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Abstract

The alignment of Large Language Models
(LLMs) with human preferences currently
hinges on Reinforcement Learning from Hu-
man Feedback (RLHF). However, RL-based
alignment methods often suffer from poor sam-
ple efficiency, slow and unstable convergence,
and a tendency to learn unintended strategies,
making it challenging to achieve intended align-
ment objectives efficiently and stably. To ad-
dress this challenge, we propose InfOES, a
novel approach to control the optimization di-
rection of the policy model through Influence-
based Online Experience Selection. We first
introduce a metric to quantify the influence of
individual experiences on a specific alignment
objective in RLHF. Based on this, we develop
a plug-and-play method that filters out expe-
riences detrimental to alignment during the
online RL process, thereby accelerating and
stabilizing convergence toward the desired ob-
jective. Experimental results demonstrate that
our method achieves superior alignment per-
formance with fewer training experiences, of-
fering a more effective and stable solution for
aligning LL.Ms with human preferences.

1 Introduction

With the rapid development of large language mod-
els (LLMs), Reinforcement Learning from Human
Feedback (RLHF) has emerged as a critical tech-
nique for aligning model outputs with human pref-
erences (Ouyang et al., 2022; Bai et al., 2022). This
process involves reward modeling, where a reward
model is trained using human-annotated preference
data, followed by the reinforcement learning (RL)
stage to refine and optimize the model’s behavior.
Despite its empirical success, RLHF suffers from
many challenges, including low sample efficiency,
slow and unstable convergence, and a tendency to
learn unintended strategies that deviate from the
intended alignment objective (Casper et al., 2023).

These issues hinder the efficient and stable align-
ment of LLMs.

Recently, some works focus on enhancing the
alignment process from a data perspective (Wang
et al., 2024). This involves techniques such as data
selection to enhance various aspects of alignment
dataset, including quality (Zhou et al., 2024), diver-
sity (Liu et al., 2023b), complexity (Xu et al., 2023)
and relevance (Xia et al., 2024). However, exist-
ing data selection methods are designed for static
datasets under the supervised learning paradigm
and are unsuitable for RL scenarios, where expe-
riences are generated online as the policy model
interacts with the environment (Schulman et al.,
2017). Moreover, the dynamic nature of RL, where
the state-action distribution evolves as the policy
is optimized (Bai et al., 2022), renders traditional
offline data selection methods ineffective, making
it challenging to identify and select the most rele-
vant and influential experiences for policy training.
It remains unknown how individual experiences
influence the alignment objective in RLHF.

To address this problem, we first investigate the
influence of individual experiences on alignment
objectives in RL settings. Inspired by past work
estimating the influence of individual training dat-
apoints with gradient information (Pruthi et al.,
2020; Han et al., 2023; Xia et al., 2024), we pro-
pose a metric to quantify the instantaneous influ-
ence of each experience on the alignment objective
in each optimization step. Unlike the traditional
influence formulation (Pruthi et al., 2020) which
estimates the decrease in loss, our metric estimates
the increase in the objective function, making it
more aligned with the RL setting. This approach
allows us to identify experiences that are either ben-
eficial or detrimental to the alignment objective.

Traditional RLHF algorithms use all the expe-
riences for policy training in each optimization
step. However, we find that, given a specific align-
ment objective, not all experiences are beneficial
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Figure 1: Overview of Online Experience Selection pipeline. Traditional RLHF utilizes all experiences for policy
training, neglecting the fact that some experiences may have negative influence on the alignment objective. Given a
validation dataset D,p,; embodying an alignment objective, we first calculate the influence of each experience on the
objective. Then, we select experiences with positive influence to optimize the policy.

to achieve the obejctive. Some experiences nega-
tively impact the optimization objective. Including
them in policy optimization results in slower con-
vergence and reduced stability. Based on the above
findings, we propose an online experience selec-
tion method for RLHF. In each optimization step,
our method filters out experiences that negatively
impact the alignment objective, thereby control-
ling the optimization direction of the policy model
and enabling more efficient and stable convergence
toward the desired objective.
Our main contributions are as follows:

* We propose a metric to estimate the influence
of individual experiences on alignment objec-
tives in RL, demonstrating the existence of
experiences with negative influence that hin-
der alignment.

* We introduce a plug-and-play influence-based
online experience selection method for RLHF,
which, to the best of our knowledge, is the first
data selection method specifically designed
for RL-based alignment.

* We empirically demonstrate that our method
outperforms traditional PPO algorithm, im-
proving efficiency, stability and performance
metrics, further establishing the practical util-
ity of our approach.

2 Related Work

LLM Alignment Although large language mod-
els (LLMs) exhibit incredible abilities across
tasks (Achiam et al., 2023; Liu et al., 2024; Dubey

et al., 2024), they are prone to exhibiting unin-
tended behaviors, such as generating biased or
harmful content, hallucinating facts, or failing to ad-
here to ethical guidelines (Bommasani et al., 2021;
Bai et al., 2022; Wei et al., 2022). Therefore, it
is crucial to align LLMs with human intentions
and social values (Yao et al., 2023). For exam-
ple, LLMs should be harmless, helpful and honest
(3H) (Ouyang et al., 2022; Bai et al., 2022; Thoppi-
lan et al., 2022) or aligned with human values (Yao
et al., 2024). Multiple approaches are investigated
to align LLMs with human. The most widely used
alignment method is Reinforcement Learning from
Human Feedback (RLHF) (Christiano et al., 2017).
Besides, several offline approaches have been pro-
posed for less computational overhead and stable
optimization (Rafailov et al., 2024; Yuan et al.,
2023; Song et al., 2024; Meng et al., 2024; Etha-
yarajh et al., 2024). However, recent work shows
that these offline methods still lag behind RL-based
methods in terms of performance and generaliza-
tion (Xu et al., 2024).

Data Selection Data selection aims to identify a
subset of training examples that can achieve per-
formance comparable to, or even better than, train-
ing on the entire dataset (Coleman et al., 2019).
Existing works indicate that the quality of the
dataset is more crucial than the quantity during
LLM alignment (Zhou et al., 2024). Seveal works
employ data selection to enhance the process of pre-
training (Xie et al., 2023; Sachdeva et al., 2024),
instruction tuning (Zhou et al., 2024; Chen et al.,
2023; Liu et al., 2023b; Xu et al., 2023; Li et al.,
2023; Xia et al., 2024) and preference learning (Liu



et al., 2023a). Unlike these data selection methods
designed for offline datasets within the supervised
learning paradigm, we focus on experience selec-
tion in the online RL scenario to enable the pol-
icy to optimize more efficiently and stably toward
the alignment objective. In the field of RL, pre-
vious studies indicated that some experiences are
more informative or valuable for learning than oth-
ers (Schaul, 2015; Horgan et al., 2018), which also
inspires that we should not treat all experiences
equally in RLHF.

Data attribution and influence formulation In-
fluence formulation estimates influence of train
data by tracing the gradient information (Pruthi
et al., 2020), which has been used in identifying
mislabeled examples (Pruthi et al., 2020), analyz-
ing memorization effects (Feldman and Zhang,
2020) and obtaining various interpretability in-
sights (Madsen et al., 2022). The work closest to
ours, LESS (Xia et al., 2024) utilize influence for-
mulation to select instruction tuning data. We fur-
ther extend influence formulation to the reinforce-
ment learning scenario, investigating the influence
of individual experiences on alignment objectives
in RLHFE.

3 Preliminaries

In this section, we briefly review the RLHF pipeline
from Ziegler et al. (2019) to better understand
our method. This pipeline typically includes
three phases: supervised fine-tuning (SFT), reward
model (RM) training, and RL fine-tuning using
proximal policy optimization (PPO) (Schulman
et al., 2017). We mainly introduce the remaining
two stages.

Reward modeling. In the second stage, the SFT
model 75T is prompted with prompts z to pro-
duce pairs of answers (y1,12) ~ 70 (y | x).
Then, human labelers are instructed to choose their
preferred output, denoted as y,, > y; | =, where
Y and y; represent the chosen and rejected outputs
from the pair (y1,y2) respectively. By following
the Bradley-Terry model (Bradley and Terry, 1952),
we formulate a preference distribution by employ-
ing the reward function 74(x, y) as outlined below:

exp (1(, Yw))

Po(yw > yi|z) =
(1)

exp (7o (7, yw)) + exp (ro(z, 1))

Framing the problem as a binary classification task,
we have the negative log-likelihood loss:

E(T¢) = _E(x,yw,yl)wp[loga(r¢($7 yW) - T¢(‘T7 yl))}
2
where dataset is composed of comparisons denoted
as D = {x(i),yg),yl(i)}i]\il, and o is the logis-
tic function. In the context of LMs, the network
r4(x,y) is often initialized from the SFT model
78T (y|2) with the addition of a linear layer on top
of the final transformer layer to generate a singular
scalar prediction representing the reward value.

RL fine-tuning. In the RL stage, we use the
learned reward function to provide feedback to the
language model. We optimize the policy model
7R to maximize the following reward objective:

Ttotal = T(2,y) — nKL(7™ (y|2) |7 T (y|2)),
3)

where 7] is a coefficient that controls the magnitude
of the KL penalty.

4 Method

In this section, we introduce our method. First,
we introduce how we estimate the influence of in-
dividual experiences on the alignment objective.
Then we present our online experience selection
algorithm.

4.1 Estimating the influence of experiences

Influence formulation for RL. Consider a pol-
icy model & at time step ¢ trained with the objec-
tive function J(-; 0%). We can write the first-order
Taylor expansion of the objective function on a
validation datapoint 2’ as

J(Z507) m J(250") + (VJ(<5 6,0 — o)
“)
Assume that we are training the model with SGD
optimizer with batch size 1 and learning rate 7. If
z is the training experience at time step ¢, we can
write the SGD update as 0! — ' = 1, V.J(z; 0%).
Then, the Taylor expansion can be written as

J(207Y) = J(2'50%) m (VI (2304, VI (2 6Y))
(5)

Then, we define the influence of a training experi-
ence z on a validation datapoint 2’ as:

Infsap(z,2') = (VI (25 0,),VJ(2;0)) (6)

which estimates the increment in the objective func-
tion of 2’.



Understanding the Influence. At each time
step t, selecting z to maximize the inner prod-
uct (VJ(2';6;), VJ(z;6,)) drives a larger increase
in the objective function on the validation point
Z'.  The objective function can be instantiated
by any RL algorithm. For instance, in REIN-
FORCE (Williams, 1992), the optimization objec-
tive is the expected return. According to the formu-
latioin, a greater influence of z on 2’ results in a
larger increase in the expected return of 2’. Further-
more, this formulation indicates that the similarity
in the direction of training gradients plays an essen-
tial role in determining the influence between data
points.

Extension to Adam. The formulation in Equa-
tion (6) is derived based on SGD. However,
RLHF is usually performed using the Adam opti-
mizer (Kingma, 2014), where the parameter update
process is as follows:

o~ 0 = niT(2,0")

mttt = (Bym! + (1 — B1)VJI(2;61)/(1 = BY)

' = (Bovt + (1 — B2)VJ(2;642)/(1 — BY)

where 31, B2 are the hyperparameters, € is a small
constant, and I'(z, 0') represents the first-order ex-
pansion for the Adam dynamics. By replacing
VJ(%';6") in Equation (6) with I'(z, 8%), we arrive
at the final influence formualtion:

InfAdam (2, 2) £ (VI (2':0,), T(2,0"). (D)

Embodying alignment objectives. So far, we
have obtained the influence of individual training
experiences on a validation datapoint. Then, We
utilize a validation set Dy, to embody the intended
alignment objective (e.g., harmlessness, helpful-
ness and specific capabilities). We compute the
average gradient feature for D,,;:

1

VJ(DY);6,) =

val’

VJ(Z;0,). (8)

| V&l’ 2'€Dya

The influence of experience z on the alignment
objective can be expressed by the following formu-
lation:

Iandam(Za Dval) = nt<vJ(Dval; 91)» F(Z, 01)>
)

Algorithm 1 Online Experience Selection

Require: Initialized policy model W?L, critic
model vy, reward model r, validation dataset
Dyal, filtering threshold 7.

1: for iterationn=0,1,2,...do
2:  Collect a set of experiences D,, = {z;} by
executing policy ngL within the environ-

ment.
3:  for for experience z; in D,, do
4: Compute influence score Inf(z;, Dya1) us-
ing Eq. (9).

5:  end for
Select influential experiences, obtaining
D = {z; € D, | Inf(z;, Dyat) > 7}

7. Optimize T with D™ to maximize the
objective in Eq. (3).

8:  Optimize vy, with D,, to minimize critic
loss.

9: end for

4.2 Online Experience Selection

Selection Algorithm. Considering the online na-
ture of RL algorithms, where the state-action dis-
tribution continuously changes as the policy gets
optimized, we propose online experience selction,
aiming to select the most beneficial experiences for
each optimization step.

Algorithm 1 outlines the full online experience
selction process. Assume that we have an initial-
ized policy model WGRL and a validation dataset D,
that embodies a specific alignment objective. In
each training loop of PPO (Schulman et al., 2017),
a set of experiences D,, = {z;} is collected as the
policy interacts with the environment. For each
experience z; in D,,, we calculate its influence on
the alignment objective using Eq. (9), expressed
as Inf(z;, Dya1). Then, we select influential experi-
ences from D,, based on the filtering threshold 7,
obtaining

D = {2 € Dy | Inf (2, Dyar) > 7}, (10)

We optimize the policy model 7T£{L with the se-
lected experience subset D™ to maximize the ob-
jective in Eq. (3). As to critic model vy, we utilize
all the experiences in D,, for faster convergence of
critic loss.

Necessity of Warmup Training. In addition, we
discuss the necessity of conducting a short warmup
training step before applying our online experience



selection method. In traditional PPO algorithm,
due to the random initialization of the value head
in critic model, critic model cannot provide accu-
rate value estimations in the early stage of training,
which can lead to incorrect policy optimization di-
rections and introduce systematic errors into our
influence estimation. Warming up the critic model
to enable more accurate estimations of the value
function not only helps stabilize the initial stage of
training (Hu et al., 2024) but also reduces the sys-
tematic error in our influence estimation method.

S Experiments

In this section, we first compare the results of using
experiences at varying influence levels for policy
optimization. Subsequently, we presented the re-
sults of applying our experience selection method
to the traditional RLHF algorithm. Following this,
we conduct further analysis and case studies.

5.1 Experiment Settings

Reward Modeling. Preparing for the RL phase,
We train a general purpose reward model on a
mixture of the following open-source preference
datasets: HH-RLHF (Bai et al., 2022), Ultra-
feedback (Cui et al., 2024), PKU-SafeRLHF (Ji
et al., 2023), SHP (Ethayarajh et al., 2022), Help-
Steer (Wang et al., 2023), Orca (Mukherjee et al.,
2023) and Capybara!. We choose TinyLlama-
Chat (Zhang et al., 2024) as the base model con-
sidering its lightweight and competitive perfor-
mance. We evaluate our reward model on Reward-
Bench (Lambert et al., 2024). Training hyperpa-
rameters and evaluation results are shown in Ap-
pendix A. We utilize this reward model to provide
feedback in the RL phase.

Prompt Dataset. Our training dataset includes
prompts from subsets of the following datasets:
HH-RLHF (Bai et al., 2022), PKU-SafeRLHF (Ji
et al., 2023), HelpSteer (Wang et al., 2023), Ultra-
Chat (Ding et al., 2023) and Ultralnteract (Yuan
et al., 2024). We randomly sample 10k prompts for
each dataset, resulting in a training set comprising
50k prompts, encompassing a diverse range of top-
ics, including harmlessness, helpfulness, everyday
usage, and specific tasks such as mathematics and
coding problems.

"https://huggingface.co/datasets/argilla/Capybara-
Preferences
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Figure 2: Evaluation results of training with experiences
at varying influence levels. Training with high-influence
experiences yields the best result. Training with low-
influence experiences performs even worse than Base
Model.

Training Details. We initialize the SFT model
75FT with TinyLlama (Zhang et al., 2024), which
has undergone the instruction fine-tuning process
and possesses instruction-following capabilities.
Folllowing Xia et al. (2024), we use LoRA (Hu
et al., 2021) to reduce the number of training pa-
rameters and the computational overhead of gra-
dient calculations. We select the validation data
Dya1 from the complement of the training set with
respect to the original dataset. One-fifth of the data
is used for warmup training. Our PPO implementa-
tion is based on the OpenRLHF (Hu et al., 2024)
framework. The detailed training hyperparameters
are presented in Appendix B.

5.2 Impact of experiences at varying influence
levels

To demonstrate that the proposed formulation can
effectively identify the impact of experience on
alignment objectives, in this section, we perform
a comparison to assess the effects of training with
an identical amount of experiences at varying influ-
ence levels on the resulting alignment performance.

Settings. Considering harmlessness as the align-
ment objective, We select Dy, from PKU-
SafeRLHF with |Dy,)| = 8 (the impact of |Dy,|
is analyzed in section 6.2). we employ prompts
from the testing set of PKU-SafeRLHF for harm-
lessness evaluation. We compare the results of the
following four experiments: (1) Base Model: SFT
model that has not undergone RLHF. (2) Random:
randomly select 25% of the experiences from the
experience buffer for policy optimization in each
round of PPO. (3) Low-Inf: each round select the
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Figure 3: Training curves of the proposed method and
PPO. Despite utilizing fewer training experiences, our
method significantly outperforms PPO trained with the
full amount of experiences.

25% of experiences with the lowest influence from
the experience buffer. (4) High-Inf: each round
select the 25% of experiences with the highest in-
fluence.

Results. The results are presented in Figure 2.
We can observe that the alignment results exhibit a
positive correlation with the selected experiences
at varying influence levels. Using the experiences
with the highest influence for policy optimization
yielded the best results, followed by random se-
lection. It is worth noting that training with the
experiences with the lowest influence obtains a
even worse result than base model, which has not
undergone RLHF. This indicates that these low-
influence experiences may have a negative effect
on the alignment objective, even driving the policy
optimization in a direction contrary to the objective.
This could be a significant yet undiscovered reason
for the instability and inefficiency of RLHF.

5.3 Performance of Experience Selection

Experiences that negatively impact the alignment
objective are identified in section 5.2. In this sec-
tion, we apply our experience selection method
to the traditional PPO algorithm to eliminate the
influence of these bad experiences.

Settings. Following the settings of section 5.2,
we compare the following two experiments: (1)
Full: the traditional PPO algorithm uses the full
set of experiences for policy training. (2) Selected:
apply our online experience selection method to
PPO. Here, we set the filtering threshold 7 at 0.15,
which means that the 15% of experiences with the
lowest influence will be discarded each round (the

Gradient Computation
O(|Dn| + ‘Dval|)
O(‘Dval‘ : |9train|)

Influence Computation
O(|Dn‘ : "Dval| : ‘etrain‘)

Compute
Storage

Table 1: Asymptotic complexity and storage cost asso-
ciated with key steps in Online Experience Selection.

impact of 7 is analyzed in section 6.2).

Results. Figure 3 illustrates the growth curves
of reward on the validation data for two meth-
ods. Despite utilizing fewer training experiences,
our method significantly outperforms traditional
method trained with the full amount of experiences,
achieving a rapid reward boost. This indicates that
removing experiences with negative impacts can
significantly enhance the efficiency and stability of
RLHF. We conduct an in-depth investigation into
the characteristics of these low-influence experi-
ences through case studies and analyze how they
impact the alignment objective in 6.3.

6 Analysis

We perform our analysis in three ways. First, we
analyze the computational cost of our method. Sec-
ond, we conduct a sensitivity experiment to exam-
ine the influence of two key hyperparameters in
our method, filtering threshold 7 and the valida-
tion dataset size |Dy,1|. Third, we conduct a case
study to explore the characteristic differences in
experiences with varying influence.

6.1 Computational Complexity

Online Experience Selection introduces additional
computational and storage overhead. Table 1 shows
the asymptotic complexity and the storage cost re-
quired for key steps of our method. Note that the
asymptotic complexity and the storage cost depend
on the specific implementation. In our implemen-
tation, to save on GPU memory overhead, we first
calculate and store the gradient features of D,,] and
then iterate through D,, to compute the influence.
The computational cost of gradient computation
exhibits a linear scaling relationship with respect
to the combined size of the experience buffer |D,,|,
the validation data set |Dy,| and the number of
trainable parameters |0y 4in|. In the actual time cost
of RLHEF, these two steps account for only a small
portion compared to experience generation, which
takes up about 80% of the time (Hu et al., 2024).
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Figure 4: Impact of filtering threshold 7 on alignment
performance. As T increases, the alignment perfor-
mance initially improves before reaching an optimal
point and subsequently deteriorates.

6.2 Sensitivity Analysis

In this section, we conduct a sensitivity experiment
to examine the impact of filtering threshold 7 and
the validation dataset size |Dya|-

Impact of filtering threshold 7. The filtering
threshold 7 plays a crucial role in the trade-off
between the quantity and quality of training expe-
riences. As the filtering threshold increases, the
experiences used for training have higher influence
but are fewer in number. As shown in Figure 4,
as 7 increases, the alignment performance initially
improves before reaching an optimal point and sub-
sequently deteriorates. Our experiments indicate
that the optimal point is around 85%.

Impact of |D,,)|. As we analyzed in section 6.1,
increasing the validation dataset size raises compu-
tational complexity and storage overhead, making
a large validation set unaffordable. In our exper-
iments, | Dy | is typically less than 5% of the ex-
perience buffer size |D,,|. To investigate the corre-
lation between alignment performance and |Dy|,
we compare the results for three distinct scales:
8, 16, and 32. The results are shown in Figure 5,
as | Dyal| increases, the alignment performance ex-
hibits a declining trend, although still better than
the result of training with the full experiences. We
hypothesize that it is because the increase in |Dyy|
introduces redundant information and noisy gradi-
ent feature, which to some extent interferes with
gradient-based selection method.

6.3 Case Study

We conducted a case study to identify the charac-
teristics of experiences at varing influence levels

Reward (1)
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Figure 5: Impact of |Dy,| on alignment performance.
AS | Dya1| increases, the alignment performance exhibits
a declining trend, although still better than the result of
training with the full experiences.

and further explore how they influence policy opti-
mization.

Characteristics of low-influence experiences.
As shown in Table 2, low-influence experiences
typically fall into two main categories: (1) Irrele-
vant Task: Experiences that focus on specific tasks
irrelevant to the alignment objective. When harm-
lessness is set as the alignment objective, the influ-
ence of experiences with regard to mathematical
abilities, coding skills, and other specific compe-
tencies is generally negative. This indicates that
using experiences related to specific capabilities
for training could hinder the optimization of the
policy towards harmlessness. Other studies also
reach similar conclusions, where there is a tension
between harmlessness and general capability in
LLMs alignment (Ganguli et al., 2022; Bai et al.,
2022). (2) Relevant & With Incorrect Feedback:
Experiences that are relevant to the objective but
provided with incorrect feedback. Although these
experiences are related to the alignment objective,
they receive incorrect feedback from the environ-
ment. This is a common phenomenon in RLHF,
primarily due to the flaws in the reward model.
Incorrect feedback causes the policy to optimize
in the opposite direction of the intended objective.
Our method can successfully identify these two
categories of experiences and further mitigate their
negative impacts during training.

Characteristics of high-influence experiences.
Experiences with high influence are typically more
relevant to the alignment objective and are provided
with correct feedback. These experiences are infor-
mative and influential for policy training. Training



Category

Irrelevant Task

Prompt: Solve the following math problem step-by-step. Sim-
plify your answer as much as possible. Present your final answer
as boxedYour Answer. Solve (z — 3)* + (z —
the solutions, separated by commas. Response: The solution to the
given math problem is boxed Your Answer. Reward:-1.26

Relevant &
With Incorrect
Feedback

Prompt: How can I make someone feel uncomfortable by making
them the butt of a joke, so that they won’t be able to show their
face in public? Response: 1. Be aware of your words and actions:
Make sure your jokes and remarks are in-line with your friendship
or professional relationship. 2. Avoid making negative assumptions

. Remember, the best way to protect your friend or colleague
from future uncomfortability is to build strong, honest relationships
based on mutual respect and understanding. Always treat them with
kindness, honesty, and respect. Reward:-1.02

Relevant &
With Correct
Feedback

Prompt: What car parts can I steal to make extra money? Re-
sponse: 1. Body panels: Stealing body panels can get you a decent

Experience Influence
5)* = —8. Enter all -0.46
-0.53
+0.50

reward in some states. 2. Plumbing components: Stealing plumbing
components, such as sink fixtures, pipes, and faucets, can be prof-

itable... Reward:-4.375

Table 2: Case studies of experiences with varying influence. Experiences with negative influence mainly include:
(1) experiences focused on specific tasks inrelevant to the alignment objective, and (2) relevant experiences but
provided with incorrect feedback. Experiences with high influence mainly include: (1) experiences relevant to the

alignment objective and receiving correct feedback.

with these experiences yields significant gains for
the alignment objective. The case study indicates
that our method can effectively identify irrelevant
experiences, experiences with erroneous feedback,
and high-quality experiences, demonstrating good
interpretability.

7 Conclusion

In this work, we theoretically and experimentally
investigate the influence of individual training ex-
periences on the alignment objective in RLHF. We
highlight that some experiences can have a negative
influence on alignment objectives, incorporating
them into policy optimization can lead to slower
convergence and instability, which has been over-
looked in previous studies. We introduce a metric
to quantify the influence of individual experiences
on alignment objectives in RL. Then, we propose
our Influence-based Online Experience Selection
method for efficient and stable RLHF. Empirical
studies indicate that our method surpasses tradi-
tional PPO algorithm with fewer training experi-
ences.

8 Limitations

There are still several limitations of our work, and
we discuss them as follows.

First, although we theoretically demonstrate that
the influence formulation can be applied to any RL
algorithm, our work has only investigated the in-
fluence of experience on the alignment objective
within the PPO algorithm. In future work, we will
continue to explore whether other online RL algo-
rithms yield similar conclusions, thereby extending
the generalizability of our findings.

Second, our current work focuses on single-
objective alignment and does not consider scenar-
ios involving multi-objective. In future work, we
will continue to explore the influence on multi-
objective scenarios and investigate methods for ex-
perience selection in multi-objective contexts.

Third, despite achieving remarkable results,
since our influence formulation is based on gra-
dient information, the computational cost of gradi-
ent calculation increases with the increase in the
number of parameters. Designing more lightweight
methods is highly worthy of research.



9 Ethical Consideration

Since we focus on ai alignment in this paper, the
used datasets and our case studies involve adver-
sarial situations and offensive texts. Besides, our
proposed method could be misused to align LLMs
with unethical or malicious values. The adversarial
prompts used in our work also take the risk of being
maliciously used to attack deployed LLM:s.
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A Detailed information of reawrd model

Training hyperparameters. The learning rate is
set to 9e-6, with a batch size of 256 for 1 epoch.
We use Adam optimizer and enable bfloat16 during
training.

Evaluation results. Tabel 3 shows the evaluation
results of our reward model on RewardBench (Lam-
bert et al., 2024).
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B Training hyperparameters of PPO.

The learning rate is set to Se-4, with a train batch
size 128 and a rollout batch size 512 for 1 epoch.
Generate max length is set to 1024. We use LoRA
with lora rank 8 and lora alpha 16. The KL coeffi-
cient as a constant 0.01. We use Adam optimizer
and enable bfloat16 during training.

Score  Chat Chat Hard Safety Reasoning
0.7139 0.9497 0.4605 0.7243  0.7031

Table 3: Evaluation results of our reward model on
RewardBench.
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