals as compared with uniform.

Well-conditioned target. The previous result establishes a simple case where tempering is a nat-
ural approach, yet the geometric tempering suffers from exponentially poor performance. Since
the target distribution in that case has poor functional inequalities, a simpler sanity check for the
geometric tempering is to establish its convergence when the target is actually well-conditioned.
We now analyze an example similar to that of Theorem 4, where the target has decent log-Sobolev
inequalities, and show that, nonetheless, the geometric tempering suffers from exponentially poor
convergence, at least until the end of the tempering scheme. For some m > 0, put

ν := N (0, 1), π :=
1

2
N (m, 1)

∣∣
[−m,2m]

+
1

2
unif [−m,2m](x), (17)

where the notation |[−m,2m] indicates conditioning on the interval [−m, 2m]. Similar to Theorem 4,
although π has a reasonable log-Sobolev constant, the geometric tempering is partially bimodal.
The next result shows that, although the target π has reasonable log-Sobolev constant, the geometric
tempering suffers from exponentially slow convergence, at least until the tempering is almost at 1.
Theorem 9 Suppose ν, π are as in Eq. 17 for m ≥ 4. Then CLS(π) ≤ 60m3, yet for all k ∈ [K]

TV(pkTk
, π) ≥ 1

5
− δk − 15m ·

√
δk ·

( k∑
i=1

Ti
)
,

for δk := 8m2e−(1−λk)m
2/10.

The proof of Theorem 9 can be found in Appendix D.3. This result demonstrates a simple case where
geometric tempering suffers from exponentially slow convergence while vanilla Langevin dynamics
doesn’t, and to the best of our knowledge is the first result of this kind for the geometric tempering in
the literature. As for Theorem 8, the statement holds with

»
1
2 KL(ρT , µk),

»
1
2χ

2(ρT , µk) on the
left-hand side. We finally remark that Theorems 8 and 9 are both consequences of a more general
TV lower bound, Theorem 20 in Appendix D.1, which may be of further interest.

6 CONCLUSION

We provided the first convergence analysis of tempered Langevin dynamics Eq. 9, in the literature,
both for continuous (Theorem 1), and discrete (Theorem 3), time. Our bounds are naturally driven by
the log-Sobolev constants of the geometric tempering path, and we identified in Theorem 4 a surpris-
ing degeneracy of the geometric tempering where it can make these constants exponentially worse
than those of the target. Restricting to the strongly log-concave setting, we rigorously established
the optimal tempering schedule for our upper bounds in Proposition 6, and identified a regime where
it is strictly distinct from vanilla Langevin. Finally, we developed rigorous lower bounds proving
exponentially slow convergence for a bimodal target in Theorem 8, and even demonstrated a novel
failure of the geometric tempering for a uni-modal target in Theorem 9, where it has exponentially
worse performance than vanilla Langevin. Interesting questions for future work include developing
a more complete understanding of the log-Sobolev constants along the geometric tempering, par-
ticularly for the uniform proposal, as well as identifying alternative paths for Langevin which have
more favorable properties. In this connection, we mention some recent works which modify the
geometric path so that mode weights are kept constant along the path (Bhatnagar and Randall, 2015;
Tawn et al., 2018); it would be interesting to extend our analysis to these algorithms.
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A CONVERGENCE OF CONTINUOUS-TIME TEMPERED LANGEVIN DYNAMICS

In this section, we give the proof of our continuous-time upper bound, Theorem 1. In Appendix A.1
we discuss the well-posedness of the continuous time dynamics. The proof of Theorem 1 is then
given in Appendix A.2. In the next section, Appendix A.3, we derive from Theorem 1 guarantees
for convergence to a given precision. In Appendix A.4 we give the proofs of the lemmas we used in
the proof of Theorem 1.

A.1 WELL-POSEDNESS OF CONTINUOUS TEMPERED LANGEVIN DYNAMICS

Notice that in Equation (9), the drift b(t, x) = ∇ logµt(x) is time-dependent and the diffusion
coefficient is constant. Still, existence and uniqueness of solutions can be guaranteed under mild
assumptions. For instance, if ∇ log ν and ∇ log π are Lν and Lπ-Lipschitz respectively, the drift is
also Lipschitz with bounded constant L ≤ max(Lν , Lπ) (since the dynamic λt is bounded between
0 and 1), hence satisfy the usual linear growth condition in the second argument. In this case,
there exists a unique, continuous strong solution (Xt)t≥0 adapted to the filtration generated by the
Brownian motion which satisfies Equation (9) (Itô, 1951; Gikhman and Skorokhod, 2004). Strong
uniqueness also means that if two processes satisfy this equation with the same initial conditions,
their trajectories are almost surely indistinguishable. The law (pt)t≥0 of Equation (9) satisfies a
Fokker-Planck equation (Bogachev et al., 2022) that can be written

∂pt
∂t

= ∇ ·
Å
pt∇ log

Å
pt
µt

ãã
. (18)

Generally, proving the existence and uniqueness of solutions for FPEs is more difficult than for
SDEs, but one can also get under mild assumptions existence and uniqueness for solutions of Equa-
tion (18), under the same Lipschitzness assumptions on the score of proposal and target distributions,
and using that the tempering dynamics are bounded in [0, 1] (Bris and Lions, 2008, Proposition 2).

A.2 PROOF OF THEOREM 1

In this section, we will prove Theorem 1 on the convergence rate of tempered Langevin dynamics.
The proof is in two steps: first, we compute how the process pt tracks the moving target µt, then we
compute how well the moving target µt tracks the final target π.

Step 1: contraction of KL(pt, µt) over time. Using the chain rule, we have

d

dt
KL(pt, µt) =

∫
log

Å
pt
µt

ã
∂pt
∂t

+

∫
−pt
µt

∂µt
∂t

:= a+ b.

The first term a involves the Langevin dynamics given by the Fokker-Planck equation Eq. 18. Hence,
using integration by parts and the inverse log-Sobolev constants defined in Eq. 8, we obtain:

a =

∫
log

Å
pt
µt

ã
∇ ·
Å
pt∇ log

Å
pt
µt

ãã
= −

∫
pt

∥∥∥∇ log

Å
pt
µt

ã∥∥∥2
= −FD(pt, µt) ≤ −2αtKL(pt, µt). (19)

The second term b is specific to the tempering scheme: it involves the tempering dynamics µ̇t, which
is zero when there is no tempering and are here determined by the tempering rule µt = cλt

ν1−λtπλt ,
where cλt

= 1/
∫
ν1−λtπλt is a normalizing factor, that we will denote ct in this proof to alleviate

notation. We can compute the (log) tempering dynamics

∂ logµt
∂t

=
∂

∂t

Å
λt log

π

ν
+ log ν − log

∫
ν1−λtπλt

ã
= λ̇t log

π

ν
−

∂
∂t

∫
ν1−λtπλt∫
ν1−λtπλt

= λ̇t log
π

ν
− λ̇t

∫
log

π

ν

ν1−λtπλt∫
ν1−λtπλt

= λ̇t

(
log

π

ν
− Eµt

[
log

π

ν

])
so that the second term becomes

b =

∫
pt
−∂ logµt

∂t
= λ̇t

(
Eµt

[
log

π

ν

]
− Ept

[
log

π

ν

])
.

To control this term we prove the following Lemma in Appendix A.4.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Lemma 10 (Discrepancy between the laws of the sampling process and tempering path) We have

Eµt

[
log

π

ν

]
− Ept

[
log

π

ν

]
≤ 2(Lπ + Lν)

Å
2(d+ bν + bπ)

aν ∧ aπ
+ Ep0 [∥x∥2]

ã
.

Let A be the right-hand side in Lemma 10, namely

A := 2(Lπ + Lν)

Å
2(d+ bν + bπ)

aν ∧ aπ
+ Ep0 [∥x∥2]

ã
. (20)

Then we obtain

b ≤ Aλ̇t. (21)

Combining Eq. 19 and Eq. 21 we obtain

d

dt
KL(pt, µt) ≤ −2αtKL(pt, µt) +Aλ̇t.

To conclude this step, we apply Grönwall’s lemma (Mischler, 2019, Lemma 1.1) to yield

KL(pt,µt) ≤ exp

Ç∫ t

0

−2αsds

å
KL(p0, µ0) +A

∫ t

0

λ̇s exp

Ç∫ t

s

−2αvdv

å
ds.

Step 2: compare KL(pt, µt) and KL(pt, π). This measures how well the moving target µt tracks
the final target π. We write

KL(pt, π) = KL(pt, µt) + KL(pt, π)−KL(pt, µt)

= KL(pt, µt) + Ept
[
log

µt
π

]
= KL(pt, µt) + (1− λt)Ept

[
log

(ν
π

)]
+ log ct.

We make the following observation on the log normalizing constants, proved in Appendix A.4.
Lemma 11 (Bounding the normalizing constant of the law of the tempering path) We have

0 ≤ log ct ≤ min (λtKL(ν, π), (1− λt)KL(π, ν)) .

Using Lemma 11 to control the normalizing constant ct, we obtain

KL(pt, π) ≤ KL(pt, µt) + (1− λt)
(
Ept

[
log

(ν
π

)]
+ Eπ

[
log

(π
ν

)])
.

Finally, we control this last term using similar estimates as in Lemma 10; the proof is again deferred
to Appendix A.4.
Lemma 12 (Discrepancy between the laws of the sampling process and target) We have

Eπ
[
log

π

ν

]
− Ept

[
log

π

ν

]
≤ 2(Lπ + Lν)

Å
2(d+ bν + bπ)

aν ∧ aπ
+ Ep0 [∥x∥2]

ã
.

Applying this result we obtain

KL(pt, π) ≤ KL(pt, µt) + (1− λt)A .

Step 3: putting it together. We find

KL(pt, π) ≤ (u1) + (u2) + (u3) (22)

(u1) = exp

Ç
−2

∫ t

0

αsds

å
KL(p0, µ0)

(u2) = (1− λt)A

(u3) = A

∫ t

0

λ̇s exp

Ç
−2

∫ t

s

αvdv

å
ds .
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A.3 CONTINUOUS-TIME CONVERGENCE IN PRECISION FORM

As in Vempala and Wibisono (2019), we can derive from Theorem 1 sufficient conditions for con-
vergence to precision ϵ by setting each of the three terms in the upper-bound to be less than ϵ/3.
Corollary 13 Suppose the assumptions of Theorem 1 hold. To achieve convergence with precision
ϵ > 0 such that KL(pt, π) < ϵ, sufficient conditions on the time t and schedule λ(·) are

t > max

Å
1

2αmin
log

Å
3KL(p0, µ0)

ϵ

ã
,

1

αmin
log

Å
6A

ϵ

ãã
(23)

λt > 1− ϵ

3A
(24)

λt <
ϵ

6
+ λt/2, (25)

where αmin = mins>0 αs is the smallest log-Sobolev constant among the path of tempered distri-
butions.

Proof of Corollary 17. We upper-bound the first term by (u1) ≤ e−2tαmin KL(p0, µ0) so that a
sufficient condition for (u1) < ϵ/3 is t > 1

2αmin
log
Ä
3KL(p0,µ0)

ϵ

ä
.

A sufficient condition (u2) < ϵ/3 is λt ∈]1− ϵ
3A , 1]. If λ is bijective, this yields t > λ−1

(
1− ϵ

3A

)
.

Finally, we upper-bound the third term:

(u3) = A

∫ t

0

λ̇s exp

Ç
−2

∫ t

s

αvdv

å
ds (26)

= A

Ç∫ t/2

0

λ̇s exp

Ç
−2

∫ t

s

αvdv

å
ds+

∫ t

t/2

λ̇s exp

Ç
−2

∫ t

s

αvdv

å
ds

å
(27)

≤ A

Ç
exp

Ç
−2

∫ t

t/2

αvdv

å∫ t/2

0

λ̇s +

∫ t

t/2

λ̇sds

å
(28)

≤ A
(
exp(−tαmin)(λt/2 − λ0) + (λt − λt/2)

)
(29)

≤ A
(
exp(−tαmin) + (λt − λt/2)

)
(30)

so that sufficient conditions for (u3) < ϵ
3 can be obtained by setting each of the two terms smaller

than ϵ
6 , yielding t > 1

αmin
log 6A

ϵ and λt − λt/2 < ϵ/6.

A.4 PROOFS OF TECHNICAL LEMMAS FROM APPENDIX A.2

In this section, we give the deferred proofs from Appendix A.2. We first state and prove two observa-
tions that will be useful, before turning to the deferred proofs. The following proposition translates
the dissipativity assumptions into a condition on the tails of the proposal and target.
Proposition 14 (Tails of the proposal and target) For all x ∈ Rd, we have

Vν(x)− inf
y∈Rd

Vν(y) ≤ 2Lν
(
∥x∥2 + bν

aν

)
, Vπ(x)− inf

y∈Rd
Vπ(y) ≤ 2Lπ

(
∥x∥2 + bπ

aπ

)
.

Proof of Proposition 14. Observe that because

⟨∇Vν(x), x⟩ ≥ aν∥x∥2 − bν ,

the function Vν must be minimized by some point x0 ∈ B(0,
»

bν
aν
). Therefore, for all x ∈ Rd,

Vν(x)− inf
y∈Rd

Vν(y) = Vν(x)− Vν(x0) ≤ Lν∥x− x0∥2 ≤ 2Lν
(
∥x∥2 + bν

aν

)
.

The proof for Vπ is identical, so we omit it.

The next observation is our main quantitative use of the dissipativity assumption, and crucial for our
control on the terms arising from the tempering dynamics in the continuous time convergence proof.
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Lemma 15 (Bounded second moment along the dynamics) For all t ≥ 0,

Ept [∥x∥2] ≤ max
(
Ep0 [∥x∥2],

d+ bν + bπ
aν ∧ aπ

)
.

Proof of Lemma 15. Using the Fokker-Planck equation Eq. 18 and integration by parts several times,
we find

∂tEpt [∥x∥2] =
∫

∥x∥2∇ ·
(
pt∇ log

pt
µt

)
= −2

∫
⟨x,∇ log pt −∇ logµt⟩pt

= 2d− 2

∫
⟨x, (1− λt)∇Vν + λt∇Vπ⟩pt .

Applying the dissipativity assumption, we obtain

∂tEpt [∥x∥2] ≤ 2(d+ (1− λt)bν + λtbπ)− 2((1− λt)aν + λtaπ)Ept [∥x∥2]
≤ 2(d+ bν + bπ)− 2(aν ∧ aπ)Ept [∥x∥2].

Therefore, as soon as Ept [∥x∥2] exceeds the level (d+ bν + bπ)/(aν ∧ aπ), it must start decreasing.
The result follows.

We now give the proofs of the Lemmas from Appendix A.2.

Proof of Lemma 10. Use Proposition 14 to obtain

Eµt

[
log

π

ν

]
− Ept

[
log

π

ν

]
= Eµt

[Vν − Vπ] + Ept [Vπ − Vν ]

≤ Eµt
[Vν − inf

y∈Rd
Vν(y)] + Ept [Vπ − inf

y∈Rd
Vπ(y)]

≤ 2LνEµt
[∥x∥2] + 2LπEpt [∥x∥2] + 2Lν

bν
aν

+ 2Lπ
bπ
aπ
.

Let M be the quantity appearing on the right-hand side of Lemma 15. Then we obtain

Eµt

[
log

π

ν

]
− Ept

[
log

π

ν

]
≤ 2LνEµt

[∥x∥2] + 2Lπ
(
M +

bπ
aπ

)
+ 2Lν

bν
aν
.

To handle Eµt [∥x∥2], we apply the dissipativity assumption to yield

Eµt
[∥x∥2] ≤ 1

(1− λt)aν + λtaπ
Eµt

[
⟨(1− λt)∇Vν + λtVπ, x⟩+ (1− λt)bν + λtbπ

]
.

Integration by parts gives

Eµt [∥x∥2] ≤
d+ (1− λt)bν + λtbπ
(1− λt)aν + λtaπ

≤ d+ bν + bπ
aν ∧ aπ

.

Hence,

Eµt

[
log

π

ν

]
− Ept

[
log

π

ν

]
≤2Lπ

( bπ
aπ

+max
(
Ep0 [∥x∥2],

d+ bν + bπ
aν ∧ aπ

))
+ 2Lν

( bν
aν

+
d+ bν + bπ
aν ∧ aπ

)
.

Using max(x, y) ≤ x+ y when x, y ≥ 0 and

bν
aν
,
bπ
aπ

≤ d+ bν + bπ
aν ∧ aπ

,

we conclude.
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Proof of Lemma 11. We have

log ct = log

Å
1∫

ν1−λtπλt

ã
= − log

∫
ν1−λtπλt

The lower bound is immediate from Hölder’s inequality. For the upper bound, write

log ct = − logEν
ï(π
ν

)λt
ò
≤ λtEν

[
log

ν

π

]
= λtKL(ν, π)

using Jensen’s inequality. Similarly, we can write

log ct = − logEπ
ï(ν
π

)1−λt
ò
≤ (1− λt)Eπ

[
log

π

ν

]
= (1− λt)KL(π, ν) ,

and therefore conclude that

log ct ≤ min (λtKL(ν, π), (1− λt)KL(π, ν)) .

Proof of Lemma 12. Denoting by V ∗
π (resp. V ∗

ν ) the infimum of Vπ (resp. Vν), we have

Eπ
[
log

π

ν

]
− Ept

[
log

π

ν

]
=

∫
pt(Vπ − V ∗

π − (Vν − V ∗
ν )) +

∫
dπ(Vν − V ∗

ν )− (Vπ − V ∗
π ) .

Using Proposition 14, we obtain the upper-bound

Eπ
[
log

π

ν

]
− Ept

[
log

π

ν

]
≤ 2Lπ(Ept [∥x∥2] +

bπ
aπ

) + 2Lν(Eπ[∥x∥2] +
bν
aν

) .

Let M be the quantity appearing on the right-hand side of Lemma 15. Then

Eπ
[
log

π

ν

]
− Ept

[
log

π

ν

]
≤ 2Lπ

(
M +

bπ
aπ

)
+ 2Lν(Eπ[∥x∥2] +

bν
aν

).

On the other hand, a direct application of the dissipativity condition Assumption 2 implies

Eπ[∥x∥2] ≤
1

aπ
Eπ[⟨x,∇Vπ(x)⟩+ bπ] =

d+ bπ
aπ

≤ d+ bπ + bν
aν ∧ aπ

.

Therefore

Eπ
[
log

π

ν

]
− Ept

[
log

π

ν

]
≤ 2Lπ

(
max

(
Ep0 [∥x∥2],

d+ bν + bπ
aν ∧ aπ

)
+
bπ
aπ

)
+ 2Lν

d+ bπ + bν
aν ∧ aπ

+ 2Lν
bν
aν

).

Again, bounding max(x, y) ≤ x+ y for x, y ≥ 0 and using

bν
aν
,
bπ
aπ

≤ d+ bν + bπ
aν ∧ aπ

,

we conclude.

B CONVERGENCE OF DISCRETE-TIME TEMPERED LANGEVIN DYNAMICS

In this section we give proof of our discrete-time upper bound, Theorem 3. In Appendix B.1 we
outline the proof of Theorem 3. In Appendix B.2, we derive from Theorem 3 sufficient conditions
to precision KL(pk, π) < ϵ. And in Appendix B.3 we give the deferred proof from Appendix B.1.

B.1 PROOF OF THEOREM 3

We next prove Theorem 3. Broadly speaking, the proof is in two steps: first, we compute how the
process pk tracks the moving target µk, then we compute how well the moving target µk tracks the
final target π.
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Step 1: contraction of KL(pk, µk). Using Vempala and Wibisono (2019, Lemma 3), under As-
sumptions 1 and 2 and hk ≤ αk

4L2
k

, we obtain

KL(pk, µk) ≤ KL(pk−1, µk)e
−αkhk + 6h2kdL

2
k . (31)

Next, we can compute the (log) tempering dynamics of µk

logµk−1 − logµk = (λk − λk−1) log
ν

π
− log

∫
ν1−λk−1πλk−1∫
ν1−λkπλk

= (λk − λk−1) log
ν

π
− log

∫
ν1−λk−1πλk−1

ν1−λkπλk

ν1−λkπλk∫
ν1−λkπλk

= (λk − λk−1) log
ν

π
− logEµk

ï(ν
π

)λk−λk−1
ò

≤ (λk − λk−1)
(
log

ν

π
− Eµk

[
log

ν

π

])
,

where we used Jensen’s inequality at the last step. Thus

KL(pk−1, µk) = KL(pk−1, µk−1) + KL(pk−1, µk)−KL(pk−1, µk−1)

= KL(pk−1, µk−1) +

∫
pk−1 log

µk−1

µk

≤ KL(pk−1, µk−1) + (λk − λk−1)
(
Eµk

[
log

π

ν

]
− Epk−1

[
log

π

ν

])
.

Using Proposition 14 we can upper bound the difference of expectations via

Eµk

[
log

π

ν

]
− Epk−1

[
log

π

ν

]
≤ 2Lν(Eµk

[∥x∥2] + bν
aν

) + 2Lπ(Epk−1
[∥x∥2] + bπ

aπ
)

The next Lemma, proved in Appendix B.3 controls the second moment of pk.
Lemma 16 (Bounded second moment along the dynamics) Suppose hk ≤ min(1, aπ∧aν

2(Lπ+Lν)2
). Then

Epk [∥x∥2] ≤ max(Ep0 [∥x∥2],
2(3(bπ + bν)/2 + d)

aπ ∧ aµ ∧ 1
) .

For the second moment of µk we use the following bound from the proof of Lemma 10

Eµk
[∥x∥2] ≤ d+ bν + bπ

aν ∧ aπ
.

To combine these bounds, let us define

A′ := 2(Lπ + Lν)
{
max

(
Ep0 [∥x∥2],

2(3(bπ + bν)/2 + d)

aπ ∧ aν ∧ 1

)
+

3(d+ bν + bπ)

aπ ∧ aν

}
. (32)

Plugging into Eq. 31, we obtain

KL(pk, µk) ≤ KL(pk−1, µk−1)e
−αkhk + (λk − λk−1)A

′e−αkhk + 6h2kdL
2
k .

Now put ψki :=
∑k
j=i αjhj . Unrolling the recursion, we obtain

KL(pk, µk) ≤ e−ψ
k
1 KL(p0, µ0) +

k∑
i=1

(
A′(λi − λi−1)e

−αihi + 6h2i dL
2
i

)
e−ψ

k
i+1 . (33)

Step 2: compare KL(pk, µk) and KL(pk, π). Here we use Lemma 11 to control the log-
normalizing constants and obtain

KL(pk, π) = KL(pk, µk) + KL(pk, π)−KL(pk, µk)

= KL(pk, µk) + Epk
[
log

µk
π

]
= KL(pk, µk) + (1− λk)Epk

[
log

ν

π

]
+ log ck

≤ KL(pk, µk) + (1− λk)
(
Epk

[
log

ν

π

]
+KL(π, ν)

)
.
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To control the term in parentheses, we apply Proposition 14 to yield

Epk
[
log

ν

π

]
+KL(π, ν) ≤ 2Lπ

(
Epk [∥x∥2] +

bπ
aπ

)
+ 2Lν

(
Eπ[∥x∥2] +

bν
aν

)
.

Using Lemma 15 and the following bound from the proof of Lemma 12

Eπ[∥x∥2] ≤
d+ bπ + bν
aν ∧ aπ

,

we find
Epk

[
log

ν

π

]
+KL(π, ν) ≤ A′,

for A′ as in Eq. 32.

Step 3: putting it together. Combining the results of steps 1 and 2, we can finally write

KL(pt, π) ≤ (v1) + (v2) + (v3) + (v4) (34)

(v1) = exp
(
−

k∑
j=1

αjhj

)
KL(p0, µ1),

(v2) = (1− λk)A
′,

(v3) = A′
k∑
i=1

(λi − λi−1) exp
(
−

k∑
j=i

αjhj

)
,

(v4) = 6

k∑
i=1

h2kdL
2
k exp

(
−

k∑
j=i+1

αjhj

)
.

B.2 DISCRETE-TIME CONVERGENCE IN PRECISION FORM

Corollary 17 To achieve convergence with precision ϵ > 0 such that KL(pk, π) < ϵ, sufficient
conditions are

h < min
( 1

4αmin
,

αmin

96L2
maxd

ϵ,
αmin

4(Lπ + Lν)2
,

aπ ∧ aν
2(Lπ + Lν)2

, 1
)

(35)

k > max

Å
1

hαmin
log

Å
4KL(p0, µ1)

ϵ

ã
,

2

hαmin
log

Å
8A′

ϵ

ãã
(36)

λk > 1− ϵ

4A′ (37)

λk − λ⌊k/2⌋ <
ϵ

24A′ (38)

where αmin = mins>0 αs and Lmax = maxs>0 Ls denote the smallest (resp. largest) log-Sobolev
(resp. smoothness) constant among the path of tempered distributions.

Proof. Again, as in Vempala and Wibisono (2019), we can derive sufficient conditions for conver-
gence with a given precision KL(pk, π) < ϵ by setting each of the four terms in the upper-bound
inferior to ϵ/4.

First, we upper-bound the fourth term:

(v4) ≤ 6h2dL2
max

k∑
i=1

e−(k−i)hαmin = 6h2dL2
max

1− e−khαmin

1− e−hαmin
(39)

≤ 6h2dL2
max

1

1− e−hαmin
≤ 6h2dL2

max

4

3hαmin
=

8hdL2
max

αmin
(40)

where in the last inequality, similarly to Vempala and Wibisono (2019), we use that 1 − e−c ≥ 3
4c

for 0 < c = hαmin ≤ 1
4 which holds assuming that h ≤ 1

4αmin
. Thus, a sufficient condition for

(v4) ≤ ϵ/4 is h ≤ αmin

32L2
maxd

ϵ.
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Next, we upper-bound the first term by (v1) ≤ e−khαmin KL(p0, µ0) so that a sufficient condition
for (v1) < ϵ/4 is k > 1

hαmin
log
Ä
4KL(p0,µ0)

ϵ

ä
.

A sufficient condition (v2) < ϵ/4 is λk ∈]1− ϵ
4A′ , 1].

Finally, we upper-bound the third term:

(v3) := A′
k∑
i=1

(λi − λi−1) exp

Ñ
−h

k∑
j=i

αj

é
(41)

= A′

Ñ
⌊k/2⌋∑
i=1

(λi − λi−1) exp

Ñ
−h

k∑
j=i

αj

é
+

k∑
i=⌊k/2⌋

(λi − λi−1) exp

Ñ
−h

k∑
j=i

αj

éé
(42)

≤ A′

Ñ
exp

Ñ
−h

k∑
j=⌊k/2⌋

αj

é
⌊k/2⌋∑
i=1

(λi − λi−1) +

k∑
i=⌊k/2⌋

(λi − λi−1)

é
(43)

≤ A′ (exp(−hkαmin/2)(λ⌊k/2⌋ − λ1) + (λk − λ⌊k/2⌋)
)

(44)

≤ A′ exp(−hkαmin/2) +A′(λk − λ⌊k/2⌋) (45)

so that sufficient conditions for (v3) < ϵ
4 can be obtained by setting each of the two terms smaller

than ϵ
8 , yielding k > 2

αminh
log 8A′

ϵ and λk − λ⌊k/2⌋ <
ϵ

8A′ .

B.3 TECHNICAL LEMMA FROM APPENDIX B.1

In this section, we prove Lemma 16.

Proof of Lemma 16. We recall that the particles follow the recursion

Xk+1 = Xk − hk∇Vλk
(Xk) +

√
2hkzk ,

where zk follows a standard normal distribution on Rd and Xk ∼ pk. Hence, we have

E[∥Xk+1∥2] = E[∥Xk − hk∇Vλk
(Xk) +

√
2hkzk∥2] (46)

= E[∥Xk − hk∇Vλk
(Xk)∥2] + 2dhk (47)

= E[∥Xk∥2]− 2hkE[X⊤
k ∇Vλk

(Xk)] + h2kE[∥∇Vλk
(Xk)∥2] + 2dhk . (48)

The dissipativity assumption yields E[X⊤
k ∇Vλk

(Xk)] ≥ (aπ ∧ aν)E[∥Xk∥2]− (bν + bπ) and as in
the proof of Proposition 14 we have ∥∇Vλk

(Xk)∥2 ≤ 2(Lπ + Lν)
2(∥Xk∥2 + bν+bπ

aµ∧aπ ) so that

E[∥Xk+1∥2] ≤ E[∥Xk∥2]− 2hk((aπ ∧ aν)E[∥Xk∥2]− (bν + bπ)) + 2dhk

+ 2h2k(Lπ + Lν)
2(E[∥Xk∥2] +

bν + bπ
aµ ∧ aπ

) .

Letting L := Lπ + Lν , a := aν ∧ aπ and b := bν + bπ we obtain

E[∥Xk+1∥2] ≤ E[∥Xk∥2]− 2hk((a− hkL
2)E[∥Xk∥2]− (b+ d)− hk

Lb

a
)

= E[∥Xk∥2](1− 2hk(a− hkL
2)) + 2hk(b+ d+ hk

L2b

a
) .

Now by induction, assume that E[∥Xk∥2] ≤ max(Ep0 [∥x∥2]),
2(3b/2+d)

a∧1 ). By construction on hk,

a − hkL
2 > 0 hence if E[∥Xk∥2] > b+d+hkL

2b/a
2hk(a−hkL2) , then E[∥Xk+1∥2] < E[∥Xk∥2] and in par-

ticular E[∥Xk+1∥2] ≤ max(Ep0 [∥x∥2],
2(3b/2+d)

a∧1 ). Now, if E[∥Xk∥2] ≤ b+d+hkL
2b/a

2hk(a−hkL2) , then if
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1 > 2hk(a− hkL
2) we have

E[∥Xk+1∥2] ≤
b+ d+ hkL

2b/a

a− hkL2
(1− 2hk(a− hkL

2)) + 2hk(b+ d+ hkL
2b/a) (49)

=
b+ d+ hkL

2b/a

a− hkL2
(50)

≤ 2(3b/2 + d)

a
, (51)

by construction on hk. Conversely, if 1 ≤ 2hk(a− hkL
2), then

E[∥Xk+1∥2] ≤ 2hk(b+ d+ hk
L2b

a
)

≤ 2(3b/2 + d) .

C OPTIMIZATION OF CONTINUOUS-TIME TEMPERED LANGEVIN DYNAMICS

C.1 PROOF OF COROLLARY 5

We will rewrite and bound the terms (u1), (u2) and (u3) in the upper bound of Theorem 1 provided
in Eq. 34, so that the role of the tempering schedule λ(·) is more explicit, at the expense of a looser
upper-bound.

Rewriting (u3). We begin with the third term, using integration by parts to write

(u3) := A

∫ t

0

λ̇s exp

Ç
−2

∫ t

s

αvdv

å
ds

= A

Ç
λt − λ0 exp

Ç
−2

∫ t

0

αvdv

å
− 2

∫ t

0

λsαs exp

Ç
−2

∫ t

s

αvdv

å
ds

å
.

Recalling (u2). Recall that

(u2) = A(1− λt) .

Rewriting (u1). We recall that (u1) = exp
Ä
−2

∫ t
0
αvdv

ä
KL(p0, µ0). Assuming that the process

is initialized at the proposal distribution p0 = ν, we can use the tempering rule µt = ctν
1−λtπλt to

rewrite the KL term
KL(ν, µ0) = λ0 KL(ν, π)− log c0 .

By positivity of log c0, we can write − log c0 ≤ λ0 KL(π, ν). In particular

KL(ν, µ0) ≤ λ0(KL(ν, π) + KL(π, ν))

= λ0

Å∫
[Vπ(x)− V ∗

π − (Vν(x)− V ∗
ν )]dν(x) +

∫
[Vν(x)− V ∗

ν − (Vπ(x)− V ∗
π )]dπ(x)

ã
≤ λ0A .

Upper bounding the sum. We can now combine upper bounds on (u1), (u2) and (u3) and sim-
plify the result, using that the terms λ0A exp

Ä
−2

∫ t
0
αvdv

ä
and Aλt cancel out, to finally yield

KL(pt, π) ≤ A ·Gt(λ), Gt(λ) := 1− 2

∫ t

0

λsαs exp

Ç
−2

∫ t

s

αvdv

å
ds. (52)
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Optimal schedule when απ ≥ αν Now, let Φs := exp
(
− 2

∫ t
s
αudu). We have

Gt(λ) = 1− 2

∫ t

0

λsαsΦsds.

Applying integration by parts, we find

Gt(λ) = 1− [λsΦs]
t
0 +

∫ t

0

λ̇sΦsds = 1− λt + λ0Φ0 +

∫ t

0

λ̇sΦsds.

Since λ̇s ≥ 0 and Φs ≥ e−2(t−s)απ (using the assumption απ ≥ αν), it follows that

Gt(λ) ≥ 1− λt + λ0e
−2tαπ +

∫ t

0

λ̇se
−2(t−s)απds.

Reversing the integration by parts,we obtain

Gt(λ) ≥ 1− 2

∫ t

0

λsαπe
−2(t−s)απds ≥ 1− 2

∫ t

0

απe
−2(t−s)απds,

where the last inequality uses λs ≤ 1. Recognizing the right-hand side as Gt evaluated at schedule
λ ≡ 1, we conclude.

C.2 PROOF OF PROPOSITION 6

Sketch of proof. We first make the change of variable Φ(s) = exp

Å
−
∫ t
s
αudu

ã
so that the problem

can be re-written as

sup
Φ∈It

1

αν − απ

Ç
αν
2

−
∫ t

0

Φ̇2
sds−

αν
2
Φ2

0

å
,

where It is the set of strictly positive functions Φ : [0, t] 7→ R with weak second derivative and
such that απΦ ≤ Φ̇ ≤ ανΦ and ΦΦ̈ ≤ Φ̇2 and Φ(t) = 1. Unlike the previous objective G(·), note
that our new problem has now a concave objective yet has non-convex (and non closed) constraints.
Hence we make a convex relaxation and solve instead

sup
Φ∈Jt

1

αν − απ

Ç
αν
2

−
∫ t

0

Φ̇2
sds−

αν
2
Φ2

0

å
,

where Jt is the set of non-negative functions in W 1,2([0, t]) such that απΦ ≤ Φ̇ and Φ(t) = 1.
After showing that an optimal solution Φ indeed exists, we explicitly describe it and show that it
belongs to It a.k.a. it verifies the original constraints. In order to come up with an explicit solution
Φ, we make a disjunction of cases on whether the constraint απΦ ≤ Φ̇ is saturated: if it is always
saturated, then Φ is exponential if not, then it must be linear on a maximal neighborhood around the
non saturated point. We then prove that this maximal neighborhood is unique, pathwise connected
and can only be of the form [0, x0] with x0 ≤ t so that Φ is linear on [0, x0] and is then exponential
on [x0, t].

Proof of Prop. 6. We first notice that minimizingGt defined in Corollary 5 over the set of admissible
tempering schedules λ is equivalent to solving

sup
λ∈Λt

∫ t

0

λsαs exp

Ç
−2

∫ t

s

αudu

å
ds ,

where Λt is the set of functions from [0, t] to [0, 1] with non-negative weak derivative.

Proposition 18 Suppose απ < αν and let It be the set of positive functions Φ with weak second
derivative , such that Φt = 1, απΦ ≤ Φ̇ ≤ ανΦ and Φ̈Φ− Φ̇2 is a non-positive measure. Then

sup
λ∈Λt

∫ t

0

λsαs exp

Å
−2

∫
αudu

ã
ds = sup

Φ∈It

1

αν − απ

Ç
αν
2

−
∫ t

0

Φ̇2
sds−

αν
2
Φ2

0

å
. (53)
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Proof. Let λ ∈ Λt and denote Φs := Φ(s) = exp
Ä
−
∫ t
s
αudu

ä
. The function Φ is strictly positive

and such that Φt = 1. Its first and second derivatives read®
Φ̇s = αsΦs ,

Φ̈s = α̇sΦs +
Φ̇2

s

Φs
.

In particular, since λ ∈ [0, 1] and αs = (1 − λs)αν + λsαπ , we have αs ∈ [απ, αν ] and by
positiveness of Φ, it holds

απΦ ≤ Φ̇ ≤ ανΦ .

Similarly, since λ̇ is a non-negative measure, α̇ = (απ − αν)λ̇ is a non-positive measure and so is
α̇Φ2. This implies in particular

Φ̈Φ− Φ̇2 = α̇Φ2 ≤ 0 .

Hence we verified that Φ ∈ It. Furthermore, it reads∫ t

0

λsαs exp

Ç
−2

∫ t

s

αudu

å
ds =

1

αν − απ

∫ t

0

(αν − αs)αs exp

Ç
−2

∫ t

s

αudu

å
ds

=
1

αν − απ

∫ t

0

ανΦ̇sΦs − Φ̇2
sds

=
1

αν − απ

Ç
αν
2
[Φ2
s]
t
0 −

∫ t

0

Φ̇2
sds

å
=

1

αν − απ

Ç
αν
2
(1− Φ2

0)−
∫ t

0

Φ̇2(s)ds

å
.

In particular, we have

sup
λ∈Λt

∫ t

0

λsαs exp

Å
−2

∫
αudu

ã
ds ≤ sup

Φ∈It

1

αν − απ

Ç
αν
2

−
∫ t

0

Φ̇2
sds−

αν
2
Φ2

0

å
.

Conversely, let Φ ∈ It, defining αs = ∂s log Φ = Φ̇/Φ and λs = αν−αs

απ−αν
we have by construction

that λ ∈ Λt. Furthermore, the previous computations show that

1

αν − απ

Ç
αν
2
(1− Φ2

0)−
∫ t

0

Φ̇2
sds

å
=

∫ t

0

λsαs exp

Å
−2

∫
αudu

ã
ds .

In particular, we recover the reverse inequality

sup
Φ∈It

1

αν − απ

Ç
αν
2

−
∫ t

0

Φ̇2
sds−

αν
2
Φ2

0

å
≤ sup
λ∈Λt

∫ t

0

λsαs exp

Å
−2

∫
αudu

ã
ds .

Hence the problem can be re-written as the minimization of the convex functional Φ 7→
∫ t
0
Φ̇2
sds+

αν

2 Φ2
0 under the constraint Φ ∈ It. As can be noted, the constraint Φ̈Φ− Φ̇2 ≤ 0 is non-convex and

the constraints Φ > 0, Φ has a weak second derivative are non-closed. Hence we are going to relax
all of these constraints and solve instead

inf
Φ∈Jt

∫ t

0

Φ̇2
sds+

αν
2
Φ2

0 , (54)

where Jt ⊂ W 1,2([0, t]) is the set of positive functions such that Φt = 1, απΦ ≤ Φ̇ almost
everywhere. Note that we also dropped the constraint Φ̇ ≤ ανΦ for convenience of the proof.
Nevertheless, we show that at the optimum, the solution of the problem above verifies all the initial
constraints.

Proposition 19 Assume απ < αν . Then Eq. 54 admits a minimizer Φ which has the following
expression:

1. If απ > αν

2 , then Φs = eαπ(s−t).
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2. If αν

tαν+2 < απ ≤ αν

2 , then

Φs =

®
απe

απ(
1

απ
− 2

αν
−t)s+ 2απ

αν
eαπ(

1
απ

− 2
αν

−t) s ≤ 1
απ

− 2
αν
,

eαπ(s−t) s > 1
απ

− 2
αν
.

3. If απ ≤ αν

tαν+2 , then Φs =
αν

2+tαν
s+ (1− tαν

2+tαν
).

Proof. We aim to solve the minimization problem defined in Eq. 54.

Existence of a minimum. Since the objective has compact sub-level sets and is continuous for
the W 1,2([0, t]) norm, we can extract a minimizing sequence (Φn)n in Jt that converges in W 1,2

towards some Φ in W 1,2([0, t]). Because W 1,2 metrizes pointwise convergence, we obtain that the
infimum verifies two of the constraints: Φ(t) = 1 and Φ ≥ 0 almost everywhere.

Then, since Φn ∈ Jt, for s0, h > 0 such that s0, s0 + h ∈ [0, t] we have 0 ≤ απΦn ≤ Φ̇n and then:

απΦn(s0) ≤
απ
h

∫ s0+h

s0

Φn(s)ds ≤
1

h

∫ s0+h

s0

Φ̇n(s)ds =
Φn(s0 + h)− Φn(s0)

h
.

Letting n go to infinity and h to zero, we obtain, for almost all s0 ∈ [0, t]

απΦ(s0) ≤ Φ̇(s0) ,

hence Φ ∈ Jt, showing Φ is a minimizer of Eq. 54.

Explicit expression of the minimum. We now describe an explicit expression for Φ using opti-
mality. To do so, we will break down the the following inequality

απΦs ≤ Φ̇s

into cases where it is saturated and cases where it is not. Each case will yield a candidate for Φ.
In the end, we will evaluate these candidates in the objective function and the one which yields the
lowest value will be the true Φ.

Case 1: the inequality is saturated everywhere. In the case where the inequality constraint
above is saturated for x almost everywhere, we obtain that the minimizer Φ is of the form Φs =
K exp(απs) and using the fact that Φt = 1, we recover that Φs = exp((s− t)απ).

Case 2: the inequality is not saturated saturated everywhere. Now let us assume that there
exists x0 where the inequality is not saturated by the minimizer

απΦ(x0) < Φ̇(x0) .

We can make a disjunction of cases with respect to x0.

If x0 = t. We will show that Φ is linear on [0, t]. We first define a neighborhood of x0 of size ϵ
that satisfies a certain inequality. By continuity of Φ and the definition of the derivative, there exists
an ϵ > 0 such that for all δ < ϵ

απΦ(t) <
Φ(t)− Φ(t− δ)

δ
. (55)

Let us now define the neighborhood size ϵ to be the largest ϵ > 0 such that t− ϵ ≥ 0 and such that
the inequality above holds for all δ < ϵ.

Next, we define a candidate Φ̃ that is linear in this neighborhood, and equal to the minimizer Φ
outside the neighborhood. Let®

Φ̃(x) = Φ(x) if x /∈ [t− ϵ, t] ,

Φ̃(x) = Φ(t)−Φ(t−ϵ)
ϵ (x− t+ ϵ) + Φ(t− ϵ) if x ∈ [t− ϵ, t] .
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By construction, Φ̃ verifies the constraints, i.e. Φ̃ ∈ Jt. Indeed, taking δ → ϵ in Eq. 55, and using
the monotonicity of Φ̃, we get successively for almost every x ∈ [0, t]:

απΦ̃(x) ≤ απΦ̃(t) ≤
Φ(t)− Φ(t− ϵ)

ϵ
= Φ̇(x).

Hence, Φ̃ is a suitable candidate for solving Problem Eq. 54.

Finally, we show that the candidate we built Φ̃ achieves a smaller objective than a minimizer and
must therefore be equal to a minimizer Φ ∈ Jt. By optimality,∫ t

0

Φ̇2(s)ds+
αν
2
Φ(0)2 ≤

∫ t

0

˙̃Φ2(s)ds+
αν
2
Φ̃(0)2

and since Φ and Φ̃ coincide on [0, t− ϵ], it holds∫ t

t−ϵ
Φ̇2(s)ds ≤ (Φ(t)− Φ(t− ϵ))2

ϵ
.

The same inequality in the other direction is obtained by applying Jensen’s inequality∫ t

t−ϵ
Φ̇2(s)ds ≥ ϵ

Ç
1

ϵ

∫ t

t−ϵ
Φ̇(s)ds

å2

=
(Φ(t)− Φ(t− ϵ))2

ϵ
.

We are therefore in the equality case of Jensen with a strongly convex and smooth function, so it
must hold for s almost everywhere in the neighborhood [t− ϵ, t] that

Φ̇(s) =
Φ(t)− Φ(t− ϵ)

ϵ
,

and in particular Φ is linear in the neighborhood [t− ϵ, t] and is of the form Φ(x) = ax+ b.

Finally, we will show that the neighborhood covers the entire interval [0, t], or in other words, that
ϵ = t. Suppose it is not the case and ϵ < t. Then, by continuity of Φ at the neighborhood border
t− ϵ,

απΦ(t) =
Φ(t)− Φ(t− ϵ)

ϵ
.

Combined with the fact that Φ(t) = 1, this implies a = απ which is a contradiction with the
inequality Eq. 55 that characterizes the neighborhood, and in particular yields a > απ . Hence, we
must have ϵ = t and in particular, Φ is linear on the whole interval [0, t].

If x0 ∈]0, t[ As before we can define ϵ+ and ϵ− as the largest ϵ > 0 such that x0 + ϵ < t (resp.
x0 − ϵ > 0) and Φ(x0+δ)−Φ(x0)

δ > απΦ(x0) for all δ < ϵ+ (resp. Φ(x0)−Φ(x0−δ)
δ > απΦ(x0) for

all δ < ϵ−). Again, we obtain that Φ must be linear on [x0, x0 + ϵ+] of the form Φ(x) = a+x+ b+
and linear on [x0 − ϵ−, x0] of the form Φ(x) = a−x+ b−. Furthermore, since Φ is differentiable at
x0, its derivative must read

Φ̇(x0) = lim
h→0

Φ(x0 + h)− Φ(x0)

h
= lim
h→0

Φ(x0)− Φ(x0 − h)

h
,

which implies a+ = a− := a and by continuity of Φ at x0, we also recover b+ = b−. In particular,
Φ is linear across the whole interval [x0 − ϵ−, x0 + ϵ+]. We have now four possibilities: either a)
x0− ϵ− = 0 and x0+ ϵ+ = t, b) x0− ϵ− > 0 and x0+ ϵ+ < t, c) x0− ϵ− > 0 and x0+ ϵ+ = t, d)
x0 − ϵ− = 0 and x0 + ϵ+ < t. The case a) simply corresponds to the case where Φ is linear across
the whole interval. The case b) implies by continuity that a = απΦ(x0 − ϵ−) = απΦ(x0 + ϵ+)

which implies that a = 0. This cannot hold as we initially assumed that απΦ(x0) < Φ̇(x0) = 0
which would result in a violation of the positivity constraint. The case c) yields the contradiction
a = απΦ(x0) and a > απΦ(x0). Finally, let us deal with case d). We prove that in this case, there
exists no other point outside [0, x0 + ϵ+] such that the constraint απΦ ≤ Φ̇ is not saturated ; in
particular this implies that Φ is linear on [0, x0 + ϵ+] and of the form K exp(απx) on [x0 + ϵ+, t].
Let us assume that there exists x1 outside of [0, x0 + ϵ+] such that

απΦ(x1) < ˙Φ(x1) .
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Just as before, this implies the existence of ϵ̃+ such that Φ is linear across [0, x1 + ϵ̃+] and such that

απΦ(x1 + ϵ̃+) ≤
Φ(x1 + ϵ̃+)− Φ(x1)

ϵ̃+
.

By linearity, if we take ϵ such that x0 + ϵ < x1 + ϵ̃+, the right hand side is also given by
Φ(x0+ϵ)−Φ(x0)

ϵ and since Φ is strictly increasing, the left-hand side can be lower-bounded by
απΦ(x0 + ϵ) which implies

απΦ(x0 + ϵ) <
Φ(x0 + ϵ)− Φ(x0)

ϵ
,

for all ϵ such that x0 + ϵ < x1 + ϵ̃+. Since x1 + ϵ̃+ > x0 + ϵ+, this contradicts the definiton of ϵ+
which was chosen as the largest ϵ such that for all ϵ ≤ ϵ+,

απΦ(x0 + ϵ) <
Φ(x0 + ϵ)− Φ(x0)

ϵ
.

In particular, the constraint απΦ ≤ Φ̇ is always saturated outside of [0, x0 + ϵ+].

If x0 = 0 As before, we obtain that Φ is either linear across the whole space [0, t], either there
exists x0 such that Φ is linear across [0, x0] and of the form K exp(απx) on [x0, t] and such that
απΦ(x0) = Φ̇(x0).

Summary of the minimizer candidates We can now summarize the candidates we obtained for
the minimizer function Φ. It has the three following possible forms:

• Form 1: Φ is an exponential function of the form K exp(απx) on the entire interval [0, t].

• Form 2: Φ is a linear function on the entire interval [0, t].

• Form 3: Φ is linear function then an exponential function on the entire interval.

Specifically, there exists x0 ∈]0, t[ such that Φ is linear on [0, x0] and of the form
K exp(απx) on [x0, t] and such that απΦ(x0) = Φ̇(x0).

We shall determine which candidate Φ among the three is the true minimizer, by evaluating the
objective function Eq. 54 for each and picking the candidate which achieves the lowest value.

Form 1. As stated above, since Φ(t) = 1, it implies that the function Φ is entirely determined and
given by Φ(x) = exp(απ(x− t)). In this case, the value of the objective is given by∫ t

0

Φ̇2(s)ds+
αν
2
Φ(0)2 = α2

π

ñ
e2απ(x−t)

2απ

ôt
0

+
αν
2
e−2απt ,=

απ
2

+
e−2απt

2
(αν − απ) .

Form 2. The function Φ is of the form Φ(x) = ax+ b. Since Φ(t) = 1, the coefficient b is given
by 1− at. Furthermore, the constraint απΦ ≤ Φ̇ is equivalent to solving a ≥ απ and the constraint
Φ ≥ 0 becomes a ≤ 1/t. Hence, in the case where 1/t < απ , there is no linear admissible potential.
In the case where, απ ≤ 1/t, we need to solve the following one dimensional quadratic problem

inf
1/t≥a≥απ

ta2 +
αν
2
(1− at)2 .

The objective can be rewritten as θ(a) = a2(t+ t2αν

2 )− atαν +
αν

2 . The minimum of θ is given by

a∗ :=
αν

2 + tαν
(56)

Note that we always have a∗ ≤ 1/t, hence if απ ≤ a∗ the minimum is attained for a = a∗ and is
given by

θ(a∗) =
αν
2

− tα2
ν

4 + 2tαν
=
αν
2
(1− tαν

2 + tαν
) =

αν
2 + tαν

.

If απ > a∗, the minimum is attained for a = απ and is given by

θ(απ) = tα2
π +

αν
2
(1− απt)

2 = tα2
π +

αν
2

− αναπt+ (tαπ)
2αν
2

= tαπ(απ − αν + t
απαν
2

) +
αν
2
.
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Form 3. There exists 0 < x0 < t such that the function Φ is of the form ax + b over [0, x0] and
then is given by eαπ(x−t) over [x0, t] and which is such that Φ̇(x0) = απΦ(x0). The continuity of
Φ implies that ax0 + b = eαπ(x0−t) and the previous equation gives a = (ax0 + b)απ . Both these
equations uniquely determine a and b when x0 is fixed as®

a = απe
απ(x0−t) ,

b = eαπ(x0−t)(1− απx0) ,

and in particular the positivity constraint is equivalent to x0 ≤ 1
απ

; note that the constraint απΦ ≤ Φ̇

is indeed respected over [0, t]. Hence, we must solve the following one dimensional problem

inf
0≤x0≤min(t, 1

απ
)
x0α

2
πe

2απ(x0−t) +
απ
2
(1− e2απ(x0−t)) +

αν
2
e2απ(x0−t)(1− απx0)

2 .

Let us remark that x0 = 0 being an admissible candidate, the potential Φ(x) = eαπ(x−t) is indeed
an admissible candidate and in particular, the value of the problem above is always lower than the
one obtained with Form 1. Denoting f the objective function, let us compute the derivative of f .
For all x0, we have

f ′(x0) = α2
πe

2(x0−t) + 2x0α
3
πe

2(x0−t) − α2
πe

2(x0−t) + απαν(1− x0απ)
2e2(x0−t)

− αναπ(1− x0απ)e
2(x0−t) ,

= e2(x0−t)απ
(
2x0α

2
π − αν(1− x0απ)(1− 1 + x0απ)

)
,

= x0e
2(x0−t)α2

π(2απ − αν(1− x0απ)) .

The term (2απ − αν(1 − x0απ)) cancels for x0 = 1
απ

− 2
αν

, hence if απ ≥ αν

2 , the derivative
f ′ is always non-negative for all x0 ≥ 0 hence the optimal choice of x0 is given by x0 = 0. Let
us remark that this case implies απ > a∗ where a∗ is defined in Eq. 56 and for which the optimal
Form 2. is given by Φ(x) = απx + (1 − tαπ) which an admissibile candidate for Form 3. This
proves that whenever απ > αν

2 , the optimal potential is given by Φ(x) = eαπ(s−t).with x0 = t.
If απ < αν

2 , then f decreases between 0 and 1
απ

− 2
αν

and then increases. In particular, since
1
απ

− 2
αν

< 1
απ

, the minimum is attained for x0 = min(t, 1
απ

− 2
αν

). In the case where t ≤ 1
απ

− 2
αν

which is equivalent to απ ≤ a∗ with a∗ defined in Eq. 56, the obtained potential is linear hence it is
necessarily sub-optimal with respect to Form 2. which yields as an optimal potential

Φ(x) = a∗x+ (1− a∗t) .

Let us now place ourselves in the case t > 1
απ

− 2
αν

. In the case where t > 1
απ

− 2
αν

,
which is equivalent to απ > a∗, the optimal potential yielded by Form 2. (if any) is given by
Φ(x) = απx + (1 − απt) which is admissible for Form 3. by taking x0 = t hence, Form 3. is
necessarily sub-optimal.

As a conclusion, we have obtained the following expressions for Φ:

1. If απ > αν

2 , we have Φ(x) = eαπ(x−t).

2. If αν

tαν+2 < απ ≤ αν

2 , then Φ is given by®
Φ(x) = απe

απ(
1

απ
− 2

αν
−t)x+ 2απ

αν
eαπ(

1
απ

− 2
αν

−t) if x ≤ 1
απ

− 2
αν
,

Φ(x) = eαπ(x−t) if x > 1
απ

− 2
αν
.

3. If απ ≤ αν

tαν+2 , then Φ(x) = αν

2+tαν
x+ (1− tαν

2+tαν
).

Note that in any case, Φ is in fact continuously differentiable and verifies almost everywhere Φ̈Φ ≤
Φ̇2 as well as Φ̇ ≤ ανΦ, hence it is a solution of the problem

inf
Φ≥0,Φ̈Φ≤Φ̇2,

Φ(t)=1, απΦ≤Φ̇≤ανΦ .

∫ t

0

Φ̇2(s)ds+
αν
2
Φ(0)2 .
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The optimal Φ is linked to the optimal tempering scheme λ as λs = αν−αs

αν−απ
with αs = ∂s log(Φ).

Hence we obtain

λs = min

Å
1,

αν(ανs+ 1)

(αν − απ)(ανs+ 2)

ã
.

C.3 PROOF OF PROPOSITION 7

Consider the tempering schedule λt = t/T for t ∈ [0, T ] and one elsewhere. We will first evaluate
the upper bound at the horizon t = T , which quantifies the error produced by linear tempering
along a finite horizon. Then, we will let the horizon grow T → ∞ to obtain a rate in T . Using the
notations of Eq. 34 we have:

(u1) + (u2) + (u3) = 0 + 0 +A

∫ T

0

λ̇s exp

Ç
−2

∫ T

s

αvdv

å
ds

=
A

T

∫ T

0

exp

Ç
−2

∫ T

s

(
v

T
(απ − αν) + αν)dv

å
ds

=
A

T

∫ T

0

exp

Å
−2

απ − αν
T

1

2
(T 2 − s2)− 2(T − s)αν

ã
ds

=
A

T

∫ T

0

exp
(
−αν − απ

T
s2 + 2ανs− T (αν + απ)

)
ds .

We can write the antiderivative of the integrand: we generically have
∫
exp

(
−ax2 + bx− c

)
dx =

√
π

2
√
a
exp

(
b2/4a− c

)
erf((2ax− b)/(2

√
a)) + constant, when a, b, c are positive. In our setup, this

requires απ < αν . We can now write

(u1) + (u2) + (u3) =
1√
T

A
√
π

2
√
αν − απ

exp

Å
Tα2

π

αν − απ

ãÇ
erf

Ç √
Tαν√

αν − απ

å
− erf

Ç √
Tαπ√

αν − απ

åå
.

The second term goes to infinity while the first and third go to zero. We will need to Taylor expand
to get a finer understanding of which dominates:

erf

Ç √
Tαν√

αν − απ

å
− erf

Ç √
Tαπ√

αν − απ

å
=

…
αν − απ
Tπ

Å
1

απ
exp

Å
− Tα2

π

αν − απ

ã
− 1

αν
exp

Å
− Tα2

ν

αν − απ

ãã
+O

Å
1

T 3/2

ãÅ
exp

Å
− Tα2

ν

αν − απ

ã
− exp

Å
− Tα2

π

αν − απ

ãã
.

Finally, putting these results together,

(u1) + (u2) + (u3) =
A

2Tαπ
− A

2Tαν
exp

Å−Tα2
ν − α2

π

αν − απ

ã
+O(

1

T
exp

Å−Tα2
ν − α2

π

αν − απ

ã
) .

The leading terms yields a rate in A
2Tαπ

. This is numerically validated in the following Figure.

C.4 NUMERICAL METHOD FOR THE CASE αν > απ

Recall that we want to solve

inf
Φ∈Πt

∫ t

0

Φ̇2
sds+

αν
2
Φ(0)2 , (57)

with Πt := {Φ : [0, t] 7→ R | Φ(t) = 1, απΦ(s) ≤ Φ̇ ≤ ανΦ(s), Φ̇
2(s) ≥ Φ(s)Φ̈(s)} . Note

that the objective and the two first constraints are convex yet the last one is not. Hence we start by
relaxing the constraint Φ̇2(s) ≥ Φ(s)Φ̈(s) and solve instead

inf
Φ∈Π̃t

∫ t

0

Φ̇2
sds+

αν
2
Φ(0)2 , (58)
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Figure 3: Numerical validation of the rate of convergence predicted by Proposition 7. Dashed lines
are our prediction from Proposition 7 and full lines are from simulations of the process using 10 000
particles. The proposal and target are two-dimensional Gaussians, with zero mean and covariance
matrices that have a constant diagonal, equal to one for the proposal and 10 for the target. As
expected, the predicted rate from Proposition 7 (in dashed red) matches the approximated upper
bound from Theorem 3 (in dashed yellow) as well as particle-based simulations (full lines), for large
values of time.

with Π̃t := {Φ : [0, t] 7→ R | Φ(t) = 1, απΦ(s) ≤ Φ̇ ≤ ανΦ(s)} , and we verify a posteriori that
the obtained solution indeed meet the relaxed constraint. Then, in order to solve the resulting convex,
yet continuous control problem 58, we restrict ourselves to functions Φ that are N -pieces-wise
continuous linear. In particular, for fixed t,N , a N -pieces-wise continuous linear function Φ can be
parametrized by its initial value Φ0 = Φ(0) and its slopes Φ̇i = Φ̇(ti/N) for i ∈ {0, · · · , N − 1}
such that

Φ(s) = Φ0 + (s− tj/N)Φ̇j +
t

N

j−1∑
i=1

Φ̇i, for s ∈ [jt/N, (j + 1)t/N [ .

The resulting problem is a standard quadratic program of the form

inf x⊤Px ,

G1x ≤ 0, G2x ≤ 0, a⊤x = 1 ,

where x is a vector of size N + 1, P is a N + 1 by N + 1 diagonal matrix with diagonal
[αν/2, 1, · · · , 1], a = [1, 0, · · · , 0], G1 is a N by N + 1 matrix with [−αν , · · · ,−αν ] one the
first column, ones on the remaining diagonal and −tανN on the lower triangular part. Similarly, G2

has [απ, · · · , απ] on the first column, minus ones on the remaining diagonal and nd −tαπN on the
lower triangular part.

We solved this numerical problem with the library CVXOPT and we recover a piece-wise constant
scheme tempering scheme λs from our solution [Φ0, Φ̇0, · · · , Φ̇N−1] using the identity

λ(s) =
Φ̇(s)

Φ(s)
,

and we verify a posteriori that λ is non-decreasing. If so, we can safely compute the resulting
upper-bound Gt(λ).

D LOWER BOUNDS

In this section, we give the proofs of Theorems 8 and 9. We prove a general result in section D.1
and then apply it in sections D.2 and D.3 to deduce Theorems 8 and 9, respectively. Throughout, we
use the notation introduced in section 5.

D.1 A GENERAL LOWER BOUND

In this section we state and prove the following general lower bound for the geometric path; in the
following sections it is applied to obtain Theorems 8 and 9.
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Theorem 20 (Total variation lower bounds for the geometric path) Suppose ν, π ∈ Pac(R) have
log-Lipschitz densities. and there is an interval I = [a, b] ⊂ R and λ0 ∈ [0, 1], δ,B > 0 such that:

1. Bounded scores on I: both ∥∇ log ν(x)∥, ∥∇ log π(x)∥ ≤ B for x ∈ I .

2. λ small mass on I: for all λ ∈ [0, λ0], we have µλ(I) ≤ δ.

Then for each k ∈ [K] such that λk ≤ λ0,

TV(pkTk
, π) ≥ π([b,∞))− π(I)− ν([b,∞))− δ − B

b− a
·
√
δ ·

( k∑
i=1

Ti(χ
2(pi0, µi) + 1)1/2

)
.

This result will be typically be applied in conjuction with the following lemma, which allows us
to control the χ2 terms arising above when we have pointwise comparisons of one distribution to
another.
Lemma 21 Suppose that there exists a C > 0 such that in the support of π, ν(x) ≤ Cπ(x). Then

χ2(pk0 , µk) ≤ Cλk − 1.

Proof of Lemma 21. Take k ∈ [K]. Write

χ2(pk0 , µk) =

∫
(pk0)

2

µk
− 1 =

∫
(pk0)

2

µk−1
· µk−1

µk
− 1.

Now, letting ci := cλi
for each i ∈ {0, . . . , k}, we have

µk−1

µk
=
ck−1

ck
· νλk−λk−1πλk−1−λk ≤ Cλk−λk−1 · ck−1

ck
.

Hence

χ2(pk0 , µk) ≤ Cλk−λk−1 · ck−1

ck

∫
(pk0)

2

µk−1
− 1

= Cλk−λk−1 · ck−1

ck

∫ (pk−1
Tk−1

)2

µk−1
− 1.

But since χ2(·, µk−1) is non-increasing under Langevin dynamics towards µk−1, we find that

χ2(pk0 , µk) ≤ Cλk−λk−1 · ck−1

ck

∫
(pk−1

0 )2

µk−1
− 1

Proceeding recursively, we obtain

χ2(pk0 , µk) ≤ Cλk · c0
ck

∫
(p00)

2

µ0
− 1

= Cλk · c0
ck

− 1 = Cλk · 1

ck
− 1 ≤ Cλk − 1,

where at the last step we use the fact that for all λ ∈ [0, 1], Cauchy-Schwarz implies that

1

cλ
=

∫
ν1−λ(x)πλ(x)dx ≤ 1.

Proof. For convenience, let us put

Vλ(x) := − logµλ(x), λ ∈ [0, 1].

Define

ψ(x) :=


0 x < a
1
b−a (x− a) x ∈ I

1 x > b.
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We write

π(ψ)− pKTK
(ψ) = π(ψ)− ν(ψ) +

i∑
i=1

pi−1
Ti−1

(ψ)− piTi
(ψ).

Observe
π(ψ) ≥ π([b,∞)).

On the other hand,

ν(ψ) ≤ ν([a,∞)) = ν(I) + ν([b,∞)) ≤ δ + ν([b,∞)).

We thus find

π(ψ)− pkTk
(ψ) ≥ π([b,∞))− ν([b,∞))− δ +

k∑
i=1

pi−1
Ti−1

(ψ)− piTi
(ψ).

To reduce to a lower bound in total variation, we note that

π(ψ)− pkTk
(ψ) ≤ π([a,∞))− pkTk

([b,∞)) ≤ TV(pkTk
, π) + π(I)

We finally obtain the lower bound

TV(pkTk
, π) ≥ π([b,∞))− π(I)− ν([b,∞))− δ +

k∑
i=1

pi−1
Ti−1

(ψ)− piTi
(ψ). (59)

To conclude from Eq. 59, we study the above summands. Notice that by definition, pi−1
Ti−1

(ψ) =

pi0(ψ), so that these terms are the difference of the expectation of ψ at the start and end of Langevin
dynamics run towards µi. Hence,

pk−1
Tk−1

(ψ)− pkTk
(ψ) = −

∫ Tk

0

∂t⟨ψ, pkt ⟩L2(µk)dt.

Now, pkt evolves by the weighted Fokker-Planck operator

∂tp
k
t = Lµk

pkt := ∆pkt − ⟨∇Vλk
,∇pkt ⟩,

so by self-adjointness of Lµk
, we obtain∫ Tk

0

∂t⟨ψ, pkt ⟩L2(µk)dt =

∫ Tk

0

⟨ψ,Lµk
pkt ⟩L2(µk)dt

=

∫ Tk

0

⟨Lµk
ψ, pkt ⟩L2(µk)dt.

Notice that since ψ is linear where it is non-constant, we have

Lµk
ψ(x) = −⟨∇Vλk

(x),∇ψ(x)⟩ =
®
− 1
b−a∂xVλk

(x) x ∈ I

0 x ̸∈ I.

Hence

⟨Lµk
ψ, pkt ⟩L2(µk) =

−1

b− a

∫ b

a

∂xVλk
(x)pkt (x)dµk(x)

≤ B

b− a

∫ b

a

pkt (x)dµk(x).

Now, we use Cauchy-Schwarz to observe that∫ b

a

pkt (x)dµk(x) ≤ µk(I)
1/2

(∫ b

a

pkt (x)
2dµk(x)

)1/2

≤ µk(I)
1/2(χ2(pkt , µk) + 1)1/2

≤
√
δ(χ2(pkt , µk) + 1)1/2

≤
√
δ(χ2(pk0 , µk) + 1)1/2,
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where the last step follows because χ2(·, µk) is non-increasing along Langevin dynamics towards
µk. Hence

pk−1
Tk−1

(ψ)− pkTk
(ψ) = −

∫ Tk

0

⟨Lµk
ψ, pkt ⟩L2(µk) ≥ − BTk

b− a

√
δ(χ2(pk0 , µk) + 1)1/2.

Plugging this inequality into Eq. 59 yields the result.

D.2 LOWER BOUNDS FOR BIMODAL TARGET

In this section, we apply the general lower bound from Theorem 20 to prove Theorem 8, and ac-
cordingly throughout take ν and π to be as defined there. We begin by collecting some useful facts
about the geometric path between ν and π; the proof is included after that of Theorem 8.
Proposition 22 (Useful facts about the bi-modal example.) Let ν, π be as in Theorem 8 for m ≥ 11.
Then

1. for all λ ∈ [0, 1], the normalizing constant cλ ∈ [1, 2].

2. for each λ ∈ [0, 1],
µλ([m/4, 3m/4]) ≤ 6e−m

2/32.

3. for all k ∈ [K] and t ∈ [0, Tk],
χ2(pkt , µk) ≤ 1.

Proof of Theorem 8. We will apply Theorem 20 with I = [m/4, 3m/4]. An easy calculation shows
that we may take B = 2m for the first assumption, and Proposition 22 shows that λ0 = 1 and
δ = 6e−m

2/32 suffice for the second assumption. We thus obtain

TV(pkTk
, π) ≥ π([3m/4,∞))−ν([3m/4,∞))−12e−m

2/32−4
√
6
( k∑
i=1

Ti(χ
2(pi0, µi)+1)1/2

)
e−m

2/64.

Applying Proposition 22 to control the χ2 terms yields

TV(pkTk
, π) ≥ π([3m/4,∞))− ν([3m/4,∞))− 12e−m

2/32 − 16
( k∑
i=1

Ti

)
e−m

2/32

Note that by Mill’s ratio, we can bound using m ≥ 4 that

ν([3m/4,∞)) ≤ e−9m2/32 ≤ e−m
2/32.

On the other hand,

π([3m/4,∞)) = π([m/2,∞))− π([m/2, 3m/4])

≥ π([m/2,∞))− π([m/4, 3m/4])

=
1

2
− π([m/4, 3m/4])

≥ 1

2
− 6e−m

2/32,

where at the last step we applied Proposition 22 one more time. Plugging in terms yields

TV(pkTk
, π) ≥ 1

2
− 19e−m

2/32 − 16
( k∑
i=1

Ti

)
e−m

2/32.

Now, we use our assumption that m ≥ 11 to observe that

1

2
− 19e−m

2/32 ≥ 1

20
,

and finally conclude.
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Proof of Proposition 22. Proof of Fact 1. Note that Cauchy-Schwarz immediately implies that for
any λ ∈ [0, 1],

1

cλ
=

∫
ν1−λπλ ≤ 1.

On the other hand, using the fact that 2π ≥ ν, we have that

1

cλ
=

∫
ν1−λπλ =

∫ (π
ν

)λ
ν ≥ 2−λ ≥ 1

2
.

The claim about the normalizing constant follows.

Proof of Fact 2. We use the previous part to observe

µλ([m/4, 3m/4]) ≤ 2

∫ 3m/4

m/4

ν1−λ(x)πλ(x)dx

≤ 2ν([m/4, 3m/4])1−λπ([m/4, 3m/4])λ

= 2ν([m/4, 3m/4]),

where the last equality follows by symmetry. We then observe that by Mills’ ratio,

ν([m/4, 3m/4]) ≤ ν([m/4,∞)) ≤ 3e−m
2/32.

The result follows.

Proof of Fact 3. The result follows immediately from Lemma 21 once we observe that ν ≤ 2π.

D.3 LOWER BOUNDS FOR UNIMODAL TARGET

In this section, we prove Theorem 4 as well as Theorem 9. Since these results concern the same
distributions with different mixture weights, in this section we generalize slightly to consider, for
some a ∈ [0, 1), the target

π = (1− e−a
2m2/2)N (m, 1)

∣∣
[−m,2m]

+ e−a
2m2/2unif [−m,2m], (60)

By taking a = 1/
√
2, we recover the setting of Theorem 4, and by taking a =

√
2 log 2/m we

recover the setting of Theorem 9. Note that when dealing with various numerical constants, we will
frequently use the assumption m ≥ 10 without comment. For both results, the following facts will
be useful.
Proposition 23 (Useful facts about the unimodal target) Let ν := N (0, 1) and π be as in Eq. 60 for
m ≥ 10. Then

1. For all λ ∈ [0, 1],

µλ([m(1− a)/2,m(1− a)]) ≤ am2cλe
−λa2m2/2−(1−λ)(1−a)2m2/8.

2. If 1 ≥ a+ 2/m, then for all λ ∈ [0, 1],

µλ((−∞,m(1− a)/2]) ≥ cλe
−λa2m2/2

20m
.

3. For all λ such that 1 ≤ a+ 2λ− 2/m, we have

µλ([m(1− a)/2,∞)) ≥ cλ
4
e−

1
2λ(1−λ)m

2

.

4. For all λ ∈ [0, 1]

1

2(e−λa2m2/2 + e−
1
2λ(1−λ)m2

)
≤ cλ ≤ 10meλa

2m2/2.

We also use the following.
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Lemma 24 (Log-Sobolev constants of the unimodal target.) Let π be as in Eq. 60 for m ≥ 10. Then

CLS(π) ≤
30m3(a2m2/2 + log

Ä
1− e−a

2m2/2
ä
)

1− 2e−a2m2/2
,

with the convention that the right-hand side is 60m3 when a =
√
2 log 2/m

The proof of Lemma 24 requires a digression into log-Sobolev inequalities for mixtures and restric-
tions, so is deferred to the next section.

We first prove Theorems 4 and 9, then return to proving Proposition 23.

Proof of Theorem 4. The fact that CLS(ν) = 1 is the Gaussian log-Sobolev inequality, and the
bound CLS(π) ≤ 15m5 follows immediately from Lemma 24 upon plugging in 1 = 1/

√
2.

For the lower bound on CP (µλ), take λ ∈ [ 12 , 1] and let I := [m(1 − a)/2,m(1 − a)]; recall that
a ∈ [0, 1) is a free parameter controlling the mixture weights in Eq. 60. Put

ψ(x) :=


1 x < m(1− a)/2,

1− 2
(1−a)m (x−m(1− a)/2) x ∈ I,

0 x > m(1− a).

Then
∥∇ψ∥2L2(µλ)

=
4

m2(1− a)2
µλ(I).

On the other hand,

Varµλ
(ψ) = µλ(ψ

2)− µλ(ψ)
2

≥ µλ((−∞,m(1− a)/2])− (µλ((−∞,m(1− a)/2]) + µλ(I))
2

= µλ((−∞,m(1− a)/2])(1− µλ((−∞,m(1− a)/2])))

− 2µλ(I)µλ((−∞,m(1− a)/2])− µλ(I)
2

≥ µλ((−∞,m(1− a)/2])(1− µλ((−∞,m(1− a)/2])))− 3µλ(I)

= µλ((−∞,m(1− a)/2])µλ([m(1− a)/2,∞))− 3µλ(I)

We obtain

CP (µλ) ≥
Varµλ

(ψ)

∥∇ψ∥2L2(µλ)

=
m2(1− a)2

4
µλ(I)

−1µλ((−∞,m(1− a)/2])µλ([m(1− a)/2,∞))− 3m2(1− a)2

4
. (61)

We’ll now apply Proposition 23 with a = 1/
√
2. With this choice of a and for λ ∈ [ 12 , 1], the

sufficient conditions are all verified, so that

µλ(I)
−1µλ((−∞,m(1− a)/2])µλ([m(1− a)/2,∞)) ≥ 1

80am3
cλe

(1−s)m2(1−a)2/8− 1
2λ(1−λ)m

2

.

Applying Proposition 23 once more, this time to control cλ, we obtain

µλ(I)
−1µλ((−∞,m(1− a)/2])µλ([m(1− a)/2,∞)) ≥ e(1−λ)m

2(1−a)2/8− 1
2λ(1−λ)m

2

160am3(e−λa2m2/2 + e−
1
2λ(1−λ)m2

)
.

To complete the proof of Theorem 4, we finally plug in a = 1/
√
2, and observe that for λ ∈ [ 12 , 1]

it holds that e−λa
2m2/2 ≤ e−

1
2λ(1−λ)m

2

, so that

µλ(I)
−1µλ((−∞,m(1− a)/2])µλ([m(1− a)/2,∞)) ≥ 1

320m3
e(1−λ)m

2/100.

Plugging into Eq. 61 we find

CP (µλ) ≥
m2(1− 1/

√
2)2

4

( 1

320m3
e(1−λ)m

2/100 − 3
)
.
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Observe that 1
12 ≤ (1− 1/

√
2)2 ≤ 1, so that

CP (µλ) ≥
1

48 · 320m
e(1−λ)m

2/100 − 3m2

4
≥ 1

2 · 104m
e(1−λ)m

2/100 −m2.

Proof of Theorem 9. The equality CLS(ν) = 1 is the Gaussian log-Sobolev inequality. For the log-
Sobolev constant of π, the result is immediate from Lemma 24 upon plugging in a =

√
2 log 2/m.

For the lower bound in total variation, we will apply Theorem 20 using the interval I = [m(1 −
a)/2,m(1− a)]; recall that a ∈ [0, 1) is a free parameter controlling the mixture weights in Eq. 60
that we will eventually set to a =

√
2 log 2/m.

In this case, it clear that we may bound the scores withB = m. The main issue is then to get control
on µλ(I), and for this we apply Proposition 23 to obtain

µλ(I) ≤ 10am3e−(1−λ)(1−a)2m2/8.

So for λ0 := λk, we may take

δ := 10am3e−(1−λk)(1−a)2m2/8.

Theorem 20 then implies

TV(pkTk
, π) ≥ π([m(1− a),∞))−π([m(1− a)/2,m(1− a)])− ν([m(1− a),∞))− δ

− 2

1− a
·
√
δ ·

( k∑
i=1

Ti(χ
2(pi0, µi) + 1)1/2

)
.

Observing that ν ≤ 6mπ, we apply Lemma 21 to obtain

TV(pkTk
, π) ≥ π([m(1− a),∞))−π([m(1− a)/2,m(1− a)])− ν([m(1− a),∞))− δ

− 12m

1− a
·
√
δ ·

( k∑
i=1

Ti

)
.

Let us specialize to a =
√
2 log 2/m. In this case, Mills’ ratio implies

ν([m(1− a),∞)) ≤ e−(1−a)2m2/2 ≤ e−2m2/5.

For the other two terms, let us adopt the notation gm := N (m, 1)
∣∣
[−m,2m]

and um := unif [−m,2m],
and then write

π([m(1− a),∞))−π([m(1− a)/2,m(1− a)])

=
1

2

∫ 2m

m(1−a)
gm(x)dx+

1

2
(1 + a)− 1

2

∫ m(1−a)

m(1−a)/2
gm(x)dx− 1

4
(1− a)

=
1

4
(1 + 3a) +

1

2

∫ 2m

m(1−a)
gm(x)dx− 1

2

∫ m(1−a)

m(1−a)/2
gm(x)dx

≥ 1

4
+

1

2

∫ m+m(a+1)/2

m+am

gm(x)dx− 1

2

∫ m(1−a)

m(1−a)/2
gm(x)dx

=
1

4
,

where at the last step we used the symmetry of gm about m. We finally obtain

TV(pkTk
, π) ≥ 1

4
− e−2m2/5 − δ − 15m ·

√
δ ·

( k∑
i=1

Ti

)
.

For this choice of a, note that
δ ≤ 8m2e−(1−λk)m

2/10.

By the restriction on m we know 1/4− e−2m2/5 ≥ 1/5, yielding the result.
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Proof of Prop. 23. For ease of notation, let us write

gm := N (m, 1)
∣∣
[−m,2m]

, um := unif [−m,2m].

Then under our assumption that m ≥ 4 it isn’t hard to see that
1√
2π
e−

1
2 (x−m)2 ≤ gm(x) ≤ e−

1
2 (x−m)2 , ∀x ∈ [−m, 2m].

We thus have that

e−a
2m2/2um(x) =

e−a
2m2/2

3m
≤ 1

m
gm(x), ∀x ∈ [m(1− a),m(1 + a)], (62)

and

gm(x) ≤ e−a
2m2/2 = 3me−a

2m2/2um(x) ∀x ∈ [−m,m(1− a)] ∪ [m(1 + a), 2m]. (63)

Proof of Fact 1. We use Eq. 63 to observe that

µλ([m(1− a)/2,m(1− a)]) = cλ

∫ m(1−a)

m(1−a)/2
ν1−λπλ

≤ cλ(4m)λe−λa
2m2/2

∫ m(1−a)

m(1−a)/2
ν1−λd

≤ am2cλe
−λa2m2/2 · e−(1−λ)m2(1−a)2/8.

Proof of Fact 2. We compute

µλ((−∞,m(1− a)/2]) =

∫ m(1−a)/2

−∞
cλν

1−λπλdx

≥ cλ

∫ m(1−a)/2

−m(1−a)/2
ν1−λπλdx

≥ cλ

(e−a2m2/2

3m

)λ( 1√
2π

)1−λ ∫ m(1−a)/2

−m(1−a)/2
e−

1
2x

2(1−λ)dx

≥ cλ
e−λa

2m2/2

6
√
2πm

∫ m(1−a)/2

−m(1−a)/2
e−

1
2x

2(1−λ)dx

≥ cλ
e−λa

2m2/2

6
√
2πm

∫ m(1−a)/2

−m(1−a)/2
e−

1
2x

2

dx

≥ cλ
e−λa

2m2/2

6
√
2πm

∫ 1

−1

e−
1
2x

2

dx

≥ cλ
2e−1/2e−λa

2m2/2

6
√
2πm

≥ cλe
−λa2m2/2

20m
.

Proof of Fact 3. We calculate,

µλ([m(1− a)/2,∞)) =

∫ ∞

m(1−a)/2
cλν

1−λπλdx

≥ cλ
2

∫ 2m

m(1−a)/2

1√
2π
e−

1
2 (1−λ)x

2− 1
2λ(x−m)2dx

=
cλ
2
e−

1
2λ(1−λ)m

2

∫ 2m

m(1−a)/2

1√
2π
e−

1
2 (x−λm)2dx

≥ cλ
4
e−

1
2λ(1−λ)m

2

,
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where we used the fact that under our assumption on s, we have m(1− a)/2 ≤ λm− 1.

Proof of Fact 4. We compute

1

cλ
=

∫ ∞

−∞
ν1−λπλ ≥ 1

(2π)(1−λ)/2
·
(e−a2m2/2

3m

)λ
·
∫ m/2

−m/2
e−

1
2x

2(1−λ)dx

≥ e−λa
2m2/2

3
√
2πm

∫ m/2

−m/2
e−

1
2x

2(1−λ)dx

≥ e−λa
2m2/2

3
√
2πm

∫ m/2

−m/2
e−

1
2x

2

dx

≥ 2e−1/2e−λa
2m2/2

3
√
2πm

≥ e−λa
2m2/2

10m
.

On the other hand, we use Eq. 62 and Eq. 63 to bound

1

cλ
=

∫ ∞

−∞
ν1−λπλ

=

∫ m(1−a)

−m
ν1−λπλ +

∫ m(1+a)

m(1−a)
ν1−λπλ +

∫ 2m

m(1+a)

ν1−λπλ

≤ 2

∫ m(1−a)

−m
ν1−λπλ +

∫ m(1+a)

m(1−a)
ν1−λπλ

≤ 2
(2e−am2/2

3m

)λ
· 1

(2π)(1−λ)/2

∫ m(1−a)

−m
e−

1
2 (1−λ)x

2

dx

+
2λ√
2π

∫ m(1+a)

m(1−a)
e−

1
2 (1−λ)x

2− 1
2λ(x−m)2dx

≤ 4e−λa
2m2/2

m
+

2√
2π
e−

1
2λ(1−λ)m

2

∫ ∞

−∞
e−

1
2 (x−λm)2dx

≤ 4e−λa
2m2/2

m
+ 2e−

1
2λ(1−λ)m

2

≤ 2(e−λa
2m2/2 + e−

1
2λ(1−λ)m

2

).

D.4 UPPER BOUNDS ON THE LOG-SOBOLEV CONSTANT OF THE UNIMODAL TARGET

In this section we prove Lemma 24 on the log-Sobolev constant of the unimodal target defined
in Eq. 17. We use the following result which controls the log-Sobolev constants of mixtures, and
appears as (Schlichting, 2019, Corollary 2).
Theorem 25 (Upper bounds on log-Sobolev constant of mixtures Schlichting (2019)) Suppose
Q0, Q1 ∈ P(Rd) are such that Q0 ≪ Q1. For p ∈ [0, 1], consider the mixture Qp :=
pQ0 + (1− p)Q1. Then

CLS(Qp) ≤ max
{
(1 + (1− p)λp)CLS(Q0), (1 + pλp(1 + χ2(Q0, Q1)))CLS(Q1)

}
,

for

λp :=

®
log p−log(1−p)

2p−1 p ∈ [0, 12 ) ∪ ( 12 , 1]

2 p = 1
2 .

We also use the following observation.
Lemma 26 (Log-Sobolev constant under conditioning to an interval) Let Q ∈ P(R) and take an
interval I := [a, b] ⊂ R such that Q(I) > 0. Then

CLS(Q|I) ≤ CLS(Q).
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We were not able to locate a proof of this fact in the literature, so here we provide a proof inspired
by the analogous fact for the Poincaré constant (Roustant et al., 2017, Lemma 4).

Proof. Let Q0 := Q|I and fix a smooth function f : R → R, which we assume to be compactly
supported without loss of generality. Let g be any smooth function g : R → R which agrees with f
on I , so that g|I = f |I . Recall that we may write

entQ0
(g2) = inf

t>0
Q0(g

2 ln g2 − g2(ln t− 1) + t). (64)

Since u2 lnu2 − u2(ln t− 1) + t ≥ 0 for all t > 0, we find that

entQ0
(f2) = entQ0

(g2) = inf
t>0

Q0(g
2 ln g2 − g2(ln t− 1) + t)

≤ inf
t>0

1

Q(I)
Q(g2 ln g2 − g2(ln t− 1) + t)

=
1

Q(I)
entQ(g

2) ≤ 2CLS(Q)

Q(I)

∫
(g′(x))2dQ(x).

Since I is an interval, we can take g = (gk) to be a sequence of smooth functions such that gk(x) =
f(x) for x ∈ I yet gk(x), g′k(x) → 0 pointwise when x ̸∈ I . Hence

entQ0
(f2) = lim

k→∞
entQ0

(gk)

≤ 2CLS(Q)

Q(I)
lim
k→∞

∫
(g′k(x))

2dQ(x)

=
2CLS(Q)

Q(I)

∫
I

f ′(x)2dQ(x) = 2CLS(Q)∥∇f∥2L2(Q0)
.

It follows that CLS(Q0) ≤ CLS(Q), as claimed.

Proof of Lemma 24. We first control the log-Sobolev constants of the mixture components, and
then conclude by applying Theorem 25. To begin, (Schlichting, 2019, Example A1) im-
plies CLS(unif [−m,2m]) ≤ 3m. By Lemma 26, we know that CLS(N (m, 1)|[−m,2m] ≤
CLS(N (m, 1)) = 1. Lastly, an easy calculation verifies that χ2(N (m, 1)|[−m,2m],unif [−m,2m]) ≤
9m2. Plugging into Theorem 25, with p = 1− e−a

2m2/2, we find

CLS(π) ≤ max
{
1 + (1− p)λp, 3m(1 + pλp(1 + 9m2))

}
≤ 30m3λp.

The result follows.

E ADDITIONAL NUMERICAL ILLUSTRATIONS

The geometric path is often illustrated in a setup where the initialization is chosen in the middle of
a two symmetric modes: see for example Cabezas et al. (2023, Sampling Book, Tempered SMC)
or Maurais and Marzouk (2024, Fig. 1) or Chehab et al. (2024, Fig. 1). In this very specific setting,
the geometric path conveys a sense that it evolves particle positions. In a more general setting, we
can observe in Figure 4 that once the closer mode is reached, the path seems to evolve the particle
weights, which is problematic for Langevin dynamics.
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Figure 4: Geometric path from a Gaussian to a Gaussian mixture. We observe that that this path
displaces mass “horizontally” to the nearest modes (left columns), and then “vertically” to the re-
maining modes (right columns). Intuitively, this second part is problematic for a Langevin sampler.
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