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ABSTRACT

Advancing machine intelligence requires developing the ability to perceive across
multiple modalities, much as humans sense the world. We introduce OmniVinci, an
initiative to build a strong, open-source, omni-modal LLM. We carefully study the
design choices across model architecture and data curation. For model architecture,
we present three key innovations: (i) OmniAlignNet for strengthening alignment
between vision and audio embeddings in a shared omni-modal latent space; (ii)
Temporal Embedding Grouping for capturing relative temporal alignment between
vision and audio signals; and (iii) Constrained Rotary Time Embedding for encod-
ing absolute temporal information in omni-modal embeddings. We introduce a
curation and synthesis pipeline that generates 24M single-modal and omni-modal
conversations. We find that modalities reinforce one another in both perception
and reasoning. Our model, OmniVinci, improves over Qwen2.5-Omni with +19.05
on DailyOmni (cross-modal understanding), +1.7 on MMAR (audio), and +3.9 on
Video-MME (vision), while using just 0.2T training tokens - a 6 x reduction com-
pared to Qwen2.5-Omni’s 1.2T. We finally demonstrate omni-modal advantages in
downstream applications spanning robotics, medical Al, and smart factory.
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Figure 1: OmniVinci demonstrates strong performance across widely used omni-modal (+19.05 on
Dailyomni), audio (+1.7 on MMAR), and vision (+3.9 on Video-MME) understanding benchmarks.

1 INTRODUCTION

The progress of multimodal LLMs has demonstrated appealing applications when LLMs learn to see

with vision (Lin et all,[2024b; [Liu et all, 2023} [Alayrac et al.} [2022)) or listen with audio (Goel et al.
2025} [Chu et al., 2023} [Tang et al., [2023a). Recent work has enabled joint video-audio alignment,

further unifying their strengths towards general intelligence (OpenAll [2024; [Wu et al.| 2024b}, [Tang|
et al |, [2023b} [Ye et all, 2024} [Abouelenin et al}, 2025}, [Xu et al., [2025). However, training such an
omni-modal system can be expensive and challenging across many dimensions, as it relies on proper
choices of network architecture and data recipe.

This work presents a systematic exploration of developing omni-modal LL.Ms aiming to enable
simultaneous understanding of vision, audio (encompassing both natural sounds and human speech),
and language. We ablate and validate the design choices overseeing model architecture design,
data curation, and training strategy. For model architecture, we introduce a new framework to
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Figure 2: We introduce a foundation model for omni-modal understanding. Our model blends

information from vision, audio, and text modalities into a unified omni-modal token sequence via the
proposed omni-modal alignment mechanism.

harmonize vision and audio embeddings in a unified omni-modal embedding space, featuring three
new techniques: (i) OmniAlignNet that learns to construct a modality-shared space to align vision
and audio embeddings from the same video; (ii) Temporal Embedding Grouping that divides the time
dimension into multiple chunks and reorganizes the vision and audio embeddings according to their
timestamps to align with the corresponding chunks; (iii) Constrained Rotary Time Embedding to
directly insert periodic temporal information into vision-audio embeddings. We observe noticeable
performance improvements with these techniques, as shown later in our experiments. On the data
front, we curate 24 million high-quality multimodal conversation samples that span a diverse set
of tasks across audio, video, and image domains, including both modal-specific conversations and
omni-modal conversations. We tackle the scarcity of omni-modal data by exploiting existing video-
with-audio QA data, which implicitly encodes omni-modal signals (implicit learning). To further
facilitate omni-modal learning, we generate synthetic conversations with explicit omni-modal labels
(explicit learning).

Our findings enable a frontier omni-modal model, named OmniVinci. See a quick performance
comparison in Figure [T and more in our experimental section. Compared to prior art such as
Qwen2.5-Omni and Gemini-2.5-Pro, OmniVinci further pushes the boundary of various multimodal
understanding tasks, with gains of +2.83% on WorldSense and +19.05% on Dailyomni for joint
vision-audio understanding, +1.7% on MMAR for audio understanding, and +3.9% on Video-MME
for vision understanding. OmniVinci also pushes on efficiency fronts using only 0.2T training tokens,
around 6x fewer than Qwen2.5-Omni’s 1.2T tokens. More encouragingly, we observe the synergy
between audio and video, not only for perception, but also for reasoning. Finally, we demonstrate that
OmniVinci has enabled or improved a wide range of important downstream applications, including
robotics, video broadcasting, medical, and smart factory use cases.

2 MODEL ARCHITECTURE

The key objective of model architecture design is to support composable cross-modal understanding
through integrating heterogeneous input from images, videos, audio, and text, into a shared omni-
modal latent space. As shown in Figure[2] we adopt an auto-regressive regime to encode visual and
audio signals, and then align them as input of LLM backbone.

Omni-Modal Input Embedding. To simplify the network design, we (i) decompose video into
a sequence of temporally correlated images and audio, and (ii) employ a unified audio encoder to
handle both acoustic and speech information in context and prompt. We present the encoder sharing
paths in Figure 2} and describe the details of encoding streams in Appendix [D.1]

2.1 OMNI-MODAL ALIGNMENT MECHANISM

We next integrate embeddings from all modalities into a unified latent space as input for LLM.

OmniAlignNet module. For a given input video, the audio and vision streams have an inherent
semantic connection, providing complementary information for each other. Such a correlation
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provides a natural way to more effectively learn and align vision and audio embeddings in the unified
latent space. To this end, we propose OmniAlignNet, which strengthens the learning of vision
and audio embeddings via exploiting their complementary information. As illustrated in Figure 3]
the OmniAlignNet module first maps visual and audio embedding sequences (outputs of modality-
specific projectors) into a shared latent embedding space and then aligns them via contrastive learning,
inspired by ImageBind (Girdhar et al., [2023).

Given an input video with an accompanying audio stream, we denote the sequence of visual embed-
dings produced by the visual projection layer as E,, € R™>*¢ and the sequence of audio embeddings
produced by the audio projection layer as E, € RY«*C_ with N, and N, represent the number
of visual and audio embeddings, respectively, while C' denotes the latent dimensionality. To align
representations, we initialize a vision query embedding Q,, € R'*® and an audio query embedding
Q, € R'*C. These queries are used to project E, and E, into fixed-size embeddings of shape
(1 x C). Suppose each batch has K videos, the projected features are then processed through three
layers of self-attention modules and L2 normalized, yielding the vision-omni embedding V € R¥*¢
and the audio-omni embedding A € R¥ X respectively, in a modality-shared latent space.

With embeddings V and A in the shared la- e VSR
tent space, we now apply CLIP-style contrastive  vision tokens Emb

Q )
loss (Radford et al.| 2021 on the output em- KvV Il terom T ] =[] teorom

beddings to minimize intra-sample cross-modal ,
distance, while maximizing inter-sample cross-  audio Tokens j [
modal distance. Let {V;, A;} 5| be the set of l .
L2-normalized visual and audio embeddings for o - -
a batch of K video clips. The similarity be- Emb. AudioOmT
tween the i-th visual embedding and the j-th = """ . Foedang -
audio embedding is computed asgtheir dot p]r od- Figure 3: Illustration of the proposed OmniAlign-
uct, s;; = VZ-TA ;- The contrastive loss is then Net module.

formulated as a symmetric cross-entropy loss
over the similarity score. The loss for aligning vision to audio (Lv_m) and audio to vision (L,_,,) is:

Ly — Z %,L Zl % )

i=1 —1 exp(sij) =1 eXp(sﬂ)

L2-Norm

—» CLIP loss

The final objective for the OmniAlignNet module, Lq. iign, i the average of these two directional
losses, encouraging a bidirectional alignment between the modalities: Lq._lign = %(Lvﬁa + Layo).

While OmniAlignNet effectively aligns the high-level semantics of visual and audio embeddings, it
falls short in modeling their temporal relationships. To overcome this limitation, we introduce two
techniques: Temporal Embedding Grouping and Constrained Rotary Time Embedding, which are
described in the following sections.

Temporal Embedding Grouping (TEG). We first impose temporal order to visual-audio embeddings
by organizing them into groups based on their timestamps. The relative temporal order information is
then encoded in the position of visual and audio embeddings in the input sequence.

Let the duration of each temporal group be T, which controls the granularity of the grouping. For
simplicity, consider a case where we only sample four visual frames at timestamps {t}, 2,3 ¢

’U’ vy Y Yu

and four audio samples at timestamps {t},¢2,¢3 2}, These timestamps satisfy t} < t2 < Tg <

a’”a’va’Ca

<t < 2TG and t1 < t2 < Tg < t3 <t < 2Tg. The corresponding set of visual embeddings

isE, = {ev ,ev ,ev ,ev , where each embedding e,, € RZ"W)*C Here, H and W represent the
height and width of the v1sua1 feature map, and C' is the latent dimension. Similarly, the set of audio

1 2 3 4
embeddings is F, = {efﬁ , eff , e(tl“ , ef;‘ }, with each e, € R*C . Based on their timestamps relative
to the duration T, the embeddings for each modality are partitioned into two temporal groups:

1 tt o 2 2 t3 ¢l 1 tl 42 2 AR
v {evu ) ey’ }7 Gv = {evv ’ er}a Ga = {eaua eaa}a Ga = {eaa ) €a } (2)
Then we combine the visual and audio groups based on temporal order, and obtain the omni-modal

embedding sequence:

1 A~ 2 2 A S A S Sl S o
Egroup:[G G, GU,G]:[ev,ev,ea,ea,ev,ev,ea,ea . 3)
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This temporal organization of the embedding sequence allows the subsequent LLM backbone to better
capture the temporal relationships among embeddings from different modalities. Our experiments
show that this time-based grouping improves the model’s ability to comprehend information from
multiple modalities.

Constrained Rotary Time Embedding (CRTE). TEG incorporates relative temporal order into em-
beddings but still lacks the ability to encode absolute timestamp information. Prior work, RoTE (Goel
et al.}|2024), explored embedding rotations to inject absolute timestamps, but this method remains
sensitive to minor timestamp fluctuations and struggles to capture larger temporal shifts effectively.
To overcome these limitations, we introduce a constrained timestamp embedding strategy that de-
fines a maximum time horizon, T},,x, enabling a more balanced temporal sensitivity. Our approach
comprises three stages: base frequency construction, frequency modulation, and element-wise rotary
embedding, as described next.

Base Frequency Generation. We first define base frequencies as:
B 21

- Tmaxei/c ’
where w; is the base frequency for dimension 4, C' is the embedding dimension, § > 1 controls
frequency scaling, and T},,x defines the coarsest temporal resolution. A smaller 7}, increases

frequency and sensitivity to fine-grained differences, while a larger one captures broader trends but
may blur close timestamps, and is thus critical for balancing local and global temporal encoding.

for ¢=0,1,...,C -1, “4)

Wi

Frequency Modulation. To adapt frequencies to actual timestamps, we scale them as: €; ; = w; - {5,
where €Q; ; is the modulated frequency at dimension ¢ and time ¢; for sample j. This step ensures that
temporal differences are reflected in the rotation applied to embeddings.

Rotary Embedding Application. Similar to RoPE (Su et al.| 2024)), given an embedding vector
x € R of sample j (a sampled frame for video or a sampling point for audio), we apply rotation as:

CRTE(x, 2. ;) = x ® cos(£), ;) + RotateHalf(x) ® sin(€2. ;), Q)
where ® denotes element-wise multiplication, and RotateHalf rotates each pair of dimensions
by 90°: RotateHalf(x) = [~x2, 21, —24,23,...,—2c,Tc—1). The RotateHalf function

effectively groups the entire C-dimensional embedding vector into C'/2 independent 2D planes. Each
of these 2D planes gets its own rotation, and the angle of rotation can be different for each pair. We
apply rotations at varying frequencies across different pairs of dimensions for two primary reasons:
it enables a rich, multi-scale representation of temporal information, and it preserves the semantic
integrity of the original embedding vectors.

Final Embedding Sequence. After CRTE, the temporally-aligned omni-modal embedding sequence
is passed into the LLM backbone, allowing it to integrate both fine- and coarse-grained timing cues
during downstream processing.

Input-Output Configuration. The final architecture perceives flexible input modality combinations
with a subset or union of all modalities, e.g., video with or without audio, with speech or text
prompts. On the output end, the text-output based system can be connected with off-the-shelf Text-to-
Speech (TTS) modules — we analyze their tradeoffs in Section Without bells and whistles, users
can generate spoken descriptions for videos, answer spoken questions, or verbally instruct robots.

3 TRAINING STRATEGY

To gradually enable comprehensive omni-modal understanding of a pretrained LLM, we use a two-
stage approach: we first conduct modality-specific training to develop individual capabilities for each
modality, followed by omni-modal joint training to integrate these capabilities.

3.1 MODALITY-SPECIFIC TRAINING

We use a two-stage approach for training: Starting from a pretrained LLM, we first conduct modality-
specific training to develop individual capabilities for each modality, followed by omni-modal joint
training to integrate these capabilities. Due to space limitations, we present comprehensive details of
this phase in Appendix [D.3]and proceed directly to describe the subsequent omni-modal joint training
phase in the next section.
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Figure 4: Omni-modal captions generation pipeline. Video is segmented into 20-second clips. Visual
and audio captions are generated independently for each segment, but lack cross-modal context and
contain wrong understanding (modality-specific hallucination). A separate LLM performs cross-
modal correction and summarization to create accurate omni-modal captions.

3.2 OMNI-MODAL JOINT TRAINING

We employ two types of data in the omni-modal joint training phase: (i) modality-specific data,
randomly sampled from the datasets used in the earlier vision-only and audio-only training, and (ii)
omni-modal data, which contains both vision and audio inputs. For the omni-modal data, which
contains both visual and audio inputs, can be further divided into two categories, i.e., implicit omni-
modal learning data and explicit omni-modal learning data, depending on how the omni-modal
understanding ability is supervised in training.

(i) Implicit Learning Data. Videos are naturally omni-modal when visual and audio streams are
present simultaneously but remains under explored. We first take advantage of the existing video QA
datasets to supervise the visual-audio joint understanding ability implicitly, which is underutilized in
most previous video LLLMs. This practice, we refer as implicit omni-modal learning, leads to notably
improved performance in video understanding that remains under utilized by prior work.

(ii) Explicit Learning Data. To obtain more direct and accurate supervision for joint visual-audio
understanding ability, we further propose an omni-modal data engine to synthesize omni-modal
labeling for videos with audio tracks, enabling us to conduct explicit omni-modal learning.

Omni-Modal Data Engine. The whole data engine is visualized in Figure |4} We start with synthetic
audio and video captions using pretrained vision captioning model (Zhu et al., 2025) and audio
captioning model (Xu et al.}[2025). We immediately observed that captions generated from either
modality alone can lead to wrong understanding due to the inherent modality-specific limitations.
As illustrated in Figure ] the video is centered around deep-sea exploration. However, the vision-
captioning model incorrectly interpreted it as being only about human technology, relying solely on
visual cues without access to the speech in video. Conversely, the audio-captioning model wrongly
labeled it as related to “Earth’s interior”, since it could only draw meaning from the audio track.
We refer to this limitation as “modality-specific hallucination”. To address this issue, we employ a
LLM (Yang et al.|[2025a)) to correct and summarize the visual and audio captions based on information
from both sides, producing a comprehensive joint caption for each 2-minute segment. From our
observation, this method can help achieve correct omni-modal understanding, as shown in the example
in Figure[d Furthermore, we enhance the diversity and quality of the omni-modal data by synthesizing
QA pairs with reasoning trace from the omni-modal captions using a reasoning LLM (Guo et al.|
2025a)). The resulting dataset greatly assists with learning, as we show in experiments.

Key Insight 1. Captioning based solely on audio or visual is often inaccurate because of the
inherent limitations of each modality. Hence, a joint captioning approach is preferred to integrate
both modalities and produce comprehensive summaries across clips.

Joint Training Data Distribution. As shown in Figure [5] the overall training dataset contains
24 million modality-specific conversations from 150+ sub-datasets across image, video, and audio
understanding tasks. Omni-modal data contributes 15%, image data constitutes the largest share at
36%, speech data represents 17% of the total, and video data forms the remaining 11%. For more
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Figure 5: Pie chart of overall distribution of training data across modalities, showing proportions for
image (36%), non-speech sound (21%), speech (17%), omni (15%), and video (11%).

details, please refer to Appendix [D.5] To enable audio-prompted ability, we convert text prompts
in multimodal tasks into speech using Magpie TTS model (Hussain et al., 2025} Neekhara et al.,
2024; Casanova et al.,|2025), generating omni-modal speech-visual input pairs. The questions are
generated from a comprehensive collection of multimodal datasets, including general multimodal
understanding, image captioning, spatial relationship reasoning and referring, chart and table inter-
pretation, scientific figure analysis, document understanding, and multi-hop reasoning. This diverse
range enables comprehensive evaluation across core vision-language capabilities such as factual
grounding, reasoning over structured data, and complex multi-step inference in both scientific and
general domains. See detailed distribution of speech-prompted omni QA datasets in Figure [14]

4 EXPERIMENTS

We start with ablations to validate our design options in Section [4.1] before large-scale training
towards frontier performances in Section

4.1 DESIGN CHOICE ABLATION

4.1.1 VISUAL-AUDIO ALIGNMENT SCHEME

Baseline Setup. To investigate the be-
havior of omni-modal models under
various experimental conditions we
gradually introduce new techniques
onto a baseline model trained with

Table 1: Ablation study for omni-modal alignment. The pro-
posed Temporal Embedding Grouping (TEG), Constrained
Rotary Time Embedding (CRTE), and OmniAlignNet consis-
tently achieve better average performance across modalities.

Omni
Meth

10B tokens randomly sampled sub- ethod Worldsense 1 Dailyomni T Omnibench 1 Average 1
set of the full data mixture (the sam-  “p.. Concatenation - Baseline 42.21 54.55 36.46 4551
pling process 1s Welghted according "o (ours) 44514050  60.99 645 37.651110 AT.T2i0m
to the original dataset sizes). We eval- - -

++ Learned Time Embedding ~ 44.58.2.37  60.404585 36.914045 47.3041.79
uate model performance on World- ., gore 44421051 60.74 610 38.24117s  4T.80 220
sense (Benchekroun et al.||2023)), Dai-  ++ CRTE (ours) 45464505  65.66,111.11 39.64 315  50.25 474
lyomni (Zhou et all 2025, and Om-  _+s omniAlignNet (ours) 4621400 65.83 1005 45.74. 005 5259708

nibench (Li et al., [2024c]).

Temporal Embedding Grouping. We observe immediate performance improvements with TEG
applied to the baseline and present the results in Table|l} thanks to the enhanced temporal alignment
of modality tokens.

Constrained Rotary Time Embedding. We next compare CRTE with other design choices: (i)
“Learned Time Embedding” that defines a trainable embedding matrix, where each discrete timestamp
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in the range [0, T},q.] is mapped to a unique vector via MLP. (ii) “RoTE” (Goel et al.l [2024)), a
recent embedding method introduced in Section 2.} As summarized in Table [I] the “Learned
Time Embedding” method slightly degrades performance (47.30), indicating it is unsuitable for
absolute timestamps. RoTE offers only marginal gains, while the proposed Constrained Rotary Time
Embedding achieves the best score (50.25), clearly improving over the baseline.

OmniAlignNet. Finally, we impose the proposed OmniAlignNet on top of TEG and CRTE. As
shown in the bottom section of Table[I] OmniAlignNet delivers significant performance boosts across
all benchmarks. The average score improves from 50.25 to 52.59 (+2.34), and the model achieves
considerable gains on Omnibench (+6.1), Worldsense (+0.75), and Dailyomni (+1.17).

4.1.2 IMPLICIT AND EXPLICIT LEARNING

We next validate implicit and explicit  Taple 2: Ablation study on joint visual-audio learning meth-
omni-modal learning as detailed in  ods. “Visual+Audio” uses audio in video for implicit learning

Secti.on B2 For implicit learning, we (IL), while “data engine” generates omni-modal data for ex-
continue to finetune the above model  plicit learning (EL).

on 270K video conversations with au- Method VideoMME 1 VideoMME w/o sub.
dio stream. Results in Table E] show w/ subtitles w/o subtitles Short Medium Long

. . Visual Alone 66.37 61.67 7422 5967 5111
clear gains on VideoMME (Fu et al.l  viga 4+ Audio L) 6696505 63761200 713100 64.16.410 55.82.471

20243), even when subtitles are pro- Visual + Audio + Data Engine (EL) 68.63.55c 67.37,570  76.78.256 67.56.759 57.78.6¢7
vided, highlighting the value of learn-

ing directly from audio. Further adding explicit learning data from our omni-modal data engine yields
stronger improvements across benchmarks, showing the effectiveness of our data pipeline.

4.2 SCALING AND EVALUATION

With validated design choices, we now scale up the experiments using the full post-training omni-
modal dataset introduced in Section [3.2] Training details are in Appendix

4.2.1 OMNI-MODAL BENCHMARK

We first evaluate on omni-modal understand- Taple 3: Omni benchmarks, including video—audio

ing bgnphrparks and show results in Table datasets Worldsense and Dailyomni, as well as the
OmniVinci sets a new state-of-the-art average image—audio dataset Omnibench.

score of 53.73, and marks a notable improve-

ment of +4.07 compared to the next best model, ¥ Worldsense ,Daﬂygn“;?l Omnibench  Ave.
Qwen2.5-Omni. On the Worldsense benchmark, — (ideo-Audio 1) (Video-Audio T)_ (mage-Audio) (1)
our model achieves the highest score of 48.23, S;“;Z‘I; 1260 o2 (Z'O,FlaSh He 4221 (1'5 rre)
surpassing Qwen2.5-Omni by +2.83. The ad-  inemvi2 39.10 - 47.55 (v2.5)
vantage is even more significant on the Daily- 8322;2’_;‘““1 ﬁ 4745 :2;’2 1066
omni dataset, where our model attains a score of p— 523 pon o e

66.50, leading by +19.05 over Qwen2.5-Omni
and by +5.18 over Gemini-2.0-Flash-Lite. In the
Omnibench benchmark, our model shows a solid score of 46.47, higher than Gemini 1.5 Pro.

4.2.2 AUDIO BENCHMARK

Audio QA. We assess our model on audio understanding benchmarks, MMAR (Ma et al., [2025) and
MMAU (Sakshi et al., [2024), with results reported in Tables@and Tup1e 4: Audio QA bench-
[I6] On MMAR, OmniVinci surpasses Qwen2.5-Omni by +1.7, and

Lo o . . mark.

on MMAU by +Q.6, highlighting significant improvement in general Model VIMAR ()
audio understanding. ITo 1920

ose . . Audio Flamingo 2 21.90
Speech Recognition. To assess the automatic speech recogni- Qwen-2-Audio 30.40
tion (ASR) capabilities of OmniVinci, we evaluate it on four widely SALAMONN 33.20
used benchmarks: LibriSpeech (Panayotov et al.} [2015), AMI (Kraaij B“é‘\;‘::‘;?‘gxnis ;‘g';g
et al.}|2005), Tedlium (Rousseau et al.,2012)), and VoxPopuli(Wang = ‘.V. : ‘58'40

mnivinci ¥

et al [2021), comparing against leading multi-modal models. As
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Table 5: Video benchmarks. OmniVinci Table 6: Image benchmarks. OmniVinci maintains compa-

outperforms NVILA baseline. rable image understanding performance with NVILA.
Model LongVideoBench | MVBench | Video-MME 1 AID ChariQA DocVQA TnfoVQA MathVista _ MMMU Real.  SEED TextVQA VQAVZ
ode val tost tost W/ sub. st test test test testmini val st pro WorldQA image  val _ tesidev
— GPT40 042 857 928 M2 638 601 647519 754 762 74 787
Gﬁj‘) mini . 563 58'2 - 6?'8 Claude 35 Sonnet ~ — 947 908 852 743 617 683 637 515 60.1 - 741 707
GPT-4o v - 66. 66. - 71.9 Gemini 1.5 Pro - 044 872 931 810 639 622516435 704 - 787 802
LLaVA-NeXT-Video 7B 43.5 435 337 46.5 LLaVA-15 7B 555 178 281 258 256 357 - - 548 661 582 185
InternVL2 8B 54.6 - 65.8 56.3 VILA-LS 8B 766 527 406 259 367 386327 - 527 738 685 830
LLaVA-OneVision 8B 56.5 - 56.7 582 Cambrian-1 8B 730 733 778 416 490 427 - - 642 747 717 812
LongVILA 7B 57.1 _ 67.1 60.1 Florence-VL 8B 742 747 849 517 555 437 - - 642 749 742 847
on2.5.V] Y _ y 5 LLaVA-OneVision $B 814 800  87.5 688 632 488 428 241 663 754 783 840
?nr;:%/m L 23 2:3 B 223 26; Llama 3.2 1B 919 834 884 - 515 507 - - - - - 752
- 288 g -3 InternVL2 8B 838 833 916 748 583 512426200 642 762 774 767
Qwen3-VL 8B - - 687 714 Qwen2-VL SB 830 830 04.5 76.5 582 541 466 30.5 701 760 843 829
Qwen2.5-Omni 1B - - 70.3 643 InternVL3 $B 852  86.6 927 76.8 752 533 656 - 708 762 802
NVILA 3B 577 587 68.1 642 Qwen3-VL 8B 857 - %1 8.1 T12 696 - 559 715 - -
Omniving 98 613 620 70.6 82 NVILA 8B 923 861 937 707 654 490 444 278 686 765  80.1 854
— — OmniVinci 9B 0I5 846 015 690 635 497 446 264 615 7.1 830 854

shown in Table[/| our model achieves competitive word error rates (WER) of 1.7 on LibriSpeech-
clean and 3.7 on LibriSpeech-other, closely matching or surpassing the latest works.

We further investigate OmniVinci’s performance under Table 7: Multi-domain speech recogni-
two agentic-cascaded setups: (i) incorporating ASR text tjon benchmarks. *Results taken from

history (Huang et al., 2025) and (ii) leveraging retriever- reJated papers; details in Appendix @
based training as shown in Figure These techniques

help boost OmniVinci’s capacity, yielding average WERs WER (1)

. . . . Model
of 5.7 and 5.0, respectively. These test-time scaling studies LSciean LSomer AMI Ted. Vox.|Avg.
are provided in Appendix (Table[T9). Whisper-large-v3 1.8 3.6 16.1 3.9 10.1] 7.1

Qwen2-Audio 1.7 4.1 152 3.1 71|64

GPT-do-real-time 2.5 50 193 4.1 12.1] 86
4.2.3 VIDEO BENCHMARK Gemini-2.0-Flash 2.5 59 215 3.0 79|82

) ) Phi-4-MM 17 38 115 29 59|52
We compare with other open-source video-language mod-  Qwen2.5-omni 1.8 34° 17.9 52 58| 6.8

els in Table[5] On the LongVideoBench (Wu et al, 2024a)  omnivinci 17 37 161 34 68 63
val set, OmniVinci achieves a score of 61.3, outperforming
NVILA by a margin of +3.6. Similarly, our model improves on MVBench (Li et al., 2024b)) with a
score of 70.6, outperforming also the recently released Qwen2.5-Omni (70.3).

Furthermore, on the Video-MME (Fu et al.,[2024a) benchmark (without subtitles hints), OmniVinci
again sets a high score at 68.2, surpassing Qwen2.5-VL-7B by +3.1, positioning it as a leading
open-source model for video comprehension tasks.

Key Insight 2. Audio understanding capacity enables consistent metric improvements across
video benchmarks, akin to human perception.

4.2.4 IMAGE BENCHMARK

We evaluate OmniVinci on ten image benchmarks to test its versatility. These tasks range from
understanding diagrams and charts (AI2D (Kembhavi et al.l 2016), ChartQA (Masry et al.| 2022)) to
document analysis (DocVQA (Mathew et al.| 2021))), mathematics (MathVista (Lu et al., [2024b))
and general visual question answering (VQAv2-testdev (Goyal et al.| 2017)). As shown in Table |6}
OmniVinci consistently achieves competitive scores across the board.

4.3 OMNI-MODAL REASONING

Building on advances in the Group Relative Policy Optimization (GRPO) (Shao et al.||2024) algorithm
and prior work on multi-modal reasoning training (Chen et al., 2025} [Feng et al., 2025)), we next
tackle omni-modal reasoning through accommodating audio tokens in addition to visual ones.

Specifically, for each given question and omni-modal input ¢ = {q, q», ¢. } (g; is textual input, g, is
visual input, and ¢, is audio input, respectively), the sampling number is G, the policy model, under
the old policy 7g_,,, generates a set of candidate answers {01, 02, ..., 0} along with corresponding
rewards {ri, 72, ...,7g}, where the rewards are computed by a rule-based function that evaluates
format and accuracy (Shao et al.| |2024)). The model 7y is then optimized by maximizing the following
objective:

. m0(0i] Gt 9vs Ga) ., 70(0i|qt, v, qa)
J0) =E, o5 min A;, clip 1 —e,14€)A;
() = Eq ol Z( (ﬂeold(oz-\%qv,qa) (Weold(othanQa) JA)

—BD kL (mo||mrer))], (6)
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Figure 6: Left: Accuracy reward and format reward curves of OmniVinci and Qwen2.5-Omni in RL
training. Right: Accuracy reward curve of OmniVinci with and without audio.

where € and (3 are hyper-parameters of each loss part, the sampling number G is set as 8. The rewards
{r1,r2,...,rc} are normalized to get the advantages (A;) for updating the model:

A — r; —mean({ry,ra,....,7a}) o
std({rl, T2y ueuy TG})
We apply GRPO post-training to the fi- Table 8: Ablation study of GRPO post-training.
nal OmniVinci checkpoint to enhance Ommi
its performance on omni-modal un- Model

Worldsense (1) Dailyomni (1) Omnibench () Avg. (1)

derstanding benchmarks. For training
data, we curated a 18K omni-modal
MCQ dataset using the omni-modal
data engine, as detailed in the meth-
ods section. During GRPO training, we utilize the Long-RL (Chen et al., [2025) as the training
framework, configure the model to process up to 64 video frames, with a maximum prompt length
of 1024 tokens and a maximum response length of 2048 tokens. The update batch size is set to 64,
with the rollout number of 8 for each sample, ensuring robust gradient estimation. We employ a
temperature of 1.0 and a top-p value of 0.99 for sampling, facilitating diverse exploration during
training. These training configurations are carefully designed to optimize the model’s ability to
handle complex omni-modal reasoning tasks effectively and efficiently.

OmniVinci 48.23 66.50 46.47 53.73
OmniVinci + RL 48.70.0.47 67.08.0.53 47.79,1 3 54.52.079

As shown in Table[8] we observe consistent performance gains across all benchmarks after applying
RL training. Comparing convergence with Qwen2.5-Omni under the same recipe (Figure[6), both
models benefit from our multi-modal RL framework, but OmniVinci leverages stronger base per-
formance and instruction-following to surpass Qwen2.5-Omni on the GRPO accuracy curve within
15 steps, while also converging faster on formatting tasks. Ablation experiments further show that
including audio input boosts RL effectiveness: with audio, accuracy reward converges +0.1 higher
than video-only training (Figure[6] right), highlighting the importance of audio for video learning.

Key Insight 3. Joint audio-visual input surpasses the visual-alone input for GRPO training,
offering faster and better convergence.

4.4 DOWNSTREAM TASKS

OmniVinci also improves downstream tasks that benefit from video-audio perception, including
speech prompted robot navigation (Appendix Sec. [C.I)), sports video understanding (Appendix
Sec.[C.2), cross-lingual speech translation (Appendix Sec. [C.3)), medical analysis considering physi-
cian verbal explanations (Appendix Sec. [C.4), and semiconductor factory monitoring (Appendix
Sec.[C.5.1). OmniVinci enables new frontier performances in these domains.

5 CONCLUSION

We present OmniVinci, a systematic effort to build an omni-modal LLM that allows joint perception
of images, videos, audio, and text. We discuss architectural innovations including OmniAlignNet,
Temporal Embedding Grouping, and Constrained Rotary Time Embedding, joint with an enhanced
data and training recipe. OmniVinci showcases frontier omni-modal performances, cuts down on
training costs, and improves downstream agentic applications.
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A RELATED WORKS

A significant body of work has focused on augmenting LLMs with individual sensory capabilities,
primarily vision and audio, often following a similar architectural blueprint. In the visual domain,
the dominant paradigm involves using a vision encoder (e.g., ViT (Dosovitskiy, 2020)) to extract
features which are then aligned with the LLM’s input space via a bridging module. Pioneering models
like Flamingo (Alayrac et al., 2022) introduced sophisticated cross-attention mechanisms, while
subsequent works (Li et al.| [2023; |Zhu et al.,|2023; Ye et al., 2023} Driess et al.,[2023; [Liu et al.| |2023;
Lin et al.,[2024b; |Liu et al., [2025a; McKinzie et al} 2024} Dai et al.| [2023;|Zhang et al., 2023; Wang
et al.l [2024c; Maaz et al.,|2024; [Fang et al.| 2024} Shi et al.| [2025)), demonstrated the remarkable
effectiveness of a simple projection layer combined with visual instruction tuning. A parallel line
of research has applied this pattern to the auditory domain, where Audio-Language Models like
LTU (Gong et al.|, [2023)), Whispering-LLaMA (Radhakrishnan et al.,|2023), Audio-Flamingo (Goel
et al., [2025), Qwen-Audio (Chu et al., 2023), and others (Tang et al., |2023aj; |Deshmukh et al.| 2023}
Kong et al., [2024} |Ghosh et al., [2025} [Huang et al., [2024; |Chu et al., 2024) use audio encoders to
process speech, music, and ambient sounds. These specialized models represent crucial stepping
stones toward the more holistic goal of unified, omni-modal understanding. While specialized models
for vision and audio have become increasingly capable, the development of foundational, omni-modal
LLMs remains relatively nascent. For example, such a single omni model that can natively process
and reason across text, vision, audio, and potentially other data types.

The endeavor presents various challenges in terms of model architecture, data curation, and the
immense computational resources required for training. Recent pioneering efforts have addressed the
challenges of multimodal understanding and reasoning. Google’s Gemini (Google| 2023)) represents a
significant advancement as a natively multimodal model designed to seamlessly integrate and reason
across interleaved text, images, audio, and video inputs. However, it remains proprietary and is not
available to the open-source community. Within the open-source community, several noteworthy
efforts on omni-modal LLLMs have been introduced (Li et al., [2025b; [Lu et al.l 2024a; |Wu et al.|
2024b; |Ye et al.l 2024 |Chen et al., [2023c; |Hu et al., 2025} Chen et al., [2023b; |Liu et al., 2025b; [Fu
et al.|2024b)), demonstrating strong capabilities in joint vision—audio understanding tasks. Among
these, Phi-4-MM (Abouelenin et al.,2025) and Qwen2.5-Omni (Xu et al.,2025)) achieve the strongest
results to date; however, their accompanying technical reports reveal relatively simple architectural
choices and a lack of thorough ablation studies to systematically examine critical design decisions. In
contrast, our work not only proposes several novel techniques for omni-modal understanding but also
adopts a more rigorous experimental approach by conducting comprehensive ablation studies before
scaling to large-scale datasets. We systematically evaluate various architectural choices and design
decisions, providing detailed experimental analyses that we make publicly available. Through this
methodical investigation, we aim to contribute valuable insights that can inform and inspire future
research directions in omni-modal large language models.

Some research work study multimodal alignment in other domains. For instance, |Cheng et al.| (2025)
investigates vision—audio alignment for audio generation rather than multimodal understanding as
we do. Their method applies RoPE within transformer blocks to align visual and audio tokens,
but RoPE encodes only relative temporal information. In contrast, OmniVinci incorporates both
relative and absolute temporal cues directly into the input sequence before tokens enter the LLM
backbone. [Kim et al.|(2023)) target vision—text alignment and do not address the vision—audio setting.
It trains a neural network to predict a text transcription for each frame. By comparison, our TEG
and CRTE methods require no training or supervision; instead, they inject temporal information
directly using a predefined formula. |Guo et al.| (2025b) fuse visual and audio tokens at the same
timestamp via cross-attention and then forward them into the LLM. However, it does not embed
absolute temporal information into the tokens. Our method differs by encoding absolute temporal
cues through embedding rotation in CRTE. Finally, there are also research works on time-series series
alignment (Zerveas et al.,|[2021} |[Eldele et al., [2024)) that do not involve vision or audio modalities.

Compared Models in Experiments. In the experimental section, we compare with prior works on
vision LLMs, audio LLMs, and omni-modal LLMs on various multimodal benchmarks. Specifically,
we list the reference here due to the space limit in main text. Compared models include Gemini
(Googlel [2023;(2024), GPT-40 (OpenAl, 2024)), Claude-3.0 (Anthropic, 2024), InternVL2 (Chen et al.,
2024c), Qwen2-VL (Wang et al.} 2024b)), Qwen2.5-Omni (Xu et al., |[2025)), Phi-4-MM (Abouelenin
et al.} 2025), Kimi-Audio (KimiTeam et al.| 2025)), Audio Flamingo 2 (Goel et al., 2025), Qwen2
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User: Describe the video in detail. User: Assess the video, followed by a detailed description of it's video and

- audio contents.
. 15
: " R =

Answer: The video begins with Jensen Huang in a modern, well-lit room with Video ~15 minutes
large windows and a view of greenery outside. He dressed in a black jacket and
white pants, is seated at a table, writing a message on a black card with a gold
pen. The message reads, 'To Robot, Enjoy Your New Brain!' followed by a
signature. He then places the card on the table rand begins to open a large
black gift box with a gold ribbon and bow. The scene transitions to a close-up
of the gift box on the table, with the person's hand visible. The focus then
shifts to a robot wearing a white hard hat with the 'NVIDIA' logo, standing in a
workshop or industrial setting. The robot holds the same black gift box with
the gold ribbon and bow, and it opens the box to reveal the black card with the
message. The robot examines the card closely. The narrative continues with
the robot, still in the workshop setting, holding the black gift box. The robot
opens the box, revealing a sleek, white device with a black screen, nestled in
crumpled black paper. The robot examines the device closely, then places it
back into the box and closes it. The scene transitions to a different setting,
where the robot is now in a modern office environment with green walls and
multiple computer monitors. The robot stands behind the closed gift box,
gesturing with its hands as if explaining or presenting something. The video
wraps up with the robot in the modern office environment, gesturing with its
hands. The scene transitions to a close-up of the robot's face, showing its
detailed features and expressive eyes.

Answer: The video features a podcast discussion between two individuals,
one in a light blue shirt and the other in a black blazer, set in a professional
studio environment with beige walls and a microphone setup. The
conversation revolves around the topic of artificial intelligence (Al),
specifically focusing on the limitations and challenges of achieving human-
level Al through neural networks (NNs). The individual in the light blue shirt,
who is the primary speaker, expresses skepticism about the feasibility of
NNs reaching human-level intelligence, emphasizing the need for a
different approach. He highlights the limitations of NNs in handling
complex tasks and the potential for diminishing returns on investment in
this area. The individual in the black blazer, who listens attentively and
occasionally interjects, shares his perspective on the potential of Al and the
importance of understanding the physical world for Al systems to reason
and plan effectively. He also discusses the challenges of achieving human-
level Al and the need for a collaborative approach among the research
community to address these challenges. The discussion is analytical and
focused on the technical and practical aspects of Al, with both individuals
providing insights and perspectives on the topic.

Joint Vision-Audio Perception

Joint Vision-Audio Perception

User: [What is the speaker doing in the video?] o e

o At T

User: Transcribe the Speech. ) il

Answer: “The first part is: let's just go from what the Al can do. Let me
work backwards. Agentic Al, as | mentioned, at this foundation is
reasoning. We now have Als that can reason, which is fundamentally about
breaking a problem down step by step. Maybe it approaches a problem in a

. o few different ways and selects the best answer. Maybe it solves the same
Video ~15 minutes problem in a variety of ways, and ensures it has the same answer —

A\

Answer: o.|||||I||l|||||||||||I|||-

A consistency checking. Or maybe, after it's done deriving the answer, it
[The man is speaking to a crowd in a large industrial space, holding a plugs it back into the equation — maybe a quadratic equation — to confirm
microphone and gesturing as he speaks.] that, in fact, that's the right answer instead of just one-shot blurting it
User: o--||||I|||I|]|||I|I||I|||v out.”
[What is the mission of his company?] User: Transcribe to Arabic.
Answer: @) i Answer: S Ko R Il e Al elihaa¥l S (S L laal 5 J5W e 5l
[The mission of his company is to establish a self-sustaining civilization on T Gl il S o W i 2SS e Joll) el
Mars]

Joint Vision-Audio Perception Speech Transcription and
and Speech Generation Translation

Figure 7: OmniVinci demonstrates strong vision and audio perception capabilities to handle single or
joint modality scenarios. The model also supports audio prompts and outputs.

Audio 2023), Gemma (Team et al.| 2024), LTU (Gong et al.,[2023)), SALAMONN
2023a), Baichuan-Omni-1.5 2025b), Whisper-large-3 (Radford et al.,[2023)), LLaVA-
NeXT-Video (Zhang et al,[2024c)), InternVL2 (Chen et al.| 2024¢), LLaVA-OneVision (Li et a!.
2024a), LongVILA (Chen et al., 2024a), Qwen2.5-VL (Wang et al., [2024b), NVILA (Liu et al.
2025a)), Video-ChatGPT (Maaz et al.,[2024), VideoChat2 2024b).

B REAL-WORLD QUALITATIVE STUDY

To evaluate the performance of the model on real-world omni-modal signals, we test it using recently
released online videos, as shown in Figure[7} Our results demonstrate that the model can thoroughly
comprehend both visual and audio inputs from previously unseen videos and generate responses
based on this information, highlighting its strong generalization capabilities. The model successfully
integrates speech cues with visual data, allowing for more effective interaction with the environment.
These qualitative observations demonstrate the effectiveness of the proposed explicit and implicit
training strategy.

C DOWNSTREAM AGENTS

Next, we demonstrate the applicability of OmniVinci in a wide range of downstream agentic tasks
that yield consistent improvements across benchmarks while enabling new capabilities.

C.1 ROBOTICS: SPEECH-DRIVEN VISION LANGUAGE NAVIGATION

Prior work (Cheng et al 2024a} [Zhang et al, [2024b} [Chen et al [2023a) in Vision-Language

Navigation (Anderson et al.,|2018]) has predominantly relied on text-based prompts. However, this is
not always practical for real-world scenarios where the most convenient and natural way to command
arobot is through human speech. As a first step toward this goal, we introduce a speech-driven vision
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3/ Instruction: Enter the bedroom and stand at
< the foot of the bed. Walk right and exit the
bedroom from the door with a letter "B" on

the wall to your left. Take a right turn out of
the bedroom and walk in through another

bedroom's door where you see a light

N colored shaggy rug. Take another right turn

and stand just through the door after the

at; Goal Position white little dog on the floor to your left.

M Oracle Path

B Prediction Agent: Move forward 75 cm.

} _ Instruction: Step through the bathoom

< doors, make a left turn and take a step, then
a sharp left turn and continue walking until
you've made it through the bedroom door.
Stop.

| Agent: Turn left 15 degrees.
M Goal Position 8 8!

B Oracle Path

M Prediction

—

Figure 8: An illustration of our speech-driven navigation agent based on OmniVinci. Left: Agent’s
current visual observation. Middle: Top-down map indicating the goal position and the agent’s past
trajectory. Right: the input speech instruction and the agent’s predicted action given the current
observation.

language navigation task. This task is inherently more challenging than its text-based counterpart, as
interpreting the nuances of speech is more complex than processing clean text.

Table 9: Vision Language navigation results on R2R-CE. Our speech-driven model, Omni Vinci,
achieves comparable performance to the text-driven NVILA, with a lower navigation error.

R2R Val-Unseen

Model Size Obs. Instruction
NE | oS 1 SR 1 SPL 1
Seq2Seq - RGB Text 10.10 8.0 0.0 0.0
CMA - RGB Text 9.55 10.0 5.0 4.0
NaVid 7B RGB Text 5.47 49.0 37.0 35.0
NVILA 8B RGB Text 543 60.4 533 48.8
OmniVinci 9B RGB Audio and/or Text 5.67 60.8 50.6 45.1

Specifically, we fine-tune OmniVinci on the training split of R2R-CE (Krantz et all, [2020), a
benchmark for Vision-and-Language Navigation in continuous environments, with speech prompts,
using 8 history frames for context in line with NVILA 20254). As shown in the results
in Table [9] OmniVinci surpasses many text-based models and achieves performance comparable to
NVILA. We present qualitative examples in Figure [§] that illustrate how our speech-driven vision-
language-action (VLA) navigation agent functions in practice. The agent is deployed in the Habitat
simulator under the continuous environment setting. The demo provides three synchronized views:
(1) the agent’s current observation in RGB (left), (2) a top-down map indicating the goal location and
the trajectory taken so far (middle), and (3) the spoken instruction together with the agent’s predicted
action, such as moving forward a certain distance or turning left or right by a specified angle (right).

C.2 SPORT VIDEO UNDERSTANDING

Understanding videos of complex sports scenarios requires models to capture both visual dynamics
and contextual cues. To evaluate the sports understanding capability of our proposed OmniVinci, we
conduct experiments on the SPORTU-video dataset (Xia et al., 2025), a large-scale benchmark for
fine-grained sports comprehension. As shown in Table[I0} OmniVinci-9B delivers strong performance
despite its compact scale of 9 billion parameters. These results confirm the effectiveness of our model
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Serve Rally Rally End point

Frame O

System Prompt: Federer — Roger Federer is the player in the white polo T-shirt and matching shorts. He has a white bandanna tied around his
forehead and a white wristband on his right wrist. He is also wearing a pair of white shoes with white socks. Benneteau — Julien Benneteau is
the player in the white polo T-shirt with black accents and matching shorts. He has a white wristband on his right wrist and a white pair of shoes
with black markings on them. He has a black ankle brace on his right foot as well.

Instruction: What happened in this point? Provide a detailed caption.
Agent: Benneteau’s first serve lands outside the service court, but his second attempt is successful. Federer wins the point with a lengthy rally
where Benneteau hits the ball out of bounds with a forehand shot.

Instruction: How this point ended between Federer and Benneteau.
Agent: The point ended when Benneteau hit the ball out of bounds.

Figure 9: Example of tennis broadcast commentary generation. For better visualization, we added
red circle highlights to the tennis ball.

Table 10: Overall performance of MLLMs on SPORTU-video for multiple-choice questions. The best
results within each category are bolded. Notably, our OmniVinci model achieves highly competitive
accuracy compared with both closed-source and open-source models.

Model (Acc., 1)

Close-Source Model

Claude-3.0-Haiku 47.95
Gemini 1.5 Pro 64.93
Gemini 1.5 Flash 62.52
GPT-4omini 58.19
GPT-40 68.79

Open-Source Model

ChatUniVi 41.89
LLaVA-NeXT 63.72
mPLUG-OwI3 60.80
ST-LLM 46.39
Tarsier 60.99
Video-ChatGPT 34.05
VideoChat2 61.53
Qwen2.5-Omni-7B 60.49
OmniVinci-9B (ours) 67.30

design and motivate its extension to more demanding, real-world applications such as live sports
broadcasting, where both accuracy and efficiency are essential.

To further assess performance in realistic broadcasting settings, we curate a tennis-specific dataset
collected from 14 full matches. The dataset contains 24,078 multiple-choice questions and 20,214
open-ended questions derived from pre-clipped videos, each spanning 3—120 seconds with precisely
annotated start and end points. Since sports broadcasting requires synchronizing visual actions
with speech cues (e.g., live commentators’ narration or umpire calls) to enable professional-style
commentary, tennis provides an ideal domain for multimodal evaluation.

In our tennis experiments, we evaluate tasks such as identifying the server from player characteristics,
determining the point winner, and classifying the outcome type (e.g., ace, forced error, unforced error).
The benchmark OmniVinci processes clips at their native resolution (primarily FHD 1920 x 1080),
using 128-frame segments per point. As shown in Table[TT} OmniVinci substantially outperforms
Qwen2.5-Omni in predicting point outcomes and rally length, demonstrating the advantages of
high-resolution spatiotemporal modeling. Figure [9]illustrates sample videos with action explanations,
along with generated open-ended commentary styled after professional broadcasters.
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Table 11: Comparison of video understanding accuracy (%) for tennis broadcasting. Results are
evaluated with multiple-choice questions (MCQ). Inference time is measured on an NVIDIA A100,
with input clips averaging around 20 seconds in duration. AWQ indicates model quantization
performed with the AWQ technique (Lin et al., [2024a)).

Model Inference Time Server & Receiver & Point Shots
ode (Seconds ) Winner Winner Ending Exchanged
Qwen2.5-Omni 3.34 96.2 90.7 48.6 38.3
OmniVinci 3.29 100.0 100.0 85.7 89.3
OmniVinci w/ AWQ 1.85 100.0 100.0 85.7 85.1

Table 12: Performance comparison of different models on Covost2 speech translation tasks measured
by BLEU scores. EN — X denotes translation from English to the target language, and X — EN
denotes translation from the target language to English. Languages: zh = Chinese, ja = Japanese, ar =
Arabic, de = German.

Model . EN — X (Acc., 1) . X — EN (Acc., 1)
zh ja ar de avg. zh ja ar de avg.
Qwen2-audio 45.2 24.8 20.1 29.9 30.0 24.4 18.7 19.5 35.2 24.5
Qwen2.5-omni 41.4 26.0 19.7 30.2 29.3 29.4 12.1 19.3 37.7 24.6
Phi-4-mm 38.0 319 9.9 353 28.9 249 333 5.5 379 25.7
OmniVinci 39.7 32.6 23.3 355 32.8 29.9 33.7 20.1 32.6 29.1

For efficient deployment, we adopt the LLM-AWQ implementation of Activation-aware Weight
Quantization (Lin et al.,|2024a), which enables 4-bit quantization while preserving accuracy. Inference
is executed using the TinyChat engine on NVIDIA hardware, supporting multimodal video—audio
inputs. On a single NVIDIA A100, OmniVinci achieves an average latency of under 2 seconds per
pre-quantized clip, delivering a 45% boost in inference speed and making it well-suited for live
broadcasting scenarios. We further validate deployment on NVIDIA L40s GPUs, demonstrating the
practicality of our approach in resource-constrained environments.

C.3 SPEECH AGENT: SPEECH TRANSLATION

We benchmark OmniVinci on the CoVoST2 (Wang et al.,[2020) speech translation task, measuring
BLEU scores across multiple target languages in both EN —X and X—EN directions, after fine-
tuning on related data, and show the results in Table Our model delivers competitive translation
quality across most directions, with particularly strong performance in X — EN for Japanese (23.2
BLEU) and Arabic (23.0 BLEU). This balance of accuracy across languages highlights the benefit of
integrating speech translation corpora within our omni-modal training pipeline, enabling to perform
both recognition and translation in a unified framework. The ability to handle multilingual speech
understanding and cross-lingual transfer further broadens the applicability of our model in real-world
communication, international dialogue systems, and cross-border information access.

C.4 MEDICAL Al

We evaluate OmniVinci’s zero-shot generalization to the medical domain using 49 privacy-
deidentified, radiologist-curated video clips of whole-body CT interpretations. As illustrated in
Figure[I0] each 2-minute recording captures a radiologist interpreting real-world clinical images with
a 2D axial-plane viewer, including scrolling through slices, placing measurements and annotations,
zooming, adjusting window/level, and, when relevant, comparing the same image under different
window settings.

From these video—audio pairs and their transcripts, we construct 588 multiple-choice questions
spanning four categories—(i) long-horizon temporal reasoning and localization, (ii) audio—visual
synchronization and understanding, (iii) anti-shortcutting (resisting language priors without visual evi-
dence), and (iv) temporal reasoning—approximately balanced across categories with three options per
item. The dataset was curated with assistance from the LLama-3.1-Nemotron-Ultra-253B (Bercovich
et al.| 2025), leveraging both the visual content and transcripts. We report comparative performance
for OmniVinci and Qwen2.5-Omni in Table
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Whole-Body CT Interpretation Videos

Speech Audio

Radiologist: “So, we are starting to review chest, abdomen, pelvis CT and we'll be focusing on the
lungs and the liver. We're going to begin our examination using the lung window. And first I'm
checking the right lung. So here at the apex you are seeing some loosened cystic areas. These are
probably some air cysts and related fibrotic changes at the right lung apex. And then like like
similarly on the left side, you are seeing those air-filled cavities and cysts. So, the first thing is to
look at some nodules, lungs, sorry, nodules, infiltrates and potential masses. So, we are at the right
upper lobe and except for these air cysts, I'm not seeing anything. Now we are at the mid lobe and
here you are seeing some bronchiectasis and again air-filled cavities and cysts. Here they are also
very prominently visible. So, this is like basically located at the right upper lobe. So, this is the right
middle of be between the two fissures. And again, we are seeing an air cyst ...”

Figure 10: Sample frames and transcript trunks from one of the curated radiologist-narrated CT

interpretation video. For annotation, the radiologist maintains a 2D axial view while progressively
adjusting visualization (e.g., window/level, zoom) and annotating across slices.

Table 13: Performance comparison between OmniVinci and Qwen2.5-Omni on omni-modal multiple-
choice QA datasets across four categories. Abbreviations: LH = long-horizon temporal reasoning &
localization; AVS = audio-visual synchronization & understanding; AS = anti-shortcutting (resisting
language priors without video evidence); TR = temporal reasoning.

Method Acc. (LH) 1 Acc. (AVS) 1 Acc. (AS) 1 Acc. (TR) 1 Average T
Qwen2.5-Omni 0.83 0.75 091 0.70 0.79
OmniVinci 0.84 0.76 0.92 0.76 0.82

OmniVinci consistently outperformed Qwen2.5-Omni across all four categories, yielding an overall
gain of about +2.0 percentage points. Its largest margin was in temporal reasoning (TR; +6.1),
highlighting stronger capabilities in event sequencing, change detection, and temporal cue mod-
eling—often the most demanding aspects of video comprehension in clinical workflows. Stable
improvements were observed in long-horizon reasoning (LH) and audio-visual synchronization (AVS)
(+0.7 each), reflecting better preservation of long-range context and closer alignment between narra-
tion and visual content. The anti-shortcutting (AS) category also showed a gain of +0.7, suggesting
that OmniVinci is more robust against linguistic shortcuts and leans more heavily on visual evidence.
Some qualitative comparisons of test samples are presented in Figure [T}

C.5 SMART FACTORY AGENTS
C.5.1 SEMICONDUCTOR MANUFACTURING

Wafer maps are essential in semiconductor manufacturing for visualizing defect distributions, enabling
yield monitoring, process drift detection, and preliminary root cause identification. It is a domain
with a significant gap from multimodal LLM. To study whether we can leverage our omni-modal
OmniVinci on this task, we fine-tune OmniVinci on wafer map data, aligning visual and textual
features for robust defect analysis, as illustrated in Figure @ On the WM-811K dataset (Wu et al.,
2015), OmniVinci achieves superior performance over VILA (Lin et al., 2024b)) and NVILA (Lin
et al., [2025a; [Liu et al., 2025a) (which has been trained for wafer defect classification), and our
model demonstrates further improvements, as summarized in Table@ Beyond classification, this
framework can be extended to support interactive querying and automated reasoning for Root Cause
Analysis, systematically linking defect clusters to process tools, wafer locations, or temporal drifts.
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Long-horizon temporal reasoning & localization Audio-visual synchronization & understanding

You will be asked multi-choice questions. Your replies must contain | You will be asked multi-choice questions. Your replies must contain
only a single letter (either A, B, C, D). If each subtle intensity change | only a single letter (either A, B, C, D). What structure is highlighted
in the lung fields represents a 5% adjustment in diagnostic by the green circular marker added near the lung area at 20-30 s?

confidence for pneumonia, how many such changes occur from O to

120 seconds, requiring tracking across the entire video duration? A. Spine

B. Trachea
A. 4 adjustments (20% to C. Bronchus
B. 10 adjustments (50% total) D. Lung nodule
C. 6 adjustments (30% total)
D. 8 adjustments (40% total)’}
Ground truth: B Ground truth: D
Qwen2.5-Omni: C Qwen2.5-Omni: C
Ours: B Ours: D
Anti-shortcutting Temporal reasoning

You will be asked multi-choice questions. Your replies must contain | You will be asked multi-choice questions. Your replies must contain
only a single letter (either A, B, C, D). How many bone lesions were only a single letter (either A, B, C, D). How do the lung textures in
identified in the thorax that would support a diagnosis of the CT scan change over time, based on the visual cues?
metastasis?
A. They transition to uniform density

A. No lesions B. They become more homogeneous
B. Multiple lesions (>3) C. They show increasing bright white areas
C. One lesion D. They display consistent heterogeneous patterns

D. Two lesions
Ground truth: D

Ground truth: C Qwen2.5-Omni: C
Qwen2.5-Omni: A Ours: D
Ours: C

Figure 11: Qualitative comparison between OmniVinci and Qwen2.5-Omni on an omni-modal
medical QA task based on radiologist-narrated CT interpretation videos. We organize the evaluation
into four categories of questions: long-horizon temporal reasoning and localization, audio-visual
synchronization and understanding, anti-shortcutting, and temporal reasoning.

User: This is a image of a wafer map, the yellow pattern in the circle refers to the defect pattern. There are 8 possible types of
defect of wafer map (1) loc. (2) edge-loc. (3) center. (4) edge-ring. (5) scratch. (6) near-full. (7) donut. (8) random. What

type of anomaly does the provided image present?
- . "=
Do =l
.._ -l _.-'—'-\.".
' . =

Answer: edge-loc Answer: donut Answer: edge-ring Answer: center Answer: scratch Answer: loc Answer: near-full

Figure 12: Illustration of wafer robust defect analysis task for smart factory agent.

C.5.2 FACTORY AND INDUSTRIAL TIME SERIES UNDERSTANDING

We apply OmniVinci to Statistical Process Control (SPC) chart recognition, a representative task in
industrial quality monitoring and root cause analysis. Our model recognizes a wide range of fault
categories, including out-of-control points such as spikes or drops, persistent runs and monotonic
trends such as level shifts up or down, cyclic oscillations, mixture or random fluctuations, as well as
missing values or short outages, as illustrated in Figure[T3] On a held-out test set, our model achieves
87% accuracy, showing that by transforming time-series signals into visual representations, we can
effectively leverage large-scale vision-language pretraining for sensor monitoring and industrial
diagnostics. This demonstrates the feasibility of deploying our framework in real manufacturing
pipelines, where timely detection of process abnormalities is crucial for preventing defects and
reducing downtime.

We assess our framework on time series classification tasks using datasets from the UCR archive (Dau
[2018), where time series are transformed into line plots to exploit large-scale vision-language
pretraining. Our first comparison is against VLM-TSC 2025)), a LLaVA-based VLM
that adopts a similar conversion strategy. As shown in Table [I5] our approach achieves superior
performance on the PenDigits and ItalyPowerDemand datasets.
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Table 14: Comparison of VILA, NVILA, and OmniVinci on wafer defect classification.
VILA (Lin et al.} [2024b) NVILA (Liu et al.,|2025a) OmniVinci (ours)

Parameters 40B 8B 9B
Resolution 336x336 448 %448 448 x 448
Model size 75 GB 16 GB 18 GB
Accuracy 90.8% 97.6% 98.1%

User: What class do these images belong to? The possible classes are: cluster, constant, cycling, missing,
period_trending, periodic_patterns, shift, trending, uneven.

SPC Chart SPC Chart

elue

Answer: period_trending Answer: missing

Figure 13: Illustration of SPC chart recognition for industrial fault detection.

D METHOD DETAILS

D.1 OMNI-MODAL INPUT EMBEDDING

Image. Similar to NVILA (Liu et al.,|2025a), we start with pretrained the SigLip (Zhai et al., 2023)EI
vision encoder and augment it with 2 x 2 “Spatial Scale-Then-Compress” Dynamic S2 (Liu et al.}
2025a; |Shi et al., [2024)) to accomondate for multi-scale and high resolution images. Given an input
image of varying dimensions, the overall encoding module adapts the largest scale to the nearest
tile-aligned size divisible by 448 and maintains the aspect ratio. Feature maps from all scales are
aligned to this largest scale and concatenated, processed by a 2-layer MLP for projection into a latent
space shared by embeddings of different modalities.

Audio. We adopt a single audio encoding pipeline for both speech and non-speech audio. Raw audio
waveforms are sampled at 16 kHz and converted into audio frames using the Short-Time Fourier
Transform (STFT). These frames are then processed by the Audio Flamingo 3 (Goel et al.l [2025)
audio encoder to extract acoustic features in both speech and natural sound. The encoder consists
of convolutional layers followed by transformers, enabling it to capture both local and global audio
patterns. The extracted features are subsequently projected into the modality-shared latent space
using a 2-layer MLP.

Video. Videos contain two modalities introduced above, namely vision and audio. For the vision
stream, the video frames are temporally sampled uniformly to reduce redundancy and computational
load. Each frame is processed individually through the above-mentioned image input pipeline, and
the resulting features are aggregated temporally. We then utlize temporal pooling on the feature
sequence to further compress visual information. For audio stream, we extract features with the same
Audio modality pipeline mentioned above. Meanwhile, we extract the timestamps for each visual and
audio embeddings to act as temporal guidance on interleaved token arrangement as explained later.

Prompt. For text prompts, we employ a standard text encoder (Qwen, [2024)), which first tokenizes
the input into discrete tokens and then maps them into a continuous semantic embedding space via an
embedding layer. This space is shared with embeddings from other modalities. For speech prompts,
we use the previously described audio encoder to generate the corresponding continuous semantic
embeddings. Finally, the resulting prompt embeddings are concatenated with the visual and audio
embeddings introduced earlier.

"Model version “paligemma-siglip-so400m-patchl4-448”
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Table 15: Performance comparison of test accuracy (%) on selected UCR datasets (Dau et al., 2018).

Dataset Info ‘ Ace. T
Dataset Type Length Train Test Class ‘ VLM-TSC (Prithyani et al.,|2025) Ours
PenDigits MOTION 8 7494 3498 10 85.08 96.88
ItalyPowerDemand SENSOR 24 67 1029 2 95.00 95.82

D.2 MORE DISCUSSION ON CONSTRAINED ROTARY TIME EMBEDDING (CRTE)

The base frequency in CRTE, w; is designed to have a geometric progression of frequencies. For
small values of ¢ (e.g., the first pairs of dimensions), the denominator is smaller, resulting in higher
frequencies (w; is large). These dimensions undergo rapid rotation with respect to time. Consequently,
they are highly sensitive to fine-grained temporal differences and are effective at distinguishing
between timestamps that are close to one another. For large values of ¢ (e.g., the last pairs of
dimensions), the term #%/¢ becomes significantly larger, resulting in lower frequencies (w; is small).
These dimensions rotate slowly, making them suitable for encoding coarse, long-range temporal
relationships. They provide a stable signal for large time intervals without the issue of aliasing or
“wrapping around” that would occur with high-frequency signals. By partitioning the embedding
space into a spectrum of frequencies, the model can concurrently attend to both local and global
temporal contexts. This multi-scale approach provides a robust and comprehensive representation of
absolute time.

D.3 MODALITY-SPECIFIC TRAINING

D.3.1 VISION TRAINING

The modality-specific vision training aims to train the model with visual understanding ability. We
follow NVILA (Liu et al.} 2025a) training recipe including five stages:

Stage 1 | Vision Projector Alignment. This stage learns to project visual information through a
visual projector. This stage ensures that the visual embeddings are compatible with the language
model’s token embeddings, which is essential for smooth downstream integration. The model is
trained on image-text pairs with simple captioning-style supervision, setting a baseline understanding
of visual semantics. Only the vision projector is tuned during this process.

Stage 2 | Vision Encoder Alignment. With the projector aligned, the model now focuses on
enhancing the vision encoder’s capacity to process diverse visual content. In this stage we train only
the vision encoder and visual projector.

Stage 3 | Vision Pre-Training. During this core stage, the model is trained on large-scale multimodal
data to learn how to interpret and generate image descriptions. The vision encoder is kept frozen,
while the vision projector and the LLM are fine-tuned.

Stage 4 | Image Instruction Tuning. In this stage the model is fine-tuned with vision instruction-
following capabilities. It is trained to answer multimodal questions, generate captions, reason over
scenes, interpret documents, and more. Training data covers a broad range of multimodal capabilities.
It includes high-quality instructional examples to align the model with human preferences, datasets
for generating rich image captions, and tasks that develop logical and visual reasoning skills. The
model is also trained to interpret documents and embedded text, answer general and knowledge-based
visual questions, and handle diagrams, visual dialogues, and multimodal instructions. In this stage,
all model parameters are fine-tuned.

Stage 5 | Video Instruction Tuning. In the final vision alignment stage, the model is adapted to
video understanding. The goal here is to enable temporal reasoning and visual understanding over
sequences of frames. This includes tasks such as activity recognition, multi-frame object tracking,
and answering time-sensitive questions. The whole model is fine-tuned.

Through this vision alignment process, we obtain the “vision preliminary checkpoint” with well-
trained vision encoder, projector, and language model.
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D.3.2 AuUDIO TRAINING

Starting from the language model in the above vision preliminary checkpoint we next train the audio
understanding ability of our model, which involves (i) audio projector and encoder alignment step
followed by (ii) audio instruction tuning.

Stage 1| Audio Projector & Encoder Alignment. This phase focuses on aligning audio encoder
and its associated compression layer. We keep the parameters of the language model and vision side
fixed. Training consumes 50K audio-language pairs curated from public datasets spanning across
audio-based (music, non-speech sound, and speech) question answering, speech-to-text captioning,
and automatic speech recognition. By training on this heterogeneous dataset, we encourage the
audio projection module to learn a unified representation that aligns well with the language model’s
semantic space.

Stage 2 | Audio Instruction Tuning. During the second stage of training, the audio encoder, audio
projection module, and language model are fine-tuned in a unified, end-to-end manner. This joint
optimization allows the system to develop a comprehensive and deeply integrated understanding
of audio. This stage consumes a comprehensive audio-SFT dataset overseeing 9.6 million samples,
including but not limited to audio-based question answering (AudioEntailmentQA (Deshmukh et al.|
2025)), Clotho-AQA (Lipping et al., 2022)), DCASE-2025-train (Yang et al.| |2025b), etc.), audio
captioning (AudioCaps (Kim et al.,2019), Clotho-v2 (Drossos et al.,2020), Miradata (Ju et al., |2024)-
recaptioned, etc.), speech emotion recognition (CREMA-D (Cao et al., [2014)), IEMOCAP (Busso
et al.,|2008), MELD (Poria et al., 2018), etc.), automatic speech recognition (CV-ASR (Ardila et al.,
2020), Europarl-ASR (Koehn, |2005)), LibriSpeech-ASR (Panayotov et al., 20135)), etc.), and speech
translation (MuST-C (D1 Gangi et al.| 2019), Emilia (He et al.,[2024), etc.). This allows the model
to learn both low-level acoustic features and high-level semantic representations, enabling robust
generalization across multiple audio understanding tasks and versatile capabilities in interpreting
complex auditory inputs. At this point, we find that the model’s ability to perform visual understanding
tasks is worse, which motivates us to pursue the subsequent omni-modal joint training.

D.4 OMNI-MODAL JOINT TRAINING DETAILS

We adopt a cosine learning rate schedule, preceded by a linear warm-up phase over the first 3% of
the training data. The base learning rate is set to 2 x 10~°. During training, the vision and audio
encoders are kept frozen. The total token count is approximately 200 billion.

D.5 EXTRA DETAILS OF TRAINING DATA

This section describes the comprehensive multi-modality training data used for developing the pro-
posed omni-modal LLM, which are designed to handle diverse types of audio, visual, and textual
information. Our training corpus encompasses a wide range of modalities including speech recog-
nition, audio question answering, audio captioning, audio classification, video question answering,
and image understanding tasks. The dataset is carefully curated to provide robust coverage across
multiple domains, enabling the model to develop strong cross-modal understanding and reasoning
capabilities.

There are 3.6 million omni-modal conversations, 8 million image-text conversations, 2.7 million video-
text conversations, 5.3M speech-text conversations, and 4.3 million speech-text conversations. Omni-
modal data contributes 15%, consisting of omni question answering (12%) and omni captioning (3%).
Image data constitutes the largest share at 36%, with notable subcategories including general image
tasks (19%), knowledge-based tasks (8%), and document processing (7%). Sound (non-speech) data
accounts for 21%, predominantly driven by audio question answering (20%). Speech data represents
17% of the total, primarily comprising automatic speech recognition (10%), audio question answering
(4%), and speech translation (2%). Video data forms the remaining 11%, entirely attributed to video
question answering. The training data consists of approximately 24 million samples distributed
across three main categories: Speech, Sound, and Image/Video. The Speech category includes
datasets for automatic speech recognition (ASR), speech translation, and emotion classification,
featuring well-established corpora such as AMI (Carletta, |2007), Common Voice (Ardila et al.|
2020), and LibriSpeech (Panayotov et al.,[2015). The Sound category encompasses audio question
answering datasets like MMAUQA (Goel et al., 2025) and CompA-R-AQA (Ghosh et al., [2024),
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Table 16: MMAU audio benchmark.

Model Music Sound Speech Avg
Test Test-mini Test Test-mini Test Test-mini Test Test-mini
Gemini 2.5 Pro 68.26 64.77 70.63 75.08 72.67 71.47 71.60 69.36
Gemini 2.5 Flash 76.58 69.40 65.57 69.50 71.80 68.27 69.57 67.39
Kimi-Audio 62.16 65.93 66.77 70.70 56.57 68.20 64.40 68.20
Phi-4-multimodal 61.97 64.37 62.67 65.47 63.80 67.27 62.81 65.70
Audio Flamingo 2 44.74 70.20 68.13 70.96 44.87 62.40 61.06 62.40
GPT-40 Audio 49.93 56.29 63.20 64.56 69.33 66.67 60.82 62.50
Qwen2-Audio-Instruct 55.26 55.67 56.29 61.17 59.60 55.37 57.40 59.60
Gemma 3n 4B 61.26 53.20 56.89 50.27 58.00 62.13 58.00 55.20
Qwen2.5-Omni 67.33 65.90 76.77 78.10 68.90 70.60 71.00 71.50
OmniVinci 73.07 73.65 73.57 78.68 68.17 66.97 71.60 73.10
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Figure 14: Data distribution of our synthetic speech-prompted multimodal conversation.

audio captioning datasets such as Clotho-v2 (Drossos et al.,[2020)), and various audio classification
datasets including UrbanSound8K (Mesaros et al.,|2018)) and FSD50k (Fonseca et al.,[2021). The
Image/Video category includes datasets for visual question answering, document understanding, and
general image comprehension tasks.

E MORE EXPERIMENTS AND DISCUSSION

E.1 AuUDIO ENCODING

Audio Encoder Backbone. To investigate the choice of audio representations for the omni-modal
model, we evaluate two state-of-the-art audio encoders: Qwen2-Audio (Chu et al |2023)) used by
Qwen2.5-Omni (Xu et al., 2025)), and the AF-Whisper backbone (Goel et al.| [2025) from Audio
Flamingo 3 (Goel et al.,|2025). This comparative analysis enables us to identify the backbone that
provides the most effective encoding for downstream multimodal tasks. Specifically, we ablate these
key components by aligning them with the LLM backbone model we used in audio-only training.
We use 10% of the audio/speech training data to fairly evaluate the effectiveness of the two encoders
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under the same data budget. As shown in Table[T7] AF-Whisper consistently outperforms the Qwen-2
Audio encoder backbone on audio and speech understanding tasks. Therefore, our final model
architecture adopts the AF-Whisper backbone to extract informative audio features.

Table 17: Ablation study on different Audio Encoder backbones.

Audio Encoder LS-clean LS-other MMAU-mini MMAU
Qwen2-Audio 5.5 7.1 61.5 59.0
AF-Whisper — chosen 2.1 5.2 70.5 63.3

Audio Token Compression. For the AF-Whisper encoder, similar to Whisper-large-v3 (Radford
et al.| 2023), the process begins by resampling the audio to a 16 kHz sampling rate, followed by
transforming the raw waveform into a 128-channel mel-spectrogram using a 25 ms analysis window
and a 10 ms hop interval (i.e., a hop length of 160). This yields 3,000 audio frames for a 30-second
audio, which are then processed through convolutional layers and a transformer model to extract
audio features, resulting in 750 sequential audio feature vectors. Therefore, each second of audio is
roughly represented by 25 tokens. While this may not seem like a lot for a 30-second audio, encoding
one hour of audio would require about 90,000 tokens, which could overwhelm the context length of
multimodal models.

We next explore several audio information compression strategies to improve efficiency in representing
audio information. In our ablation study, we fine-tune the preliminary checkpoint before large-scale
training on a 2.6M audio-only dataset, referring to this configuration as the Baseline. We then
evaluate two audio feature compression methods: (i) Applying 1-D convolution with kernel size 3
and stride 2 before audio projector, or (ii) Applying average or max pooling with kernel size 2 before
audio projector. We assess performance on audio understanding benchmarks, including Librispeech,
Gigaspeech, VoxPopuli, and Long Audio Bench (Goel et al.l 2025) and present results in Table [I§]
We also report the embedding per minute of input audio and the average end-to-end latency of the
LLM forward pass on Long Audio Bench for each variant in the table.

Table 18: Downsampling method comparison for audio token compression in OmniVinci. For
Librispeech, Gigaspeech, and VoxPopuli we report WER (lower is better). For Long Audio Bench
we report accuracy (higher is better) and latency (lower is better). Gains are computed relative to the
baseline (All audio tokens).

Model ‘ Emb./min | Librispeech-cl. Librispeech-oth. Gigaspeech VoxPopuli-ASR Long Audio
(@) WER (}) WER () WER (1) WER () Acc. () \ Lat. ()
Baseline - All audio tokens | 750 | 191 449 10.77 5.89 4128 | 178
Audio Compression - - - - - - -
Conv1D stride 2 375 2. 10,() 19 5.22,1) 73 11.01,() 24 6.25,() 36 41.79+() 51 1.454,() 33
Avg. pooling 375 1.96.0.05 4.75 026 10.85.0.08 6.24 035 42.164088 | 1.414037
Max pOOlil’lg — chosen 375 1.93,() 02 w,o,s() 10.78,(),(;1 6.17,() 28 43.15+| 87 1.40+() 38

We observe several advantages via compression. Halving audio tokens leads to significantly shorter
latency, from 1.78 sec/sample to 1.40 sec/sample (+17.7% improvement). For the long audio under-
standing task, applying audio token downsampling improves the accuracy by 2% as it compresses
information into a more condense representative embeddings, alleviates the burden on LLMs when
handling large volumes of audio embeddings. For short-form benchmarks, we study varying down-
sampling options, where we observe max pooling maintains performance across benchmarks without
minimal accuracy degradations.

E.2 MODEL QUANTIZATION AND EFFICIENT DEPLOYMENT

Although OmniVinci demonstrates strong omni-modal performance, real-world deployment quickly
encounters multiple constraints. Large models or long video sequences often exceed device memory
capacity, while interactive applications demand extremely low latency. To meet these challenges,
we compress the model via quantization and optimize the system for speedup. A detailed analysis
of the inference pipeline reveals distinct bottlenecks: the vision and audio towers are dominated
by dense matrix multiplications, processing large batches of tokens in parallel and thus primarily
computation-bound; in contrast, the LLM decoding stage—where the model consumes and generates
one token at a time— is memory-bandwidth limited and becomes the key latency bottleneck in
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Figure 15: Latency comparison between Qwen2.5-Omni and our OmniVinci model on a GeForce RTX
4090 GPU. Our model achieves 1.7 x faster time-to-first-token latency and 2.72x faster decoding
latency.

long-context scenarios. To address this, we adopt a component-aware quantization strategy. For the
vision and audio towers, we apply W8AS8 quantization, reducing arithmetic cost while preserving
representational quality. For the LLM, we employ W4A16 quantization, compressing weights into 4
bits while retaining 16-bit computation, which accelerates bandwidth-limited decoding. Finally, to
recover accuracy, we integrate Activation-Aware Weight Quantization (AWQ) and
SmoothQuant 2023).

We measure the time-to-first-token latency and decoding latency on a single GeForce RTX 4090 GPU
using video clips ranging from 2 to 32 seconds (at 2 frames per second), and compare the performance
against Qwen2.5-Omni in Figure[T3] Overall, these quantization methods allow a 8B model to handle
videos of up to 64 frames on a 24GB RTX 4090 GPU, while achieving 1.7 x lower time-to-first-token
latency and 2.72 x faster decoding latency. For a 16-frame video with audio stream, our model needs
only around 160ms to produce the first token.

E.3 OMNIVINCI WITH ASR TEST-TIME SCALING METHODS

To push the limit of transcription accuracy, we investigate our model’s ability to leverage pre-
trained ASR models in downstream speech understanding tasks. In a cascaded post-ASR processing
setup 2023) as shown in Figure[T6](a), speech inputs are first transcribed by the model’s
ASR module and then processed by LLM based generative ASR error correction. We use a popular
800M streaming variant of Whisper-v3-Turbo from SimulStreaming as the cascaded ASR module.

The results are also shown in Table[T9] The cascaded pipeline yields additional improvements on ASR
tasks, making it particularly beneficial in offline transcription scenarios. We use Phi-4-mm-instruct ’s
5-shot (Abouelenin et al.,[2025)) speech modeling setup as one test-time baseline. For Qwen2.5-Omni
experiment, we follow the official inference scripﬂ for the evaluation reported in the fourth row of
Table[I9] with the original results shown in the third row. From the extended test-time scaling results,
OmniVinci-cascaded improves average WER from 6.3 to 5.7. The OmniVinci-RAG setup yields
a further improvement, reducing average WER from 6.3 to 5.0 with the same model size of ASR
parallel cascading by using ASR text as index for OmniVinci on mutlimodal ASR correction
2025b). We introduce the retriever training details of this setup in the following section.

OmniVinci with ASR based Retriever-Augmented Training.

As shown in Figure [T6] (b), given a primary acoustic input, .A, our objective is to generate a final,
high-fidelity textual output T, (either a transcription for ASR or a translation for ST). The model
has access to two streams of textual information:

1. Internal Hypothesis (7internal): A first-pass generation produced by the omni-modal model
itself, conditioned solely on the acoustic input .A. This represents the model’s direct,
audio-grounded interpretation.

2We follow the official ASR cookbook in|https://github.com/QwenLM/Qwen2.5-0Omni/blob/
main/cookbooks/universal_audio_understanding.ipynb|and a related discussion in https:
//github.com/QwenLM/Qwen2.5-0Omni/issues/ 79 on the Omni settings used in our evaluation.
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Table 19: Speech Recognition WER (%) comparison of different models on speech recognition
datasets.

Model WER (’lﬁ) .

LSciean  LSomer AMI  Tedlium Voxpopuli  Avg.
Phi-4-MM 1.7 3.8 11.5 2.9 5.9 52
Phi-4-MM-in-context (5-shots) 1.6 3.6 11.5 3.0 6.1 52
Qwen2.5-omni: reported (Xu et al.|[2025) 1.8 34 - - 5.8 -
Qwen2.5-omni: reproduced 2.1 3.8 17.8 52 6.1 7.0
OmniVinci 1.7 3.7 16.1 34 6.8 6.3
OmniVinci-cascaded 1.6 3.0 14.1 33 6.5 5.7
OmniVinci-RAG 1.5 3.0 11.6 3.0 5.7 5.0

i ASR text
ig:i:ggg - transcription

Audio
(a) OmniVinci-Cascaded: serial connection from ASR
to Omni model

Audio Streaming

N ASR Model

- — =+ transcription

ASR text Special token <need_ref> or <no_ref>

¥

OmniVinci — — —» transcription

(b) OmniVinci-RAG: Parallel connection between ASR and Omni
models using retrieval token

Figure 16: We illustrate two test-time scaling methods using an extra ASR model: (a) OmniVinci-
Cascaded, using ASR history as an additional input to the Omni model with the audio inputs, and (b)
OmniVinci-RAG, using the retrieval token for prediction. The related results are reported in Table |T_9}

2. External References (7): A set of candidate transcriptions, H = {hi,ha,...,hAn},
generated by one or more external systems. This set represents external, text-only evidence
that may contain valuable corrections or introduce noise.

The task is formulated as a conditional generation problem that jointly models the final output and a
decision variable, d. The model learns to generate a control token indicating its strategy, followed by
the refined text. This decision hinges on the model’s ability to align A, Tinternal, and H to determine
the most reliable path to the ground truth, 7.

E.3.1 INSTRUCTIONAL FORMATTING FOR CROSS-MODAL DECISION MAKING

To facilitate this decision-making process, we structure the input as a comprehensive instruction that
forces the model to weigh different sources of evidence. The model is presented with all modalities
and explicitly prompted to declare its generation strategy.

Task: Perform reference-augmented correction for a given
speech input.

Objective: Evaluate the quality of an internally generated
hypothesis against external candidates. First, select a
generation strategy by producing a control token. Then,
generate the final, corrected text.

— If the internal hypothesis is deemed superior and
well-aligned with the audio, select <accept_internal>.

- If the external candidates provide necessary corrections,
select <integrate_reference>.
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Acoustic Evidence: [AUDIO]
External Candidate Transcriptions:
1 {h_1}

2 {h_2}

3 {h_3}

4. {h_4}

5 {h_5}

Internal Hypothesis:
{T_internal}

Output:

The model is then trained to generate the complete target string, beginning with either
<accept_internal> or <integrate_reference>, followed by the corrected and final-
ized text. We expand the model’s vocabulary with these two special tokens to serve as explicit control
signals.

E.3.2 SUPERVISION FOR DECISION-AWARE FINE-TUNING

Supervision for this decision-aware fine-tuning is derived by comparing the internal hypothesis
(Tinternal) against the ground truth (7 and the external references (). The decision label is deter-
mined as follows:

* <accept_internal>: This label is assigned when the word error rate (WER) of Tipernal
is below a predefined threshold or when the external references in ‘H offer no improvement
or introduce hallucinations. This teaches the model to trust its own cross-modal alignment
between audio and text when its confidence is high.

* <integrate_reference>: This label is assigned when Tiyema contains correctable
errors and at least one hypothesis in H provides information that reduces the WER relative
to Tg. This trains the model to identify valuable external information and integrate it,
effectively re-aligning its understanding based on supplementary textual evidence.

The final training target is the concatenation of the assigned decision token and the ground-truth
transcript Tg.

E.3.3 INFERENCE-TIME CONTROL FLOW

At inference, the omni-modal model processes the multi-source input containing the audio, its internal
hypothesis, and the external references. The first token generated by the model dictates the subsequent
control flow:

* If the model generates <accept_internal>, it signals high confidence in its own audio-
to-text mapping. For the final output, we can simply use its pre-computed internal hypothesis,
Tinternal, OF allow the model to regenerate it.

* If the model generates <integrate_reference>, it indicates that the external textual
evidence is necessary for achieving a better output. The full sequence generated by the
model following this token is taken as the final, corrected transcript.

This mechanism provides an interpretable and controllable framework for test-time adaptation,
allowing the model to dynamically adjust its reliance on external knowledge based on the specific
challenges of each input. This is critical for robust performance in both ASR, where the focus is
on transcription fidelity, and ST, where a correct semantic understanding grounded in both audio
and reference text is paramount for accurate translation. Table[I9|presents the performance of this
method, denoted as OmniVinci-RAG. It substantially improves the model’s results across all speech
recognition benchmarks.

E.4 SPEECH OUTPUT

Rather than training a speech generation model from the ground up, we leverage state-of-the-art
pre-trained text-to-speech (TTS) systems to produce speech in relevant scenarios, and adapt our
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approach using a speech codec when needed. Our evaluation focuses on English omni-modal-in and
voice-out, using two complementary metrics: mean opinion score (MOS; higher indicates greater
naturalness) and TTS word error rate (WER; lower indicates higher intelligibility), the latter measured
through an external ASR system. As reported in Table [20] existing off-the-shelf models already
yield high-quality, neutral speech suitable for assistant-style applications. Among the back ends
tested, OmniVinci-Magpie achieves the best overall balance (MOS 4.63, WER 2.7%), followed
closely by gpt-4o-mini-tts (MOS 4.59, WER 3.1%) and Qwen-omni (MOS 4.53, WER 3.2%).
OmniVinci-StableCodec delivers a competitive WER (2.9%) but with slightly reduced naturalness
(MOS 4.12), highlighting that intelligibility and perceived naturalness are not always aligned. In
contrast, Bark underperforms on both measures (MOS 3.32, WER 8.2%), consistent with its more
stochastic synthesis approach.

Setup. We evaluate prompt following on VoiceBench style/control splits and conversational control
tasks. We compare three prompting strategies over interleaved audio—vision contexts: (i) Tran-
script prompting (ASR—text): [aud, vis]*3 + text-prompt, (ii) Native audio prompting (encoder fea-
tures): [aud, vis]*® + aud-prompt, (iii) TTS-injected prompting (render text to speech, then encode):
[aud, vis]*3 4+ TTS(text-prompt). We also ablate prompt position: prefix [aud-prompt] + [aud, vis] *3,
mid [aud, vis|, [aud-prompt], [aud, vis]*2, and suffix [aud, vis]*3, [aud-prompt].

Metrics. We report (a) Prompt Adherence Rate (PAR; judged by paired preference and rubric scoring),
(b) slot accuracy for constrained commands (names, numerals, entities), and (c) latency/efficiency (no
additional ASR pass). For speech rendering quality, MOS/WER results are summarized in Table

Key Insight 4. (1) Native audio prompting is the most robust to accents, background noise,
and overlapped speech; it preserves prosodic cues (rate, emphasis) that pure transcripts dis-
card, leading to higher PAR and slot accuracy in noisy and accented conditions. (2) Transcript
prompting is competitive on clean speech but degrades when ASR struggles on named entities or
code-switched fragments. (3) TTS-injected prompting reduces acoustic mismatch in far-field sce-
narios and is effective when a consistent house voice is desired, but it transfers less speaker/style
information than using the raw prompt audio. (4) Prompt suffix placement—immediately before
the model’s response—consistently outperforms prefix and mid insertion, likely due to reduced
long-range interference in the attention context.

Encoding the audio prompt directly (no external ASR) yields the best prompt following under realistic
noise/accents while lowering latency and memory by avoiding an extra ASR pass. Suffix-position
audio prompts provide the strongest control.

Table 20: English naturalness MOS (higher is better) and TTS word error rate (WER; lower is better).
Best per column in bold.

Setup Regime MOS t WER (%) |
Qwen-Omni auto-regressive 4.53 32
GPT-40-mini - 4.59 3.1
OmniVinci-Cozy Voice agentic cascaded 4.54 3.0
OmniVinci-Bark agentic cascaded 332 8.2
OmniVinci-StableCodec auto-regressive 4.12 2.9
OmniVinci-Magpie (chosen) agentic cascaded 4.63 2.7

Beyond raw scores, we observe consistent performance across synthesis regimes. Agentic cascaded
setups that decouple text planning from acoustic rendering tend to produce strong MOS and low WER
in our pipeline, while auto-regressive models are competitive but show greater variance. Importantly,
swapping the TTS back end does not alter OmniVinci ’s language understanding or response planning;
it only affects the surface realization of speech, simplifying deployment-time customization (e.g.,
voice, rate).

For interactive agents, streaming synthesis and low perceived latency are crucial. Our chosen back
ends support incremental generation, enabling prompt first-audio while the remainder of the utterance
is synthesized. In production, we prioritize (i) stability on numerals, abbreviations, and named
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entities, (ii) speaker consistency across turns, and (iii) graceful handling of punctuation and prosody
cues from text.

E.5 ANALYSIS: WHY DO WE NEED OMNI-MODAL LLMs?

Humans perceive the world through vision and audio simultaneously and rely on both modalities
to perform many tasks. While certain academic benchmarks for visual or audio understanding may
require only a single modality, we believe that developing omni-modal models is critically important
and represents the right long-term direction. As noted by [Liang et al.| (2023), different modalities
can exhibit synergy, effectively supporting one another. Madaan et al.| (2024) show that multimodal
learners often outperform their unimodal counterparts. Similarly, Wang et al.| (2024a) argue that
modalities benefit each other by helping the model triangulate a shared underlying reality.

Regarding whether performance improves or degrades on benchmarks after our omni-modal training,
we observe substantial gains in video understanding (as shown in Table[2] VideoMME w/o subtitles
61.67->63.76, +2.09) and comparable performance on most image (Table|6) and audio tasks (Table[4)
relative to single-modality baselines, without increasing model size to accommodate these additional
modalities. We expect that scaling the model to three times its current size would yield further
performance improvements on various benchmarks of different modalities.

Furthermore, we evaluate the performance of the model checkpoint following modality-specific
training and compare it with OmniVinci after omni-modal joint-tuning. As shown in Table 2]
omni-modality joint tuning enhances performance across most image and audio tasks.

Table 21: Comparison of model performance between Modality-Specific Training and OmniVinci
(After Omni-Modality Tuning) across various benchmarks.

Benchmark VQAv2 RWQA SEED MMMU ChartQA AI2D MathVista DocVQA VideoMME Omni Daily World LS LS
val Tmage val val w/o Sub bench omni sense clean other

Modality-Specific Training 79.19 64.71 73.97 4522 77.92 87.89 52.6 88.86 59.52 3132 56.64 4420 1.7 4.0

After Omni-Modality Tuning ~ 83.9 67.5 77.1 49.67 84.6 91.5 63.5 92.9 68.15 4647 6650 4823 1.7 3.7

E.6 EVALUATION ON MORE VIDEO BENCHMARKS

Table 22: TOMATO Benchmark Results (Shangguan et al., [2024)

Category Scores

Model All
Model Direction Velocity Shape  Visual Count
Rotation & Frequency & Trend Cues

VideoLLaMA 2 7B (Cheng et al.||2024b) 10.10 22.80 15.70 18.80 3140  19.50 18.50
Phi 3.5 Vision (Abdin et al.;[2024) 20.30 16.60 14.30 23.30 40.00 2470  20.70
InternVL 2 8B (Chen et al.|[2024b) 17.10 25.10 09.00 28.70 3140 2290 21.70
LLaVA-NeXT-Video-32B (Zhang et al.|[2024a) 20.60 26.30 12.40 24.20 30.00 24.30 22.70
InternVL 2 26B (Chen et al.,[2024b) 18.50 29.30 10.50 31.40 1140 2570 23.30
VideoLLaMA 2 72B (Cheng et al.}[2024b) 14.30 24.60 22.40 26.50 27.10 28.80 23.50
Video LLaVA 7B (Lin et al.}[2023) 29.40 17.90 27.10 23.30 3430 2090 23.60
LLaVA-Video-7B-Video-Only (Zhang et al.;[2024d) 15.40 24.10 19.50 31.40 38.60 25.70 23.90
OmniVinci (ours) 21.30 20.80 09.50 21.10 4290 40.80 24.30

We further evaluate OmniVinci on two additional benchmarks: TOMATO (Shangguan et al.| |[2024)),
which emphasizes video temporal reasoning, and OmniVideoBench (Li et al.,[2025a), which focuses
on visual-audio synergistic understanding, including long-term temporal reasoning. The quantitative
results for both benchmarks are presented in Tables [2;2] and@ On TOMATO, OmniVinci achieves
competitive performance across diverse temporal reasoning categories, notably excelling in Visual
Cues and Count. On OmniVideoBench, OmniVinci also establishes a new state-of-the-art overall
score among 7B-scale models, demonstrating robust capability across different video duration
ranges. These results collectively highlight OmniVinci’s strong generalization ability in complex
temporal and multimodal video understanding tasks.
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Table 23: OmniVideoBench Benchmark Results (Li et al., [2025a)

Model LLM Params (0,1l min (1,5l min (5,10l min (10,30l min Overall
VideoLLaMA?2 (Cheng et al.|[2024b) 7B 32.0 28.23 29.6 28.29 29.2
Qwen2.5-Omni (7B) (Xu et al.}|2025) 7B 41.57 2741 25.33 26.72 29.3
Qwen2.5-VL (72B) (Bai et al.,|2025) 72B 33.13 30.03 31.88 24.43 29.5
MiniCPM-o (Yao et al.||2024) 7B 3143 28.49 34.53 26.15 29.7
Qwen2.5-VL (7B) (Bai et al.} 2025) 7B 25.93 30.03 31.88 30.15 29.8
HumanOmniV2 (Team}|2025) 7B 36.57 29.36 29.62 29.25 30.5
Gemini-2.0-Flash (DeepMind} |2025) - 33.73 35.86 32.75 22.48 31.3
Qwen2.5-VL (32B) (Bai et al.;|2025) 32B 38.55 31.22 29.26 30.53 31.8
OmniVinci (ours) 7B 38.55 34.11 30.13 27.16 321

E.7 TEXT UNDERSTANDING EVALUATION

The primary goal of this work is omni-modal understanding across video, audio, and images, with
text-only tasks falling outside its scope. For reference, we evaluate our model on two widely adopted
text understanding benchmarks: MMLU (Hendrycks et al., [2021) and MMLU-Pro (Wang et al.,
2024d)), in Table @ These tasks assess a model’s ability to reason over a broad range of academic
and professional subjects. We compare our system against the closely related Qwen2.5-Omni (Xu
et al., |2025). Our model outperforms Qwen2.5-Omni on both benchmarks, with a particularly
notable improvement on the more challenging MMLU-Pro dataset, highlighting its enhanced text
understanding capabilities.

Table 24: Comparison of model performance on MMLU and MMLU-Pro benchmarks.

Model MMLU MMLU-Pro
Qwen2.5-Omni 63.7 23.3
OmniVinci 64.4 32.8

E.8 L0SS SUMMARIZATION
We use a weighted sum of the OmniAlignNet loss and cross-entropy loss, defined by the equation:
Lfinal = Lee + CVLofalign'

We determined the optimal value of & = 0.01 via an ablation study, the results of which are presented
in Table

Table 25: Ablation study results for different values of a.

« Omnibench Dailyomni Worldsense
0.1 44.26 65.75 45.48
0.01 45.74 65.83 46.21
0.001 40.12 65.67 45.90

E.9 ABLATION STUDY OF TEG GROUP DURATION T

The group duration T of Temporal Embeding Grouping (TEG) controls the granularity of the
grouping. To examine its impact on model performance, we conduct a series of experiments with
varying group durations, as shown in Figure [I'7] Empirically, we find that a duration of 30 seconds
yields the best overall performance. We hypothesize that small Tz may break the semantic coherence
between tokens.
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Figure 17: Performance comparison using different TEG group duration 7. We find that a duration
of 30 seconds yields the best overall performance.
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