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Many tourists are climbing the mountain.
View Consistency

Current Methods MoCa

MoCaCurrent Methods

Appearance Consistency

MoCaCurrent Methods

A serene underwater scene featuring a sea turtle swimming through
a coral reef. The turtle is with its greenish-brown shell.

Motion Consistency

The balloons of red, blue, and yellow colors floating up into the air.

Figure 1: This figure outlines the core requirements for high-quality camera-controllable video gen-
eration: consistent object view, appearance, and motion. The foreground object should remain
fully visible and retain its structure during camera movement, with stable texture and natural mo-
tion. Existing methods often fail to satisfy all three aspects simultaneously, whereas our approach
demonstrates strong performance across all criteria.

ABSTRACT

Camera control is important in text-to-video generation for achieving realistic
scene navigation and view synthesis. This control is defined by parameters that
describe movement through 3D space, thereby introducing a 3D consistency into
the generation process. A core challenge for existing methods is achieving 3D
consistency within the 2D pixel domain. Strategies that directly integrate camera
conditions into text-to-video models often produce artifacts, while those relying
on explicit 3D supervision face generalization issues. Both limitations originate
from the gap between the 2D pixel space and the underlying 3D world. The key
insight is that the projection of a smooth 3D camera movement produces con-
sistency in object view, appearance, and motion across 2D frames. Inspired by
this insight, we propose MoCa, a dual-branch framework that bridges this gap by
modeling object consistency to implicitly learn 3D relationships between camera
and scene. To ensure view consistency, we design a Spatial-Temporal Camera En-
coder with Plücker embedding, which encodes camera trajectories into a geomet-
rically grounded latent representation. For appearance consistency, we introduce
a semantic guidance strategy that leverages persistent vision-language features to
maintain object identity and texture across frames. To address motion consistency,
we propose an object-aware motion disentanglement mechanism that separates
object dynamics from global camera movement, ensuring precise camera control
and natural object motion. Experiments show that MoCa achieves accurate camera
control while preserving video quality, offering a practical and effective solution
for camera-controllable video synthesis.
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1 INTRODUCTION

Recent years have witnessed the significant success of video generation models supported by the
foundational diffusion model in content creation and movie production owing to their excellent
multi-modal understanding and powerful generation capabilities, especially in text-conditioned gen-
eration (Blattmann et al., 2023; Chen et al., 2023; He et al., 2022; Singer et al., 2023; Zhou et al.,
2022). The growing demand for precise camera control to enhance video realism in applications
like scene navigation and novel view synthesis remains unmet, as it requires models to understand
the spatial relationship between camera trajectories and 3D scene.

While a standard text-to-video model learns a mapping f(P) → VX×Y×T , where X,Y denote
pixel coordinates and T represents the temporal dimension, its objective is to ensure alignment
between the text prompt P and the video volume V. Camera-controlled generation introduces a
specific trajectory condition C. This requires the model to understand the spatial relationships of
objects from changing viewpoints, learning a more complex mapping f(P,C) → VX×Y×Z×T .
Here, the Z-dimension represents 3D spatial relation brought by the camera movement that must
be consistently maintained. The challenge of learning this implicit 3D relation has led to different
strategic approaches.

A common strategy is to treat camera control as an additional condition with standard 2D video
generation frameworks. Methods such as MotionCtrl and CameraCtrl (Wang et al., 2024b; He et al.,
2024) integrate camera parameters by temporal attention or element-wise addition in the Denoising
U-Net. Without 3D spatial awareness, these approaches often struggle to keep view and motion
consistency, leading to artifacts like unnatural object dynamics. Another line of work seeks to ex-
plicitly learn 3D relationship between the camera and objects with additional supervise. Techniques
like VidCRAFT3 (Zheng et al., 2025) and ViewCrafter (Yu et al., 2024) convert video frames into
3D point clouds, while I2VControl-Camera (Feng et al., 2024) leverages RGB-D representations
for better visual quality. These methods often rely on on accurate 3D estimation, which limits their
practicality and generalizability. Therefore, the gap between the 3D scene and 2D video pixels limits
current methods in addressing the challenges of camera-controlled video generation.

The key insight for building an implicit bridge between 2D pixels and the 3D scene is recognizing
that a camera-controlled video, as a 2D projection of a 3D scene, will demonstrate consistent object
view, appearance, and motion across frames as a result of smooth camera movement. Accordingly,
our method focuses on modeling three types of consistency to produce natural object coherence
under camera control: View, Appearance, and Motion. View Consistency: The camera’s position
and orientation determine which objects appear in the frame. For text-to-video generation, objects
described in the text prompt must be visible throughout the majority of the clip. Appearance Con-
sistency: As the camera moves, the structure and texture of objects in the 2D projection should
remain continuous and stable over time. Motion Consistency: When both the camera and objects
move, the task becomes more difficult because the generated video reflects a combination of both
motions. Camera movements change the field of view, primarily causing translation and scaling of
static objects. Meanwhile, dynamic objects must not only follow the motion described in the text
prompt, but also exhibit translation and scaling consistent with the camera’s movement. Therefore,
the three types of consistency, view, appearance, and motion that observed in a 2D video imply
a stable camera moving through a 3D scene. We believe if objects are consistent, the camera is
controlled. We follow this insight to design our method.

In this paper, we proposed a dual-branch fusion framework named MoCa focusing on accurate
Modeling object consistency to enhance Camera-controlled video generation. To maintain view
consistency, we adopt Plücker embedding and Spatial-Temporal Camera Encoder (ST-Encoder)
which provides a geometrically interpretable representation that encodes camera trajectories at the
pixel level in a latent space. To enhance appearance consistency, we propose a semantic guid-
ance strategy that incorporates vision-language features from a pre-trained foundational model. The
vision-language features serve as persistent global scene information to guide the fusion of camera-
conditioned visual features, mitigating issues such as object distortion and texture collapse. As for
motion consistency, we decouple video motion into camera movements and object dynamics. For
precise pixel-level camera control, the ST-Encoder with Plücker embedding enables precise camera
controllability. Meanwhile, plausible object motion is also crucial for high-quality video generation.
To achieve this, we propose an object-aware motion disentanglement that separates object dynamics
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from global camera movements. Specifically, we extract the implicit structure and region informa-
tion of foreground objects from the pre-trained foundational model, which serves as an object-aware
mask to guide the motion disentanglement. This mechanism allows the model to maintain natural
object dynamics while achieving precise camera control.

The main contributions of our work are as follows:

• We propose a method that learns view, appearance, and motion consistency to bridge 3D
camera movement and its corresponding changes in 2D frames. This implicit learning of
the scene-camera relationship results in enhanced camera-controlled video generation.

• We design a dual-branch framework comprising ReferenceNet and DenoisingNet, inte-
grated with semantic guidance strategy that injects ReferenceNet visual-language features
to improve the appearance consistency of objects.

• We introduce an object-aware disentangling mechanism to separate object motion from
camera movement, ensuring object motion is both faithful to the text prompt and consistent
with the camera’s movement.

2 RELATED WORK

2.1 TEXT-TO-VIDEO GENERATION

Text-to-video (T2V) generation is a challenging task that requires both high-fidelity visual realism
and cross-modality consistency (Guo et al., 2024; Brooks et al., 2023; Wu et al., 2024; Ma et al.,
2025; Menapace et al., 2024). In the early stage, research in video generation primarily relied on
Generative Adversarial Networks (GANs) or Variational Autoencoders (VAEs) (Saito et al., 2017;
Skorokhodov et al., 2022; Tulyakov et al., 2018; Vondrick et al., 2016) . Despite the progress they
made, the performance of these methods was still far from expectations. Recent attempts at text-to-
video (T2V) generation mainly leverage diffusion models for their impressive capability and well-
established open-sourced communities (Blattmann et al., 2023; Chen et al., 2023; Guo et al., 2024;
He et al., 2022; Ho et al., 2022; Singer et al., 2023; Wang et al., 2023). As a pioneer in this field, some
methods (Ho et al., 2022; He et al., 2022; Hong et al., 2022; Karras et al., 2023; Ruan et al., 2023)
commonly employ video diffusion models (VDMs) that incorporated temporal convolutional and
attention layers into the pre-trained image diffusion models. Follow-up works, VideoCrafter (Chen
et al., 2023) and SVD (Blattmann et al., 2023) expand the application of video diffusion models to
larger datasets, while TF-T2V (Wang et al., 2024a) directly learn from extensive text-free videos.
Nonetheless, these methods encounter limitations in generating long videos, owing to the inherent
constraints on capacity and scalability within the U-Net design. To overcome these constraints, DiT-
based models (Brooks et al., 2024; Peebles & Xie, 2023) have emerged as a promising alternative,
enabling direct generation of videos extending up to tens of seconds. Notably, Sora (Zhang et al.,
2023) adopts a unified visual representation, supporting large-scale training and synthesis of high-
resolution videos exceeding one minute.

2.2 CAMERA-CONTROLLED VIDEO GENERATION

As a pioneering work, MotionCtrl (Wang et al., 2024b) learns camera control by conditioning pre-
trained video models with extrinsic matrices. Follow-up works further improve the conditioning
mechanisms. CameraCtrl (He et al., 2024) represents cameras as Plucker coordinates, which allows
more stable ray-based rendering and view-dependent modeling. While I2VControl-Camera (Feng
et al., 2024) introduces point trajectory guidance for precise object-centric control. Building upon
this, CamCo (Xu et al., 2024) integrates epipolar constraints into attention layers, and CamTrol (Hou
et al., 2024) leverages explicit 3D point cloud representations. Another line of work controls camera
motion without training additional parameters. However, these methods often rely on additional
guidance like depth or segmentation masks. Notably, all of these approaches adopt U-Net-based
architectures as their backbone. More recently, (Bahmani et al., 2024b;a; He et al., 2025) incor-
porates camera control into a video diffusion transformer architecture. Despite these advances, ex-
isting methods fail to generate dynamic content (e.g., object motion) under camera control without
constructing specialized dynamic video datasets. Our work enhances dynamic content generation
without the need for curating additional dynamic videos.

3
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Figure 2: The overview of MoCa. To maintain view consistency, we utilize the Camera Condition
Module with Plücker embedding to align camera rays with pixel-level visual representation. For
appearance consistency, a semantic guidance strategy employs ReferenceNet’s vision-language fea-
tures to stabilize objects. Motion consistency is achieved by disentangling video motion into camera
movement and object motion.

3 METHOD

Figure 2 illustrates the overall pipeline of MoCa. To model objects consistency of view, appear-
ance and motion, we introduce a dual-branch fusion framework. For view consistency, we design
a Spatial-Temporal Camera Encoder (ST-Encoder) with Plücker embedding as the primary form of
camera parameters to align camera rays with pixel-level video representation. To enhance appear-
ance consistency, we leverage vision-language alignment features from a foundational model and
design a semantic guidance strategy to stabilize the appearance of objects. As for motion consis-
tency, we propose an object-aware disentangling mechanism that guides the generation process to
separate local object motion from camera movements.

3.1 CAMERA CONDITION MODULE

To ensure view consistency and prevent object misplacement, we introduce a camera condition
module comprising a Camera Representation, Spatial-Temporal Camera Encoder and Camera Fu-
sion Module. This system encodes camera trajectories into pixel-level representations and integrates
them into the denoising process, guaranteeing that objects remain aligned with the camera’s view.

Camera Representation. For the camera representation, we adopt Plücker embedding (Sitzmann
et al., 2021) following recent works (He et al., 2024; Bahmani et al., 2024a), which provides strong
geometric interpretation and fine-grained camera information. Specifically, given camera extrinsic
matrix E = [R; t] ∈ R3×4 and intrinsic matrix K ∈ R3×3, we compute the Plücker embedding
p = (o×d′,d′) for each pixel (u, v). Here, o represents the camera center in world coordinates, the
ray direction from camera to pixel is defined as d = RK−1[u, v, 1]T + t, and d′ is the normalized
d. The final Plücker embedding Pi ∈ R6×h×w is constructed for each frame, where h and w are
the height and width for the frame.

Spatial-Temporal Camera Encoder. To integrate Plücker embedding into the generation process,
we design a Spatial-Temporal Camera Encoder that transforms camera conditions into latent repre-
sentations that are both spatially and temporally consistent with visual latents. In the spatial domain,
a progressive convolutional architecture with downsampling, convolutional, and residual blocks ex-
tracts pixel-level spatial feature for camera motion. To incorporate temporal dynamics, we introduce
dedicated 1D temporal convolutions across the frame sequence. The resulting spatial-temporal cam-
era representations are fused with the visual features within the denoising process.

Camera Fusion Module. To effectively integrate camera representations with visual features, we
adopted the fusion strategy from existing methods (Bahmani et al., 2024a; He et al., 2025) that
injects control signals into each diffusion transformer (DiT) block. Specifically, we apply a cross-
attention mechanism in each DiT block to fuse camera representations. This design allows the
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model to dynamically modulate visual features based on spatial-temporal camera conditions, en-
abling fine-grained and precise controllability. By injecting geometry-aware camera embeddings
into the generation process, the model maintains alignment between camera viewpoints and seman-
tic objects, reducing cases where the described foreground fails to appear. Additionally, we explore
alternative fusion strategies for camera signals which discussed in the ablation study.

3.2 SEMANTIC GUIDANCE STRATEGY

Appearance such as texture and scale of the object is critical in video generation, which directly
affects the temporal consistency and visual integrity. Existing models suffer from object distortion
or texture collapse in complex dynamic scenes, especially under intense camera movements. We
trace this limitation to the additional conditioned camera signals, which weaken the base model’s
generative power. To address this, we propose a semantic guidance strategy that injects the visual-
language features from a frozen foundational model into the generation process.

Specifically, we extract these vision-language features from the visual branch in each DiT block of
the ReferenceNet, and inject them into each DiT block of the DenoisingNet. We consider that these
features are aligned in both the visual and semantic spaces, serving as a stable appearance guidance
for the whole scene. Therefore, our semantic guidance strategy reinforces vision-language alignment
and enhancing the object appearance consistency of generated videos. Prior researches (Tian et al.,
2024; Hu, 2024) have demonstrated the influence of utilizing analogous structures in maintaining
the consistency of the object’s identity. In our setup, the ReferenceNet shares the same structure
with the DenoisingNet. Both the ReferenceNet and the DenoisingNet are initialized with weights
inherited from the original pretrained DiT architecture.

3.3 MOTION DISENTANGLEMENT

In this section, we present an motion disentangling mechanism for separating object motion from
camera movements, which is designed to enhance motion consistency. We decompose the over-
all video motion into camera movement and object motion. Given that camera control has been
addressed in Section 3.1, this section focuses on our approach to modeling natural object mo-
tion. Specifically, we address the entanglement of object motion and camera motion by leveraging
frequency-domain analysis. We utilize a 2D Discrete Wavelet Transform (2D-DWT) (Shahbahrami,
2012; Huang et al., 2005; Mushtaq et al., 2015) to extract high-frequency components from visual
features, highlighting the structures and regions of objects. These high-frequency components guide
the model to focus on natural object motion while improving precise camera controllability.

Current methods often fail to balance global camera movement and local object motion. When
strong camera motion is applied, objects remain completely still, failing to show natural dynamics
such as a fish swimming or a person walking. This limitation arises because video diffusion models
entangle object and camera motion, making it difficult to maintain independent object dynamics.

High-Frequency Object-Aware Masking. To improve the realism of object motion, we propose an
implicit object masking strategy that guides the model to separate local object motion from global
camera movements. Specifically, we leverage the vision-language features from the foundational
model to extract visual information that highlights foreground object structures and regions. Inspired
by frequency-domain analysis in image processing, we apply a 2D Discrete Wavelet Transform (2D-
DWT) (Shahbahrami, 2012; Huang et al., 2005; Mushtaq et al., 2015) to vision-language features
across different orientations, capturing localized spatial-frequency information. This allows us to
retain fine-grained structural cues that are critical for precise localization of object regions and ef-
fective motion disentanglement. The detail and visualization of 2D-DWT are discussed in appendix.

Hybrid Condition Fusion. We propose a hybrid conditioning fusion to fuse the object-aware mask
with camera-conditioned visual features. It strategically employs cross-attention for spatial condi-
tioning fusion with a temporal self-attention explicitly enforces inter-frame consistency. The cross-
attention mechanism allows the model to dynamically modulate object-aware guidance and camera-
conditioned features, enforcing accurate camera movements and preserving natural object motion.
The temporal self-attention enables the model to maintain motion consistency across frames. Pow-
ered by the structure and localization information from the foundational model, our method enhances
dual motion disentanglement and separates object motion from the camera movement.

5
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Methods FID ↓ FVD ↓ CLIPSIM ↑ TransErr ↓ RotErr ↓ OC ↑ BC ↑ MS ↑
RealEstate10K

MotionCtrl(Animatediff-Based) (Wang et al., 2024b) 246.6 870.8 0.309 0.716 0.213 94.6% 95.8% 97.8%
CameraCtrl (He et al., 2024) 255.8 931.5 0.305 0.708 0.204 94.3% 94.7% 97.7%

AC3D (Bahmani et al., 2024a) 225.2 683.4 0.309 0.695 0.196 95.1% 95.3% 98.5%
Ours 207.4 667.9 0.312 0.703 0.208 94.9% 96.4% 98.5%

VidGen

MotionCtrl(Animatediff-Based) (Wang et al., 2024b) 274.0 1858.2 0.333 0.722 0.107 92.6% 93.2% 97.1%
CameraCtrl (He et al., 2024) 266.3 1905.1 0.339 0.731 0.089 92.9% 93.1% 96.9%

AC3D (Bahmani et al., 2024a) 228.4 1712.0 0.345 0.727 0.084 93.5% 94.7% 97.7%
Ours 232.2 1643.7 0.349 0.724 0.081 94.7% 95.1% 98.3%

Table 1: Quantitative comparison on RealEstate10K and VidGen datasets. Lower is better (↓), higher
is better (↑). Red indicates top-1 and blue indicates top-2 performance.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets. During training, our model is fine-tuned from CogVideoX (Yang et al., 2024) on
RealEstate10K (Zhou et al., 2018), which has around 65K video clips with per-frame camera pa-
rameters (extrinsics and intrinsics). This setup aligns with those used in prior works. For evaluation,
we assess performance on both RealEstate10K and the VidGen dataset. VidGen (Tan et al., 2024)
consists of a large collection of text-video pairs, primarily featuring dynamic scenes. In the con-
trast, RealEstate10K focus on static scenes, showcasing furnishings in indoor settings and natural
landscapes in outdoor environments. We leverage this dataset to validate the effectiveness of our
approach in object stability and motion consistency, thereby demonstrating its generalization to
complex, dynamic scenes.

Metrics. We evaluate performance using a comprehensive set of quantitative metrics. For common
evaluation, we report FID, FVD, and CLIPSIM scores. To evaluate camera accuracy, we follow
CameraCtrl (He et al., 2024), using rotation and normalized translation errors from Mega-SAM (Li
et al., 2024) reconstructed trajectories. To further assess foreground object consistency and back-
ground consistency, we adopt Object Consistency (OC), Background Consistency (BC) and Motion
Smoothness(MS) scores from VBench (Huang et al., 2024), respectively. We consider OC, BC,
and MS scores from VBench as standard and widely used evaluation metrics for text-to-video gen-
eration. Moreover, these metrics collectively capture the different aspects of consistency that our
method aims to improve.

4.2 QUANTITATIVE COMPARISON

To evaluate the effectiveness of our method, we compare it with existing methods on Realestate10K
and VidGen. For a fair comparison, all videos are uniformly downsampled to 16 frames. It demon-
strates that our method achieves superior visual quality on RealEstate10K compared to existing
methods, while maintaining competitive performance in camera controllability. These results vali-
date our method’s effectiveness for static scene camera controllability, particularly in achieving en-
hanced realism and stability beyond existing methods. Moreover, we conduct extensive experiments
on the dynamic scene dataset VidGen. Our method outperforms previous methods across key met-
rics, such as RotErr, CLIPSIM, OC and MS scores. In addition to achieving superior performance,
our method achieves suboptimal performance on metrics such as FID, FVD, and TransErr. Owing
to the disentanglement of the object motion from the camera movement, our method achieves sta-
ble performance in motion smoothness(MS), even in the dynamic scene, unlike other methods that
exhibit significant degradation on this metrics. Experiments show that our method achieves high
quality generation with view, appearance and motion consistency.

4.3 QUALITATIVE COMPARISON

We present qualitative comparisons in Figure 3, where the sequence from left to right represents the
start to the end of the video. For the upper example, MotionCtrl fails to maintain view consistency,
with no dog appearing in all frames. CameraCtrl effectively preserves view consistency but falls
short in maintaining appearance consistency of the dog, showing obvious texture errors. AC3D is

6
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Figure 3: This figure presents a qualitative comparison between our method and existing approaches.

the best among the comparison methods overall but still exhibits unnatural motion. In contrast, our
method achieves excellent consistency in view, appearance, and motion.

For the lower example, no tourists appear in all frames of AC3D, which clearly violates view consis-
tency. CameraCtrl depicts the tourists’ appearance very blurrily. The tourists’ outlines in MotionC-
trl are relatively accurate, but the motion continuity is poor, and they don’t appear in the first few
frames, violating view consistency. Our method performs much better overall. From the qualitative
results, existing methods struggle to effectively maintain view, appearance, and motion consistency
in the frames. The fundamental reason is still the lack of understanding of 3D space. Our method
achieves this through constraints on objects.

4.4 QUALITATIVE RESULTS OF MOCA UNDER CONFLICTING MOTION

To evaluate the effectiveness of motion disentanglement, we further test MoCa in scenarios where
the object motion direction described in the text conflicts with the camera input. For example, given
the prompt ”a bird flying from right to left” while the camera pans to the right, MoCa generates
a bird moving against the camera motion correctly. As shown in Figure 5, MoCa ensures that the
object motion (guided by text) are not overridden or distorted by the camera movements (guided
by pose). This result indicates that our motion disentanglement mechanism effectively decouples
object motion from camera movements.

To further validate this, we compare our model with AC3D under the same prompt and camera in-
puts. We observe that they often fail to realize the text-specified object motion direction, as their
object motion remains entangled with the camera motion. This contrast further confirms the neces-
sity and effectiveness of our motion disentanglement strategy.

7
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A dining room with a table and chairs.

A living room with a couch and a rug.

An aerial view of a circular garden in the middle of a park.

A garden with a wooden gazebo, blooming flowers, and a small pond with fish.

A space shuttle launching.

A plane is flying across the blue sky.

A brown bear is crossing the river, with a house behind it.

A swan gliding on lake with reeds in foreground.

Figure 4: Qualitative results of our method in both static and dynamic scenes.

4.5 QUALITATIVE RESULTS OF MOCA ACROSS DIVERSE SCENARIOS

In this section, we present more results of our MoCa, especially on tasks of varying difficulty. There
are eight examples from top to bottom, divided into 4 different types with increasing difficulty. The
first group is outdoor scenes where most objects are in the distance and there are no complex spatial
relationships. The second group is indoor scenes, where objects have clearer 3D relationships, such
as a table in the center of the picture and a wall behind the table. Both groups of examples require
the model to maintain good view and appearance consistency for a good visual effect. The following
two groups of examples are more complex, describing the results of a dynamic object under camera
movement. In the third group, airplanes and rockets move over a large area in the scene, and there
are even complex occlusions. For instance, trees block the airplane, and smoke blocks the tail
flame. Thanks to the understanding of 3D space, our method can handle these scenes well and
achieve good view, appearance and motion consistency. For the fourth group of examples, the object
are animals that have self-initiated movements, which requires the model to not only understand
camera movement but also decouple the animals’ own dynamics. Thanks to our motion decoupling
mechanism, we can handle these situations well. In summary, our method achieve good performance
in camera-controlled video generation especially in view, appearance and motion consistency.
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A owl is gliding from far to near. 

A bird flying from right to left.

A striped zebra galloping to the left.

Figure 5: Qualitative results of our method under the conflicting motion. It shows that our motion
disentanglement strategy seperates object motion from camera movements effectively. The fore-
ground object motion are not overriden or distorted by the camera input.

4.6 ABLATION STUDIES

Plücker Embedding. We directly use the numerical values of camera parameters (extrinsics and
intrinsics) to evaluate the contribution of Plücker embedding. We use the linear projection to down-
sample the camera parameters along the spatial-temporal dimension of the visual features in the
generation process. The experimental results are illustrated in Table 2. We find that using the
Plücker embedding as the camera representation yields more precise camera control. Meanwhile,
due to the strong geometric interpretation, the powerful geometric interpretation directly results in
superior consistency for both objects and the background. Incorporating original numerical values
directly could compromise geometric relationships.

Semantic Guidance Strategy. To evaluate the contribution of vision-language features from the
foundational model in maintaining appearance consistency, we conduct both qualitative and quan-
titative studies to verify this. As in Table 2 and Figure 6, the introduction of the semantic guid-
ance strategy leads to notable enhancements in object appearance consistency. Under strong camera
movements, objects maintain their appearance without distortion. For example, without the semantic
guidance strategy, the sea turtle in Figure 6 exhibits significant geometric distortion. Furthermore,
the improved preservation of object appearance enables more effective high-frequency decomposi-
tion in subsequent processing stages.

High-Frequency Object Masking. As discussed in Sec. 3.3, we extract an object-aware mask
through high-frequency decomposition for achieving motion disentanglement. We recongnize the
mask as the fined-grained cues of the region and localization of the foreground object.To validate
its importance, we perform an ablation by removing this decomposition and directly fusing camera-
conditioned visual features with vision-language features. Results in Table 2 show that without high-
frequency masking, both object and background consistency scores drop considerably. The mask
helps the model better identify objects in the video frame by emphasizing foreground structures and
localization, achieving motion disentanglement. Meanwhile, our motion disentanglement leads to a
marked increase in the motion smoothness(MS) score, particularly in dynamic scenes.

Camera Fusion Strategies. Regarding camera fusion strategies, we evaluated two distinct ap-
proaches: element-wise addition fusion and cross-attention fusion. Existing approaches, such as
CameraCtrl (He et al., 2024) and AC3D (Bahmani et al., 2024a), typically fuse camera conditions
via element-wise addition. Specifically, they directly fuse image latent features and camera pose fea-
tures through pixel-wise addition. However, as shown in Table 2, this fusion strategy falls short in
achieving accurate camera control due to its limited capacity for pixel-wise understanding between
camera parameters and visual features. In contrast, we adopt cross attention approach to achieve
better performance on TransErr and RotErr. Benefiting from its stronger pixel-level understanding,
the attention fusion mechanism also outperforms addition fusion on metrics such as FID, FVD, and
ClipSim, leading to more realistic and semantically consistent video generation.
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Methods FID ↓ FVD ↓ CLIPSIM ↑ TransErr ↓ RotErr ↓ OC ↑ BC ↑ MS ↑
RealEstate10K

W/O PLÜCKER EMBEDDING 225.8 694.7 0.309 0.758 0.210 93.5% 95.1% 98.4%
W/O SEMANTIC GUIDANCE 243.1 705.6 0.308 0.722 0.198 94.1% 95.8% 97.9%

W/O HIGH-FREQUENCY MODELING 235.4 649.8 0.309 0.744 0.209 94.5% 94.9% 98.0%
OURS (FULL, ADDITION FUSION) 236.2 771.8 0.310 0.738 0.211 94.6% 95.1% 98.2%

OURS (FULL, ATTENTION FUSION) 207.4 667.9 0.312 0.703 0.208 94.9% 96.4% 98.5%

VidGen

W/O PLÜCKER EMBEDDING 258.5 1716.4 0.340 0.747 0.109 93.2% 94.5% 97.6%
W/O SEMANTIC GUIDANCE 231.7 1739.8 0.336 0.723 0.096 93.4% 94.0% 95.2%

W/O HIGH-FREQUENCY MODELING 233.4 1735.4 0.339 0.733 0.092 94.3% 94.6% 97.4%
OURS (ADDITION FUSION) 248.1 1738.6 0.345 0.732 0.084 94.9% 94.7% 97.4%

OURS (ATTENTION FUSION) 232.2 1643.7 0.349 0.724 0.081 94.7% 95.1% 98.3%

Table 2: Ablation studies on RealEstate10K and VidGen datasets. Lower is better (↓), higher is
better (↑). Red indicates top-1 and blue indicates top-2 performance.

A serene underwater scene featuring a sea 
turtle swimming through a coral reef. The 
Turtle is with its greenish-brown shell.

A snowy garden with a frozen fountain, a 
blanket of white covering the ground, and 
icicles hanging from trees.

w/o semantic 
guidance

Ours (Full)

A mountain cabin with a wrap
around porch.

Figure 6: It shows our ablation study on the semantic guidance strategy. Without it, we observe that
the generated videos suffer from object distortions.

4.7 ANALYSIS OF MODEL COMPLEXITY AND RUNTIME OVERHEAD.

In this section, we report both training cost and inference-time overhead of MoCa. During training,
MoCa is fine-tuned from CogVideoX on 16×H200 GPUs with a batch size of 64 for 20,000 itera-
tions. For inference, we measure per-sample latency on a single H200 GPU using BF16 precision
and 50 denoising steps. Our MoCa has an inference latency of 291.2s, compared to 104.9s for the
baseline model. The dual-branch fusion introduces 74.6s of overhead, providing persistent semantic
guidance and improving appearance consistency. The 2D-DWT and hybrid condition fusion add
only 9.73s (≈3.3% of the total time). Despite this small cost, the motion disentanglement module
effectively enhances object motion and appearance consistency. Although MoCa has a higher infer-
ence latency than the baseline, it produces better visual-quality and camera-controllable videos. In
practical video generation, users are typically far more concerned with visual quality and controlla-
bility than the inference speed. For latest diffusion-based video generation models, generating just a
few seconds of a satisfying video requires several minutes of computation. This inherent mismatch
between video length and inference time highlights that the quality of the generated video is more
important than gains in the inference latency.

5 CONCLUSION

This work introduces MoCa, a framework for camera-controllable video generation that addresses
the challenge of 3D consistency in 2D pixel space. By modeling object consistency across view,
appearance, and motion, MoCa bridges the gap between explicit camera parameters and realistic
video synthesis. Our approach incorporates a Spatial-Temporal Camera Encoder with Plücker em-
bedding to maintain view consistency, a semantic guidance strategy using vision-language features
to preserve object appearance, and an object-aware motion disentanglement mechanism to separate
local object motion from global camera movements. Experimental results demonstrate that MoCa
achieves accurate camera control while maintaining high video quality, offering a practical solution
for consistent and controllable video generation.

10
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the results presented in this paper, we have made comprehensive ef-
forts to provide necessary information and resources across the main content and appendix. Details
regarding our project homepage and the anonymous code repository are available in Appendix A.
The Sec. 3 in main content offers a detailed description of our model architecture, including key
components, layer designs, and functional mechanisms. We also explicitly provide specific train-
ing parameters and detailed configurations of the datasets in Appendix E, ensuring clarity on the
experimental setup. Beyond implementation details, the performance of our proposed method is
fully validated through extensive experiments. The Sec. 4.1, 4.2, 4.3 in main content presents core
results, comparative analyses and ablation studies. The Appendix F provides more results. With the
integrated resources and detailed descriptions outlined above, other researchers should be able to
reproduce our experimental results and verify the claims made in this paper.

7 ETHICS STATEMENT

All data used in this study are publicly available open-source datasets, with clear and legitimate
sources that comply with relevant data usage licenses. This research does not involve any human
subjects, human experiments, or collection of private or sensitive information from individuals. No
potential ethical risks (such as bias, discrimination, harm to individuals or groups, or misuse of
research outcomes) are associated with our study. Throughout the entire research process, we have
strictly adhered to the principles outlined in the ICLR Code of Ethics, ensuring full compliance with
academic ethics and social responsibility.
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A APPENDIX / SUPPLEMENTAL MATERIAL

For a more comprehensive evaluation, additional visualizations and generated examples are provided
on our project page at: https://anonymous.4open.science/w/MoCa-31E5/. The im-
plementation code is also publicly available at: https://anonymous.4open.science/r/
MoCa-31E5/ to facilitate reproducibility and further research. We encourage readers to explore
these resources for a deeper understanding of our method.

This supplementary document offers additional details, extended analyses, and further experimen-
tal results that support the main content of the paper. It includes implementation specifics, extra
qualitative comparisons, and more visualizations of the generated videos. We structure the appendix
as follows: Appendix B claim the usage of large language models. Appendix C provides a brief
review of ReferenceNet-based camera-controlled video generation. Appendix D explains the use
of 2D Discrete Wavelet Transform for high-frequency object-aware masking. Appendix E presents
additional experiment details, including settings and dataset information. Appendix F includes more
qualitative results, especially in dynamic scenes. Appendix G discusses the limitations.

B THE USAGE OF LARGE LANGUAGE MODELS

We acknowledge the use of a large language model for limited assistance in the writing of this
paper. The tool was used exclusively for proofreading and improving the linguistic fluency of the
text. All scientific content, including the research ideas, methodology, experiment and analysis, was
conducted solely by the authors.

C REFERENCENET BASED CAMERA-CONTROLLED VIDEO GENERATION

C.1 TEXT-TO-VIDEO DIFFUSION MODELS.

Modern text-to-video (T2V) models typically builds upon a pre-trained text-to-image (T2I) model,
such as Stable Diffusion (SD), a pioneering framework that follows the design of the Latent Dif-
fusion Model (LDM). In this work, we follow the T2V model definition from CameraCtrl. As an
essential part of SD, Variational AutoEncoder compresses the feature distribution of the original im-
age, denoted as x0 into a latent space representation z0. The encoding operation extracts the image
essence as z0 = E(x0) whereas the decoding counterpart reconstruct the image from the latent via
x0 = D(z0). The diffusion process is then conducted in the latent space, which significantly reduces
computational overhead without compromising generation performance.

During the diffusion phase, these models usually corrupt the latent z0 by adding Gaussian noise ϵ
according to a predefined schedule inherited from Denoising Diffusion Probabilistic Model (DDPM)
or its deterministic variant DDIM. Then the denoising network is optimized to reverse this process
by progressively eliminating the introduced noise directed by some conditional embeddings c, to
yield videos that adhere to the prescribed text prompts. The training objective can be formulated as
follows:

L = Et,ϵ,z1:N
0 ,c

[∥∥ϵ− ϵθ(z
1:N
t , t, c)

∥∥2]
where N denotes the number of video frames, c is the text embeddings transformed from the input
prompts utilizing the CLIP ViT-L/14 text encoder, ϵθ is a Unet with learnable weights θ. The Unet
is composed of pairs of down/up blocks as well as a middle block. Each block consist of ResNets,
spatial and temporal self-attention layers, together with cross-attention layers that interact with text
conditions, thereby promoting the model’s capability to generate videos that are semantically con-
sistent with text.

C.2 CAMERA-CONTROLLED TEXT-TO-VIDEO GENERATION.

In the field of text-to-video generation, task about adding camera trajectory control st has already
been extensively explored. By incorporating structural camera signals, the video generation results
can be more controllable. Specifically, the camera trajectories are first processed by a special en-
coder ϕ(·) and then fed into the video generator for further operations. Consequently, the objective
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of the generator with guidance from camre signals can be formulated as follows:

L = Et,ϵ,z1:N
0 ,c,st

[∥∥ϵ− ϵθ(z
1:N
t , t, c, ϕ(st))

∥∥2]
where N is the number of video frames, c is the text embeddings, and st means camera trajectories
at different timesteps.

C.3 REFERENCENET.

Prior research has pointed out that utilizing analogous structures is crucial in maintaining the iden-
tity consistency of the target object. Therefore, ReferenceNet that mirrors the architectural design of
SD and operates in parallel with the Denoising Unet, is widely adopted to assist in modelling com-
plex image or video features. EMO and EchoMimic facilitate the self-attention mechanism in the
ReferenceNet to extract reference image features into the attention layers of corresponding block
in the Denoising U-Net, making the facial identity more consistent throughout the video. Hallo
integrates features from the same spatial resolution layers into the Denoising Unet to enhance the
visual texture information of both portraits and backgrounds in the generated videos. Meanwhile, as
ReferenceNet shares identical network structure and initialization weights, the Denoising Unet can
selectively learn some correlated features from it in the same feature space. AnimateAnyone lever-
ages the learned reference image features from ReferenceNet to produce a well-initialized latent,
thus accelerating the entire network training process of the Denoising Unet.

D 2D-DWT IN HIGH-FREQUENCY OBJECT-AWARE MASKING

As mentioned in Sec.3.3, we use high-frequency object masking strategy to extract object-aware
mask for better separating objects and background. In this section, we give more detail about
this strategy. Formally, given the vision-language features from the foundational model X ∈
RB×C×H×W , we decompose them into four frequency sub-bands using 2D-DWT:

DWT(X) → {LL, LH, HL, HH} , (1)

where LL denotes the low-frequency approximation coefficients, and LH,HL,HH represent high-
frequency details in horizontal, vertical, and diagonal directions, respectively. To obtain these com-
ponents, we adopt separable 1D Haar wavelet filters and perform sequential convolutions:

hL =
1√
2
[1, 1], hH =

1√
2
[−1, 1], (2)

LL = (X ∗ h⊤
L ) ∗ hL, LH = (X ∗ h⊤

L ) ∗ hH ,

HL = (X ∗ h⊤
H) ∗ hL, HH = (X ∗ h⊤

H) ∗ hH .
(3)

Unlike conventional 1D temporal wavelet transforms or global 2D Fourier transforms, our 2D-DWT
formulation preserves localized spatial-frequency characteristics, which are essential for accurately
identifying object contours in dynamic scenes. To emphasize fine-grained structural cues, we discard
the low-frequency component LL and retain only the high-frequency sub-bands. These are then used
to reconstruct a high-frequency-enhanced representation via inverse DWT (iDWT):

Xhigh = iDWT(0,LH,HL,HH). (4)

Image Latent Space Image Latent Space Image Latent Space

Figure 7: This figure presents a visualization of applying high-frequency decomposition to visual
features in a latent space. Our strategy yields an object-aware mask that effectively captures the
structure and localization of the foreground object. As shown in the right case, our high-frequency
decomposition can accurately extract the structure of all objects, even in scenes containing multiple
objects of different classes.
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As visualized in Fig. 7, this operation highlights the structure and localization of foreground objects
in the latent space. We view the high-frequency representation as an object-aware mask. From the
ablation study in the main content, the mask enhances motion consistency performance by improv-
ing the model’s object identification capability. It achieves this by emphasizing foreground struc-
tures in the latent space, which promotes a clearer separation between foreground and background
elements.

E MORE EXPERIMENT DETAILS

E.1 TRAINING AND INFERENCE DETAILS

Our model is built upon CogVideoX (Yang et al., 2024), a transformer-based text-to-video diffusion
model with approximately 5B parameters, which demonstrates leading performance on both auto-
mated metrics and human evaluations. Similar to ReferenceNet, the weights of our DenoisingNet
are inherited from the original CogVideoX and remain frozen during training. Only the dual-branch
fusion module is optimized. We employ the AdamW optimizer with a batch size of 64, an initial
learning of 1× 10−4, epsilon set to 1× 10−8 weight decay of 1× 10−4 and beta values of 0.9 and
0.95. Training is conducted using 16 NVIDIA H200 GPUs.

During inference, to increase the magnitude of camera motion and enhance the challenge of camera-
controllable video generation, we sample the input camera trajectory by selecting 49 frames at equal
intervals from the original 98-frame sequence.

E.2 DATASET

During training, our model is fine-tuned from CogVideoX on the RealEstate10K dataset, which
comprises approximately 80,000 video clips extracted from around 10,000 YouTube videos, totaling
about 10 million frames. For each clip, camera parameters (extrinsics and intrinsics) are provided for
every frame, forming a continuous trajectory estimated by running SLAM and bundle adjustment
algorithms on the original videos. This dataset supports view synthesis and 3D computer vision
tasks, with scenes often focusing on static environments such as furnished indoor spaces and natural
outdoor landscapes.

For evaluation, we test performance on both RealEstate10K and the VidGen dataset. VidGen is
a large-scale collection of text-video pairs designed for text-to-video generation. The dataset is
created through a meticulous curation process involving rough and fine-grained filtering to ensure
high-quality videos with detailed, temporally consistent captions. In contrast to the static scenes in
RealEstate10K, VidGen features predominantly dynamic scenes. Figure 8 shows samples of scenes
from the two datasets.

We leverage the VidGen dataset to validate the effectiveness of our approach in terms of object sta-
bility and motion consistency. The diverse and complex dynamics within VidGen’s videos enable a
rigorous test of our model’s ability to generalize beyond static environments, thereby demonstrating
its robustness in handling complex, dynamic scenes, as visualized in the qualitative results shown in
Figure 11, 12.

Realestate10K

VidGen

Figure 8: The overview of the dataset Realestate10K and VidGen.
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F MORE EXPERIMENT RESULTS

F.1 QUANTITATIVE COMPARISON ON DYNAMIC SCENES

In this section, we present additional qualitative comparison results. The sequence from left to right
in the figure represents the progression from the start to the end of the video. As shown in Figure 9,
we provide three new challenging cases, where each case involves animals or objects with self-
driven motion. Our method demonstrates excellent performance in terms of view, appearance, and
motion consistency.
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A lion pride resting under the shade of an acacia tree, 
the cubs playfully wrestling.
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A serene underwater scene featuring a sea turtle swimming through a coral reef.
The turtle is with its greenish-brown shell.
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The balloons of red, blue, and yellow colors floating up into the air.

Figure 9: More qualitative comparison between our method and existing approaches.
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F.2 QUANTITATIVE COMPARISON ON STATIC SCENES

In this section, we present additional qualitative comparison results. The sequence from left to right
in the figure represents the progression from the start to the end of the video. As shown in Figure 10,
we provide three new cases of static scenes. Our method demonstrates excellent performance in
terms of view, appearance, and motion consistency.
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A bedroom with a bed and a television overlooking the ocean.
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A boat traveling on the water in front of a mountain.

A kitchen with wooden cabinets and stainless steel appliances.
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Figure 10: More qualitative comparison between our method and existing approaches.
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F.3 MORE QUANTITATIVE RESULTS ON DYNAMIC SCENES

In this section, we provide additional qualitative results under dynamic scene settings. Dynamic
scenes are characterized by the presence of distinct objects with self-driven motion and a clear sepa-
ration between foreground and background elements, presenting a particularly challenging scenario
for video generation models.

A flame is burning in the fireplace.

Feather floats gently down in a quiet meadow.

A grevy zebra in a safari landscape.

A yellow rubber duck floating on a river, a paper boat moving slowly next to it.

A large group of fish swimming in the ocean. The water is a deep blue color, 
and the fish are swimming in a coordinated manner. 

The horse eating the grass.

A golden retriever playing in the snow.

A vibrant monarch butterfly flutters gracefully above a lush, colorful coral reef

A squirrel climbing up an oak tree.

White clouds moving in the blue sky, a paper airplane flying straight through them.

A modern city street along with tall buildings, many cars running.

Figure 11: More quantitative results of MoCa on dynamic scenes.
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F.4 MORE QUANTITATIVE RESULTS ON STATIC SCENES

In this section, we provide additional qualitative results under static scene settings. Static scenes
typically encompass both indoor and outdoor environments featuring complex textures and geomet-
ric structures. These scenarios place strong emphasis on a model’s ability to comprehend spatial
layout and accurately model camera motion through the sequence.

A bedroom with a bed and a ceiling fan.

A small villa with a path on the front lawn.

A view of san Francisco from the top of a hill.

An aerial view of a luxury home on the beach.

A view of a kitchen and dining room from a sliding glass door.

A small café with wooden tables, vintage chairs, and a counter.

A small outdoor courtyard with a sun umbrella and a table.

A living room with a black leather sofa and a coffee table.

A modern kitchen with skylights and stainless steel appliances.

A red house sits on the side of a snowy road.

A bedroom with a striped bed.

Figure 12: More quantitative results of MoCa on static scenes
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G LIMITATIONS

The proposed MoCa, while demonstrating capability in generating high-quality camera-controlled
videos, exhibits two certain limitations. Specifically, the current method primarily focuses on inte-
grating camera control into text-to-video generation frameworks, without extending this capability
to other multimodal data inputs. Future research should prioritize the idea of multimodal video gen-
eration capable of processing diverse input modalities, such as secondary editing of object regions
and video style transfer applications. Secondly, although our approach successfully maintains ob-
ject stability with camera movements, the current framework cannot precisely control where moving
objects are positioned in the frame. For example, an object might unintentionally appear near the
edges, resulting in less visual effect. Future work should address these challenges through enhanced
object control generation and multimodal fusion techniques, ultimately aiming to achieve superior
video generation quality with expanded creative possibilities.
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