
Under review as submission to TMLR

Formal Methods in Robot Policy Learning: A Survey on
Current Techniques and Future Directions

Anonymous authors
Paper under double-blind review

Abstract

As hardware and software systems have grown in complexity, Formal Methods (FMs) have
been indispensable tools for (1) rigorously specifying acceptable behaviors, (2) synthesizing
programs to meet these specifications, and (3) validating the correctness of existing pro-
grams. In the field of robotics, a similar trend of rising complexity has emerged, driven in
large part by the adoption of deep learning. While this shift has enabled the development of
highly performant robot policies, their implementation as deep Neural Networks (NNs) has
posed challenges to traditional formal analysis, leading to models that are inflexible, fragile,
and difficult to interpret. In response, the robotics community has introduced new formal
and semi-formal methods to support the precise specification of complex objectives, guide
the learning process to achieve them, and enable the verification of learned policies against
them. In this survey, we provide a comprehensive overview of how FMs are integrated into
robot policy learning. We organize our discussion around three key pillars: specification,
synthesis, and verification of learned policies. For each, we highlight representative tech-
niques, compare their scalability and expressiveness, and summarize how they contribute to
meaningfully improving realistic robot safety and correctness. We conclude with a discus-
sion of remaining obstacles for achieving that goal and promising directions for advancing
FMs in robot learning.

1 Introduction

Both in natural and artificial settings, it has been repeatedly observed that surprising levels of complexity
and capability can emerge from systems built by massively scaling and composing simple components or
rules (Anderson, 1972). The “bitter lesson” learned by artificial intelligence researchers is one instance of
this phenomenon: methods that scale effectively with data and compute tend to outperform those that rely
on explicitly incorporating human knowledge (Sutton, 2019). The emergent complexity of such scalable
systems is one of the most significant factors behind the success of Deep Learning (DL) (Kaplan et al.,
2020). When combined with well-developed theoretical frameworks for general decision-making and control,
DL techniques have scaled from achieving superhuman performance in game playing (Mnih et al., 2015), to
enabling effective robotic manipulation (Levine et al., 2016; 2018), and now to powering increasingly general
embodied agents and foundational models for robotics (Reed et al., 2022; Hu et al., 2024; Firoozi et al., 2024).
With this flexibility, it is becoming viable to deploy robots alongside humans in unstructured environments
and with open-ended goals—fulfilling roles such as household assistants (1X Technologies, 2025), autonomous
vehicle controllers (Favaro et al., 2023), and medical assistants (Empleo et al., 2025).

However, these new use cases demand higher levels of confidence in deployed robot policies and, consequently,
greater levels of policy interpretability, robustness to uncertainty, and compliance with behavioral and safety
specifications. Alarmingly, achieving such confidence appears to be fundamentally constrained by the very
increase in policy complexity that has enabled these systems’ viability. Learned robot policies, typically
parameterized by deep NNs, are well known for their lack of interpretability (Zhang et al., 2021), poor gen-
eralization to out-of-distribution settings (Fang et al., 2024), and vulnerability to adversarial inputs (Szegedy
et al., 2014; Xiong & Jagannathan, 2024). These limitations are particularly concerning in safety-critical
or high-stakes environments, where failures can lead to catastrophic outcomes, and conventional approaches
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to specifying robot behavior, such as reward functions or behavioral demonstrations, have so far failed to
address these issues of policy trustworthiness. Due to their lack of guarantees, they can lead to unsafe,
under-performing, or misaligned behaviors due to phenomena such as reward hacking (Skalse et al., 2022)
or overfitting (Goodfellow et al., 2016). Even when safety is not the primary concern, these approaches also
lack the expressive power to formally and concisely define complex, compositional, or temporally extended
tasks.

In the world of software, similar safety concerns have emerged as increasingly complex programs were de-
ployed in safety-critical settings (Baase, 2008), and these concerns have motivated the development of For-
mal Methods (FMs) to mitigate or eliminate these risks. Central to these and subsequent FM frameworks
is the capability to rigorously specify system behavior, for which modal logics like Linear-time Temporal
Logic (LTL) (Pnueli, 1977) have been used with great success. After formally specifying some behavior,
FMs can allow a user to directly synthesize high-level, correct-by-construction programs from a Formal
Specification (FS) (Church, 1963; Solar-Lezama, 2009; Srivastava et al., 2010). Closely related FMs, such as
Model-Checking, provide ways to formally verify that complex programs satisfy their specifications (Baier
et al., 2008; Kästner et al., 2018; Murray et al., 2013). Formal specification, synthesis, and verification now
constitute a complete toolkit for developing highly dependable software systems.

In robotics, these three categories of FMs have likewise been applied and extended to ensure the correctness
and safety of controllers without any learning components. For example, specification languages such as
Signal Temporal Logic (STL) have been developed to express requirements over continuous-time for real-
valued properties of dynamical systems (Maler & Nickovic, 2004), and probabilistic and hybrid-system model-
checking techniques have been introduced as well (Alur et al., 1991). These advancements have enabled the
synthesis and verification of robotic policies based on traditional planning algorithms (Kress-Gazit et al.,
2009), as well as controllers derived from classical optimization (Sun et al., 2022a) and control theory (Abate
et al., 2019). Such formal approaches offer guarantees not only for immediate control actions but also for
long-term behavioral trajectories, directly addressing the predictability and robustness of robotic systems.

With the rise of learning-based methods in robotics, more recent research efforts have sought to use FMs
to synthesize and verify learned policies and address the critical weaknesses of purely learning-based ap-
proaches mentioned above. These new FMs have the potential to systematically provide interpretability,
behavioral guarantees, and safety assurances for neural-network-based robot policies. Moreover, FSs allow
for richer and more concise behavior definitions than reward functions or demonstrations, easily capturing
complex, compositional, and temporally extended requirements. This combination promises not only ro-
bust performance but also strict conformance to intended behaviors, substantially reducing susceptibility
to value misalignment or adversarial exploitation. Consequently, FMs represent a promising approach for
transforming learned robot policies from impressive but opaque models into transparent, reliable, and trust-
worthy solutions ready for real-world deployment. In this survey, we contribute a thorough overview of these
recently developed methods.

Scope and Contribution This survey aims to provide for robotics researchers an accessible introduction
to and comprehensive overview of recent work at the intersection of FMs and DL for robot control. Unlike
prior surveys that focus on applying learning methods to FMs (e.g., Wang et al. (2020)), we instead focus
on the application of FMs to learning-based methods. Specifically, this is a survey of FMs as applied to
learning methods for robot policies, rather than to general Machine Learning (ML) systems (Larsen et al.,
2022; Urban & Miné, 2021).

Several surveys have reviewed the use of FMs in robotics. For instance, Luckcuck et al. (2019) examine
a range of FMs applications in autonomous robotic systems, with a focus on model checking for robotics
software and specification languages. However, since that survey, DL-based systems have gained greater
prominence in robotics and remain largely unexamined in that context. Similarly, Belta & Sadraddini
(2019) survey formal synthesis methods for optimization-based robot controllers but does not address learned
controllers. Some existing surveys have examined subfields of FMs relevant to ensuring the safety of learned
controllers—such as Specification Mining (SM) (Bartocci et al., 2022), learning certificate functions (e.g.,
Lyapunov functions, barrier functions, and contraction metrics) (Dawson et al., 2023), set-propagation-based
reachability analysis (Althoff et al., 2021), Hamilton-Jacobi (HJ) reachability analysis (Bansal et al., 2017),
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Specifications (§2)

φ
Synthesis (§3)

π
Verification (§4)

π |= φ

Figure 1: Our survey organizes work on FMs for robot policy learning in three categories: Work on learning-
based-policy-amenable specifications for robot behavior, typically denoted by ϕ, FM-informed learning
(synthesis) of robot policies, typically denoted by π, and verification that a learned robot policy satisfies
a specification, typically denoted by π |= ϕ.

cyber-physical system verification (Tran et al., 2022), and adjacent safe learning methods (Brunke et al.,
2022). We also include the most relevant above subfields in this survey, provide an up-to-date overview of
each, and refer readers to existing works for more in-depth details where appropriate. More importantly,
however, we offer a comprehensive comparison across these methods and situate them within a unified
organizational framework. To our knowledge, no prior survey has provided such an integrated perspective
on how FMs have been developed and adapted specifically for DL-based robot policy learning. We expect
this to be a valuable resource for guiding future research in this area.

Outline We consider the use of FMs for robot policy development to be naturally summarized with the
three stage pipeline shown in Figure 1. The pipeline begins with the acquisition of a formal behavioral
specification, proceeds to the synthesis of a policy based on the specification, and concludes with the verifi-
cation of the policy against that specification. We therefore have adopted the same structure to organize our
survey. Section 2 surveys the first stage, which is further stratified into methods for acquiring specifications
and representing specifications for downstream usage with NNs (e.g., as real-valued inputs, differentiable loss
functions, etc.). Section 3 surveys policy synthesis methods and summarizes how policy learning techniques
can be informed by behavioral specifications to enable more complex tasks, accelerate learning, or improve
safety. Section 4 surveys methods focused on verifying that learned controllers conform to specifications.
We clarify for each method the underlying verification approach, the specifications they support, and the
assumptions they make on the system and controller. Finally, Section 5 discusses notable gaps in the existing
work to clarify directions for future work, and Section 6 concludes the survey with a summary of the above
content.

2 Formal Specifications for Learning-Based Policies

We begin our survey focusing on the foundational concept underlying all FMs: the Formal Specification (FS).
No method for policy synthesis or verification can operate without a precise description of the behavioral
requirements that a policy must fulfill. However, acquiring and representing such specifications is a significant
challenge, especially for systems that are high dimensional, stochastic, or partially observable. To provide
context, we first introduce the basic definitions and the most widely used representations of FSs as they
appear throughout the literature on FMs. We then review key research on two core problems: how formal
specifications are obtained, and how they are represented to support downstream synthesis and verification
methods.

2.1 Preliminaries

Languages Classically, FMs aim to ensure that systems behave as desired (Baier et al., 2008), but behaving
“as desired” is fraught with ambiguity. The first step to eliminating that ambiguity is considering the system
under an appropriate formal model, and the standard choice is a discrete transition system. We provide an
illustrative example of such a system and a FS of complex and temporally extended behavior for the system
in Figure 2. In general, a discrete transition system is a tuple (S,A,−→, I, AP,L), where S is a set of states,
A is a set of actions, −→ ⊆ S × A × S is a transition relation (i.e., a set of possible transitions (s, a, s′)
between pairs of states s, s′ ∈ S given actions a ∈ A), I ⊆ S is a set of initial states, AP is a set of atomic
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(a) The office building grid-world environ-
ment with two office rooms (O1 and O2), a
conference room (C), a storage room (R),
and a break-room (B).

□♢O1 ∧ □♢O2︸ ︷︷ ︸
Recurrence

∧ □Cbusy ⇒ ¬C︸ ︷︷ ︸
Safety

∧ ♢B︸︷︷︸
Guarantee

(b) An LTL expression describing a language (i.e., a set of be-
haviors) that requires the two offices are visited infinitely often,
the conference room is never visited when it is occupied, and
the break-room is eventually visited at least once. According to
the standard classification in Manna & Pnueli (1990), these are
recurrence, safety, and guarantee sub-expressions.

t = 0 6 16 26 36 · · · tB · · ·

L(st) =
{
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(c) The labeling for each state in the example behavior, through
which one can determine if the behavior satisfies the LTL expres-
sion.

Figure 2: A typical discrete domain modeling a single agent in a building with several rooms. The model
is defined with atomic propositions corresponding to the agent’s presence in each room and the occupancy
status of the conference room (AP = {R,O1, O2, C,B,Cbusy} using the symbols in 2a). The example
behavior in blue depicts the agent exiting the starting room, cycling infinitely between visiting the offices,
and at some point visiting the break-room. An example LTL expression (2b) can be used to specify complex
behaviors and is evaluated over sequences of labels (2c) obtained via the labeling function L : S → 2AP .

propositions, and L : S → 2AP is a labeling function that maps each state to the set of true propositions
for that state (Baier et al., 2008). Under this model, the behavior of a system can be formally defined as a
(possibly infinite) sequence of states (s0, s1, . . .) ∈ S∞, where S∞ denotes the set of all possible finite and
infinite sequences over S. The possible sequences are further restricted to the sequences starting with states
s0 ∈ I, and those that can be induced by another sequence of actions (a0, a1, . . .) ∈ A∞, and the system’s
transition relation −→.

Provided that that behaviors under this model (as well as others) are formally sequences of states, it is natural
to use tools from formal languages to express specifications of desirable behavior. While this provides many
formalisms with the expressiveness necessary to describe most behaviors relevant to robotics applications,
we focus on two particularly useful and relevant formalisms: LTL (Pnueli, 1977) and Finite State Automata
(FSAs).

Temporal Logic LTL is an extension of propositional logic. Logical expressions for any system, typically
denoted by ϕ and belonging to a set of expressions Φ, are defined over the atomic propositions (AP ) for
that system. Atomic propositions can be thought of as the simplest boolean observations one can make from
the state of the system. These can then be combined in more complex expressions using standard boolean
operators such as “not” (¬), “and” (∧), “or” (∨), and “implies” (⇒). To describe behaviors over time,
LTL introduces additional “temporal” operators referred to as “next”, denoted by ⃝ or X, “eventually” (or
“finally”), denoted by ♢ or F , “always” (or “globally”), denoted by □ or G, and “until” denoted by U . The
syntax of LTL is given by the following grammar:

φ ::= true | false | p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2 | ⃝φ | ♢φ | □φ | φ1Uφ2.

A complete treatment of LTL is available in Baier et al. (2008), but we provide a brief summary of the
temporal operator semantics here. The first three operators ⃝, ♢, and □ are unary, meaning they apply
to only one sub-expression, and respectively express the requirement that the sub-expression is true at the
immediate next moment in time, any moment in the future, or for all times in the future. The until operator
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U is binary, meaning that it applies to two sub-expressions, and expresses the requirement that the first
sub-expression is true at all future times until the second sub-expression is true at some future time. By
composing and nesting these operators, one can quickly express highly complex and temporally extended
behaviors with simple LTL specifications like the example in Figure 2.

Signal Temporal Logic (STL) (Maler & Nickovic, 2004) is a popular formalism that extends LTL in order
to specify behaviors for real-valued signals defined over continuous time intervals. Using STL requires that
each atomic proposition p ∈ AP is associated with a real-valued function of the system state µ : S → R, and
the boolean value of the proposition in a state s is determined by the value of µ(s) ≥ c for some threshold
value c ∈ R. Furthermore, the temporal operators are extended to consider the value of sub-expressions over
a specific future time interval [a, b] with a ∈ R, b ∈ R ∪ ∞. The resulting grammar for STL expressions is

ψ ::= µ(s) ≥ c | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ψ1 ⇒ φ2 | ♢[a,b]ψ | □[a,b]ψ | ψ1U[a,b]ψ2,

with timing and threshold parameters a, b, c. Expressions in STL, in addition to supporting the true-or-false
semantics of LTL expressions, support a quantitative semantics defined by a “robustness” function ρ that
measures how much a sampled signal satisfies or violates the property specified by an STL formula ψ ∈ Ψ.
We refer the reader to Maler & Nickovic (2004) and Dawson & Fan (2022) for the original definition and a
more recent summary of STL semantics.
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1
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O
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Figure 3: A Deterministic Büchi Automaton
(DBA) for ϕ = □♢O1 ∧ □♢O2. Intuitively,
as the agent periodically encounters states s
satisfying O1 ∈ L(s) and O2 ∈ L(s), the au-
tomaton moves from q0, to q1, to q2, and back
to q0. As a result, the accepting state q0 ∈ F
is visited infinitely often and the sequence is
deemed to satisfy ϕ.

Automata A class of abstract machines termed FSAs pro-
vide a very useful alternative formalism for the same lan-
guages expressible in LTL. Within FSAs, there are automata
that are meant to represent languages with finite elements
(i.e., sets containing only finite behaviors) and ω-automata,
which are capable of representing languages with infinite el-
ements. More specifically, these are called regular and ω-
regular languages. The former automata have a single, well-
established representation, so we elaborate here on the more
complex ω-automata.

An ω-automaton is, like LTL, used to represent sets of se-
quences composed of elements in the set 2AP . This is equiv-
alent to representing sets of acceptable behaviors for a dis-
crete transition system. An automaton does this by defining
a procedure for reading one of these sequences element-by-
element and subsequently determining whether the sequence
is a member of the language. An example depicting the au-
tomaton for an LTL expression from the domain in Figure 2
is shown in Figure 3. The automaton is always in some state
q ∈ {q0, q1, q2}, and starts in the state q0. As states are en-
countered in the system, the labeling function yields corre-
sponding labels L(s) ∈ 2AP that then induce some change in
the automaton’s internal state as determined by the automa-
ton’s edges. The resulting sequence of internal automaton
states then determines the membership of the input sequence in the set. Formally, an ω-automaton is defined
by the tuple A = (Q,Σ, δ, q0, α), consisting of a set of internal states Q, an alphabet Σ, a transition relation
δ : Q × Σ → 2Q, an initial state q0 ∈ Q, and some acceptance condition α ⊂ Q∞. In our example and in
the context of discrete transition systems, Σ = 2AP . Each element σ ∈ Σ of the input sequence causes some
change in the automaton’s internal state to a new state as permitted by the transition relation q′ ∈ δ(q, σ).
For a deterministic automaton, the transition function δ : Q × Σ → Q leads to a single automaton state
q′ = δ(q, σ) for all q, σ ∈ Q × Σ. The resulting “run” of automaton states qω = q0, q1, q2, . . . is then said to
be accepted if qω ∈ α. There are multiple different kinds of ω-Automata that differ based on the mechanism
by which they define α (Hahn et al., 2022; Baier et al., 2008). For a brief overview, we note that the Rabin
and Büchi acceptance conditions are prevalent.
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A Deterministic Rabin Automaton (DRA) is a deterministic automaton with an acceptance condition defined
by a set of pairs Ω = {(Bi, Gi)} where Bi, Gi ⊆ Q are sets of states. The automaton accepts runs qω for
which there exists a pair (Bi, Gi) in Ω such that qω visits Bi finitely many times and Gi infinitely many
times. A DBA has a slightly simpler acceptance condition defined by a set of states F ⊆ Q, and accepts
runs qω for which qω visits F infinitely many times. However, DBAs are unable to fully express the class of
ω-regular languages, while Non-Deterministic Büchi Automata (NDBAs) are able to do so. We emphasize
how these differences between automaton types have been relevant to research utilizing them in robot policy
learning below in Subsection 2.2.2. We also note that in many cases, the methods we survey rely on standard
algorithms for translating from LTL to automata (Gastin & Oddoux, 2001), so manual design of automata
is almost never necessary.

Although there are many additional formalisms developed in FMs, we conclude our summary of background
here as the majority of work seeking to bridge FMs with DL for robotic control has focused on the above
fundamental specification representations. We refer the reader to Alur & Dill (1994) and Rheinboldt &
Paz (2014) for examples of those other formalisms, and note that their continued exploration is a potential
avenue for future work.

2.2 Current Techniques

Inputs
Objectives

(§2.2.2 ¶1)

Embeddings
(§2.2.2 ¶3)

Feedback
Loss Functions

(§2.2.2 ¶1)

Rewards
(§2.2.2 ¶2)

Constraints
(§2.2.2 ¶2)

πθ(a |s, . . . )

Policy

φ
Specifications

Expert, Data,
Instructions

Acquisition
(§2.2.1)

Figure 4: We organize the research on FSs for robot
policy learning into two broad categories: methods
for specification acquisition and methods for specifi-
cation representation. Within the latter category, we
further categorize works by their focus on represen-
tations for policy input or representations for policy
feedback.

We now survey the current research on FSs for robot
policy behavior, which we first categorize according
to the following two major research questions: (1)
how can we acquire useful FSs despite the complex-
ity of realistic robot systems, and (2) how should we
represent FSs for our eventual goals of formal robot
policy synthesis and verification? We further clas-
sify the works on FS representations as being relevant
to policy-input or policy-feedback. A guide for these
three categories and the following section is provided
in Figure 4.

2.2.1 Obtaining Specifications

Specifications become harder to define as one loses the
ability to effectively model the system, which is the
case for the complex, real-time, continuous, stochas-
tic, and partially-observable dynamical systems in
robotics. The oldest strategy developed to address
this difficulty is SM (Ammons et al., 2002). SM is
the automatic generation of FSs from past experience
or other informal descriptions of correctness. This
problem was initially motivated by the difficulty of
manually designing sufficiently comprehensive sets of
program specifications and the fact that verification procedures are only as useful as the specifications against
which they verify. Instead of manual design, a SM procedure could produce specifications given typical ex-
ecutions of a mostly-correct software system (Ammons et al., 2002), after which the system could be more
rigorously verified in all execution contexts with respect to those specifications. This difficulty only worsens
as systems become more complex, high-dimensional, continuous, real-time, stochastic, partially observable,
and integrated with learned components (Seshia et al., 2018). Consequently, research into using SM in the
context of robotics has attracted significant attention.

From Data with Templates Early work on SM focused on the more tractable problem of only estimating
parameters within some parameterized FS provided by an expert. In many cases, specifications for continuous
systems are expressed in STL, but selecting appropriate timings, thresholds, and other parameters can be
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difficult in practice. To address this, users can supply a partially specified STL formula with free parameters
known as a “template” and apply SM techniques to infer valid parameter values from observed data.

For instance, consider a user interested in characterizing how long it takes a system to stabilize. They might
start with the template ψ = ♢[0,a]□[0,∞]pθ(x), with pθ(x) being a predicate corresponding to the system
having stabilized parameterized by θ. This template formally specifies that at some point within the first a
seconds, the system enters a stable state determined by pθ and remains there indefinitely. SM can then be
used to infer the range of values for a and θ such that the resulting specification is satisfied by a dataset of
observed system behaviors.

Asarin et al. (2012) presented two of the earliest approaches for this problem. The first involves determining
the boolean combination of linear inequalities that constitute the domain of valid parameter assignments
and simplifying them to obtain several sets of satisfactory parameters (Lasaruk & Sturm, 2009). The second
uses randomized search techniques to find parameter values that best match the available data by some
metric. Many follow-up works in SMs have reused either of these fundamental techniques. For instance,
if an accurate system model is available, one can go beyond fitting to a fixed set of example traces. In
this case, a parameter estimation strategy can be interleaved with a specification falsification procedure
(see Section 4.2.4), producing specifications that hold for rollouts across a range of initial conditions (Jin
et al., 2015; Hoxha et al., 2018). However, a notably different strategy, and a particularly significant step
for FMs in robot policy learning as a whole, came with the development of differentiable STL specifications
in the Signal Temporal Logic Computation Graphs (STLCG) framework (Leung et al., 2019). STLCG
enabled the computation of the gradient of a parameterized specification’s satisfaction with respect to its
parameters, which allowed the application of gradient-based optimization techniques to SM. This framework
has since enabled several advances in control and policy synthesis for learned robots, which are covered in
the subsequent sections.

From Data without Templates More recent approaches in SM have moved beyond parameter estimation
in specification templates and attempt to obtain the template as well. Techniques in this category typically
first find a suitable parameterized STL template for the structure and subsequently estimate the parameters
using one of the above techniques (Bartocci et al., 2022). Techniques for learning a full STL formula along
with its structure include direct search over restricted subsets of parameterized STL (Kong et al., 2014; Jones
et al., 2014), constructing the formula to fit discretizations of the example signals (Vaidyanathan et al., 2017),
decision tree learning algorithms (Bombara & Belta, 2021), incrementally constructing, parameterizing, and
filtering STL formulae guided by their robustness (Jha et al., 2019), alternating enumeration and parameter
estimation of a subset of STL formulae (Mohammadinejad et al., 2020), and genetic algorithms (Nenzi et al.,
2018; Aydin & Gol, 2020). Li et al. (2024) notably take an approach similar to STLCG by encoding an
STL formula as an NN and performing SM by training the NN. The complexity of the specification is
then reduced as coefficients in the network are driven to zero during training. Adjacent works also explore
methods for generating specifications from natural language Liu et al. (2022), using Bayesian inference to
sample specifications from distributions constructed with probabilistic programming languages Shah et al.
(2018), and learning automata representing tasks (Topper et al., 2022; Dohmen et al., 2022; Gaon & Brafman,
2020; Rens et al., 2020; Xu et al., 2021) using L∗ (Angluin, 1987) or Hidden Markov Models (Abate et al.,
2023). For more details on these and other SM techniques specifically for STL specifications, we defer to the
survey by Bartocci et al. (2022).

With Higher Levels of Abstraction An alternative approach to the challenge of obtaining specifications
has been enabling fundamentally more expressive logical languages. When dealing with high-dimensional
or partially observable systems, much that we want to specify can only be realistically defined in terms of
high-level, geometrically-rich, or abstract concepts that are difficulty to represent formally. For instance,
STL excels in tractable systems where predicates relevant to a user’s objective, such as reaching a goal, can
simply be defined in terms of a basic function on the system state (e.g., the agent’s spatial coordinates).
Defining such predicates becomes significantly harder when these properties of the system state are not
directly measurable, or when concepts like “reaching a goal” can’t be simply computed even if they are.
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Some research has addressed this challenge by developing languages to more easily express spatial qualities.
Haghighi et al. (2015) relies on a quad-tree representation of the system state and then nests Tree Spatial
Superposition Logic (TSSL) expressions (Gol et al., 2014), which can naturally express relationships between
regions of the system state, within STL. Bortolussi & Nenzi (2014) similarly enable expression of relationships
by adding a “somewhere” operator to STL that operates over a graph-based representation of the system
state. Now, DL has yielded the most effective strategies for reliably perceiving concepts at high-levels of
abstract, and several formalisms have been adapted to integrate with these perception systems. Timed
Quality Temporal Logic (TQTL) (Dokhanchi et al., 2019) and its successor Spatio-Temporal Quality Logic
(STQL) (Hekmatnejad, 2021; Balakrishnan et al., 2021) permit expressing properties over streams of data
provided by an object-detection system. Most recently, Kapoor et al. (2025a) explores directly expressing
properties using the latent space of a pretrained model, such that expressing requirements such as “eventually
reach goal A” can be evaluated based on distance between latent representations of the current system state
and the goal state. Although these methods compromise on the formal verifiability of such expressions, they
gain significant expressiveness for use with synthesis methods.

2.2.2 Using Specifications

After obtaining a specification, a typical next step is using it to shape a robot policy such that the policy
produces behavior satisfying the specification. While we thoroughly cover more details on the strategies
using specifications in policy synthesis and verification in Sections 3 and 4, we introduce in this subsection
the variety of fundamental innovations made just in representing the specification, which can be reused in
many of those downstream methods.

As Loss Functions and Optimization Criteria Following the STLCG framework introduced in Leung
et al. (2019), similar general-purpose frameworks (Leung et al., 2023; Kapoor et al., 2025b) have been de-
veloped for expressing differentiable STL specifications, where the gradient of the specification’s satisfaction
can be computed with respect to all STL parameters and inputs. Naturally, this has been extensively used in
robotics applications involving gradient-based optimization, such as training policies with STL-informed loss
functions (Liu et al., 2023; Xiong et al., 2024). In the case that the policy is itself performing an optimization
procedure, STL specifications can be used online as objective functions (Raman et al., 2014; Meng & Fan,
2023), which has notably been used to compliment the iterative denoising process in diffusion models (Zhong
et al., 2023b; Meng & Fan, 2024b).

As Reward Functions Another prominent usage of FSs, particularly in robot policy synthesis, has been
in automata-theoretic Reinforcement Learning (RL) Hahn et al. (2019). In this subfield, FSs are expressed
as automata which monitor trajectories of a Markov Decision Process (MDP) and dispense rewards to
incentivize choices that lead to satisfying the automaton’s acceptance condition. Works such as Camacho
et al. (2019b) and Jothimurugan et al. (2019) propose methods for automatically deriving these automata
from LTL and related temporal logics, and subsequently defining well-structured reward functions over these
automata—either by performing value iteration over the automaton or by quantitatively evaluating the
predicates labeling each edge. Reward Machines (Icarte et al., 2018; Camacho et al., 2019b; Toro Icarte
et al., 2022) are a specific subclass of reward-dispensing FSAs. While they cannot express all ω-regular
behaviors, their restricted structure has enabled the development of several specialized RL algorithms that
more effectively learn policies for finite-length behaviors.

For ω-regular behaviors, the earliest approaches used DRAs, due to their ability to express all ω-regular
languages. However, subsequent results found that these early approaches using DRAs could fail to obtain
optimal policies for certain objectives (Hahn et al., 2019), and it was later shown that this limitation of
DRAs was unavoidable (Hahn et al., 2022). Subsequent algorithms (Hasanbeig et al., 2019a;b) used the
simpler Büchi acceptance condition but, to avoid the restrictions of DBAs, used Limit-Deterministic Büchi
Automata (LDBAs) (Sickert et al., 2016). These automata can still express all ω-regular languages, but are
restricted so that any non-determinism can be resolved based on the past sequence of automaton states,
which is necessary in a sequential decision making context (Vardi, 1985). These automata that are suitable
for RL have since been formally classified as “Good-for-MDPs” automata in Hahn et al. (2020), and provide
a very general formalism for learning to satisfy arbitrary formally specified, temporally extended objectives.
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As Embeddings Finally, we cover the research dedicated to produce generic embeddings of FS to provide
them as input to learned policies. Several significant works in this area take the approach of encoding
an STL specification as a latent vector of real numbers. Hashimoto et al. (2022) uses a Word2Vec-style
skip-gram model (Mikolov et al., 2013) to train ana NN to encode similar STL specifications to similar
latent vectors. Saveri et al. (2024) encodes STL specifications based on the principal components of a
Gram matrix with elements defined by the robustness of a set of candidate behaviors with respect to a
set of candidate specifications. Other approaches, building on uses of Graph Neural Networks (GNNs)
for processing symbolic representations of logical languages (Lamb et al., 2021; Crouse et al., 2020), first
translate specifications into their automata representation and then use a graph neural network to produce
a finite-embedding summarizing the automaton (Xie et al., 2021; Yalcinkaya et al., 2025). Again, such
methods sacrifice the formal soundness of their input FSs in order to gain from the versatility of conditional
generative models.

3 Formal Methods in Robot Policy Synthesis

In this section, we survey the strategies developed for synthesizing policies, or in other words, learning
policies, in order to satisfy FSs. Applying FMs to policy learning holds the promise of enabling policies
that are not only more trustworthy and reliable, but also capable of learning and executing the rich, non-
Markovian behaviors commonly expressed in typical FSs. This overall objective contains several constituent
challenges that we describe, along with their associated bodies of research, in the following subsections. For
background, we first provide a short summary of relevant techniques developed for classic formal synthesis
methods, the existing applications of FMs in robot planning and control, and the fundamentals of robot
policy learning. We then systematically cover the work in formal synthesis for robot policies.

3.1 Preliminaries

Program Synthesis Although the goal of automatically generating programs has a long history dating
back to the early days of computer science—ranging from the development of high-level language compilers to
today’s LLM-based coding assistants—there exists a distinct class of “formal synthesis” methods. These seek
to generate programs to provably obey FSs that jointly define syntactic structure and semantic correctness
requirements for the program (Solar-Lezama, 2023). The roots of formal synthesis trace back to work by
Alonzo Church on generating digital circuits from mathematical specifications of behavior Church (1963),
and to classic approaches that synthesized functional programs using interactive theorem provers via the
Curry–Howard correspondence Manna & Waldinger (1980). The field has since evolved to incorporate
efficient search-based strategies for navigating program spaces defined by syntactic constraints (Solar-Lezama,
2009; Alur et al., 2013; 2018), often with guidance from verification tools (Srivastava et al., 2010) or input-
output examples (Feser et al., 2015). Several paradigms developed in formal program synthesis—such as
Counter-example Guided Inductive Synthesis (CEGIS) (Solar-Lezama et al., 2006; 2008)—have since been
adapted to the synthesis of robotic controllers and learning-based policies. In CEGIS, for example, the
synthesis process is iteratively refined through counterexamples produced by formal verification procedures,
ensuring that the candidate program converges to one satisfying the full specification.

Reactive Synthesis Reactive synthesis methods developed as program synthesis was applied to concurrent
programs, for which an appropriate model is a “reactive system”. Unlike typical programs that produce a
single output and terminate, reactive systems continuously receive inputs from their environment and produce
corresponding outputs (Pnueli & Rosner, 1988). As a result, they naturally model non-terminating systems
such as controllers, protocols, and embedded systems that must maintain correct behavior indefinitely. The
reactive synthesis problem is often framed as a two-player game between the system and its environment,
with the objective of synthesizing the strategy that ensures the specification is satisfied regardless of how the
environment behaves. Foundational work by Pnueli & Rosner (1988) introduced this game-theoretic view of
synthesis for LTL specifications, and subsequent efforts have focused on improving scalability, synthesizing
systems from useful subsets of LTL (Bloem et al., 2012), and producing implementations in hardware or
software (Ehlers, 2010; Meyer et al., 2018).
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Formal Methods in Motion Planning and Optimal Control The aforementioned reactive synthesis
techniques have played a foundational role in many FMs applied to robotics. Early work by Fainekos et al.
(2005) began to introduce using FMs for robotics problems by exploiting model checking techniques (refer to
Section 4) to support LTL as a specification language for motion planning. This line of research into motion
planning with FSs has since extended to multi-agent systems and more expressive specification languages
(Sun et al., 2022a; Verhagen et al., 2024). Kress-Gazit et al. (2009) subsequently utilized reactive synthesis
methods to obtain automaton-based motion planning policies that guarantee satisfaction of the input task.
This approach has since been generalized for arbitrary MDP optimal control under temporal logic constraints
(Wongpiromsarn et al., 2010; Smith et al., 2011; Ding et al., 2011; Chu (Dennis) Ding et al., 2011). However,
these methods rely on the assumption that the underlying system is discrete or can be faithfully modeled with
a discrete abstraction. As a result, this approach to policy synthesis has been termed “abstraction-based”
(Belta & Sadraddini, 2019).

An alternative group of methods circumvent this reliance on a discrete abstraction by directly formulating
and solving optimal control problems derived from FS. Within this category, popular approaches include
encoding temporal logic as sets of constraints in Model Predictive Control (MPC) schemes (Raman et al.,
2014) or offline trajectory optimizations (Yang et al., 2020) and solving mixed continuous-discrete Hamilton-
Jacobi-Bellman (HJB) equations via approximate dynamic programming (Horowitz et al., 2014; Papusha
et al., 2016). These methods are increasingly capable, but still face computational challenges in real-time
settings and often assume full state observability or perfect models—limitations which motivate integration
with learning-based methods.

Robot Policy Learning The introduction of DL to robotics has made it possible to practically utilize
very general frameworks, such as RL (Sutton, 2018) and Imitation Learning (IL) (Hussein et al., 2017),
for solving robotic optimal control and planning problems in the real world. RL typically solve problems
modeled in terms of MDPs, which are defined by a tuple (S,A, T , d0, r, γ). This tuple consists of a state
space S, an action space A, a transition function T : S × A → P (S) (where P (S) represents the space of
probability measures over S), an initial state distribution d0 ∈ P (S), a reward function r : S ×A → R, and a
discount factor γ. Given an MDP, the objective is to learn a stationary policy π : S → P (A) that maximizes
the expected discounted return Eτ∼π [

∑∞
t=0 γ

tr(st, at)] over trajectories τ = (s0, a0, s1, a1, . . . ) generated by
interacting with the environment. A variety of RL algorithms can be used to solve this objective, commonly
categorized by their use of environment models (model-free vs. model-based), their data regime (on-policy
vs. off-policy), and their policy representation (value-based vs. policy-based). Most of these approaches rely
on online interaction to collect experience.

Alternatively, IL encompasses policy learning frameworks that leverage a dataset of expert demonstrations
and do not necessarily require extensive online interaction. One prominent subclass is Inverse Reinforcement
Learning (IRL), which aims to recover a reward function that explains the expert’s behavior, allowing
subsequent policy optimization via standard RL techniques (Abbeel & Ng, 2004). Another is Behavior
Cloning, which frames learning as a supervised learning problem, directly training a policy to imitate expert
actions—for example, by minimizing a loss function based on the negative log-likelihood of the expert action
under the learned policy. More recently, offline RL methods have emerged, which seek to learn a reward-
maximizing policy from a fixed dataset of state, action, and reward tuples (Levine et al., 2020). Unlike
behavior cloning, which merely mimics the expert, offline RL seeks to optimize behavior with respect to the
observed rewards, even when they are suboptimal or sparse.

Despite significant advances, all of these policy learning methods are still generally considered unreliable in
safety-critical settings (Skalse et al., 2022; Goodfellow et al., 2016), and this has motivated research into
using FMs to overcome the limitations of learning from manually designed rewards or expert demonstrations
alone.

3.2 Current Techniques

We now survey the current research integrating FMs into policy learning, grouped by the major policy
learning paradigm they belong to. This overall categorization and the constituent subcategories are depicted
in Figure 5. We note that each category primarily builds upon a different body of research discussed in
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πθ

Model-Based RL (§3.2.1 ¶5)
• Learned STL-MPC
• Imitating STL-MPC

Model-Free RL (§3.2.1 ¶1-4)
• Automata-Theoretic RL
• Automata-Guided RL
• Automata-Free RL
• Programmatic RL

Inverse RL (§3.2.2 ¶1)
• Learning Reward Automata
• Learning STL Rewards

Behavior Cloning (§3.2.2 ¶2)
• STL-Derived Losses
• Logical-Hierarchy Methods
• STL-Guided Diffusion Policies

Offline RL (§3.2.2 ¶3)
• Offline Automata-Theoretic RL
• Sequence Modeling

Online Methods Offline Methods

Figure 5: The research in formal synthesis for robot policies can be organized into categories corresponding
to five major robot policy learning frameworks. The first two, model-free and model-based RL methods,
are online methods that rely on environment interaction during learning. Within model-free RL, there are
algorithms that learn from automata-theoretic rewards, algorithms that use automata for guidance without
explicit rewards, algorithms that do not rely on automata at all, and algorithms based on programmatic
policies. Model-based RL primarily extends optimal control techniques, such as MPC, with DL components
to enhance performance or versatility. The remaining three categories, IRL, Behavior Cloning, and offline
RL, are primarily offline methods that learn from pre-collected demonstration datasets. Their constituent
subfields include learning FSs as reward functions for IRL, augmenting behavior cloning losses with FSs,
and training sequence models to generate actions conditioned on high FS satisfaction.

the preliminaries and has different reasons motivating the introduction of either DL or FMs depending on
their background. Online methods in particular introduce DL to generalize the aforementioned classical
approaches in Section 3.1 to settings they are otherwise inapplicable. These include settings with unknown
and complex system models, partial observability, and stochasticity, settings where standard optimization
approaches are too slow, or settings where complex decisions must be made that consider longer, coarser
horizons or partially satisfiable specifications. Offline methods, however, typically come from the robotics or
DL for control communities and attempt to introduce FMs into existing-learning based methods to support
more complex tasks and improve their safety and reliability.

3.2.1 Online Policy Learning

Automata-Theoretic Reinforcement Learning The first works to enable DL to produce policies sat-
isfying high-level FSs established a connection between automata-theoretic verification techniques for proba-
bilistic systems—developed in Courcoubetis & Yannakakis (1995); Vardi (1985)—and model-free RL. Sadigh
et al. (2014) initiated this line of research by reusing the DRAs commonly employed by those verification
techniques. This work trained the policy to act in a product MDP, so named because the state space of this
new MDP was formed with the cartesian product of the plain MDP state space and the automaton state
space. This automaton state augmentation can be seen as providing a minimal “memory” necessary for
obtaining Markovian rewards and policies for otherwise non-Markovian objectives. The Rabin acceptance
condition for a given task automaton could therefore be translated into a valid reward function whose max-
imization would imply maximizing the probability of satisfying the LTL formula. Although this performed
well in practice, subsequent work highlighted their limitations. Specifically, Hahn et al. (2019) demonstrated
that for certain MDPs and ω-regular objectives, it is not always possible to define a reward function based
on the Rabin acceptance condition that yields an optimal strategy. This impossibility was later established
in general by Hahn et al. (2022).

In place of DRAs, DBAs emerged as an attractive alternative due to their simpler and more intuitive
acceptance condition. However, simple DBAs are not ideal due to lacking support for some ω-regular
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objectives. The immediate alternative of using NDBAs, with completely unrestricted non-determinism, is
also infeasible because resolving non-deterministic choices for the automaton may require an unbounded look
ahead into the future (Vardi, 1985), which is impossible in a sequential-decision-making context. The solution
is to rely on a special class of automata with restricted non-determinism, in which every non-deterministic
choice can be resolved based solely on the history of the execution. Hasanbeig et al. (2019a;a) and Hahn
et al. (2019) were the first to use one of these automata by defining a reward from a LDBA (Sickert et al.,
2016). As discussed in Section 2.2.2, this class of automata used in model-free RL has been further studied
and formalized as “Good-for-MDPs” automata in Hahn et al. (2020). Independently, automata-theoretic
methods for finite regular languages using plain FSAs were developed under the name Reward Machines,
and a variety of reward shaping and accelerated RL algorithms were developed to use their particular
formulation (Camacho et al., 2019a; Icarte et al., 2018; Toro Icarte et al., 2022). Reward-shaping techniques
originally developed for Reward Machines in Camacho et al. (2019a) have also been extended to ω-automata
in Bagatella et al. (2024).

Later work in this direction has relaxed assumptions about system observability implicit in the above meth-
ods. Hasanbeig et al. (2019b) notably relax the assumption that one has access to the exact atomic propo-
sition labeling function L, and instead perform learning inside a probabilistically-labeled MDP. On top of
this relaxation, Cai et al. (2021b;a; 2024) relax the assumption that the input FS is always satisfiable and
ensure the resulting policy for unsatisfiable specifications are reasonable.

Automata-Guided Reinforcement Learning Instead of dispensing rewards, automata can also serve
as high-level structures for guiding the execution of multiple low-level or goal-conditioned policies. For
example, Jothimurugan et al. (2021) and Wang & Zhu (2025) (notably supporting ω-regular properties)
both adopt an approach in which a separate policy for each edge of the automaton is first trained via RL.
These edge-specific policies are then composed at execution time using a graph search procedure, such as
Dijkstra’s algorithm, to identify an optimal path through the automaton. Other approaches, such as those
of Nangue Tasse et al. (2022) and Araki et al. (2021), similarly plan over automata to compose lower-level
policies but instead rely on value iteration to compute an optimal composition.

One can trade some generality for computational efficiency by training a single goal-conditioned policy to
replace the full library of edge-specific or task-specific policies used in the above methods (Qiu et al., 2023).
Extending this idea even further, recent work has proposed to directly condition policies on embeddings
(Section 2.2.2) created from automata (Yalcinkaya et al., 2025) and LTL formulae (Kuo et al., 2020; Vaezipoor
et al., 2021), enabling trained agents to generalize to entire new tasks rather than singular goals. However,
the diversity of these tasks is somewhat limited by assuming atomic propositions here are not arbitrary
conditions and exclusively refer to reaching goals in the environment

Automata-Free Reinforcement Learning There are also RL methods that bypass the use of automata
for rewards or guidance and instead rely directly on other FS formats. Several of these are concerned
with continuous-time requirements written in STL, which cannot easily use automaton-based approaches.
Aksaray et al. (2016) focus on STL formulae that can be evaluated over a fixed, finite horizon length n
and define an MDP that augments the state space to record at all times the past n states, from which a
Markovian reward function can be defined. Li et al. (2017) propose defining a non-Markovian reward based
on STL robustness over entire episodes and searching for the optimal policy based on these complete policy
rollouts. Other methods use similar reasoning to provide reward shaping based on an STL formula evaluated
over a fixed-length history (Balakrishnan & Deshmukh, 2019). More recently, works have explored directly
using the gradients provided by differentiable STL specifications to train a policy online (Xiong et al., 2024;
Eappen et al., 2024), although this only supports STL specifications that express requirements of the direct
policy outputs (actions) as opposed to the system state.

Programmatic RL For more formal policy synthesis, there is also growing interest in RL algorithms
that use programmatic policy representations, which more closely align with traditional program synthesis
techniques. Early approaches in this direction focused on approximating RL-trained NN-based oracle poli-
cies with more interpretable, program-like representations that offer benefits such as verifiable correctness
(Bastani et al., 2019) and improved generalization (Inala et al., 2020). Zhu et al. (2019) in particular took
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advantage of this verifiability and adopted a CEGIS-style approach, first approximating a learned policy with
a symbolic program and iteratively refining the program when counterexamples to correctness are found dur-
ing verification. Subsequent work sought to bypass the need for an oracle policy altogether by developing
program representations that could be trained end-to-end with policy gradient methods (Qiu & Zhu, 2022).
More recently, Cui et al. (2024) address the limitations of these approaches in long-horizon, sparse-reward
settings by using programmatic policies not just for execution, but also to aid in exploration and guide a
tree-search over possible programs with encountered rewards.

Model-Based Reinforcement Learning Finally, research has also explored FMs for learning FS-
satisfying policies with model-based RL. Although there are some automata-theoretic approaches in this
community (Fu & Topcu, 2014), there are more that draw upon the latter category of optimization-based
optimal control methods discussed in Paragraph 3.1. They then introduce learning techniques to remove
dependence on knowledge of system dynamics, improve performance, or mimic decisions of experts in situa-
tions when specifications can only be partially satisfied. For instance, Cho & Oh (2018) formulate an MPC
problem with constraints derived from a sequence of prioritized STL formulae, but learns from a dataset
of expert behavior the degree to which those constraints should be satisfied. Meng & Fan (2023) bypass
the typical sampling-based or gradient-based optimization used in MPC by directly learning a model that
predicts optimal action trajectories satisfying STL specifications, enabling real-time performance.

Several methods simultaneously learn a model of the system dynamics along with the control policy. For
example, Kapoor et al. (2020) learns a deterministic predictive model to enable MPC, using an objective
derived from a given STL formula. Similarly, Liu et al. (2023) learns a simple deterministic model but
additionally address the history dependence inherent in LTL-based objectives by implementing the policy
as a Recurrent Neural Network (RNN). Learning the dynamics model can also facilitate formal guarantees
for the resulting policy. For instance, Cohen & Belta (2021) propose to decompose a high-level temporal
logic requirement into a sequence of optimal control problems, each solved individually using model-based
RL. The overall policy then selects among subproblem solutions based on the current state of the task
automaton. Moreover, the learned models and associated value functions support the construction of barrier
functions (See Section 4.2.3) that formally certify the safety of the synthesized controller.

3.2.2 Offline Policy Learning

Incorporating logical specifications into offline policy learning is the most recent and shallowest development
of the work we survey. RL methods benefit from the fact that the logical specification can be turned into a
form of online feedback in a variety of ways, but using a specification in conjunction with a set of demon-
strations is more complex. However, these approaches are not burdened by the issues of sample-inefficiency
found with online methods and consequently more easily scale to realistic robot systems. Furthermore, the
incorporation of highly informative, compact FSs holds the promise of dramatically reducing their initial
data requirements.

Inverse Reinforcement Learning Early methods in offline policy learning extended the product MDP
construction developed for online settings and applied IRL techniques to learn reward functions defined over
the product MDP state space (Wen et al., 2017; Zhou & Li, 2018). Several of these approaches framed
the problem as an instance of CEGIS, introducing the idea of generating adversarial counterexamples that
highlight policy violations of ϕ in unrepresented regions of the training data, thereby improving robustness
during learning (Zhou & Li, 2018; Puranic et al., 2021; Ghosh et al., 2021; Dang et al., 2023). More recent
work has enhanced these IRL-based approaches by incorporating the STL inference techniques described in
Section 2.2.1, to express the learned reward function in a more structured and interpretable representation
(Liu et al., 2025).

Behavior Cloning Temporal logic specifications have also been leveraged in behavior cloning as additional
differentiable terms in loss functions for training policies. Innes & Ramamoorthy (2020) used this approach
to train a model for a dynamic motion primitive parameterized policy. More recent approaches blend offline
and online learning: an offline phase first trains a policy to mimic overall movement patterns, followed by
an online phase that refines the policy by learning boundaries between discrete logical modes (Wang et al.,
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2022; 2024). Other behavioral cloning methods employ generative models such as diffusion models (Meng
& Fan, 2024a; Zhong et al., 2023b;a; Feng et al., 2024a) and flow matching techniques (Meng & Fan, 2025)
whose inference process can be directly guided by robustness gradients from frameworks such as STLCG
(Leung et al., 2023).

Offline Reinforcement Learning The most recent advances have focused on fully offline RL techniques
(Levine et al., 2020). Due to the complexity of defining reward functions for LTL specifications, relatively few
methods apply offline RL to product MDPs with the kinds of reward structures discussed in Section 3.2.1.
One notable exception is Feng et al. (2024b), which appears to be the first to adopt this approach by
learning from a hierarchical dataset and training a state-option value function where rewards reflect each
action’s alignment with an automaton derived from the input specification. Guo et al. (2024) takes a
different direction by proposing an STL-conditioned decision transformer that conditions on the trajectory’s
robustness at each step. Overall, this direction of offline policy learning remains underexplored and presents
significant opportunities to build upon the insights developed in the online setting.

4 Formal Methods in Robot Policy Verification

We conclude our survey by examining research aimed at the formal verification of learned robot policies
with respect to given FSs. Compared to the synthesis methods discussed previously, these approaches place
significantly greater emphasis on establishing formal guarantees of correct behavior, as opposed to just
informally seeking to achieve requirements given by an FS. To support our discussion, we first review key
background material on the established formal verification techniques for discrete, continuous, and hybrid
systems and standalone NNs. To our knowledge, no existing work offers a comprehensive, high-level overview
of every verification method, and we aim to provide such an overview here. We then present an organized
account of the current research on verifying realistic robotic systems with learned policies.

4.1 Preliminaries

Verification for Discrete Systems As mentioned already, verification methods were originally developed
in the domain of software to determine whether a given program satisfies a formal specification. The goal
is to establish, ideally through proof, that no execution of the program can violate the specification. A
central class of these techniques is model checking, which operates on a discrete model of the program. By
exhaustively exploring all possible executions of the model and checking them against an automaton encoding
the specification, model checking can either confirm universal satisfaction or produce a counterexample trace
that violates the specification (Baier et al., 2008). One often preforms reachability analysis as part of model
checking, which focuses on determining if the system can ever reach an undesirable or target state from
another state. For example, it can be used to verify that a concurrent program never enters a deadlock state.

In contrast to formal verification, other validation methods such as falsification provide weaker guarantees.
Falsification, sometimes called semi-formal verification, attempts to find a counterexample input under which
the system violates the specification. While effective at identifying bugs, falsification does not offer any
guarantee of correctness in the absence of a counterexample, unlike formal verification, which aims to provide
a proof of correctness across all executions.

Verification for Continuous and Hybrid Systems While exhaustively checking all possible system
behaviors is infeasible for infinite-state systems, some specialized verification techniques have still been
extended to apply to these settings. Reachability analysis is one of the most successful techniques that
has been generalized from the discrete setting to both continuous (Bertsekas & Rhodes, 1971) and hybrid
(i.e., mixed discrete-continuous) systems (Alur et al., 1995). In these contexts, reachability analysis yields
an approximate continuous set of reachable states. Furthermore, the reachability computation can either
be computed forward in time from some initial set of states I—resulting in a forward reachable set—or
backward in time from some target set of states T—resulting in a backward reachable set. A visualization
for these two types of reachability computation is given in Figure 6. These computations then can be used
to verify a wide range of safety and liveness properties, often given as “Reach-Avoid specifications” (e.g.,

14



Under review as submission to TMLR

eventually reach region A and always avoid region B). For example, if one wishes to prove that a system will
always avoid an unsafe set T , one can either show that the forward reachable set does not intersect with T or
that the backward reachable set from T does not include the current system state. As a result, the forward
reachable set only makes a useful verification of the overall system when considering a specific “worst-case”
initial set to start from, whereas a backward reachable set lets the agent know in general from what states
safety is guaranteed and from which states it is not (Mitchell, 2007).

I

Tx1(t)

(a) Forward Reachable Set

T

x1(t)

(b) Backward Reachable Set

Figure 6: Reachability analysis for contin-
uous and hybrid systems can verify all pos-
sible ways a system may evolve from a set
of initial states I, or all possible ways a sys-
tem might possibly evolve toward a set of
target states T .

Reach-avoid specifications are less expressive than the general
FSs discussed in Section 2, but they still represent a highly
challenging class of problems. For many systems, reachability
queries are formally undecidable, meaning no algorithm can
solve them in finite time for all instances (Fijalkow et al., 2019).
Therefore, a range of approximate methods have been devel-
oped, aiming to balance scalability with minimal approxima-
tion error. These include set-propagation techniques (Althoff
et al., 2021), numerical methods based on Hamilton-Jacobi
equations (Mitchell et al., 2005; Bansal et al., 2017), and ap-
proaches based on simulation and sensitivity analysis (Girard
& Pappas, 2006). Several verification toolkits have been built
around these methods (Frehse et al., 2011; Annpureddy et al.,
2011; Chen et al., 2013; Althoff, 2015; Duggirala et al., 2015;
Kong et al., 2015; Fan et al., 2016). Nevertheless, these tools
face practical limitations in terms of scalability and assump-
tions about model availability, which are central challenges ex-
amined in much of the literature surveyed here.

Another class of verification methods for continuous dynami-
cal systems, known as certificate function methods, has been
developed to verify specific system properties studied in clas-
sical dynamical systems theory. These methods rely on the
construction of scalar functions, namely Lyapunov functions,
Barrier functions, and Contraction metrics, whose existence implies desirable control properties. The exis-
tence of a Lyapunov function V certifies that a system will be eventually driven toward a stable equilibrium
region since it guarantees that V (x) always decreases along system trajectories to eventually reach zero, i.e.,
V (x) → 0 as t → ∞. In contrast, a Barrier function B certifies safety rather than goal-reaching: if the system
starts within the zero sublevel set {x : B(x) < 0}, then the system remains in this safe set indefinitely, never
crossing into the superlevel set {x : B(x) > 0}. Finally, contraction metrics generalize Lyapunov functions to
time-varying or trajectory-tracking contexts. Instead of certifying convergence to a single point, they prove
that a system can be controlled to converge exponentially toward any given reference trajectory, provided it
is dynamically feasible. An informative introduction and survey of these techniques is provided in Dawson
et al. (2023), so we do not include a full theoretical treatment here. Instead, we focus on how certificate
function methods compare to other available verification approaches for dynamical systems, particularly in
terms of their flexibility, scalability, and applicability to learned or black-box systems.

Verification for Neural Networks The aforementioned verification methods have been historically de-
veloped in the context of continuous and hybrid dynamical systems commonly modeled as linear systems,
general nonlinear systems defined by Ordinary Differential Equations (ODEs), piecewise-affine systems, poly-
nomial systems, or hybrid automata combining discrete modes with continuous dynamics. Verifying learned
robot policies requires incorporating neural networks into system dynamics. Yet, the standalone verification
of neural networks has already attracted substantial research attention, highlighting the difficulty of the
problem. Methods for NN verification are sometimes said to address the “open-loop” verification problem,
as they only address the verification of properties for a standalone control without considering the feedback
loop between the controller and the plant. If the plant model is available in a compatible representation,
many existing techniques can be viewed as verifying only single-step or non-temporal properties of the closed-
loop system. The most significant techniques for this problem have reused satisfiability solvers (Pulina &
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Guarantee / Safety FSs
•Supports stability and invariance properties
•Computable Model-Free with access to Dynamics Samples
•Computationally Scalable (Parallelizable), moderate approximation error

Figure 7: Our survey of robot policy verification methods is organized by three major categories of temporal
FSs, visualized here using the temporal property hierarchy of Manna & Pnueli (1990). The first category
(top), primarily represented by methods using discrete system abstractions, is defined by support for general
ω-regular FSs. The second category (middle) supports the more limited “obligation” class of FSs and is
primarily represented by reachability analysis methods. The final category (bottom) supports particular
forms of safety (invariance) and guarantee (eventual stability) FSs and is represented by certificate function
methods. The typical capabilities of these methods are included and approximately rated as either poor in
red, moderate in orange, or good in green.

Tacchella, 2010; Katz et al., 2017), reachability analysis (primarily set-propagation methods) (Tran et al.,
2019a; 2020a), optimization, and search. Reachability analysis for NN verification (as opposed to systems
verification) treats the NN itself as a discrete time dynamical system with each transition induced by the ith

layer Li et al. (2019); Gehr et al. (2018); Singh et al. (2019a; 2018; 2019b;c); Lomuscio & Maganti (2017).
Optimization and search approaches attempt to find a maximally or sufficiently specification-violating input
Tjeng et al. (2019); Dvijotham et al. (2018); Wong & Kolter (2018); Bunel et al. (2020); Fazlyab et al. (2021);
Bastani et al. (2017); Raghunathan et al. (2018). These techniques are also surveyed in Liu et al. (2021).
While they are useful for verifying a restricted class of input-output properties for NN controllers, we focus
only on the methods developed for verifying richer temporal properties of NN-controlled systems as this is
most relevant to the domain of robot policies.

4.2 Current Techniques

We now survey recent methods developed to verify that learned robot policies satisfy FSs. For clarity of
discussion, we uniformly frame these techniques as all aiming to prove that, for all initial states in some
set I, a given NN controller π operating within a dynamical system f will generate a trajectory τ that
satisfies a specification ϕ. Under this unified view, the surveyed approaches can be compared along several
axes—for example, the assumptions made about the policy π, the system f , computational scalability, or the
specification ϕ. We choose to primarily organize our survey around the last axis, as it naturally aligns with
the others: supporting more complex specifications typically requires trade-offs in scalability and stronger
assumptions on the system model and policy. Figure 7 summarizes the surveyed work across the three
major categories along this axis of FS support. While this categorization provides a useful structure, many
methods within each category blur these boundaries as they seek to relax the assumptions made by the most
established approaches. We also describe these methods and the additional capabilities they provide in the
following sections.
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4.2.1 Discrete-Abstraction Methods

In Section 3.1, we discussed how discrete abstractions offer a significantly more tractable form of system
model for controller synthesis. Consequently, many methods adopt the approach of constructing a finite-
state abstraction of a continuous system and then applying reactive synthesis to design a discrete controller,
which can subsequently be refined into a continuous one (Dimitrova & Majumdar, 2014). The same principle
applies to verifying system properties, and some early approaches for verifying NN-controlled systems also
rely on such abstractions in conjunction with verification methods for discrete systems. However, relatively
little research has explored using discrete abstractions to simplify the overall environment and dynamics,
likely due to the restrictive assumptions required to abstract the system in the first place, which limit their
applicability. A prominent example is Sun et al. (2019), who propose a method that, under assumptions
of linear system dynamics and a Rectified Linear Unit (ReLU)-based NN architecture, utilizes a discrete
system abstraction to verify closed-loop properties of a NN controller equipped with a LiDAR perception
system. Their approach formulates these guarantees as Satisfiability Modulo Convex Programming (SMC)
queries (Shoukry et al., 2017), akin to well-established Satisfiability Modulo Theories (SMT) tools, using
their custom system model. A similar strategy, with comparable assumptions but additional support for
system stochasticity, is presented by Sun et al. (2022b).

While these abstraction-based methods offer considerable flexibility in the temporal specifications they can
handle and provide strong correctness guarantees, the assumptions they impose are often seen as burdensome
and unrealistic for many practical systems. Moreover, the discrete abstractions themselves are prone to
combinatorial explosions in complexity, which further limits their practicality (Dimitrova & Majumdar, 2014;
Lindemann & Dimarogonas, 2019). As a result, these approaches have attracted less attention compared to
methods that offer greater computational scalability.

4.2.2 Reachability-Based Methods

One class of computationally scalable verification methods is based on reachability analysis. Just as reacha-
bility analysis serves as a more tractable alternative to full model checking in traditional FMs, it also offers
a practical alternative to discrete-abstraction-based approaches for continuous systems. As discussed in Sec-
tion 4.1, several effective techniques exist for applying reachability analysis to high-dimensional continuous
dynamics. Due to its scalability and despite some trade-offs in generality, a substantial portion of recent
work has focused on reachability analysis as a viable means of verifying learned policies.

Set-Propagation Set-propagation methods for systems with NN controllers naturally emerged by com-
bining existing techniques developed independently for NNs and for dynamical systems without learned
components. Several early works took this integrative approach, adapting methods from both communities
to analyze closed-loop systems. One of the first such methods was proposed by Akintunde et al. (2018), who
introduced a verification approach for closed-loop Linear Time-Invariant (LTI) systems with ReLU-based NN
controllers using Mixed-Integer Linear Programming (MILP). Their method built on prior work in verifying
standalone NNs by Lomuscio & Maganti (2017). Using MILP, one can encode constraints to ensure that
an initial state x belongs to a given input set I, that it is transformed layer by layer according to the NN’s
structure, and that the resulting output lies within a target set O. If the resulting optimization problem is
feasible, then some state in I can reach O. Because MILP solvers can only accommodate piecewise-linear
activations like ReLU, each neuron requires a binary variable to handle its two linear regions. By construct-
ing such a program with n layers of transformation, one can check whether the output set O is reachable
in n steps from some state in I. Moreover, by interpreting O as a set to be avoided, the method can verify
safety properties of the form ϕ = □x /∈ O.

Later work by Xiang et al. (2018); Xiang & Johnson (2018) extended the use of MILP by explicitly computing
the bounds of a hyper-rectangle that over-approximates the output set of a ReLU-based NN. These bounds
could then be passed to external tools for reachability analysis of systems modeled by piecewise-linear or
ODE-based dynamics. The Verisig method proposed by Ivanov et al. (2019) similarly repurposed existing
system-level reachability tools by translating sigmoid-based NNs into hybrid systems modeled with ODEs,
leveraging the fact that the sigmoid activation function satisfies a quadratic differential equation. This
translation enabled the composition of the neural network with the plant model, allowing the verification
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of the resulting closed-loop system using tools such as Flow* (Chen et al., 2013). However, these early
approaches frequently suffered from significant over-approximation errors during reachability analysis. A
major factor contributing to this issue was the reliance on hyper-rectangular set representations, which
poorly capture the often non-convex and non-contiguous output sets produced by neural networks. More
generally, directly composing the reachability computations of the NN and the dynamical system often led
to rapidly compounding approximation errors due to the well-known wrapping effect (Neumaier, 1993). To
address these issues, Dutta et al. (2019) proposed approximating the NN function itself, rather than just its
output set, using a Taylor polynomial over a specified input range. Their tool, named Sherlock, uses this
approximation to create a more accurate composite model with the plant, leading to improved precision in
the computed reachable set. This Taylor-model approach was later adopted and refined in follow-up versions
of Verisig, which introduced techniques such as Taylor-model preconditioning and shrink-wrapping (Ivanov
et al., 2020; 2021). A related line of work replaces Taylor models with Bernstein polynomials to abstract
the NN, as implemented in the ReachNN tool (Huang et al., 2019). This approach reduces dependence on
specific activation functions and supports networks with heterogeneous activations.

NNV, a tool introduced by Tran et al. (2020b), integrates and generalizes many of these earlier ideas.
It implements a wide range of NN reachability algorithms based on different set representations, including
polytopes (Tran et al., 2019b), star sets (Tran et al., 2019a), zonotopes (Singh et al., 2018), and ImageStar sets
(Tran et al., 2020a). When combined with system-level reachability components, NNV supports verification
of both feedforward and convolutional NNs, across a variety of activation functions. The follow-up NNV 2.0
release significantly enhanced the tool’s scalability and numerical accuracy, while extending support to neural
ODEs, semantic segmentation networks, and RNNs (Lopez et al., 2023). The recent work by Hashemi et al.
(2023) extends set-propagation methods beyond one assumption common in the work discussed so far: the
restriction to handling reach-avoid specifications. Instead, they target more general specifications written in
STL by constructing an NN that maps initial system states to the robustness of the resulting trajectories with
respect to the STL formula. Using this network, they apply standard neural network verification techniques
to determine whether any initial states lead to negative robustness values. This enables the verification of
policies against a broader class of temporal specifications using only reachability-based methods.

Sensitivity Analysis Despite extensive development for set propagation methods, they are fundamentally
limited by their reliance on specific formats of highly accurate and deterministic system models. A slightly
more flexible approach is available through simulating many trajectories and analyzing their sensitivity to
their starting conditions or properties of the system related to trajectory divergence (Girard & Pappas, 2006;
Donzé & Maler, 2007; Ramdani et al., 2008; Duggirala et al., 2013). One use case for sensitivity analysis
is significantly refining the reachable sets computed by set propagation methods (Ladner & Althoff, 2023).
It can also be used on its own, as in one algorithm presented in Hashemi et al. (2023) that supports a
more general class of models not necessarily using ReLU activations. Their method involves dense sampling
of the initial state space and estimation of the Lipschitz constant of the system’s robustness function,
which is then used to certify the remaining, non-sampled points. In a similar spirit, Salamati et al. (2020)
propose a Bayesian inference-based technique that operates with a partially unknown model and a dataset
of trajectories, constructing a posterior distribution to characterize the satisfaction probability of a given
STL specification.

Hamilton-Jacobi Reachability Analysis Finally, a significant body of recent research on verifying NN
policies is based on HJ reachability analysis. At its core, HJ reachability models the interaction between
a control system and an adversarial disturbance as a two-player zero-sum differential game (Tomlin et al.,
2000). The goal is to determine the set of states from which the system can be guaranteed to reach (or avoid)
a target set despite worst-case disturbances. This problem can be formulated as a HJ Partial Differential
Equation (PDE), whose solution defines a value function over the state space. The zero-superlevel set of
this value function then represents the set of states from which one player is able to win, which yields the
backward reachable set from a given target region (Mitchell et al., 2005).

Unlike set-propagation or sensitivity-based methods, traditional HJ reachability solves a PDE using grid-
based dynamic programming, whose computational cost scales exponentially with the dimension of the state
space. Addressing this scalability issue has been a central focus in research efforts aiming to apply HJ
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reachability to the verification of realistic robot policies. One promising direction is the use of deep-RL-style
approximate dynamic programming techniques, with a contractive operator derived from the reachability
PDE, to obtain a NN-approximated reachability value function (Fisac et al., 2019; Hsu et al., 2021). These
methods improve scalability and, crucially, eliminate the need for an explicit model of the system. However,
they typically require large amounts of simulated experience and may carry safety risks during training,
limiting their applicability in real-world deployments unless reliable simulators or offline data are available.
A second major approach, introduced by Bansal & Tomlin (2021), draws inspiration from physics-informed
NNs. The HJ reachability PDE is encoded directly into a loss function that provides guidance for training a
sinusoidal-NN (Sitzmann et al., 2020) to approximate the PDE solution. While this method therefore assumes
known system dynamics and boundary conditions, it benefits by being significantly more data-efficient than
RL-like, sample-based approaches .

Extensions of HJ reachability methods have also been proposed to support several new features. Bansal et al.
(2020) enable the computation of probabilistic reachable sets, a crucial capability for safe navigation around
humans, where reasoning about uncertainty and intent is essential. Yu et al. (2022) integrate reachability-
based safety methods with RL frameworks to jointly learn safe policies and their associated safety sets. Some
work has even sought to bridge HJ reachability with STL (Chen et al., 2020) to support richer classes of
safety specifications, similar to some efforts for extending set-propagation methods.

4.2.3 Certificate-Function Based Methods

The final category of verification methods we survey derives proofs of FS satisfaction through certificate
functions. As noted above, these FSs are typically limited to properties concerning system invariance (e.g.,
remaining on one side of a barrier) or stability (e.g., eventually converging to an equilibrium point or tra-
jectory). While such properties are not often expressed as LTL specifications, we include them as such in
Figure 7 to facilitate comparison with other verification methods. In exchange for their restricted expressive-
ness, certificate-based methods offer the advantages of not requiring an explicit system model and achieving
favorable computational scalability.

A certificate function is obtained by a search over a set of differentiable functions, with constraints determined
by the particular certificate type (Dawson et al., 2023). Naturally, this function space can be represented
using a family of parameterized NNs, enabling the search to be cast as an unconstrained training problem by
incorporating the constraints as penalty terms. The objective is then evaluated empirically over a finite set
of system trajectories. This forms the basic approach underlying most certificate-learning methods (Richards
et al., 2018; Srinivasan et al., 2020; Zhao et al., 2020). Subsequent research has addressed both challenges
and downstream applications of this approach, including joint learning of certificates and dynamics models
(Kolter & Manek, 2019), rapid adaptation of nominal certificates to new systems (Taylor et al., 2019),
and new NN architectures tailored for certificate functions (Gaby et al., 2022). One particularly important
challenge is that learned certificate functions resulting from this procedure are not guaranteed to satisfy their
required properties. This can arise for two reasons: the NN search space may be too limited to contain a valid
certificate or the empirical loss may fail to enforce constraints across the entire state space. Therefore, new
formal synthesis techniques for certificate functions, based on CEGIS, have been introduced which adaptively
refine the NN search space (Peruffo et al., 2021) and verify certificate constraints using SMT-solvers (Abate
et al., 2021b;a; Edwards et al., 2024).

Certificate-function-based verification also differs from other methods in that it naturally extends to the
synthesis of formally verified controllers. Just as Lyapunov and Barrier functions certify the stability and
invariance of a closed-loop control system, Control Lyapunov Functions (CLFs) and Control Barrier Func-
tions (CBFs) certify the existence of a controller for an open-loop system that can yield a closed-loop system
with the desired properties. This has motivated several lines of research into certificate-regularized imita-
tion learning (Cosner et al., 2022) and reinforcement learning (Perkins & Barto, 2003; Chow et al., 2018;
Chang et al., 2019; Xiong et al., 2022; Marvi & Kiumarsi, 2021; Emam et al., 2025; Ma et al., 2021). In
this synthesis context, other work has also sought to generalize CLFs and CBFs to support a broader range
of STL-specified properties, through constructions such as time-varying CBFs (Lindemann & Dimarogonas,
2019). For a more comprehensive overview of certificate-based synthesis methods and of certificate functions
more broadly, we again refer the reader to Dawson et al. (2023).
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4.2.4 Falsification

Finally, several notable methods have instead focused on the problem of falsification or “semi-formal” verifi-
cation mentioned in Section 4.1. Falsification is the process of showing that there exists an initial state from
which the system follows a trajectory τ that does not satisfy a specification ϕ. Although this is logically
separated from the above verification problem by only a single negation operator, this form of the problem
can be easier to solve and more easily used to relax assumptions on the system, controller, and specification.
One benefit of this formulation is that one can find a solution with a non-exhaustive search through the
set I. Broad approaches to falsification can involve some form of stochastic optimization (Das et al., 2021)
or robustness-guided RL (Yamagata et al., 2021). More recent approaches have enhanced the falsification
process by incorporating notions of NN “coverage,” aiming to ensure that the network’s activation space is
thoroughly explored during falsification (Zhang et al., 2023). This idea draws inspiration from prior work on
automated NN testing (Sun et al., 2018; Pei et al., 2019). Other studies such as Dreossi et al. (2019) address
the falsification of multi-component systems that combine DL for perception with classical control. Their
approach alternates between searching for specification violations in the classical control component—using
inputs from various abstractions of the DL perception component—and identifying errors in the DL compo-
nent itself, which then inform and refine those abstractions. These methods, although not providing the same
guarantees as the above verification methods, anticipate the trade-off between guarantees and practicality.
They still provide insight into the safety of a learned robot policy but scale better to real-world scenarios
and require significantly fewer assumptions on the network architecture and model design.

5 Future Research Directions

Finally, we summarize in this section the most significant remaining questions in formally specifying robot
behavior, synthesizing policies to follow those specifications, and verifying that extant learned policies also
follow them. For each specific area of FMs covered in our survey, we describe nascent and hypothetical
research directions that we believe are promising. Moreover, we motivate these new directions with links to
the larger themes we have identified as already having significance in the work surveyed above. For instance,
one theme is the struggle to optimally balance formality (i.e., the strength of guarantees) and versatility (i.e.,
the degree of supported specification, policy, and system complexity). Another is the increasing reliance on
scalable numerical methods and decreasing favor for discrete-abstraction-based methods for synthesis and
verification. We hope that these directions and the underlying trends they belong to will promote future
research toward the complete resolution of safety, interpretability and trustworthiness concerns in the modern
wave of robot learning research.

5.1 Specifications

Specification Mining Within SM, extracting specifications from the full, unrestricted STL grammar
remains largely intractable due to the immense search space and the limited guidance provided by datasets
of observed behaviors alone. A key direction for making this problem more tractable is to incorporate
external domain knowledge to constrain and guide the search. This presents a natural opportunity to
leverage foundational language models, which have already been shown to be highly effective complements
to genetic algorithms by providing inductive biases or structural priors over languages (Novikov et al.,
2025). Incorporating knowledge from a system model—either by simulating additional trajectories to enrich
the dataset or by analytically reasoning about the model’s behavior to rule out irrelevant specifications—
is another underexplored and promising direction. Current SM methods typically focus on extracting a
narrow class of specifications from specific types of datasets, most often learning unconditional formulas
from complete system traces. Future work may expand this scope by targeting conditional, input-output
specifications, especially from partial or noisy observations. This capability is particularly critical when
learning specifications that express long-term or infinite-horizon objectives, such as those described by ω-
regular languages, which cannot be validated over finite traces and instead require extrapolation or inductive
generalization (Bartocci et al., 2022). Lastly, SM holds significant promise in its applicability to constructing
interpretable, temporally structured representations of goals for artificially intelligent agents. Liu et al. (2025)
demonstrates one use-case in IRL, but future work can also explore leveraging specifications for interpreting
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existing black-box AI behavior, guiding other policy learning methods with formal supervision, and enhancing
inference-time control through formally grounded goal representations.

Partial Observability and Stochasticity Obtaining and representing specifications for systems fea-
turing stochasticity and partial observability still faces significant challenges. There are a small number
of works investigating stochasticity (Yoo & Belta, 2015; Sadigh & Kapoor, 2016) or partial observability
(Kapoor et al., 2025a) individually, but seemingly no methods pursuing them simultaneously. Future work
may hypothetically extend the approach taken by Kapoor et al. (2025a) and incorporate more sophisticated
and contextual probabilistic models to build formal specifications whose semantics would seamlessly incor-
porate multi-modal distributions for its constituent atomic propositions. This would continue the trend
of increasing FS flexibility at the expense of formal specificity, so additional work may be necessary to
ensure adequate guarantees are obtained when applying synthesis and verification methods to these FSs.
Furthermore, future work can extend FS representations and implementation frameworks to accommodate
these more esoteric FS features. Differentiable STL frameworks can naturally be extended to support differ-
entiable probabilistic models. Automaton-based representations supporting probabilistic propositions also
already exist (Rheinboldt & Paz, 2014) but may need adaptation for application to automata-theoretic RL.

5.2 Synthesis

Handling more Complex Specifications A broad limitation in current research on formal synthesis
lies in the temporal complexity of the supported FSs. We believe this gap presents an opportunity for
both theoretical and practical advances. On the theoretical side, several fundamental obstacles have been
identified in satisfying complex LTL specifications with RL. Addressing these challenges remains an open and
compelling direction for future work. Notably, Yang et al. (2022) show that RL for almost all LTL objectives
under their default semantics is intractable. That is, no algorithm can guarantee near-optimal performance
for anything beyond the simplest LTL objectives given any finite number of environment interactions. Despite
this, the work surveyed in Section 3.2.1 demonstrates progress by relying on reward structures derived
from relaxed LTL semantics. Nonetheless, developing a unified and theoretically grounded solution to this
intractability will be essential for establishing a more robust foundation for combining LTL and RL. One
promising direction comes from Alur et al. (2023), who propose a discounted LTL semantics that avoids the
intractability while still supporting expressive specifications. This framework offers a fertile starting point
for future research. It is also the case that these more complex specifications quickly increase the sparsity of
rewards, for which less-theoretical research efforts can investigate practical strategies such as incorporating
additional model-information with differentiable simulators (Bozkurt et al., 2025), introducing additional
rewards in the experience replay buffer (Voloshin et al., 2023), or improving exploration with evolutionary
RL algorithms (Zhu et al., 2021).

Combining Formal and Informal Requirements A distinct avenue for future research could instead
focus on combining LTL constraints with standard RL objectives, as opposed to the existing algorithms that
solely focus on solving tasks completely specified with an LTL expression. This is a critical direction, as
many FSs are more meaningful when the agent pursues a competing objective, requiring it to make optimal
decisions that balance task performance with formal constraints. For instance, complex specifications im-
posing recurrence and fairness constraints can have trivial solutions in the absence of another objective. A
concrete example would be the specification “always periodically return to the charging station” in combina-
tion with a normal reward for collecting and organizing objects. The agent must then decide when to pursue
objects and when to return to the charging station. Without the competing objective, however, the optimal
behavior would be to remain permanently at the charging station. A possible starting point for this new
direction is generalizing standard constrained MDP constraints (Altman, 1999) to accommodate functions
of LTL reward or STL robustness.

Better Offline Learning with FSs In the same vein, combining LTL constraints with objectives used
in offline policy learning is also a fruitful and insufficiently explored direction. Offline policy learning is
already considered important for safety critical settings due to circumventing the need for safe exploration,
so their combination is natural. A possible broad strategy for this direction could apply innovations in
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automata-theoretic RL for handling non-Markovian objectives to the offline RL setting (Levine et al., 2020).
Initially, research in this direction may examine enhancing methods for offline RL specifically for datasets
with rewards and states augmented with an automaton known a priori. Later work can then return to using
standard datasets and incorporate additional guidance from specifications mined from the available data
(Section 2.2.1). The final and most ambitious goal for this line of research would be eventually generalizing
the concept of learning optimal goal-reaching policies from suboptimal data to learning general specification-
following policies from suboptimal data not necessarily following any specification.

5.3 Verification

The final major research direction we identify from the surveyed literature is in continuing to scale verification
methods to support modern robot policies deployed in the real-world. While recent work has already made
substantial progress toward verifying satisfaction of FSs under increasingly relaxed assumptions and for more
complex, high-dimensional systems, many of these methods still face significant challenges. Among the most
scalable and promising lines of research are sampling-based (Lew & Pavone, 2021), dynamic-programming-
based (Hsu et al., 2021; Fisac et al., 2019), and general neural-network-approximation-based (Bansal &
Tomlin, 2021; Edwards et al., 2024) verification methods. We anticipate these will provide a foundation for
research into more practical verification pipelines, and that this research will proceed by carefully conceding
the currently offered strong guarantees in exchange for computational scalability, fewer assumptions on the
environment, and support for significantly more complex models.

Relaxing Guarantees for Scalability Several recent works already exemplify this trend through prob-
abilistic extensions of reachability analysis and certificate-based methods, which allow for reasoning over
stochastic system models (Lew & Pavone, 2021; Bansal et al., 2020; Castañeda et al., 2024). This proba-
bilistic framing is particularly suitable for unstructured real-world deployment, where full certainty of future
events is almost never achievable and models ought to be learned or refined online. Accounting for verifi-
cation based on complex stochastic world models also paves the way for, assuming sufficient computational
scalability, online runtime verification. In this paradigm, robots would assess policy safety on-the-fly us-
ing up-to-date environment observations and short-term predictions. While these guarantees may be local
in time or hold only with high probability, they are often the most actionable and scalable approach for
long-horizon tasks in uncertain environments.

Large Policy Models A significant amount of future work can also be devoted to scalability concerns
for more modern, complex policy models, which remains a bottleneck for many formal verification pipelines.
Many current verification tools operate under restrictive assumptions about policy architectures; they often
only targeting shallow or moderately deep feedforward networks with piecewise-linear activations. However,
state-of-the-art policies increasingly rely on much more expressive and compositional architectures such as
transformer and diffusion-based generative models. These models are often opaque to current analyzers,
but initial efforts toward verifying these models using reachability analysis have begun to address these
challenges (Shi et al., 2020; Manzanas Lopez et al., 2022; Tobias Ladner, 2025). Still, future research will
have to further extend these techniques or pioneer new ones to handle the complex networks used in real
robot policies.

6 Conclusion

Throughout this survey, we have shown that FMs in robot policy learning have the potential to substantially
increase our confidence in the safe, correct, and reliable behavior of autonomous systems. To make this
case, we reviewed current research organized into three major categories. First, we surveyed techniques
for specifying robot behavior through formal specifications (Section 2), which provide an unambiguous
language for expressing complex task requirements and safety constraints. These include works on learning
specifications from demonstrations and representing these specifications as loss functions, reward functions,
and embeddings. Second, we described approaches for synthesizing policies that satisfy such specifications
(Section 3). These include methods that incorporate automata-based rewards and other forms of FS guidance
into model-free and model-based RL, techniques in IRL that produce interpretable reward functions in the
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form of FSs, and behavior cloning and offline RL approaches that integrate supervision or conditioning based
on FSs. Finally, we examined a complementary set of verification (and falsification) techniques that aim
to prove (or disprove) whether a learned policy satisfies a given specification (Section 4). The verification
methods range from the most formal but least scalable methods based on formulating and checking discrete
systems abstractions, to the more focused, moderately scalable reachability-analysis methods, and finally to
the most specific and scalable certificate function methods. These three categories—specification, synthesis,
and verification—and the hierarchy they impose cover the entirety of current research introducing FMs for
robot policy development.

Beyond summarizing the state of the art, our survey provides a coherent organizational framework that can
serve both new entrants and seasoned researchers in the field. For readers newly approaching formal methods
in robot learning, we have included accessible illustrations, examples, and conceptual overviews that clarify
foundational ideas and map out the landscape of existing work. For experts, our survey offers a concise yet
comprehensive taxonomy of techniques, which also provides starting points for deeper inquiry into all the
surveyed subfields and draws connections between them that are not often discussed. Most importantly, by
summarizing current trends across specification, synthesis, and verification research, we identify a number of
underexplored questions and promising future directions (Section 5). In particular, we emphasize the need to
increase the expressiveness and scalability of current FMs to support learning and verification in real-world
robotic systems. We believe that achieving this goal will be essential to ultimately deploying robots that are
not just performant, but provably safe and trustworthy.
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ML Machine Learning

FM Formal Method

FS Formal Specification

SM Specification Mining

RL Reinforcement Learning

IL Imitation Learning

IRL Inverse Reinforcement Learning

LTL Linear-time Temporal Logic

STL Signal Temporal Logic

STLCG Signal Temporal Logic Computation Graphs

TQTL Timed Quality Temporal Logic
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STQL Spatio-Temporal Quality Logic

MDP Markov Decision Process

FSA Finite State Automaton

DBA Deterministic Büchi Automaton

LDBA Limit-Deterministic Büchi Automaton

NDBA Non-Deterministic Büchi Automaton

DRA Deterministic Rabin Automaton

CEGIS Counter-example Guided Inductive Synthesis

ReLU Rectified Linear Unit

NN Neural Network

RNN Recurrent Neural Network

GNN Graph Neural Network

LTI Linear Time-Invariant

MILP Mixed-Integer Linear Programming

ODE Ordinary Differential Equation

PDE Partial Differential Equation

MPC Model Predictive Control

CLF Control Lyapunov Function

CBF Control Barrier Function

TSSL Tree Spatial Superposition Logic

HJB Hamilton-Jacobi-Bellman

HJ Hamilton-Jacobi

SMC Satisfiability Modulo Convex Programming

SMT Satisfiability Modulo Theories
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