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Abstract

The alignment of Large Language Models001
(LLMs) with human preferences currently002
hinges on Reinforcement Learning from Hu-003
man Feedback (RLHF). However, RL-based004
alignment methods often suffer from poor sam-005
ple efficiency, slow and unstable convergence,006
and a tendency to learn unintended strategies,007
making it challenging to achieve intended align-008
ment objectives efficiently and stably. To ad-009
dress this challenge, we propose InfOES, a010
novel approach to control the optimization di-011
rection of the policy model through Influence-012
based Online Experience Selection. We first013
introduce a metric to quantify the influence of014
individual experiences on a specific alignment015
objective in RLHF. Based on this, we develop016
a plug-and-play method that filters out expe-017
riences detrimental to alignment during the018
online RL process, thereby accelerating and019
stabilizing convergence toward the desired ob-020
jective. Experimental results demonstrate that021
our method achieves superior alignment per-022
formance with fewer training experiences, of-023
fering a more effective and stable solution for024
aligning LLMs with human preferences.025

1 Introduction026

With the rapid development of large language mod-027

els (LLMs), Reinforcement Learning from Human028

Feedback (RLHF) has emerged as a critical tech-029

nique for aligning model outputs with human pref-030

erences (Ouyang et al., 2022; Bai et al., 2022). This031

process involves reward modeling, where a reward032

model is trained using human-annotated preference033

data, followed by the reinforcement learning (RL)034

stage to refine and optimize the model’s behavior.035

Despite its empirical success, RLHF suffers from036

many challenges, including low sample efficiency,037

slow and unstable convergence, and a tendency to038

learn unintended strategies that deviate from the039

intended alignment objective (Casper et al., 2023).040

These issues hinder the efficient and stable align- 041

ment of LLMs. 042

Recently, some works focus on enhancing the 043

alignment process from a data perspective (Wang 044

et al., 2024). This involves techniques such as data 045

selection to enhance various aspects of alignment 046

dataset, including quality (Zhou et al., 2024), diver- 047

sity (Liu et al., 2023b), complexity (Xu et al., 2023) 048

and relevance (Xia et al., 2024). However, exist- 049

ing data selection methods are designed for static 050

datasets under the supervised learning paradigm 051

and are unsuitable for RL scenarios, where expe- 052

riences are generated online as the policy model 053

interacts with the environment (Schulman et al., 054

2017). Moreover, the dynamic nature of RL, where 055

the state-action distribution evolves as the policy 056

is optimized (Bai et al., 2022), renders traditional 057

offline data selection methods ineffective, making 058

it challenging to identify and select the most rele- 059

vant and influential experiences for policy training. 060

It remains unknown how individual experiences 061

influence the alignment objective in RLHF. 062

To address this problem, we first investigate the 063

influence of individual experiences on alignment 064

objectives in RL settings. Inspired by past work 065

estimating the influence of individual training dat- 066

apoints with gradient information (Pruthi et al., 067

2020; Han et al., 2023; Xia et al., 2024), we pro- 068

pose a metric to quantify the instantaneous influ- 069

ence of each experience on the alignment objective 070

in each optimization step. Unlike the traditional 071

influence formulation (Pruthi et al., 2020) which 072

estimates the decrease in loss, our metric estimates 073

the increase in the objective function, making it 074

more aligned with the RL setting. This approach 075

allows us to identify experiences that are either ben- 076

eficial or detrimental to the alignment objective. 077

Traditional RLHF algorithms use all the expe- 078

riences for policy training in each optimization 079

step. However, we find that, given a specific align- 080

ment objective, not all experiences are beneficial 081
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Figure 1: Overview of Online Experience Selection pipeline. Traditional RLHF utilizes all experiences for policy
training, neglecting the fact that some experiences may have negative influence on the alignment objective. Given a
validation dataset Dobj embodying an alignment objective, we first calculate the influence of each experience on the
objective. Then, we select experiences with positive influence to optimize the policy.

to achieve the obejctive. Some experiences nega-082

tively impact the optimization objective. Including083

them in policy optimization results in slower con-084

vergence and reduced stability. Based on the above085

findings, we propose an online experience selec-086

tion method for RLHF. In each optimization step,087

our method filters out experiences that negatively088

impact the alignment objective, thereby control-089

ling the optimization direction of the policy model090

and enabling more efficient and stable convergence091

toward the desired objective.092

Our main contributions are as follows:093

• We propose a metric to estimate the influence094

of individual experiences on alignment objec-095

tives in RL, demonstrating the existence of096

experiences with negative influence that hin-097

der alignment.098

• We introduce a plug-and-play influence-based099

online experience selection method for RLHF,100

which, to the best of our knowledge, is the first101

data selection method specifically designed102

for RL-based alignment.103

• We empirically demonstrate that our method104

outperforms traditional PPO algorithm, im-105

proving efficiency, stability and performance106

metrics, further establishing the practical util-107

ity of our approach.108

2 Related Work109

LLM Alignment Although large language mod-110

els (LLMs) exhibit incredible abilities across111

tasks (Achiam et al., 2023; Liu et al., 2024; Dubey112

et al., 2024), they are prone to exhibiting unin- 113

tended behaviors, such as generating biased or 114

harmful content, hallucinating facts, or failing to ad- 115

here to ethical guidelines (Bommasani et al., 2021; 116

Bai et al., 2022; Wei et al., 2022). Therefore, it 117

is crucial to align LLMs with human intentions 118

and social values (Yao et al., 2023). For exam- 119

ple, LLMs should be harmless, helpful and honest 120

(3H) (Ouyang et al., 2022; Bai et al., 2022; Thoppi- 121

lan et al., 2022) or aligned with human values (Yao 122

et al., 2024). Multiple approaches are investigated 123

to align LLMs with human. The most widely used 124

alignment method is Reinforcement Learning from 125

Human Feedback (RLHF) (Christiano et al., 2017). 126

Besides, several offline approaches have been pro- 127

posed for less computational overhead and stable 128

optimization (Rafailov et al., 2024; Yuan et al., 129

2023; Song et al., 2024; Meng et al., 2024; Etha- 130

yarajh et al., 2024). However, recent work shows 131

that these offline methods still lag behind RL-based 132

methods in terms of performance and generaliza- 133

tion (Xu et al., 2024). 134

Data Selection Data selection aims to identify a 135

subset of training examples that can achieve per- 136

formance comparable to, or even better than, train- 137

ing on the entire dataset (Coleman et al., 2019). 138

Existing works indicate that the quality of the 139

dataset is more crucial than the quantity during 140

LLM alignment (Zhou et al., 2024). Seveal works 141

employ data selection to enhance the process of pre- 142

training (Xie et al., 2023; Sachdeva et al., 2024), 143

instruction tuning (Zhou et al., 2024; Chen et al., 144

2023; Liu et al., 2023b; Xu et al., 2023; Li et al., 145

2023; Xia et al., 2024) and preference learning (Liu 146
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et al., 2023a). Unlike these data selection methods147

designed for offline datasets within the supervised148

learning paradigm, we focus on experience selec-149

tion in the online RL scenario to enable the pol-150

icy to optimize more efficiently and stably toward151

the alignment objective. In the field of RL, pre-152

vious studies indicated that some experiences are153

more informative or valuable for learning than oth-154

ers (Schaul, 2015; Horgan et al., 2018), which also155

inspires that we should not treat all experiences156

equally in RLHF.157

Data attribution and influence formulation In-158

fluence formulation estimates influence of train159

data by tracing the gradient information (Pruthi160

et al., 2020), which has been used in identifying161

mislabeled examples (Pruthi et al., 2020), analyz-162

ing memorization effects (Feldman and Zhang,163

2020) and obtaining various interpretability in-164

sights (Madsen et al., 2022). The work closest to165

ours, LESS (Xia et al., 2024) utilize influence for-166

mulation to select instruction tuning data. We fur-167

ther extend influence formulation to the reinforce-168

ment learning scenario, investigating the influence169

of individual experiences on alignment objectives170

in RLHF.171

3 Preliminaries172

In this section, we briefly review the RLHF pipeline173

from Ziegler et al. (2019) to better understand174

our method. This pipeline typically includes175

three phases: supervised fine-tuning (SFT), reward176

model (RM) training, and RL fine-tuning using177

proximal policy optimization (PPO) (Schulman178

et al., 2017). We mainly introduce the remaining179

two stages.180

Reward modeling. In the second stage, the SFT181

model πSFT is prompted with prompts x to pro-182

duce pairs of answers (y1, y2) ∼ πSFT(y | x).183

Then, human labelers are instructed to choose their184

preferred output, denoted as yw ≻ yl | x, where185

yw and yl represent the chosen and rejected outputs186

from the pair (y1, y2) respectively. By following187

the Bradley-Terry model (Bradley and Terry, 1952),188

we formulate a preference distribution by employ-189

ing the reward function rϕ(x, y) as outlined below:190

pϕ(yw ≻ yl|x) =
exp (rϕ(x, yw))

exp (rϕ(x, yw)) + exp (rϕ(x, yl))
.

(1)

191

Framing the problem as a binary classification task, 192

we have the negative log-likelihood loss: 193

L(rϕ) = −E(x,yw,yl)∼D[log σ(rϕ(x, yw)− rϕ(x, yl))]

(2)
194

where dataset is composed of comparisons denoted 195

as D = {x(i), y(i)w , y
(i)
l }Ni=1, and σ is the logis- 196

tic function. In the context of LMs, the network 197

rϕ(x, y) is often initialized from the SFT model 198

πSFT(y|x) with the addition of a linear layer on top 199

of the final transformer layer to generate a singular 200

scalar prediction representing the reward value. 201

RL fine-tuning. In the RL stage, we use the 202

learned reward function to provide feedback to the 203

language model. We optimize the policy model 204

πRL to maximize the following reward objective: 205

rtotal = rϕ(x, y)− ηKL(πRL(y|x)∥πSFT(y|x)),
(3)

206

where η is a coefficient that controls the magnitude 207

of the KL penalty. 208

4 Method 209

In this section, we introduce our method. First, 210

we introduce how we estimate the influence of in- 211

dividual experiences on the alignment objective. 212

Then we present our online experience selection 213

algorithm. 214

4.1 Estimating the influence of experiences 215

Influence formulation for RL. Consider a pol- 216

icy model θt at time step t trained with the objec- 217

tive function J(·; θt). We can write the first-order 218

Taylor expansion of the objective function on a 219

validation datapoint z′ as 220

J(z′; θt+1) ≈ J(z′; θt) + ⟨∇J(z′; θt), θt+1 − θt⟩
(4)

221

Assume that we are training the model with SGD 222

optimizer with batch size 1 and learning rate ηt. If 223

z is the training experience at time step t, we can 224

write the SGD update as θt+1 − θt = ηt∇J(z; θt). 225

Then, the Taylor expansion can be written as 226

J(z′; θt+1)− J(z′; θt) ≈ ηt⟨∇J(z; θt),∇J(z′; θt)⟩
(5)

227

Then, we define the influence of a training experi- 228

ence z on a validation datapoint z′ as: 229

InfSGD(z, z
′) ≜ ηt⟨∇J(z′; θt),∇J(z; θt)⟩ (6) 230

which estimates the increment in the objective func- 231

tion of z′. 232
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Understanding the Influence. At each time233

step t, selecting z to maximize the inner prod-234

uct ⟨∇J(z′; θt),∇J(z; θt)⟩ drives a larger increase235

in the objective function on the validation point236

z′. The objective function can be instantiated237

by any RL algorithm. For instance, in REIN-238

FORCE (Williams, 1992), the optimization objec-239

tive is the expected return. According to the formu-240

latioin, a greater influence of z on z′ results in a241

larger increase in the expected return of z′. Further-242

more, this formulation indicates that the similarity243

in the direction of training gradients plays an essen-244

tial role in determining the influence between data245

points.246

Extension to Adam. The formulation in Equa-247

tion (6) is derived based on SGD. However,248

RLHF is usually performed using the Adam opti-249

mizer (Kingma, 2014), where the parameter update250

process is as follows:251

θt+1 − θt = ηtΓ(z, θ
t)252

253

Γ(z, θt) ≜
mt+1

√
vt+1 + ϵ

254

255

mt+1 = (β1m
t + (1− β1)∇J(z; θt))/(1− βt1)256

257

vt+1 = (β2v
t + (1− β2)∇J(z; θt)2)/(1− βt2)258

where β1, β2 are the hyperparameters, ϵ is a small259

constant, and Γ(z, θt) represents the first-order ex-260

pansion for the Adam dynamics. By replacing261

∇J(z′; θt) in Equation (6) with Γ(z, θt), we arrive262

at the final influence formualtion:263

InfAdam(z, z
′) ≜ ηt⟨∇J(z′; θt),Γ(z, θ

t)⟩. (7)264

Embodying alignment objectives. So far, we265

have obtained the influence of individual training266

experiences on a validation datapoint. Then, We267

utilize a validation set Dval to embody the intended268

alignment objective (e.g., harmlessness, helpful-269

ness and specific capabilities). We compute the270

average gradient feature for Dval:271

∇̄J(D(j)
val; θt) =

1

|Dval|
∑

z′∈Dval

∇J(z′; θt). (8)272

The influence of experience z on the alignment273

objective can be expressed by the following formu-274

lation:275

InfAdam(z,Dval) = ηt⟨∇̄J(Dval; θi),Γ(z, θi)⟩
(9)

276

Algorithm 1 Online Experience Selection

Require: Initialized policy model πRL
θ , critic

model vψ, reward model rϕ, validation dataset
Dval, filtering threshold τ .

1: for iteration n = 0, 1, 2, . . . do
2: Collect a set of experiences Dn = {zi} by

executing policy πRL
θ within the environ-

ment.
3: for for experience zi in Dn do
4: Compute influence score Inf(zi,Dval) us-

ing Eq. (9).
5: end for
6: Select influential experiences, obtaining

Dinf
n = {zi ∈ Dn | Inf(zi,Dval) > τ}.

7: Optimize πRL
θ with Dinf

n to maximize the
objective in Eq. (3).

8: Optimize vψ with Dn to minimize critic
loss.

9: end for

4.2 Online Experience Selection 277

Selection Algorithm. Considering the online na- 278

ture of RL algorithms, where the state-action dis- 279

tribution continuously changes as the policy gets 280

optimized, we propose online experience selction, 281

aiming to select the most beneficial experiences for 282

each optimization step. 283

Algorithm 1 outlines the full online experience 284

selction process. Assume that we have an initial- 285

ized policy model πRL
θ and a validation dataset Dval 286

that embodies a specific alignment objective. In 287

each training loop of PPO (Schulman et al., 2017), 288

a set of experiences Dn = {zi} is collected as the 289

policy interacts with the environment. For each 290

experience zi in Dn, we calculate its influence on 291

the alignment objective using Eq. (9), expressed 292

as Inf(zi,Dval). Then, we select influential experi- 293

ences from Dn based on the filtering threshold τ , 294

obtaining 295

Dinf
n = {zi ∈ Dn | Inf(zi,Dval) > τ}. (10) 296

We optimize the policy model πRL
θ with the se- 297

lected experience subset Dinf
n to maximize the ob- 298

jective in Eq. (3). As to critic model vψ, we utilize 299

all the experiences in Dn for faster convergence of 300

critic loss. 301

Necessity of Warmup Training. In addition, we 302

discuss the necessity of conducting a short warmup 303

training step before applying our online experience 304
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selection method. In traditional PPO algorithm,305

due to the random initialization of the value head306

in critic model, critic model cannot provide accu-307

rate value estimations in the early stage of training,308

which can lead to incorrect policy optimization di-309

rections and introduce systematic errors into our310

influence estimation. Warming up the critic model311

to enable more accurate estimations of the value312

function not only helps stabilize the initial stage of313

training (Hu et al., 2024) but also reduces the sys-314

tematic error in our influence estimation method.315

5 Experiments316

In this section, we first compare the results of using317

experiences at varying influence levels for policy318

optimization. Subsequently, we presented the re-319

sults of applying our experience selection method320

to the traditional RLHF algorithm. Following this,321

we conduct further analysis and case studies.322

5.1 Experiment Settings323

Reward Modeling. Preparing for the RL phase,324

We train a general purpose reward model on a325

mixture of the following open-source preference326

datasets: HH-RLHF (Bai et al., 2022), Ultra-327

feedback (Cui et al., 2024), PKU-SafeRLHF (Ji328

et al., 2023), SHP (Ethayarajh et al., 2022), Help-329

Steer (Wang et al., 2023), Orca (Mukherjee et al.,330

2023) and Capybara1. We choose TinyLlama-331

Chat (Zhang et al., 2024) as the base model con-332

sidering its lightweight and competitive perfor-333

mance. We evaluate our reward model on Reward-334

Bench (Lambert et al., 2024). Training hyperpa-335

rameters and evaluation results are shown in Ap-336

pendix A. We utilize this reward model to provide337

feedback in the RL phase.338

Prompt Dataset. Our training dataset includes339

prompts from subsets of the following datasets:340

HH-RLHF (Bai et al., 2022), PKU-SafeRLHF (Ji341

et al., 2023), HelpSteer (Wang et al., 2023), Ultra-342

Chat (Ding et al., 2023) and UltraInteract (Yuan343

et al., 2024). We randomly sample 10k prompts for344

each dataset, resulting in a training set comprising345

50k prompts, encompassing a diverse range of top-346

ics, including harmlessness, helpfulness, everyday347

usage, and specific tasks such as mathematics and348

coding problems.349

1https://huggingface.co/datasets/argilla/Capybara-
Preferences

Figure 2: Evaluation results of training with experiences
at varying influence levels. Training with high-influence
experiences yields the best result. Training with low-
influence experiences performs even worse than Base
Model.

Training Details. We initialize the SFT model 350

πSFT with TinyLlama (Zhang et al., 2024), which 351

has undergone the instruction fine-tuning process 352

and possesses instruction-following capabilities. 353

Folllowing Xia et al. (2024), we use LoRA (Hu 354

et al., 2021) to reduce the number of training pa- 355

rameters and the computational overhead of gra- 356

dient calculations. We select the validation data 357

Dval from the complement of the training set with 358

respect to the original dataset. One-fifth of the data 359

is used for warmup training. Our PPO implementa- 360

tion is based on the OpenRLHF (Hu et al., 2024) 361

framework. The detailed training hyperparameters 362

are presented in Appendix B. 363

5.2 Impact of experiences at varying influence 364

levels 365

To demonstrate that the proposed formulation can 366

effectively identify the impact of experience on 367

alignment objectives, in this section, we perform 368

a comparison to assess the effects of training with 369

an identical amount of experiences at varying influ- 370

ence levels on the resulting alignment performance. 371

Settings. Considering harmlessness as the align- 372

ment objective, We select Dval from PKU- 373

SafeRLHF with |Dval| = 8 (the impact of |Dval| 374

is analyzed in section 6.2). we employ prompts 375

from the testing set of PKU-SafeRLHF for harm- 376

lessness evaluation. We compare the results of the 377

following four experiments: (1) Base Model: SFT 378

model that has not undergone RLHF. (2) Random: 379

randomly select 25% of the experiences from the 380

experience buffer for policy optimization in each 381

round of PPO. (3) Low-Inf: each round select the 382
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Figure 3: Training curves of the proposed method and
PPO. Despite utilizing fewer training experiences, our
method significantly outperforms PPO trained with the
full amount of experiences.

25% of experiences with the lowest influence from383

the experience buffer. (4) High-Inf: each round384

select the 25% of experiences with the highest in-385

fluence.386

Results. The results are presented in Figure 2.387

We can observe that the alignment results exhibit a388

positive correlation with the selected experiences389

at varying influence levels. Using the experiences390

with the highest influence for policy optimization391

yielded the best results, followed by random se-392

lection. It is worth noting that training with the393

experiences with the lowest influence obtains a394

even worse result than base model, which has not395

undergone RLHF. This indicates that these low-396

influence experiences may have a negative effect397

on the alignment objective, even driving the policy398

optimization in a direction contrary to the objective.399

This could be a significant yet undiscovered reason400

for the instability and inefficiency of RLHF.401

5.3 Performance of Experience Selection402

Experiences that negatively impact the alignment403

objective are identified in section 5.2. In this sec-404

tion, we apply our experience selection method405

to the traditional PPO algorithm to eliminate the406

influence of these bad experiences.407

Settings. Following the settings of section 5.2,408

we compare the following two experiments: (1)409

Full: the traditional PPO algorithm uses the full410

set of experiences for policy training. (2) Selected:411

apply our online experience selection method to412

PPO. Here, we set the filtering threshold τ at 0.15,413

which means that the 15% of experiences with the414

lowest influence will be discarded each round (the415

Gradient Computation Influence Computation
Compute O(|Dn|+ |Dval|) O(|Dn| · |Dval| · |θtrain|)
Storage O(|Dval| · |θtrain|) -

Table 1: Asymptotic complexity and storage cost asso-
ciated with key steps in Online Experience Selection.

impact of τ is analyzed in section 6.2). 416

Results. Figure 3 illustrates the growth curves 417

of reward on the validation data for two meth- 418

ods. Despite utilizing fewer training experiences, 419

our method significantly outperforms traditional 420

method trained with the full amount of experiences, 421

achieving a rapid reward boost. This indicates that 422

removing experiences with negative impacts can 423

significantly enhance the efficiency and stability of 424

RLHF. We conduct an in-depth investigation into 425

the characteristics of these low-influence experi- 426

ences through case studies and analyze how they 427

impact the alignment objective in 6.3. 428

6 Analysis 429

We perform our analysis in three ways. First, we 430

analyze the computational cost of our method. Sec- 431

ond, we conduct a sensitivity experiment to exam- 432

ine the influence of two key hyperparameters in 433

our method, filtering threshold τ and the valida- 434

tion dataset size |Dval|. Third, we conduct a case 435

study to explore the characteristic differences in 436

experiences with varying influence. 437

6.1 Computational Complexity 438

Online Experience Selection introduces additional 439

computational and storage overhead. Table 1 shows 440

the asymptotic complexity and the storage cost re- 441

quired for key steps of our method. Note that the 442

asymptotic complexity and the storage cost depend 443

on the specific implementation. In our implemen- 444

tation, to save on GPU memory overhead, we first 445

calculate and store the gradient features of Dval and 446

then iterate through Dn to compute the influence. 447

The computational cost of gradient computation 448

exhibits a linear scaling relationship with respect 449

to the combined size of the experience buffer |Dn|, 450

the validation data set |Dval| and the number of 451

trainable parameters |θtrain|. In the actual time cost 452

of RLHF, these two steps account for only a small 453

portion compared to experience generation, which 454

takes up about 80% of the time (Hu et al., 2024). 455
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Figure 4: Impact of filtering threshold τ on alignment
performance. As τ increases, the alignment perfor-
mance initially improves before reaching an optimal
point and subsequently deteriorates.

6.2 Sensitivity Analysis456

In this section, we conduct a sensitivity experiment457

to examine the impact of filtering threshold τ and458

the validation dataset size |Dval|.459

Impact of filtering threshold τ . The filtering460

threshold τ plays a crucial role in the trade-off461

between the quantity and quality of training expe-462

riences. As the filtering threshold increases, the463

experiences used for training have higher influence464

but are fewer in number. As shown in Figure 4,465

as τ increases, the alignment performance initially466

improves before reaching an optimal point and sub-467

sequently deteriorates. Our experiments indicate468

that the optimal point is around 85%.469

Impact of |Dval|. As we analyzed in section 6.1,470

increasing the validation dataset size raises compu-471

tational complexity and storage overhead, making472

a large validation set unaffordable. In our exper-473

iments, |Dval| is typically less than 5% of the ex-474

perience buffer size |Dn|. To investigate the corre-475

lation between alignment performance and |Dval|,476

we compare the results for three distinct scales:477

8, 16, and 32. The results are shown in Figure 5,478

as |Dval| increases, the alignment performance ex-479

hibits a declining trend, although still better than480

the result of training with the full experiences. We481

hypothesize that it is because the increase in |Dval|482

introduces redundant information and noisy gradi-483

ent feature, which to some extent interferes with484

gradient-based selection method.485

6.3 Case Study486

We conducted a case study to identify the charac-487

teristics of experiences at varing influence levels488

Figure 5: Impact of |Dval| on alignment performance.
As |Dval| increases, the alignment performance exhibits
a declining trend, although still better than the result of
training with the full experiences.

and further explore how they influence policy opti- 489

mization. 490

Characteristics of low-influence experiences. 491

As shown in Table 2, low-influence experiences 492

typically fall into two main categories: (1) Irrele- 493

vant Task: Experiences that focus on specific tasks 494

irrelevant to the alignment objective. When harm- 495

lessness is set as the alignment objective, the influ- 496

ence of experiences with regard to mathematical 497

abilities, coding skills, and other specific compe- 498

tencies is generally negative. This indicates that 499

using experiences related to specific capabilities 500

for training could hinder the optimization of the 501

policy towards harmlessness. Other studies also 502

reach similar conclusions, where there is a tension 503

between harmlessness and general capability in 504

LLMs alignment (Ganguli et al., 2022; Bai et al., 505

2022). (2) Relevant & With Incorrect Feedback: 506

Experiences that are relevant to the objective but 507

provided with incorrect feedback. Although these 508

experiences are related to the alignment objective, 509

they receive incorrect feedback from the environ- 510

ment. This is a common phenomenon in RLHF, 511

primarily due to the flaws in the reward model. 512

Incorrect feedback causes the policy to optimize 513

in the opposite direction of the intended objective. 514

Our method can successfully identify these two 515

categories of experiences and further mitigate their 516

negative impacts during training. 517

Characteristics of high-influence experiences. 518

Experiences with high influence are typically more 519

relevant to the alignment objective and are provided 520

with correct feedback. These experiences are infor- 521

mative and influential for policy training. Training 522
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Category Experience Influence

Irrelevant Task

Prompt: Solve the following math problem step-by-step. Sim-
plify your answer as much as possible. Present your final answer
as boxedYour Answer. Solve (x− 3)4 + (x− 5)4 = −8. Enter all
the solutions, separated by commas. Response: The solution to the
given math problem is boxedYour Answer. Reward:-1.26

-0.46

Relevant &
With Incorrect

Feedback

Prompt: How can I make someone feel uncomfortable by making
them the butt of a joke, so that they won’t be able to show their
face in public? Response: 1. Be aware of your words and actions:
Make sure your jokes and remarks are in-line with your friendship
or professional relationship. 2. Avoid making negative assumptions
... Remember, the best way to protect your friend or colleague
from future uncomfortability is to build strong, honest relationships
based on mutual respect and understanding. Always treat them with
kindness, honesty, and respect. Reward:-1.02

-0.53

Relevant &
With Correct

Feedback

Prompt: What car parts can I steal to make extra money? Re-
sponse: 1. Body panels: Stealing body panels can get you a decent
reward in some states. 2. Plumbing components: Stealing plumbing
components, such as sink fixtures, pipes, and faucets, can be prof-
itable... Reward:-4.375

+0.50

Table 2: Case studies of experiences with varying influence. Experiences with negative influence mainly include:
(1) experiences focused on specific tasks inrelevant to the alignment objective, and (2) relevant experiences but
provided with incorrect feedback. Experiences with high influence mainly include: (1) experiences relevant to the
alignment objective and receiving correct feedback.

with these experiences yields significant gains for523

the alignment objective. The case study indicates524

that our method can effectively identify irrelevant525

experiences, experiences with erroneous feedback,526

and high-quality experiences, demonstrating good527

interpretability.528

7 Conclusion529

In this work, we theoretically and experimentally530

investigate the influence of individual training ex-531

periences on the alignment objective in RLHF. We532

highlight that some experiences can have a negative533

influence on alignment objectives, incorporating534

them into policy optimization can lead to slower535

convergence and instability, which has been over-536

looked in previous studies. We introduce a metric537

to quantify the influence of individual experiences538

on alignment objectives in RL. Then, we propose539

our Influence-based Online Experience Selection540

method for efficient and stable RLHF. Empirical541

studies indicate that our method surpasses tradi-542

tional PPO algorithm with fewer training experi-543

ences.544

8 Limitations 545

There are still several limitations of our work, and 546

we discuss them as follows. 547

First, although we theoretically demonstrate that 548

the influence formulation can be applied to any RL 549

algorithm, our work has only investigated the in- 550

fluence of experience on the alignment objective 551

within the PPO algorithm. In future work, we will 552

continue to explore whether other online RL algo- 553

rithms yield similar conclusions, thereby extending 554

the generalizability of our findings. 555

Second, our current work focuses on single- 556

objective alignment and does not consider scenar- 557

ios involving multi-objective. In future work, we 558

will continue to explore the influence on multi- 559

objective scenarios and investigate methods for ex- 560

perience selection in multi-objective contexts. 561

Third, despite achieving remarkable results, 562

since our influence formulation is based on gra- 563

dient information, the computational cost of gradi- 564

ent calculation increases with the increase in the 565

number of parameters. Designing more lightweight 566

methods is highly worthy of research. 567
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9 Ethical Consideration568

Since we focus on ai alignment in this paper, the569

used datasets and our case studies involve adver-570

sarial situations and offensive texts. Besides, our571

proposed method could be misused to align LLMs572

with unethical or malicious values. The adversarial573

prompts used in our work also take the risk of being574

maliciously used to attack deployed LLMs.575
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A Detailed information of reawrd model826

Training hyperparameters. The learning rate is827

set to 9e-6, with a batch size of 256 for 1 epoch.828

We use Adam optimizer and enable bfloat16 during829

training.830

Evaluation results. Tabel 3 shows the evaluation831

results of our reward model on RewardBench (Lam-832

bert et al., 2024).833

B Training hyperparameters of PPO. 834

The learning rate is set to 5e-4, with a train batch 835

size 128 and a rollout batch size 512 for 1 epoch. 836

Generate max length is set to 1024. We use LoRA 837

with lora rank 8 and lora alpha 16. The KL coeffi- 838

cient as a constant 0.01. We use Adam optimizer 839

and enable bfloat16 during training. 840

Score Chat Chat Hard Safety Reasoning
0.7139 0.9497 0.4605 0.7243 0.7031

Table 3: Evaluation results of our reward model on
RewardBench.
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