

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MoCA: MODELING OBJECT CONSISTENCY FOR 3D CAMERA CONTROL IN VIDEO GENERATION

Anonymous authors

Paper under double-blind review

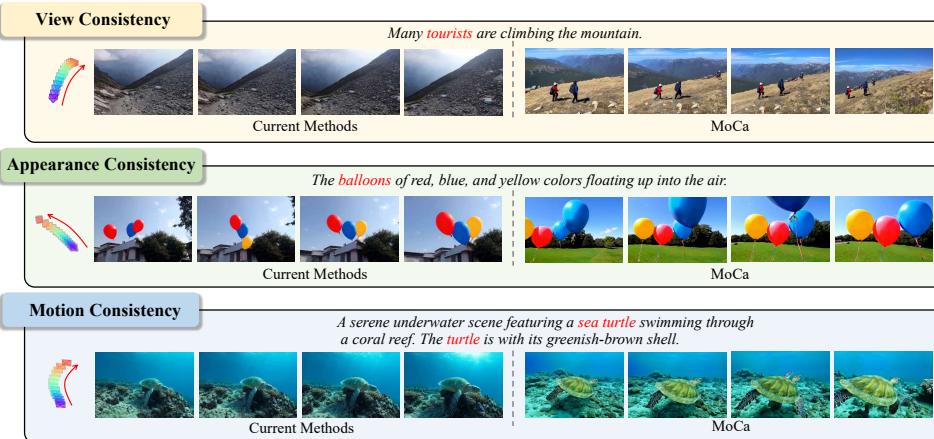


Figure 1: This figure outlines the core requirements for high-quality camera-controllable video generation: consistent object view, appearance, and motion. The foreground object should remain fully visible and retain its structure during camera movement, with stable texture and natural motion. Existing methods often fail to satisfy all three aspects simultaneously, whereas our approach demonstrates strong performance across all criteria.

ABSTRACT

Camera control is important in text-to-video generation for achieving realistic scene navigation and view synthesis. This control is defined by parameters that describe movement through 3D space, thereby introducing a 3D consistency into the generation process. A core challenge for existing methods is achieving 3D consistency within the 2D pixel domain. Strategies that directly integrate camera conditions into text-to-video models often produce artifacts, while those relying on explicit 3D supervision face generalization issues. Both limitations originate from the gap between the 2D pixel space and the underlying 3D world. The key insight is that the projection of a smooth 3D camera movement produces consistency in object view, appearance, and motion across 2D frames. Inspired by this insight, we propose MoCa, a dual-branch framework that bridges this gap by modeling object consistency to implicitly learn 3D relationships between camera and scene. To ensure view consistency, we design a Spatial-Temporal Camera Encoder with Plücker embedding, which encodes camera trajectories into a geometrically grounded latent representation. For appearance consistency, we introduce a semantic guidance strategy that leverages persistent vision-language features to maintain object identity and texture across frames. To address motion consistency, we propose an object-aware motion disentanglement mechanism that separates object dynamics from global camera movement, ensuring precise camera control and natural object motion. Experiments show that MoCa achieves accurate camera control while preserving video quality, offering a practical and effective solution for camera-controllable video synthesis.

054
055
056
057

1 INTRODUCTION

058
059
060
061
062
063
Recent years have witnessed the significant success of video generation models supported by the
foundational diffusion model in content creation and movie production owing to their excellent
multi-modal understanding and powerful generation capabilities, especially in text-conditioned
generation (Blattmann et al., 2023; Chen et al., 2023; He et al., 2022; Singer et al., 2023; Zhou et al.,
2022). The growing demand for precise camera control to enhance video realism in applications
like scene navigation and novel view synthesis remains unmet, as it requires models to understand
the spatial relationship between camera trajectories and 3D scene.064
065
066
067
068
069
070
071
While a standard text-to-video model learns a mapping $f(\mathbf{P}) \rightarrow \mathbf{V}^{X \times Y \times T}$, where X, Y denote
pixel coordinates and T represents the temporal dimension, its objective is to ensure alignment
between the text prompt \mathbf{P} and the video volume \mathbf{V} . Camera-controlled generation introduces a
specific trajectory condition \mathbf{C} . This requires the model to understand the spatial relationships of
objects from changing viewpoints, learning a more complex mapping $f(\mathbf{P}, \mathbf{C}) \rightarrow \mathbf{V}^{X \times Y \times Z \times T}$.
Here, the Z -dimension represents 3D spatial relation brought by the camera movement that must
be consistently maintained. The challenge of learning this implicit 3D relation has led to different
strategic approaches.072
073
074
075
076
077
078
079
080
081
A common strategy is to treat camera control as an additional condition with standard 2D video
generation frameworks. Methods such as MotionCtrl and CameraCtrl (Wang et al., 2024b; He et al.,
2024) integrate camera parameters by temporal attention or element-wise addition in the Denoising
U-Net. Without 3D spatial awareness, these approaches often struggle to keep view and motion
consistency, leading to artifacts like unnatural object dynamics. Another line of work seeks to ex-
plicitly learn 3D relationship between the camera and objects with additional supervise. Techniques
like VidCRAFT3 (Zheng et al., 2025) and ViewCrafter (Yu et al., 2024) convert video frames into
3D point clouds, while I2VControl-Camera (Feng et al., 2024) leverages RGB-D representations
for better visual quality. These methods often rely on on accurate 3D estimation, which limits their
practicality and generalizability. Therefore, the gap between the 3D scene and 2D video pixels limits
current methods in addressing the challenges of camera-controlled video generation.082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
The key insight for building an implicit bridge between 2D pixels and the 3D scene is recognizing
that a camera-controlled video, as a 2D projection of a 3D scene, will demonstrate consistent object
view, appearance, and motion across frames as a result of smooth camera movement. Accordingly,
our method focuses on modeling three types of consistency to produce natural object coherence
under camera control: View, Appearance, and Motion. **View Consistency:** The camera’s position
and orientation determine which objects appear in the frame. For text-to-video generation, objects
described in the text prompt must be visible throughout the majority of the clip. **Appearance Con-
sistency:** As the camera moves, the structure and texture of objects in the 2D projection should
remain continuous and stable over time. **Motion Consistency:** When both the camera and objects
move, the task becomes more difficult because the generated video reflects a combination of both
motions. Camera movements change the field of view, primarily causing translation and scaling of
static objects. Meanwhile, dynamic objects must not only follow the motion described in the text
prompt, but also exhibit translation and scaling consistent with the camera’s movement. Therefore,
the three types of consistency, view, appearance, and motion that observed in a 2D video imply
a stable camera moving through a 3D scene. We believe if objects are consistent, the camera is
controlled. We follow this insight to design our method.097
098
099
100
101
102
103
104
105
106
107
In this paper, we proposed a dual-branch fusion framework named MoCa focusing on accurate
Modeling object consistency to enhance Camera-controlled video generation. To maintain view
consistency, we adopt Plücker embedding and Spatial-Temporal Camera Encoder (ST-Encoder)
which provides a geometrically interpretable representation that encodes camera trajectories at the
pixel level in a latent space. To enhance appearance consistency, we propose a semantic guid-
ance strategy that incorporates vision-language features from a pre-trained foundational model. The
vision-language features serve as persistent global scene information to guide the fusion of camera-
conditioned visual features, mitigating issues such as object distortion and texture collapse. As for
motion consistency, we decouple video motion into camera movements and object dynamics. For
precise pixel-level camera control, the ST-Encoder with Plücker embedding enables precise camera
controllability. Meanwhile, plausible object motion is also crucial for high-quality video generation.
To achieve this, we propose an object-aware motion disentanglement that separates object dynamics

108 from global camera movements. Specifically, we extract the implicit structure and region information
 109 of foreground objects from the pre-trained foundational model, which serves as an object-aware
 110 mask to guide the motion disentanglement. This mechanism allows the model to maintain natural
 111 object dynamics while achieving precise camera control.

112 The main contributions of our work are as follows:
 113

- 114 • We propose a method that learns view, appearance, and motion consistency to bridge 3D
 115 camera movement and its corresponding changes in 2D frames. This implicit learning of
 116 the scene-camera relationship results in enhanced camera-controlled video generation.
- 117 • We design a dual-branch framework comprising ReferenceNet and DenoisingNet, inte-
 118 grated with semantic guidance strategy that injects ReferenceNet visual-language features
 119 to improve the appearance consistency of objects.
- 120 • We introduce an object-aware disentangling mechanism to separate object motion from
 121 camera movement, ensuring object motion is both faithful to the text prompt and consistent
 122 with the camera’s movement.

124 2 RELATED WORK

125 2.1 TEXT-TO-VIDEO GENERATION

126 Text-to-video (T2V) generation is a challenging task that requires both high-fidelity visual realism
 127 and cross-modality consistency (Guo et al., 2024; Brooks et al., 2023; Wu et al., 2024; Ma et al.,
 128 2025; Menapace et al., 2024). In the early stage, research in video generation primarily relied on
 129 Generative Adversarial Networks (GANs) or Variational Autoencoders (VAEs) (Saito et al., 2017;
 130 Skorokhodov et al., 2022; Tulyakov et al., 2018; Vondrick et al., 2016). Despite the progress they
 131 made, the performance of these methods was still far from expectations. Recent attempts at text-to-
 132 video (T2V) generation mainly leverage diffusion models for their impressive capability and well-
 133 established open-sourced communities (Blattmann et al., 2023; Chen et al., 2023; Guo et al., 2024;
 134 He et al., 2022; Ho et al., 2022; Singer et al., 2023; Wang et al., 2023). As a pioneer in this field, some
 135 methods (Ho et al., 2022; He et al., 2022; Hong et al., 2022; Karras et al., 2023; Ruan et al., 2023)
 136 commonly employ video diffusion models (VDMs) that incorporated temporal convolutional and
 137 attention layers into the pre-trained image diffusion models. Follow-up works, VideoCrafter (Chen
 138 et al., 2023) and SVD (Blattmann et al., 2023) expand the application of video diffusion models to
 139 larger datasets, while TF-T2V (Wang et al., 2024a) directly learn from extensive text-free videos.
 140 Nonetheless, these methods encounter limitations in generating long videos, owing to the inherent
 141 constraints on capacity and scalability within the U-Net design. To overcome these constraints, DiT-
 142 based models (Brooks et al., 2024; Peebles & Xie, 2023) have emerged as a promising alternative,
 143 enabling direct generation of videos extending up to tens of seconds. Notably, Sora (Zhang et al.,
 144 2023) adopts a unified visual representation, supporting large-scale training and synthesis of high-
 145 resolution videos exceeding one minute.

146 2.2 CAMERA-CONTROLLED VIDEO GENERATION

147 As a pioneering work, MotionCtrl (Wang et al., 2024b) learns camera control by conditioning pre-
 148 trained video models with extrinsic matrices. Follow-up works further improve the conditioning
 149 mechanisms. CameraCtrl (He et al., 2024) represents cameras as Plucker coordinates, which allows
 150 more stable ray-based rendering and view-dependent modeling. While I2VControl-Camera (Feng
 151 et al., 2024) introduces point trajectory guidance for precise object-centric control. Building upon
 152 this, CamCo (Xu et al., 2024) integrates epipolar constraints into attention layers, and CamTrol (Hou
 153 et al., 2024) leverages explicit 3D point cloud representations. Another line of work controls camera
 154 motion without training additional parameters. However, these methods often rely on additional
 155 guidance like depth or segmentation masks. Notably, all of these approaches adopt U-Net-based
 156 architectures as their backbone. More recently, (Bahmani et al., 2024b;a; He et al., 2025) incor-
 157 porates camera control into a video diffusion transformer architecture. Despite these advances,
 158 existing methods fail to generate dynamic content (e.g., object motion) under camera control without
 159 constructing specialized dynamic video datasets. Our work enhances dynamic content generation
 160 without the need for curating additional dynamic videos.

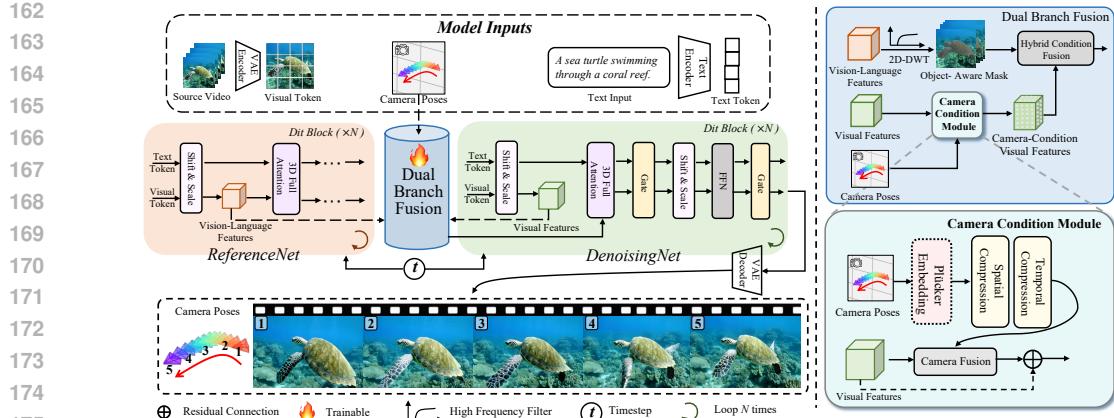


Figure 2: The overview of MoCa. To maintain view consistency, we utilize the Camera Condition Module with Plücker embedding to align camera rays with pixel-level visual representation. For appearance consistency, a semantic guidance strategy employs ReferenceNet’s vision-language features to stabilize objects. Motion consistency is achieved by disentangling video motion into camera movement and object motion.

3 METHOD

Figure 2 illustrates the overall pipeline of MoCa. To model objects consistency of view, appearance and motion, we introduce a dual-branch fusion framework. For view consistency, we design a Spatial-Temporal Camera Encoder (ST-Encoder) with Plücker embedding as the primary form of camera parameters to align camera rays with pixel-level video representation. To enhance appearance consistency, we leverage vision-language alignment features from a foundational model and design a semantic guidance strategy to stabilize the appearance of objects. As for motion consistency, we propose an object-aware disentangling mechanism that guides the generation process to separate local object motion from camera movements.

3.1 CAMERA CONDITION MODULE

To ensure view consistency and prevent object misplacement, we introduce a camera condition module comprising a Camera Representation, Spatial-Temporal Camera Encoder and Camera Fusion Module. This system encodes camera trajectories into pixel-level representations and integrates them into the denoising process, guaranteeing that objects remain aligned with the camera’s view.

Camera Representation. For the camera representation, we adopt Plücker embedding (Sitzmann et al., 2021) following recent works (He et al., 2024; Bahmani et al., 2024a), which provides strong geometric interpretation and fine-grained camera information. Specifically, given camera extrinsic matrix $\mathbf{E} = [\mathbf{R}, \mathbf{t}] \in \mathbb{R}^{3 \times 4}$ and intrinsic matrix $\mathbf{K} \in \mathbb{R}^{3 \times 3}$, we compute the Plücker embedding $\mathbf{p} = (\mathbf{o} \times \mathbf{d}', \mathbf{d}')$ for each pixel (u, v) . Here, \mathbf{o} represents the camera center in world coordinates, the ray direction from camera to pixel is defined as $\mathbf{d} = \mathbf{R}\mathbf{K}^{-1}[u, v, 1]^T + \mathbf{t}$, and \mathbf{d}' is the normalized \mathbf{d} . The final Plücker embedding $\mathbf{P}_i \in \mathbb{R}^{6 \times h \times w}$ is constructed for each frame, where h and w are the height and width for the frame.

Spatial-Temporal Camera Encoder. To integrate Plücker embedding into the generation process, we design a Spatial-Temporal Camera Encoder that transforms camera conditions into latent representations that are both spatially and temporally consistent with visual latents. In the spatial domain, a progressive convolutional architecture with downsampling, convolutional, and residual blocks extracts pixel-level spatial feature for camera motion. To incorporate temporal dynamics, we introduce dedicated 1D temporal convolutions across the frame sequence. The resulting spatial-temporal camera representations are fused with the visual features within the denoising process.

Camera Fusion Module. To effectively integrate camera representations with visual features, we adopted the fusion strategy from existing methods (Bahmani et al., 2024a; He et al., 2025) that injects control signals into each diffusion transformer (DiT) block. Specifically, we apply a cross-attention mechanism in each DiT block to fuse camera representations. This design allows the

216 model to dynamically modulate visual features based on spatial-temporal camera conditions, enabling
 217 fine-grained and precise controllability. By injecting geometry-aware camera embeddings
 218 into the generation process, the model maintains alignment between camera viewpoints and semantic
 219 objects, reducing cases where the described foreground fails to appear. Additionally, we explore
 220 alternative fusion strategies for camera signals which discussed in the ablation study.

221

222 3.2 SEMANTIC GUIDANCE STRATEGY

223

224 Appearance such as texture and scale of the object is critical in video generation, which directly
 225 affects the temporal consistency and visual integrity. Existing models suffer from object distortion
 226 or texture collapse in complex dynamic scenes, especially under intense camera movements. We
 227 trace this limitation to the additional conditioned camera signals, which weaken the base model’s
 228 generative power. To address this, we propose a semantic guidance strategy that injects the visual-
 229 language features from a frozen foundational model into the generation process.

230 Specifically, we extract these vision-language features from the visual branch in each DiT block of
 231 the ReferenceNet, and inject them into each DiT block of the DenoisingNet. We consider that these
 232 features are aligned in both the visual and semantic spaces, serving as a stable appearance guidance
 233 for the whole scene. Therefore, our semantic guidance strategy reinforces vision-language alignment
 234 and enhancing the object appearance consistency of generated videos. Prior researches (Tian et al.,
 235 2024; Hu, 2024) have demonstrated the influence of utilizing analogous structures in maintaining
 236 the consistency of the object’s identity. In our setup, the ReferenceNet shares the same structure
 237 with the DenoisingNet. Both the ReferenceNet and the DenoisingNet are initialized with weights
 238 inherited from the original pretrained DiT architecture.

239

240 3.3 MOTION DISENTANGLEMENT

241

242 In this section, we present an motion disentangling mechanism for separating object motion from
 243 camera movements, which is designed to enhance motion consistency. We decompose the over-
 244 all video motion into camera movement and object motion. Given that camera control has been
 245 addressed in Section 3.1, this section focuses on our approach to modeling natural object motion.
 246 Specifically, we address the entanglement of object motion and camera motion by leveraging
 247 frequency-domain analysis. We utilize a 2D Discrete Wavelet Transform (2D-DWT) (Shahbahrami,
 248 2012; Huang et al., 2005; Mushtaq et al., 2015) to extract high-frequency components from visual
 249 features, highlighting the structures and regions of objects. These high-frequency components guide
 the model to focus on natural object motion while improving precise camera controllability.

250 Current methods often fail to balance global camera movement and local object motion. When
 251 strong camera motion is applied, objects remain completely still, failing to show natural dynamics
 252 such as a fish swimming or a person walking. This limitation arises because video diffusion models
 253 entangle object and camera motion, making it difficult to maintain independent object dynamics.

254 **High-Frequency Object-Aware Masking.** To improve the realism of object motion, we propose an
 255 implicit object masking strategy that guides the model to separate local object motion from global
 256 camera movements. Specifically, we leverage the vision-language features from the foundational
 257 model to extract visual information that highlights foreground object structures and regions. Inspired
 258 by frequency-domain analysis in image processing, we apply a 2D Discrete Wavelet Transform (2D-
 259 DWT) (Shahbahrami, 2012; Huang et al., 2005; Mushtaq et al., 2015) to vision-language features
 260 across different orientations, capturing localized spatial-frequency information. This allows us to
 261 retain fine-grained structural cues that are critical for precise localization of object regions and ef-
 262 fective motion disentanglement. The detail and visualization of 2D-DWT are discussed in appendix.

263 **Hybrid Condition Fusion.** We propose a hybrid conditioning fusion to fuse the object-aware mask
 264 with camera-conditioned visual features. It strategically employs cross-attention for spatial condi-
 265 tioning fusion with a temporal self-attention explicitly enforces inter-frame consistency. The cross-
 266 attention mechanism allows the model to dynamically modulate object-aware guidance and camera-
 267 conditioned features, enforcing accurate camera movements and preserving natural object motion.
 268 The temporal self-attention enables the model to maintain motion consistency across frames. Pow-
 269 ered by the structure and localization information from the foundational model, our method enhances
 dual motion disentanglement and separates object motion from the camera movement.

270	Methods	FID \downarrow	FVD \downarrow	CLIPSIM \uparrow	TransErr \downarrow	RotErr \downarrow	OC \uparrow	BC \uparrow	MS \uparrow
RealEstate10K									
272	MotionCtrl(Animatediff-Based) (Wang et al., 2024b)	246.6	870.8	0.309	0.716	0.213	94.6%	95.8%	97.8%
273	CameraCtrl (He et al., 2024)	255.8	931.5	0.305	0.708	0.204	94.3%	94.7%	97.7%
274	AC3D (Bahmani et al., 2024a)	225.2	683.4	0.309	0.695	0.196	95.1%	95.3%	98.5%
275	Ours	207.4	667.9	0.312	0.703	0.208	94.9%	96.4%	98.5%
VidGen									
276	MotionCtrl(Animatediff-Based) (Wang et al., 2024b)	274.0	1858.2	0.333	0.722	0.107	92.6%	93.2%	97.1%
277	CameraCtrl (He et al., 2024)	266.3	1905.1	0.339	0.731	0.089	92.9%	93.1%	96.9%
278	AC3D (Bahmani et al., 2024a)	228.4	1712.0	0.345	0.727	0.084	93.5%	94.7%	97.7%
279	Ours	232.2	1643.7	0.349	0.724	0.081	94.7%	95.1%	98.3%

Table 1: Quantitative comparison on RealEstate10K and VidGen datasets. Lower is better (\downarrow), higher is better (\uparrow). **Red** indicates top-1 and **blue** indicates top-2 performance.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets. During training, our model is fine-tuned from CogVideoX (Yang et al., 2024) on RealEstate10K (Zhou et al., 2018), which has around 65K video clips with per-frame camera parameters (extrinsics and intrinsics). This setup aligns with those used in prior works. For evaluation, we assess performance on both RealEstate10K and the VidGen dataset. VidGen (Tan et al., 2024) consists of a large collection of text-video pairs, primarily featuring dynamic scenes. In the contrast, RealEstate10K focus on static scenes, showcasing furnishings in indoor settings and natural landscapes in outdoor environments. We leverage this dataset to validate the effectiveness of our approach in object stability and motion consistency, thereby demonstrating its generalization to complex, dynamic scenes.

Metrics. We evaluate performance using a comprehensive set of quantitative metrics. For common evaluation, we report FID, FVD, and CLIPSIM scores. To evaluate camera accuracy, we follow CameraCtrl (He et al., 2024), using rotation and normalized translation errors from Mega-SAM (Li et al., 2024) reconstructed trajectories. To further assess foreground object consistency and background consistency, we adopt Object Consistency (OC), Background Consistency (BC) and Motion Smoothness(MS) scores from VBench (Huang et al., 2024), respectively. We consider OC, BC, and MS scores from VBench as standard and widely used evaluation metrics for text-to-video generation. Moreover, these metrics collectively capture the different aspects of consistency that our method aims to improve.

4.2 QUANTITATIVE COMPARISON

To evaluate the effectiveness of our method, we compare it with existing methods on Realestate10K and VidGen. For a fair comparison, all videos are uniformly downsampled to 16 frames. It demonstrates that our method achieves superior visual quality on RealEstate10K compared to existing methods, while maintaining competitive performance in camera controllability. These results validate our method’s effectiveness for static scene camera controllability, particularly in achieving enhanced realism and stability beyond existing methods. Moreover, we conduct extensive experiments on the dynamic scene dataset VidGen. **Our method outperforms previous methods across key metrics, such as RotErr, CLIPSIM, OC and MS scores.** In addition to achieving superior performance, our method achieves suboptimal performance on metrics such as FID, FVD, and TransErr. **Owing to the disentanglement of the object motion from the camera movement, our method achieves stable performance in motion smoothness(MS), even in the dynamic scene, unlike other methods that exhibit significant degradation on this metrics.** Experiments show that our method achieves high quality generation with view, appearance and motion consistency.

4.3 QUALITATIVE COMPARISON

We present qualitative comparisons in Figure 3, where the sequence from left to right represents the start to the end of the video. For the upper example, MotionCtrl fails to maintain view consistency, with no dog appearing in all frames. CameraCtrl effectively preserves view consistency but falls short in maintaining appearance consistency of the dog, showing obvious texture errors. AC3D is

353 Figure 3: This figure presents a qualitative comparison between our method and existing approaches.
354355 the best among the comparison methods overall but still exhibits unnatural motion. In contrast, our
356 method achieves excellent consistency in view, appearance, and motion.
357358 For the lower example, no tourists appear in all frames of AC3D, which clearly violates view consistency.
359 CameraCtrl depicts the tourists’ appearance very blurrily. The tourists’ outlines in MotionC-
360 trl are relatively accurate, but the motion continuity is poor, and they don’t appear in the first few
361 frames, violating view consistency. Our method performs much better overall. From the qualitative
362 results, existing methods struggle to effectively maintain view, appearance, and motion consistency
363 in the frames. The fundamental reason is still the lack of understanding of 3D space. Our method
364 achieves this through constraints on objects.
365366

4.4 QUALITATIVE RESULTS OF MoCA UNDER CONFLICTING MOTION

368 To evaluate the effectiveness of motion disentanglement, we further test MoCa in scenarios where
369 the object motion direction described in the text conflicts with the camera input. For example, given
370 the prompt ”a bird flying from right to left” while the camera pans to the right, MoCa generates
371 a bird moving against the camera motion correctly. As shown in Figure 5, MoCa ensures that the
372 object motion (guided by text) are not overridden or distorted by the camera movements (guided
373 by pose). This result indicates that our motion disentanglement mechanism effectively decouples
374 object motion from camera movements.
375376 To further validate this, we compare our model with AC3D under the same prompt and camera in-
377 puts. We observe that they often fail to realize the text-specified object motion direction, as their
378 object motion remains entangled with the camera motion. This contrast further confirms the neces-
379 sity and effectiveness of our motion disentanglement strategy.
380

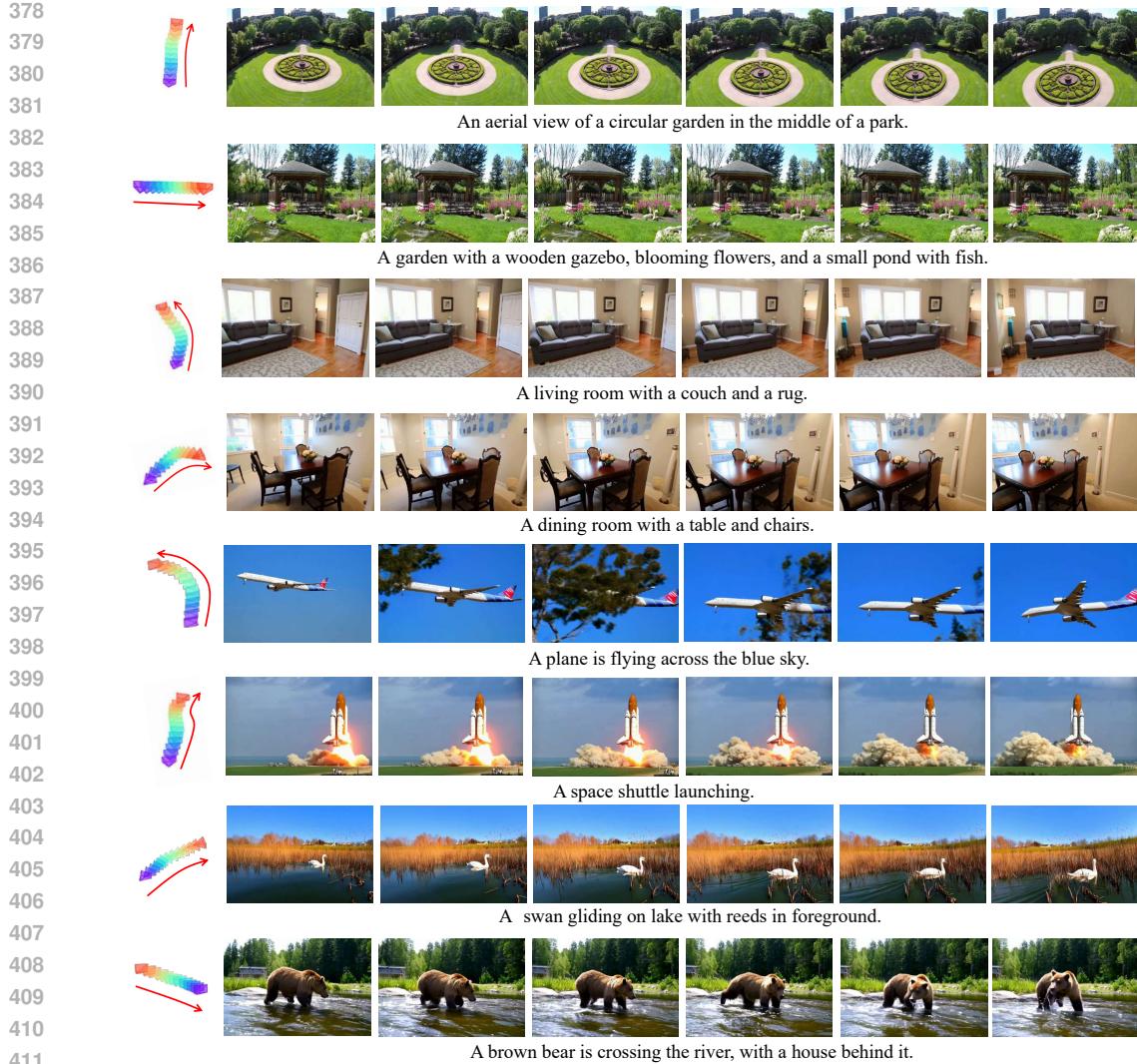
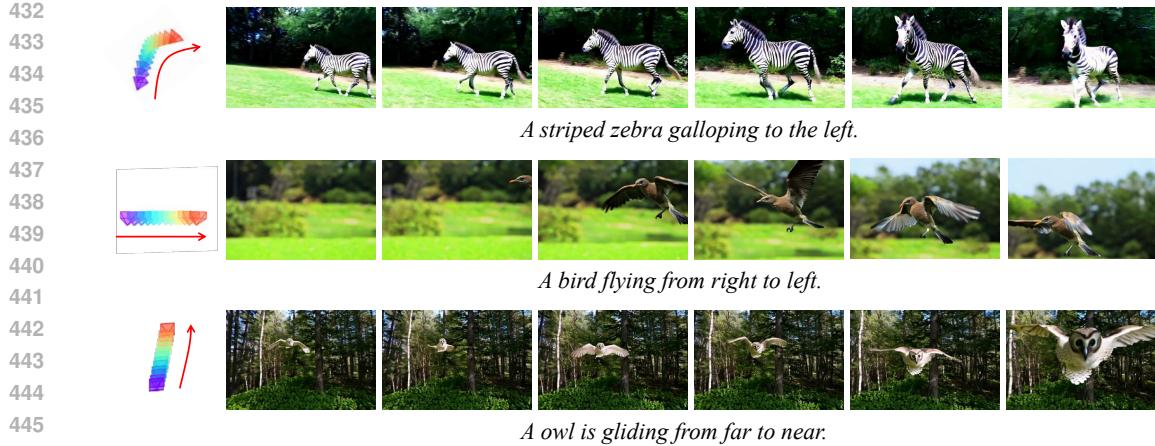


Figure 4: Qualitative results of our method in both static and dynamic scenes.

4.5 QUALITATIVE RESULTS OF MoCA ACROSS DIVERSE SCENARIOS

In this section, we present more results of our MoCa, especially on tasks of varying difficulty. There are eight examples from top to bottom, divided into 4 different types with increasing difficulty. The first group is outdoor scenes where most objects are in the distance and there are no complex spatial relationships. The second group is indoor scenes, where objects have clearer 3D relationships, such as a table in the center of the picture and a wall behind the table. Both groups of examples require the model to maintain good view and appearance consistency for a good visual effect. The following two groups of examples are more complex, describing the results of a dynamic object under camera movement. In the third group, airplanes and rockets move over a large area in the scene, and there are even complex occlusions. For instance, trees block the airplane, and smoke blocks the tail flame. Thanks to the understanding of 3D space, our method can handle these scenes well and achieve good view, appearance and motion consistency. For the fourth group of examples, the objects are animals that have self-initiated movements, which requires the model to not only understand camera movement but also decouple the animals' own dynamics. Thanks to our motion decoupling mechanism, we can handle these situations well. In summary, our method achieves good performance in camera-controlled video generation especially in view, appearance and motion consistency.



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 5: Qualitative results of our method under the conflicting motion. It shows that our motion disentanglement strategy separates object motion from camera movements effectively. The foreground object motion are not overridden or distorted by the camera input.

4.6 ABLATION STUDIES

Plücker Embedding. We directly use the numerical values of camera parameters (extrinsics and intrinsics) to evaluate the contribution of Plücker embedding. We use the linear projection to downsample the camera parameters along the spatial-temporal dimension of the visual features in the generation process. The experimental results are illustrated in Table 2. We find that using the Plücker embedding as the camera representation yields more precise camera control. Meanwhile, due to the strong geometric interpretation, the powerful geometric interpretation directly results in superior consistency for both objects and the background. Incorporating original numerical values directly could compromise geometric relationships.

Semantic Guidance Strategy. To evaluate the contribution of vision-language features from the foundational model in maintaining appearance consistency, we conduct both qualitative and quantitative studies to verify this. As in Table 2 and Figure 6, the introduction of the semantic guidance strategy leads to notable enhancements in object appearance consistency. Under strong camera movements, objects maintain their appearance without distortion. For example, without the semantic guidance strategy, the sea turtle in Figure 6 exhibits significant geometric distortion. Furthermore, the improved preservation of object appearance enables more effective high-frequency decomposition in subsequent processing stages.

High-Frequency Object Masking. As discussed in Sec. 3.3, we extract an object-aware mask through high-frequency decomposition for achieving motion disentanglement. We recognize the mask as the fine-grained cues of the region and localization of the foreground object. To validate its importance, we perform an ablation by removing this decomposition and directly fusing camera-conditioned visual features with vision-language features. Results in Table 2 show that without high-frequency masking, both object and background consistency scores drop considerably. The mask helps the model better identify objects in the video frame by emphasizing foreground structures and localization, achieving motion disentanglement. **Meanwhile, our motion disentanglement leads to a marked increase in the motion smoothness(MS) score, particularly in dynamic scenes.**

Camera Fusion Strategies. Regarding camera fusion strategies, we evaluated two distinct approaches: element-wise addition fusion and cross-attention fusion. Existing approaches, such as CameraCtrl (He et al., 2024) and AC3D (Bahmani et al., 2024a), typically fuse camera conditions via element-wise addition. Specifically, they directly fuse image latent features and camera pose features through pixel-wise addition. However, as shown in Table 2, this fusion strategy falls short in achieving accurate camera control due to its limited capacity for pixel-wise understanding between camera parameters and visual features. In contrast, we adopt cross attention approach to achieve better performance on TransErr and RotErr. Benefiting from its stronger pixel-level understanding, the attention fusion mechanism also outperforms addition fusion on metrics such as FID, FVD, and ClipSim, leading to more realistic and semantically consistent video generation.

	Methods	FID ↓	FVD ↓	CLIPSIM ↑	TransErr ↓	RotErr ↓	OC ↑	BC ↑	MS ↑
RealEstate10K									
w/o PLÜCKER EMBEDDING	225.8	694.7	0.309	0.758	0.210	93.5%	95.1%	98.4%	
w/o SEMANTIC GUIDANCE	243.1	705.6	0.308	0.722	0.198	94.1%	95.8%	97.9%	
w/o HIGH-FREQUENCY MODELING	235.4	649.8	0.309	0.744	0.209	94.5%	94.9%	98.0%	
OURS (FULL, ADDITION FUSION)	236.2	771.8	0.310	0.738	0.211	94.6%	95.1%	98.2%	
OURS (FULL, ATTENTION FUSION)	207.4	667.9	0.312	0.703	0.208	94.9%	96.4%	98.5%	
VidGen									
w/o PLÜCKER EMBEDDING	258.5	1716.4	0.340	0.747	0.109	93.2%	94.5%	97.6%	
w/o SEMANTIC GUIDANCE	231.7	1739.8	0.336	0.723	0.096	93.4%	94.0%	95.2%	
w/o HIGH-FREQUENCY MODELING	233.4	1735.4	0.339	0.733	0.092	94.3%	94.6%	97.4%	
OURS (ADDITION FUSION)	248.1	1738.6	0.345	0.732	0.084	94.9%	94.7%	97.4%	
OURS (ATTENTION FUSION)	232.2	1643.7	0.349	0.724	0.081	94.7%	95.1%	98.3%	

Table 2: Ablation studies on RealEstate10K and VidGen datasets. Lower is better (\downarrow), higher is better (\uparrow). **Red** indicates top-1 and **blue** indicates top-2 performance.

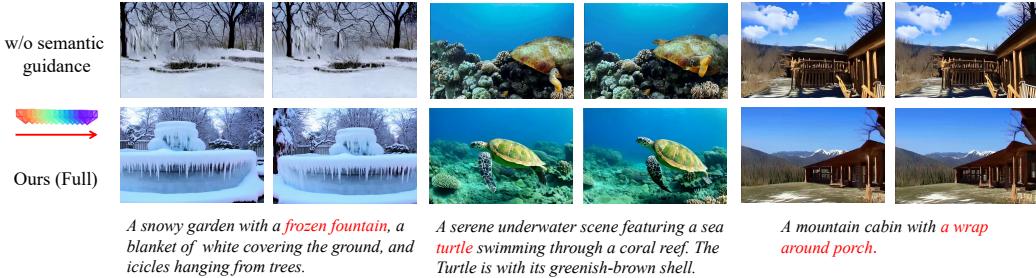


Figure 6: It shows our ablation study on the semantic guidance strategy. Without it, we observe that the generated videos suffer from object distortions.

4.7 ANALYSIS OF MODEL COMPLEXITY AND RUNTIME OVERHEAD.

In this section, we report both training cost and inference-time overhead of MoCa. During training, MoCa is fine-tuned from CogVideoX on $16 \times$ H200 GPUs with a batch size of 64 for 20,000 iterations. For inference, we measure per-sample latency on a single H200 GPU using BF16 precision and 50 denoising steps. Our MoCa has an inference latency of 291.2s, compared to 104.9s for the baseline model. The dual-branch fusion introduces 74.6s of overhead, providing persistent semantic guidance and improving appearance consistency. The 2D-DWT and hybrid condition fusion add only 9.73s (\approx 3.3% of the total time). Despite this small cost, the motion disentanglement module effectively enhances object motion and appearance consistency. Although MoCa has a higher inference latency than the baseline, it produces better visual-quality and camera-controllable videos. In practical video generation, users are typically far more concerned with visual quality and controllability than the inference speed. For latest diffusion-based video generation models, generating just a few seconds of a satisfying video requires several minutes of computation. This inherent mismatch between video length and inference time highlights that the quality of the generated video is more important than gains in the inference latency.

5 CONCLUSION

This work introduces MoCa, a framework for camera-controllable video generation that addresses the challenge of 3D consistency in 2D pixel space. By modeling object consistency across view, appearance, and motion, MoCa bridges the gap between explicit camera parameters and realistic video synthesis. Our approach incorporates a Spatial-Temporal Camera Encoder with Plücker embedding to maintain view consistency, a semantic guidance strategy using vision-language features to preserve object appearance, and an object-aware motion disentanglement mechanism to separate local object motion from global camera movements. Experimental results demonstrate that MoCa achieves accurate camera control while maintaining high video quality, offering a practical solution for consistent and controllable video generation.

540 **6 REPRODUCIBILITY STATEMENT**

541

542 To ensure the reproducibility of the results presented in this paper, we have made comprehensive ef-
 543 forts to provide necessary information and resources across the main content and appendix. Details
 544 regarding our project homepage and the anonymous code repository are available in Appendix A.
 545 The Sec. 3 in main content offers a detailed description of our model architecture, including key
 546 components, layer designs, and functional mechanisms. We also explicitly provide specific training
 547 parameters and detailed configurations of the datasets in Appendix E, ensuring clarity on the
 548 experimental setup. Beyond implementation details, the performance of our proposed method is
 549 fully validated through extensive experiments. The Sec. 4.1, 4.2, 4.3 in main content presents core
 550 results, comparative analyses and ablation studies. The Appendix F provides more results. With the
 551 integrated resources and detailed descriptions outlined above, other researchers should be able to
 552 reproduce our experimental results and verify the claims made in this paper.

553

554 **7 ETHICS STATEMENT**

555

556 All data used in this study are publicly available open-source datasets, with clear and legitimate
 557 sources that comply with relevant data usage licenses. This research does not involve any human
 558 subjects, human experiments, or collection of private or sensitive information from individuals. No
 559 potential ethical risks (such as bias, discrimination, harm to individuals or groups, or misuse of
 560 research outcomes) are associated with our study. Throughout the entire research process, we have
 561 strictly adhered to the principles outlined in the ICLR Code of Ethics, ensuring full compliance with
 562 academic ethics and social responsibility.

563

564 **REFERENCES**

565 Sherwin Bahmani, Ivan Skorokhodov, Guocheng Qian, Aliaksandr Siarohin, Willi Menapace, An-
 566 drea Tagliasacchi, David B Lindell, and Sergey Tulyakov. AC3D: Analyzing and Improving 3D
 567 Camera Control in Video Diffusion Transformers. *arXiv preprint arXiv:2411.18673*, 2024a.

568 Sherwin Bahmani, Ivan Skorokhodov, Aliaksandr Siarohin, Willi Menapace, Guocheng Qian,
 569 Michael Vasilkovsky, Hsin-Ying Lee, Chaoyang Wang, Jiaxu Zou, Andrea Tagliasacchi, et al.
 570 VD3D: Taming Large Video Diffusion Transformers for 3D Camera Control. *arXiv preprint*
 571 *arXiv:2407.12781*, 2024b.

572 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
 573 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable Video Diffusion:
 574 Scaling Latent Video Diffusion Models to Large Datasets. *arXiv preprint arXiv:2311.15127*,
 575 2023.

576 Tim Brooks, Aleksander Holynski, and Alexei A Efros. InstructPix2Pix: Learning to Follow Image
 577 Editing Instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 578 *recognition*, pp. 18392–18402, 2023.

579 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
 580 Taylor, Troy Luhman, Eric Luhman, et al. Video Generation Models as World Simulators. *OpenAI*
 581 *Blog*, 1:8, 2024.

582 Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing,
 583 Yaofang Liu, Qifeng Chen, Xintao Wang, et al. VideoCrafter1: Open Diffusion Models for High-
 584 Quality Video Generation. *arXiv preprint arXiv:2310.19512*, 2023.

585 Wanquan Feng, Jiawei Liu, Pengqi Tu, Tianhao Qi, Mingzhen Sun, Tianxiang Ma, Songtao Zhao,
 586 Siyu Zhou, and Qian He. I2VControl-Camera: Precise Video Camera Control with Adjustable
 587 Motion Strength. *arXiv preprint arXiv:2411.06525*, 2024.

588 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
 589 Agrawala, Dahua Lin, and Bo Dai. AnimateDiff: Animate Your Personalized Text-to-Image Dif-
 590 fusion Models without Specific Tuning. *International Conference on Learning Representations*,
 2024.

594 Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan
 595 Yang. CameraCtrl: Enabling Camera Control for Text-to-Video Generation. *arXiv preprint*
 596 *arXiv:2404.02101*, 2024.

597

598 Hao He, Ceyuan Yang, Shanchuan Lin, Yinghao Xu, Meng Wei, Liangke Gui, Qi Zhao, Gordon
 599 Wetzstein, Lu Jiang, and Hongsheng Li. CameraCtrl II: Dynamic Scene Exploration via Camera-
 600 controlled Video Diffusion Models. *arXiv preprint arXiv:2503.10592*, 2025.

601

602 Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and Qifeng Chen. Latent Video Diffusion
 603 Models for High-Fidelity Long Video Generation. *arXiv preprint arXiv:2211.13221*, 2022.

604

605 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 606 Fleet. Video Diffusion Models. *Advances in Neural Information Processing Systems*, 35:8633–
 607 8646, 2022.

608

609 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. CogVideo: Large-scale Pre-
 610 training for Text-to-Video Generation via Transformers. *arXiv preprint arXiv:2205.15868*, 2022.

611

612 Chen Hou, Guoqiang Wei, Yan Zeng, and Zhibo Chen. Training-free Camera Control for Video
 613 Generation. *arXiv preprint arXiv:2406.10126*, 2024.

614

615 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character anima-
 616 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 617 pp. 8153–8163, 2024.

618

619 Chao-Tsung Huang, Po-Chih Tseng, and Liang-Gee Chen. Analysis and VLSI Architecture for 1-D
 620 and 2-D Discrete Wavelet Transform. *IEEE Transactions on signal processing*, 53(4):1575–1586,
 621 2005.

622

623 Ziqi Huang, Yinan He, Jiahuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 624 ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. VBench: Comprehensive Benchmark Suite for
 625 Video Generative Models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 626 *Pattern Recognition*, pp. 21807–21818, 2024.

627

628 Johanna Karras, Aleksander Holynski, Ting-Chun Wang, and Ira Kemelmacher-Shlizerman. Dream-
 629 Pose: Fashion Video Synthesis with Stable Diffusion. In *Proceedings of the IEEE/CVF Interna-
 630 tional Conference on Computer Vision*, pp. 22680–22690, 2023.

631

632 Zhengqi Li, Richard Tucker, Forrester Cole, Qianqian Wang, Linyi Jin, Vickie Ye, Angjoo
 633 Kanazawa, Aleksander Holynski, and Noah Snavely. MegaSaM: Accurate, Fast, and Robust
 634 Structure and Motion from Casual Dynamic Videos. *arXiv preprint arXiv:2412.04463*, 2024.

635

636 Xin Ma, Yaohui Wang, Xinyuan Chen, Gengyun Jia, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, and
 637 Yu Qiao. Latte: Latent Diffusion Transformer for Video Generation. *Transactions on Machine*
 638 *Learning Research*, 2025.

639

640 Willi Menapace, Aliaksandr Siarohin, Ivan Skorokhodov, Ekaterina Deyneka, Tsai-Shien Chen,
 641 Anil Kag, Yuwei Fang, Aleksei Stolar, Elisa Ricci, Jian Ren, et al. Snap Video: Scaled Spa-
 642 tiotemporal Transformers For Text-to-Video Synthesis. In *Proceedings of the IEEE/CVF Confer-
 643 ence on Computer Vision and Pattern Recognition*, pp. 7038–7048, 2024.

644

645 Al-Shuraifi Mushtaq, Al-Anssari Ali Ihsan, and Nameer Qasim. 2D-DWT vs. FFT OFDM Systems
 646 in fading AWGN channels. *Radioelectronics and Communications Systems*, 58(5):228–233, 2015.

647

648 William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. In *Proceedings of*
 649 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

650

651 Ludan Ruan, Yiyang Ma, Huan Yang, Huiguo He, Bei Liu, Jianlong Fu, Nicholas Jing Yuan, Qin
 652 Jin, and Baining Guo. MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio
 653 and Video Generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 654 *Pattern Recognition*, pp. 10219–10228, 2023.

648 Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Temporal Generative Adversarial Nets with
 649 Singular Value Clipping. In *Proceedings of the IEEE international conference on computer vision*,
 650 pp. 2830–2839, 2017.

651 Asadollah Shahbahrami. Algorithms and architectures for 2D discrete wavelet transform. *The
 652 Journal of Supercomputing*, 62:1045–1064, 2012.

653 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
 654 Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-A-
 655 Video: Text-to-Video Generation without Text-Video Data. In *The Eleventh International Confer-
 656 ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=nJFylDvgz1q>.

657 Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh Tenenbaum, and Fredo Durand. Light
 658 Field Networks: Neural Scene Representations with Single-Evaluation Rendering. *Advances in
 659 Neural Information Processing Systems*, 34:19313–19325, 2021.

660 Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elhoseiny. StyleGAN-V: A Continuous Video
 661 Generator with the Price, Image Quality and Perks of StyleGAN2. In *Proceedings of the
 662 IEEE/CVF conference on computer vision and pattern recognition*, pp. 3626–3636, 2022.

663 Zhiyu Tan, Xiaomeng Yang, Luozheng Qin, and Hao Li. Vidgen-1M: A Large-Scale Dataset for
 664 Text-to-Video Generation. *arXiv preprint arXiv:2408.02629*, 2024.

665 Linrui Tian, Qi Wang, Bang Zhang, and Liefeng Bo. Emo: Emote portrait alive generating ex-
 666 pressive portrait videos with audio2video diffusion model under weak conditions. In *European
 667 Conference on Computer Vision*, pp. 244–260. Springer, 2024.

668 Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. MoCoGan: Decomposing Motion
 669 and Content for Video Generation. In *Proceedings of the IEEE conference on computer vision
 670 and pattern recognition*, pp. 1526–1535, 2018.

671 Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating Videos with Scene Dynamics.
 672 *Advances in neural information processing systems*, 29, 2016.

673 Xiang Wang, Hangjie Yuan, Shiwei Zhang, Dayou Chen, Jiuniu Wang, Yingya Zhang, Yujun Shen,
 674 Deli Zhao, and Jingren Zhou. VideoComposer: Compositional Video Synthesis with Motion
 675 Controllability. *Advances in Neural Information Processing Systems*, 36:7594–7611, 2023.

676 Xiang Wang, Shiwei Zhang, Hangjie Yuan, Zhiwu Qing, Biao Gong, Yingya Zhang, Yujun Shen,
 677 Changxin Gao, and Nong Sang. A Recipe for Scaling up Text-to-Video generation with Text-free
 678 Videos. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 679 nition*, pp. 6572–6582, 2024a.

680 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
 681 and Ying Shan. MotionCtrl: A Unified and Flexible Motion Controller for Video Generation. In
 682 *ACM SIGGRAPH 2024 Conference Papers*, pp. 1–11, 2024b.

683 Ruiqi Wu, Liangyu Chen, Tong Yang, Chunle Guo, Chongyi Li, and Xiangyu Zhang. LAMP: Learn
 684 A Motion Pattern for Few-Shot Video Generation. In *IEEE Conference on Computer Vision and
 685 Pattern Recognition (CVPR)*, 2024.

686 Dejia Xu, Weili Nie, Chao Liu, Sifei Liu, Jan Kautz, Zhangyang Wang, and Arash Vah-
 687 dat. Camco: Camera-Controllable 3D-Consistent Image-to-Video Generation. *arXiv preprint
 688 arXiv:2406.02509*, 2024.

689 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 690 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. CogVideoX: Text-to-Video Diffusion Models
 691 with An Expert Transformer. *arXiv preprint arXiv:2408.06072*, 2024.

692 Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu Li, Zhipeng Huang, Xiangjun Gao, Tien-
 693 Tsin Wong, Ying Shan, and Yonghong Tian. Viewcrafter: Taming video diffusion models for
 694 high-fidelity novel view synthesis. *arXiv preprint arXiv:2409.02048*, 2024.

702 Shiwei Zhang, Jiayu Wang, Yingya Zhang, Kang Zhao, Hangjie Yuan, Zhiwu Qin, Xiang Wang,
703 Deli Zhao, and Jingren Zhou. I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded
704 Diffusion Models. *arXiv preprint arXiv:2311.04145*, 2023.

705

706 Sixiao Zheng, Zimian Peng, Yanpeng Zhou, Yi Zhu, Hang Xu, Xiangru Huang, and Yanwei Fu.
707 Vidcraft3: Camera, object, and lighting control for image-to-video generation. *arXiv preprint*
708 *arXiv:2502.07531*, 2025.

709

710 Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv, Yizhe Zhu, and Jiashi Feng. MagicVideo:
711 Efficient Video Generation With Latent Diffusion Models. *arXiv preprint arXiv:2211.11018*,
712 2022.

713

714 Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo Magnification:
715 Learning view synthesis using multiplane images. *arXiv preprint arXiv:1805.09817*, 2018.

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX / SUPPLEMENTAL MATERIAL**
757758 For a more comprehensive evaluation, additional visualizations and generated examples are provided
759 on our project page at: <https://anonymous.4open.science/w/MoCa-31E5/>. The im-
760 plementation code is also publicly available at: [https://anonymous.4open.science/r/](https://anonymous.4open.science/r/MoCa-31E5/)
761 [MoCa-31E5/](https://anonymous.4open.science/r/MoCa-31E5/) to facilitate reproducibility and further research. We encourage readers to explore
762 these resources for a deeper understanding of our method.763 This supplementary document offers additional details, extended analyses, and further experimen-
764 tal results that support the main content of the paper. It includes implementation specifics, extra
765 qualitative comparisons, and more visualizations of the generated videos. We structure the appendix
766 as follows: Appendix B claim the usage of large language models. Appendix C provides a brief
767 review of ReferenceNet-based camera-controlled video generation. Appendix D explains the use
768 of 2D Discrete Wavelet Transform for high-frequency object-aware masking. Appendix E presents
769 additional experiment details, including settings and dataset information. Appendix F includes more
770 qualitative results, especially in dynamic scenes. Appendix G discusses the limitations.
771772 **B THE USAGE OF LARGE LANGUAGE MODELS**
773774 We acknowledge the use of a large language model for limited assistance in the writing of this
775 paper. The tool was used exclusively for proofreading and improving the linguistic fluency of the
776 text. All scientific content, including the research ideas, methodology, experiment and analysis, was
777 conducted solely by the authors.
778779 **C REFERENCENET BASED CAMERA-CONTROLLED VIDEO GENERATION**
780781 **C.1 TEXT-TO-VIDEO DIFFUSION MODELS.**
782783 Modern text-to-video (T2V) models typically builds upon a pre-trained text-to-image (T2I) model,
784 such as Stable Diffusion (SD), a pioneering framework that follows the design of the Latent Dif-
785 fusion Model (LDM). In this work, we follow the T2V model definition from CameraCtrl. As an
786 essential part of SD, Variational AutoEncoder compresses the feature distribution of the original im-
787 age, denoted as x_0 into a latent space representation z_0 . The encoding operation extracts the image
788 essence as $z_0 = E(x_0)$ whereas the decoding counterpart reconstruct the image from the latent via
789 $x_0 = D(z_0)$. The diffusion process is then conducted in the latent space, which significantly reduces
790 computational overhead without compromising generation performance.791 During the diffusion phase, these models usually corrupt the latent z_0 by adding Gaussian noise ϵ
792 according to a predefined schedule inherited from Denoising Diffusion Probabilistic Model (DDPM)
793 or its deterministic variant DDIM. Then the denoising network is optimized to reverse this process
794 by progressively eliminating the introduced noise directed by some conditional embeddings c , to
795 yield videos that adhere to the prescribed text prompts. The training objective can be formulated as
796 follows:

797
$$\mathcal{L} = E_{t, \epsilon, \mathbf{z}_0^{1:N}, \mathbf{c}} \left[\left\| \epsilon - \epsilon_\theta(\mathbf{z}_t^{1:N}, t, \mathbf{c}) \right\|^2 \right]$$

798

799 where N denotes the number of video frames, c is the text embeddings transformed from the input
800 prompts utilizing the CLIP ViT-L/14 text encoder, ϵ_θ is a Unet with learnable weights θ . The Unet
801 is composed of pairs of down/up blocks as well as a middle block. Each block consist of ResNets,
802 spatial and temporal self-attention layers, together with cross-attention layers that interact with text
803 conditions, thereby promoting the model's capability to generate videos that are semantically con-
804 sistent with text.805 **C.2 CAMERA-CONTROLLED TEXT-TO-VIDEO GENERATION.**
806807 In the field of text-to-video generation, task about adding camera trajectory control s_t has already
808 been extensively explored. By incorporating structural camera signals, the video generation results
809 can be more controllable. Specifically, the camera trajectories are first processed by a special en-
810 coder $\phi(\cdot)$ and then fed into the video generator for further operations. Consequently, the objective

810 of the generator with guidance from camre signals can be formulated as follows:
 811

$$812 \quad \mathcal{L} = E_{t, \epsilon, \mathbf{z}_0^{1:N}, \mathbf{c}, s_t} \left[\left\| \epsilon - \epsilon_\theta(\mathbf{z}_t^{1:N}, t, \mathbf{c}, \phi(s_t)) \right\|^2 \right]$$

813 where N is the number of video frames, c is the text embeddings, and s_t means camera trajectories
 814 at different timesteps.
 815

816 C.3 REFERENCENET. 817

818 Prior research has pointed out that utilizing analogous structures is crucial in maintaining the iden-
 819 tity consistency of the target object. Therefore, ReferenceNet that mirrors the architectural design of
 820 SD and operates in parallel with the Denoising Unet, is widely adopted to assist in modelling com-
 821 plex image or video features. EMO and EchoMimic facilitate the self-attention mechanism in the
 822 ReferenceNet to extract reference image features into the attention layers of corresponding block
 823 in the Denoising U-Net, making the facial identity more consistent throughout the video. Hallo
 824 integrates features from the same spatial resolution layers into the Denoising Unet to enhance the
 825 visual texture information of both portraits and backgrounds in the generated videos. Meanwhile, as
 826 ReferenceNet shares identical network structure and initialization weights, the Denoising Unet can
 827 selectively learn some correlated features from it in the same feature space. AnimateAnyone lever-
 828 ages the learned reference image features from ReferenceNet to produce a well-initialized latent,
 829 thus accelerating the entire network training process of the Denoising Unet.
 830

830 D 2D-DWT IN HIGH-FREQUENCY OBJECT-AWARE MASKING 831

832 As mentioned in Sec.3.3, we use high-frequency object masking strategy to extract object-aware
 833 mask for better separating objects and background. In this section, we give more detail about
 834 this strategy. Formally, given the vision-language features from the foundational model $\mathbf{X} \in$
 835 $\mathbb{R}^{B \times C \times H \times W}$, we decompose them into four frequency sub-bands using 2D-DWT:
 836

$$837 \quad \text{DWT}(\mathbf{X}) \rightarrow \{\mathbf{LL}, \mathbf{LH}, \mathbf{HL}, \mathbf{HH}\}, \quad (1)$$

838 where **LL** denotes the low-frequency approximation coefficients, and **LH**, **HL**, **HH** represent high-
 839 frequency details in horizontal, vertical, and diagonal directions, respectively. To obtain these com-
 840 ponents, we adopt separable 1D Haar wavelet filters and perform sequential convolutions:
 841

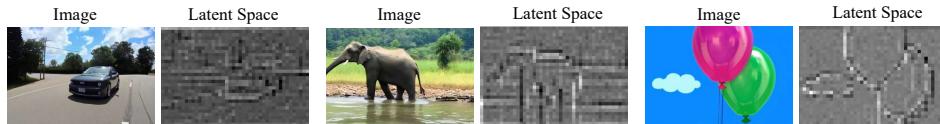
$$842 \quad h_L = \frac{1}{\sqrt{2}}[1, 1], \quad h_H = \frac{1}{\sqrt{2}}[-1, 1], \quad (2)$$

$$844 \quad \mathbf{LL} = (\mathbf{X} * h_L^\top) * h_L, \quad \mathbf{LH} = (\mathbf{X} * h_L^\top) * h_H, \quad (3)$$

$$845 \quad \mathbf{HL} = (\mathbf{X} * h_H^\top) * h_L, \quad \mathbf{HH} = (\mathbf{X} * h_H^\top) * h_H.$$

847 Unlike conventional 1D temporal wavelet transforms or global 2D Fourier transforms, our 2D-DWT
 848 formulation preserves localized spatial-frequency characteristics, which are essential for accurately
 849 identifying object contours in dynamic scenes. To emphasize fine-grained structural cues, we discard
 850 the low-frequency component **LL** and retain only the high-frequency sub-bands. These are then used
 851 to reconstruct a high-frequency-enhanced representation via inverse DWT (iDWT):
 852

$$853 \quad \mathbf{X}_{\text{high}} = \text{iDWT}(0, \mathbf{LH}, \mathbf{HL}, \mathbf{HH}). \quad (4)$$



855 Figure 7: This figure presents a visualization of applying high-frequency decomposition to visual
 856 features in a latent space. Our strategy yields an object-aware mask that effectively captures the
 857 structure and localization of the foreground object. **As shown in the right case, our high-frequency**
 858 **decomposition can accurately extract the structure of all objects, even in scenes containing multiple**
 859 **objects of different classes.**

864 As visualized in Fig. 7, this operation highlights the structure and localization of foreground objects
 865 in the latent space. We view the high-frequency representation as an object-aware mask. From the
 866 ablation study in the main content, the mask enhances motion consistency performance by impro-
 867 ving the model’s object identification capability. It achieves this by emphasizing foreground struc-
 868 tures in the latent space, which promotes a clearer separation between foreground and background
 869 elements.
 870

871 E MORE EXPERIMENT DETAILS

873 E.1 TRAINING AND INFERENCE DETAILS

875 Our model is built upon CogVideoX (Yang et al., 2024), a transformer-based text-to-video diffusion
 876 model with approximately 5B parameters, which demonstrates leading performance on both auto-
 877 mated metrics and human evaluations. Similar to ReferenceNet, the weights of our DenoisingNet
 878 are inherited from the original CogVideoX and remain frozen during training. Only the dual-branch
 879 fusion module is optimized. We employ the AdamW optimizer with a batch size of 64, an initial
 880 learning of 1×10^{-4} , epsilon set to 1×10^{-8} weight decay of 1×10^{-4} and beta values of 0.9 and
 881 0.95. Training is conducted using 16 NVIDIA H200 GPUs.
 882

883 During inference, to increase the magnitude of camera motion and enhance the challenge of camera-
 884 controllable video generation, we sample the input camera trajectory by selecting 49 frames at equal
 885 intervals from the original 98-frame sequence.
 886

887 E.2 DATASET

888 During training, our model is fine-tuned from CogVideoX on the RealEstate10K dataset, which
 889 comprises approximately 80,000 video clips extracted from around 10,000 YouTube videos, totaling
 890 about 10 million frames. For each clip, camera parameters (extrinsics and intrinsics) are provided for
 891 every frame, forming a continuous trajectory estimated by running SLAM and bundle adjustment
 892 algorithms on the original videos. This dataset supports view synthesis and 3D computer vision
 893 tasks, with scenes often focusing on static environments such as furnished indoor spaces and natural
 894 outdoor landscapes.
 895

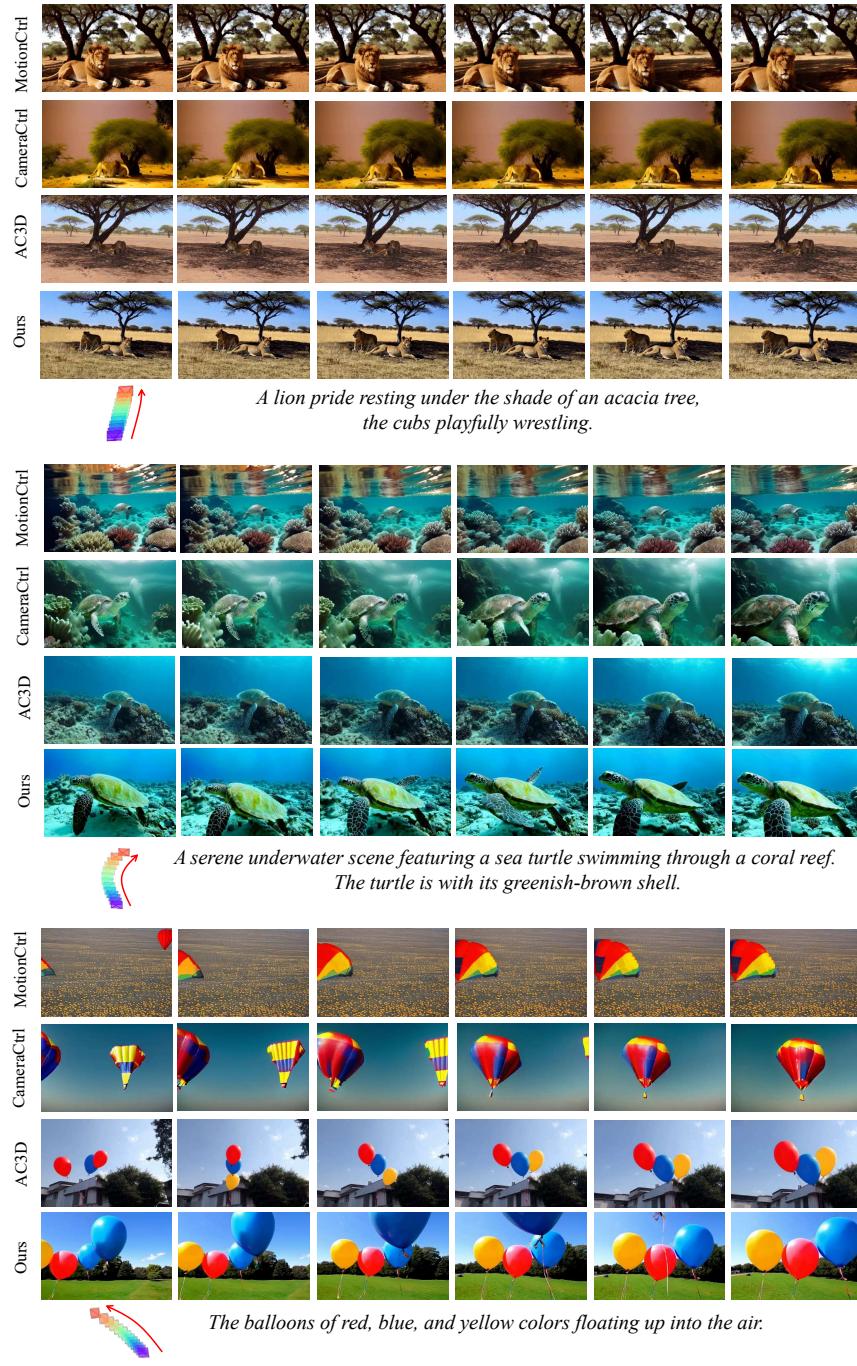
896 For evaluation, we test performance on both RealEstate10K and the VidGen dataset. VidGen is
 897 a large-scale collection of text-video pairs designed for text-to-video generation. The dataset is
 898 created through a meticulous curation process involving rough and fine-grained filtering to ensure
 899 high-quality videos with detailed, temporally consistent captions. In contrast to the static scenes in
 900 RealEstate10K, VidGen features predominantly dynamic scenes. Figure 8 shows samples of scenes
 901 from the two datasets.
 902

903 We leverage the VidGen dataset to validate the effectiveness of our approach in terms of object sta-
 904 bility and motion consistency. The diverse and complex dynamics within VidGen’s videos enable a
 905 rigorous test of our model’s ability to generalize beyond static environments, thereby demonstrating
 906 its robustness in handling complex, dynamic scenes, as visualized in the qualitative results shown in
 907 Figure 11, 12.
 908

909
 910
 911
 912
 913
 914
 915
 916
 917
 Figure 8: The overview of the dataset Realestate10K and VidGen.

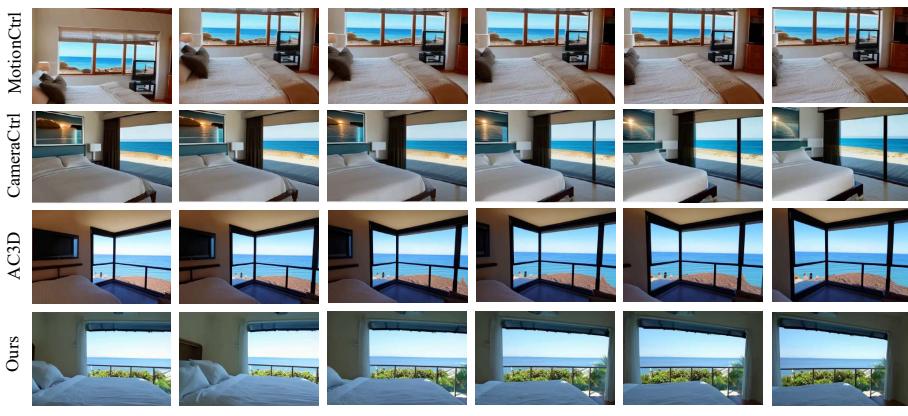
918 F MORE EXPERIMENT RESULTS
919920 F.1 QUANTITATIVE COMPARISON ON DYNAMIC SCENES
921

922 In this section, we present additional qualitative comparison results. The sequence from left to right
923 in the figure represents the progression from the start to the end of the video. As shown in Figure 9,
924 we provide three new challenging cases, where each case involves animals or objects with self-
925 driven motion. Our method demonstrates excellent performance in terms of view, appearance, and
926 motion consistency.

969 Figure 9: More qualitative comparison between our method and existing approaches.
970
971

972 F.2 QUANTITATIVE COMPARISON ON STATIC SCENES
973
974

975 In this section, we present additional qualitative comparison results. The sequence from left to right
976 in the figure represents the progression from the start to the end of the video. As shown in Figure 10,
977 we provide three new cases of static scenes. Our method demonstrates excellent performance in
978 terms of view, appearance, and motion consistency.

994 *A boat traveling on the water in front of a mountain.*1008 *A bedroom with a bed and a television overlooking the ocean.*1023 *A kitchen with wooden cabinets and stainless steel appliances.*1024 Figure 10: More qualitative comparison between our method and existing approaches.
1025

1026
1027

F.3 MORE QUANTITATIVE RESULTS ON DYNAMIC SCENES

1028
1029
1030
1031

In this section, we provide additional qualitative results under dynamic scene settings. Dynamic scenes are characterized by the presence of distinct objects with self-driven motion and a clear separation between foreground and background elements, presenting a particularly challenging scenario for video generation models.

1032

1033

1034
1035
1036

A flame is burning in the fireplace.

1037

1038
1039
1040

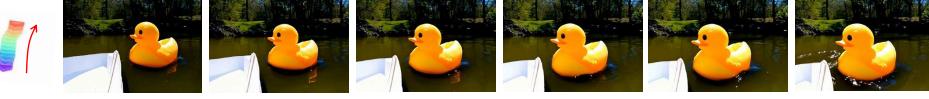
Feather floats gently down in a quiet meadow.

1041

1042
1043
1044

A grevy zebra in a safari landscape.

1045

1046
1047
1048

A yellow rubber duck floating on a river, a paper boat moving slowly next to it.

1049
1050
1051
1052

A large group of fish swimming in the ocean. The water is a deep blue color, and the fish are swimming in a coordinated manner.

1053
1054
1055
1056
1057

The horse eating the grass.

1058
1059
1060
1061

A vibrant monarch butterfly flutters gracefully above a lush, colorful coral reef.

1062
1063
1064
1065

A golden retriever playing in the snow.

1066
1067
1068
1069

A squirrel climbing up an oak tree.

1070
1071
1072
1073

White clouds moving in the blue sky, a paper airplane flying straight through them.

1074
1075
1076
1077
1078
1079

A modern city street along with tall buildings, many cars running.

Figure 11: More quantitative results of MoCa on dynamic scenes.

1080
1081

F.4 MORE QUANTITATIVE RESULTS ON STATIC SCENES

1082
1083
1084
1085

In this section, we provide additional qualitative results under static scene settings. Static scenes typically encompass both indoor and outdoor environments featuring complex textures and geometric structures. These scenarios place strong emphasis on a model's ability to comprehend spatial layout and accurately model camera motion through the sequence.

1086

1087
1088
1089
1090

A living room with a black leather sofa and a coffee table.

1091
1092
1093
1094

A bedroom with a bed and a ceiling fan.

1095
1096
1097
1098

A modern kitchen with skylights and stainless steel appliances.

1099
1100
1101
1102

A view of a kitchen and dining room from a sliding glass door.

1103
1104
1105
1106

A small café with wooden tables, vintage chairs, and a counter.

1107
1108
1109
1110

A bedroom with a striped bed.

1111
1112
1113
1114

An aerial view of a luxury home on the beach.

1115
1116
1117
1118

A red house sits on the side of a snowy road.

1119
1120
1121
1122

A view of San Francisco from the top of a hill.

1123
1124
1125
1126

A small villa with a path on the front lawn.

1127
1128
1129
1130

A small outdoor courtyard with a sun umbrella and a table.

1131

1132

1133

Figure 12: More quantitative results of MoCa on static scenes

G LIMITATIONS

The proposed MoCa, while demonstrating capability in generating high-quality camera-controlled videos, exhibits two certain limitations. Specifically, the current method primarily focuses on integrating camera control into text-to-video generation frameworks, without extending this capability to other multimodal data inputs. Future research should prioritize the idea of multimodal video generation capable of processing diverse input modalities, such as secondary editing of object regions and video style transfer applications. Secondly, although our approach successfully maintains object stability with camera movements, the current framework cannot precisely control where moving objects are positioned in the frame. For example, an object might unintentionally appear near the edges, resulting in less visual effect. Future work should address these challenges through enhanced object control generation and multimodal fusion techniques, ultimately aiming to achieve superior video generation quality with expanded creative possibilities.

1134
1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187