
Assignments for Congestion-Averse Agents:
Seeking Competitive and Envy-Free Solutions

Jiehua Chen
Institute of Logic and Computation

TU Wien
Austria

jchen@ac.tuwien.ac.at

Jiong Guo
School of Computer Science and Technology

Shandong University
Qingdao, China

jguo@sdu.edu.cn

Yinghui Wen
Digital and Intelligent Center

Shandong Institute of Information Technology Industry Development
Jinan, China

yinghui.wen@foxmail.com

Abstract

We investigate congested assignment problems where agents have preferences over
both resources and their associated congestion levels. These agents are averse
towards congestion, i.e., consistently preferring lower congestion for identical
resources. Such scenarios are ubiquitous across domains including traffic manage-
ment and school choice, where fair resource allocation is essential. We focus on the
concept of competitiveness, recently introduced by Bogomolnaia and Moulin [6],
and contribute a polynomial-time algorithm that determines competitiveness, re-
solving their open question. Additionally, we explore two optimization variants
of congested assignments by examining the problem of finding envy-free or maxi-
mally competitive assignments that guarantee a certain amount of social welfare
for every agent, termed top-guarantees [6]. While we prove that both problems
are NP-hard, we develop parameterized algorithms with respect to the number of
agents or resources.

1 Introduction

In the realm of resource allocation and task assignment, the challenge often extends beyond mere
allocation–it entails navigating the intricate balance between individual preferences and the con-
gestions that other agents incur. Congested assignments epitomize this challenge and address the
situation when agents are congestion-averse, i.e., the preferences are negatively correlated with the
number of agents simultaneously assigned to the same resource, the so-called congestion level.

Congested assignments are pertinent in numerous real-world scenarios: From urban traffic manage-
ment, where drivers select routes while considering traffic congestion, to educational contexts like
school choice [35, 12] or student exercise slot allocations, where students’ choices are influenced by
class sizes. Similarly, in cloud computing, allocating computational tasks to servers must account
for server load. In each of these scenarios, assigning an agent–whether a driver, a student, or a task
executor–to a resource (jointly referred to as a post) may introduce additional costs, with detrimental
effects on other agents. For example, the productivity in a shared office space diminishes as more
people use it. Similarly, in traffic management, drivers might opt for less crowded routes since the
mental load increases significantly with even a small increase in traffic. In other words, the agents’
individual preference over a post is inversely proportional to its congestion level.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Competitive (CP)Competitive (CP)
Nash stable (NS)

Envy-free (EF)
Top-guarantee (TG)

Non-wasteful (NW)

Figure 1: Relations among the different fairness concepts under congestion-averse preferences. All
relations are strict; see Lemma 1.

The overarching task is to find an optimal assignment of the agents to posts that respects agents’
congestion-averse preferences. Defining ‘optimal’ in this setting is non-trivial. In traffic management,
for example, one might aim for a Nash stable assignment (aka. Nash equilibrium [33, 37]), meaning
that no agent prefers to deviate to another post which increases the congestion by one. Milchtaich
shows that Nash stable assignments for congestion-averse preferences are always attainable and any
assignment can be turned Nash stable in polynomially many best-reply improvement steps. Although
Nash stability may prevent systematic chaos, it can be quite unfair, particularly in slot allocations, as
it may induce envy among agents, meaning that an agent may prefer to take over another agent’s post
(albeit for the same congestion). Notice that envy-freeness is also easy to achieve by simply assigning
all agents to the same post, but this approach is often wasteful in the sense that there may exist an
empty post which an agent prefers to his assignment.

To address the wastefulness in an envy-free assignment, Bogomolnaia and Moulin [6] propose
competitiveness (CP) as a solution, which ensures that no agent is envious and no post is wasteful.
They also introduce top-guarantees, a less demanding criterion than competitiveness, which requires
every agent to be assigned to one of his top n choices out of all m× n choices, with m and n being
the number of posts and agents, respectively; note that each choice represents a post coupled with
a congestion level. Top-guarantees is easy to achieve by a simple sorting algorithm [6, Proposition
1]. Furthermore, top-guarantees is necessary for ensuring Nash stability as well as competitiveness,
though the latter criterion – competitiveness – may not always exist.

The following example illustrates the different fairness criteria and Figure 1 depicts their relations.

Example 1. Consider two posts A = {a1, a2} and three agents V = {v1, v2, v3}. The preferences
of the agents are as follows, with the second component in each tuple denoting the congestion level:

v1 : (a1, 1) ≻ (a1, 2) ∼ (a2, 1) ≻ (a2, 2) ≻ · · · ,
v2 : (a1, 1)∼ (a2, 1) ≻ (a1, 2) ∼ (a2, 2) ≻ · · · ,
v3 : (a1, 1) ≻ (a1, 2) ≻ (a2, 1) ≻ (a2, 2) ≻ · · · .

Π1 :
a1 a2

v2, v3 v1
Π2 :

a1 a2
v1, v3 v2

Roughly speaking, without congestion, both v1 and v3 strictly prefer a1 to a2. However, while v1
is indifferent between sharing a1 with another agent and being alone at a2 (indicated by (a1, 2) ∼
(a2, 1)), v3 will only prefer to go to a2 when a1 has more than two congestions. Agent v2 is indifferent
between a1 and a2 in general and cares only about congestion.

There are several Nash stable assignments, e.g., Π1 : assigning v2 and v3 to a1, and v1 to a2: v1
will not deviate to a1 since otherwise the congestion of a1 will be increased to three and v1 prefers
(a2, 1) to (a1, 3) (due to the congestion aversion assumption), and similar reasoning applies to v2 and
v3. However, it is not envy-free (and hence not competitive) since agent v2 envies v1. On the other
hand, assigning agent v1 and v3 to post a1, and agent v2 to post a2 (see Π2) is competitive, and hence
envy-free and top-guaranteed.

If both v1 and v3 have the same preferences as v2, however, then no competitive assignments exist
since at least one post a is assigned no more than one agent, so either it is wasteful or another
agent will envy the agent assigned to a. In this case, Π1 and Π2 are still Nash stable (and hence
top-guaranteed) but not envy-free or competitive anymore.

Competitiveness offers a promising resolution for congested assignments, as it ensures non-
wastefulness, envy-freeness, and top-guarantees, thereby securing a specific welfare level for all
participants. Despite their appeal, the computational complexity of determining competitive assign-
ments remains open, as noted by Bogomolnaia and Moulin [6]. This unresolved issue leads us to our
core research question:

Q1: Is there an efficient way to determine whether a competitive assignment exists?

2

Since CP may not always exist, we consider two relaxations:

Q2: How hard is it to find a top-guaranteed and envy-free assignment?
Q3: How about top-guaranteed and maximally competitive assignments?

We tackle these questions by exploring the computational intricacies involved in achieving competi-
tiveness, top-guarantees, and envy-freeness in congested assignments.

Our main contributions. We resolve Q1 affirmatively by showing that determining the existence of
a competitive assignment is polynomial-time solvable. We also establish the NP-hardness of finding
top-guaranteed and envy-free assignments (Q2), and of top-guaranteed and maximally competitive
assignments (Q3).

To answer Q1, we first show two key insights: (1) We can restrict our search to CP assignments where
every post is non-empty; see Lemma 3. (2) We can use maximum flow to find the congestion vector
of a CP assignment with all posts being non-empty and derive the corresponding CP assignment (if it
exists) in polynomial time. For Q2 and Q3, we provide hardness reduction from the NP-complete
problems EXACT COVER BY 3-SETS and CLIQUE, respectively. We complement the hardness results
by providing several parameterized algorithms.

Related work. The congested assignment problem is rooted in congestion games, introduced by
Rosenthal [36]. In these games, agents select subsets of resources (posts), with each resource having a
cost function dependent on its usage level. An agent’s total cost is the sum of costs over their selected
resources. Rosenthal proved the existence of Nash equilibria, while Milchtaich [33] extended the
model with player-specific cost functions and demonstrated the same existence property. The field
has evolved through both theoretical and computational perspectives [34, 28, 8, 10, 26, 2, 32, 11].

Recently, Bogomolnaia and Moulin [6] introduced two significant fairness concepts for congested as-
signments: top-guarantees and competitiveness. The former ensures a minimum welfare guarantee for
each agent, while the latter addresses a more complex balance of envy-freeness and non-wastefulness.
top-guarantees differs from the classical minimax principle in game theory: while minimax aims to
minimize the maximum cost of any participant, top-guarantees establishes a hard constraint ensuring
every agent achieves a certain welfare threshold. This connects our work to other assignment prob-
lems utilizing the minimax principle, such as MIN-REGRET STABLE MATCHING [24, 31], which
finds stable matchings that minimize the worst rank of any assigned partner. Bogomolnaia and Moulin
demonstrated that top-guarantees is straightforward to achieve, but left the complexity of finding
competitive assignments as an open question. Our primary contribution is answering this question by
providing a novel polynomial-time algorithm for determining competitiveness.

Congested assignment can be viewed as a restricted variant of the GROUP ACTIVITY SELECTION
(GAS) problem, introduced by Darmann et al. [18, 19] and subsequently extended and studied by
many others [30, 14–17, 27, 23, 21]. GAS extends the congested assignment concept by allowing
agents’ preferences over pairs of activities and group sizes, not necessarily exhibiting aversion to
larger groups. Despite its broader scope, the specific challenges of applying competitiveness or
top-guarantees within GAS have not been previously addressed.

Congestion-averse preferences in congested assignment are similar to the preferences of the agents in
anonymous hedonic games [4], where agents form coalitions based solely on group size preferences
rather than specific membership.

Congested assignment is also related to Copland’s SCHOOL CHOICE WITH CLASS SIZE EXTER-
NALITIES (SC-CSE) problem [12], which generalizes the classical SCHOOL CHOICE problem [1].
Compared to our setting, every post in SC-CSE also has a capacity bound and a preference list, which
ranks all agents in strict order and the goal is to find a stable assignment, i.e., an assignment without
justified envies and wastefulness. Phan et al. [35] investigate a model similar to Copland. Instead of
post-congestion pairs, they assume that the preferences are over pairs of posts and “resource ratio,”
and investigate an equilibrium notion that is specific to their model. When imposing lower and upper
quotas on the capacities of the posts, our problem is related to STABLE MATCHINGS WITH UPPER
AND LOWER QUOTAS (SM-ULQ) [5, 25, 3, 9]. Since SM-ULQ is NP-hard, one could obtain the
same hardness for finding a competitive assignment with lower and upper quotas.

Finally, congested assignment may be related to the SCHEDULING TO MAXIMIZE PARTICIPATION
problem [7], where servers correspond to posts and clients agents such that each client has capacity

3

bound for each server and will not be satisfied if that bound is exceeded. The goal is to assign clients
to servers maximizing the number of “satisfied” clients.

For a comprehensive discussion on related works in congested assignments, we refer readers to the
recent paper by Bogomolnaia and Moulin [6].

Structure of the paper. In Section 2, we introduce necessary definitions and concepts for the paper,
and describe an approach to determining whether a competitive assignment for a given congestion
vector exists. In Section 3, we present our main result, an efficient algorithm for competitive
assignments. In Section 4, we show NP-hardness for top-guaranteed assignments that are envy-free
or maximally competitive, respectively, and provide some parameterized algorithms for these two
problems. We conclude in Section 5 for future research. Due to space constraints, the proofs of
statements marked by (⋆) are deferred to the appendix.

2 Preliminaries

Given a non-negative integer z, let [z] denote the set {1, . . . , z}. We assume basic knowledge of
parameterized complexity and refer to the textbook by Cygan et al. [13] for more details.

Let A = {a1, . . . , am} denote a finite set of m posts and V = {v1, . . . , vn} a finite set of n agents.1
The input of CONGESTED ASSIGNMENT consists of A, V , and for each agent v ∈ V , a preference
list ⪰v (i.e., a weak order, which is transitive and complete) on the set of tuples A× [n] (i.e., ordered
pairs). The weak order ⪰v specifies the preferences of agent v over the posts and their congestions
(i.e., the number of agents that will simultaneously occupy the post). We use ∼v to denote the
symmetric part of ⪰v and ≻v the asymmetric part; we neglect the subscript v if it is clear from the
context which agent we refer to. The agents may be indifferent between different posts, but are
averse to congestion, i.e., for each post aj ∈ A and each congestion level d ∈ [n− 1], each agent v
has (aj , d) ≻v (aj , d + 1). For instance, in Example 1, agent v1 : (a1, 2) ∼ (a2, 1) means that v1
is indifferent between (a1, 2) and (a2, 1). This also implies that he has (a1, 1) ≻ (a2, 2) (because
of aversion of congestion), meaning that he strictly prefers being assigned to post a1 alone over to
post a2 with two agents.

An assignment of agents V to posts A is a partition Π = (Sa)a∈A of V where Sa is the set of agents
assigned to post a so that every two sets Sa and Sb are mutually disjoint and

⋃
a∈A Sa = V . The

cardinality |Sa| of Sa is called the congestion of post a. We say that a post a is empty if Sa = ∅. For
brevity’s sake, we use Π(v) to refer to the post that agent v is assigned to and often use Π(a) to refer
to the set Sa of agents that are assigned to post a. We call s⃗ = (|Π(a)|)a∈A the congestion vector of
partition Π.
Definition 1 (Nash stable, envy-free, top-guaranteed, and competitive assignments). Let Π =
(Sa)a∈A denote an assignment for an instance (A, V, (⪰v)v∈V) of CONGESTED ASSIGNMENT.

We say that Π is Nash stable (in short, NS) if no agent wishes to deviate to another post. Formally, Π
is NS if for every agent v ∈ V and every post a ∈ A it holds that (a∗, |Sa∗ |) ⪰v (a, |Sa|+ 1), where
a∗ denotes the post that agent v is assigned to.

We say that agent v envies agent v′ if (b, |Sb|) ≻v (a, |Sa|) where v is assigned to a and v′ to b.
Accordingly, we say that Π is envy-free (in short, EF) if no agent envies any other agent.

We say that Π is wasteful if there exists an agent v and an empty post a such that v strictly
prefers (a, 1) ≻v (a∗, |Sa∗ |), where a∗ denotes the post that agent v is assigned to; otherwise
Π is non-wasteful (in short, NW).

We say that Π is top-guaranteed (in short, TG) if every agent v ∈ V is assigned to a post a = Π(v)
such that (a, |Π(a)|) is among the |V | tuples in the preference list ⪰v , breaking ties arbitrarily.

We say that an agent v ∈ V is satisfied with Π if he neither envies any other agent nor prefers to
move to an empty post, i.e., for every post a ∈ A it holds that (a∗, |Sa∗ |) ⪰v (a,max(|Sa|, 1)),
where a∗ denotes the post that agent v is assigned to. Otherwise, we say that v is unsatisfied with
Π. Accordingly, Π is competitive (in short, CP) if every agent is satisfied with Π. Π is maximally
competitive if it admits the fewest number of unsatisfied agents among all assignments.

1A and V are standard notion for the set of alternatives and voters, respectively, from voting theory. We
adopt them since the agents also have preferences.

4

ALGORITHM 1: Determining the existence of CP assignments

Input: An instance I ′ = (A, V, (⪰v)v∈V).
Output: A CP assignment if it exists; otherwise no.

1 foreach k = max(0,m− n) to m− 1 do
2 Compute I = (A, V, (⪰v)v∈V) according to Construction 1 on input (I ′, k)

▷ Decide whether there exists a CP assignment for I with all posts being non-empty.
3 T [a]← 1 for all a ∈ A
4 while

∑
a∈A T [a] ≤ |V | do

▷ Phase 1: Deciding existence of a perfect flow
5 Let (G = (Â ∪ V̂ ∪ {s, t}, E), c) be the network constructed by Construction 2 on input (I, T)
6 Compute a max flow f of (G, c)
7 if f has value |V | then return the assignment derived from f as per Definition 2 without the k

dummy agents. ;
▷ Phase 2: find an obstruction

8 Find a vertex v̂∗ ∈ V̂ with f(v̂∗, t) = 0
9 V ′ ← {v̂∗} ; A′ ← ∅

10 repeat
11 â← a vertex in Â \A′ with (â, v̂) ∈ E for some v̂ ∈ V ′

12 A′ ← A′ ∪ {â}
13 V ′ ← V ′ ∪ {v̂ ∈ V̂ | f(â, v̂) = 1}
14 until no â ∈ Â \A′ exists with (â, v̂) ∈ E for some v̂ ∈ V ′;

▷ Phase 3: update T
15 foreach â ∈ A′ do T [a]← T [a] + 1;
16 return no
17 return no

For congestion-averse preferences, we observe the following relations among the five fairness
concepts: CP, EF, NS, TG, NW; see Figure 1. Note that the relation of “CP implies NS” and “NS
implies TG” have already been shown by Bogomolnaia and Moulin [6]. We provide proofs in the
appendix for the sake of completeness.

Lemma 1 (⋆). (1) CP implies EF, but the converse does not hold.
(2) CP implies NS, but the converse does not hold.
(3) NS implies TG and NW, but the converse does not hold.
(4) EF is incomparable to NS, to TG, and to NW, respectively; TG is incomparable to NW.

By Lemma 1(2)–(3), when searching for CP assignments, we only need to consider the first |V |
tuples of each preferences list. For each agent v and post a, we use λ(v, a) to refer to the maximum
congestion of v for post a in his preference list ⪰v such that (a, λ(v, a)) is among the first |V | tuples,
with ties broken arbitrarily; if no tuple containing a is among the first |V | tuples, then λ(v, a) = 0.
Further, we say that post a is acceptable to agent v if λ(v, a) > 0, in other words, a, together with
some congestion d, is contained in one of the first |V | tuples in ⪰v .

The maximum congestions in Example 1 are: λ(vi, a1) = 2 and λ(vi, a2) = 1, i ∈ [3].

Milchtaich [33] shows that NS assignments always exist. Indeed, he proves that there always exists a
best-reply strategy path connecting an arbitrary assignment to an NS assignment, and such path can
be found in polynomial time. CP assignments, however, do not always exist (see Example 1), and it
is not clear how to adapt the NS-improvement approach to determine whether CP exists. However,
if the congestion levels are given, we can determine in polynomial time whether there exists a CP
assignment that match these levels. In the following, we provide an efficient approach to finding
a maximally competitive assignment when a congestion vector is given. The idea is to guess (by
brute-forcing) the number of unsatisfied agents and determine a perfect b⃗-matching in an appropriate
bipartite graph between the agents and the posts.

Lemma 2 (⋆). Given a congestion vector s⃗ with
∑

a∈A s⃗[a] = |V |, in polynomial-time one can
determine the smallest number t of unsatisfied agents among all assignments whose congestion
vectors equal s⃗; the corresponding assignment can found in polynomial time.

5

3 Algorithms for CP Assignments

In this section, we present a comprehensive analysis of our approach to CP assignments. We provide
an overview of the procedure (Algorithm 1) before exploring its theoretical foundations in detail.
The algorithm consists of two main nested loops. The outer loop enumerates possible values of k,
representing the number of empty posts in a potential CP assignment. For each k, we construct an
extended instance I that models the original problem with exactly k empty posts; see line 1. Within
the inner while-loop (lines 4–16), we determine whether I admits a CP assignment with all posts
being non-empty: Starting with a congestion vector T where T [j] = 1 for all j ∈ [m], we iteratively
refine this vector by building a flow network corresponding to T , determining the maximum flow,
and either deriving a CP assignment when the maximum flow value is n, or increasing some entries
in T , or terminating when

∑
j∈[m] T [j] > n, inferring no CP assignment exists where all posts are

non-empty.

In the following, we provide rigorous justification for our approach. Section 3.1 establishes why we
can restrict our search to assignments where every post is non-empty, while Section 3.2 demonstrates
the correctness of our maximum flow formulation for finding CP assignments with all posts being
non-empty, as well as a correctness proof of Algorithm 1.

3.1 Reducing to Determining CP Assignments with No Empty Posts

In this subsection, we show how to reduce our problem to the restricted problem of deciding a CP
assignment with all posts being non-empty, ensuring line 2 in Algorithm 1 is correct. The basic
idea is to guess the number k of empty posts (assuming CP exists) and augment the instance with k
dummy agents, two auxiliary agents and two fallback posts such that any CP assignment must assign
to each previously empty post a distinct dummy agent. The core of the reduction is described in
Construction 1 below; see Appendix B.1 for an example.
Construction 1 (Extended instance). Given an instance I = (A, V, (⪰v)v∈V) of CONGESTED
ASSIGNMENT with m posts and n agents, and a number k with max(0,m−n) ≤ k ≤ m−1 construct
a new instance (A∗, V ∗, (⪰∗

v)v∈V ∗) as follows. Create k dummy agents u1, . . . , uk, two auxiliary
agents p1, p2, and 2 dummy posts b1, b2. Set V ∗ = V ∪ {u1, . . . , uk, p1, p2} and A∗ = A∪ {b1, b2}.
Finally, define the preferences of the agents as follows2. Here, v denotes an original agent from I and
⪰v his original preference list, but restricted to the first n tuples, z ∈ [k], N := k + n+ 2.

uz : (a1, 1) ∼ (a2, 1) ∼ · · · ∼ (am, 1) ≻ (b1, 1)
≻ (b1, 2) ≻ · · · ≻ (b1, N −m);

p1 : (b1, 1) ≻ (b2, 1) ≻ (b2, 2) ≻ · · · ≻ (b2, N − 1);
p2 : (b2, 1) ≻ (b1, 1) ≻ (b1, 2) ≻ · · · ≻ (b1, N − 1);
v : (⪰v) ≻ (b1, 1) ≻ (b1, 2) ≻ · · · ≻ (b1, k + 2).

a1 · · · am b1 b2
uz 1 · · · 1 N −m 0
p1 0 · · · 0 1 N
p2 0 · · · 0 N 1
v λ(v, a1) · · · λ(v, am) k + 2 0

The table above states the maximum congestion of each agent towards each post, where aj , j ∈ [m],
and v denote the original post and agent, respectively.

To prove the correctness, we first make an observation about the extended instance.
Observation 1. Let Ik = (A∗, V ∗, (⪰∗

v)v∈V ∗) denote the instance created by Construction 1 with
A∗ = A ∪ {b1, b2} and V ∗ = V ∪ {ui | i ∈ [k]} ∪ {p1, p2}. Every CP assignment of Ik (if it exists)
satisfies the following: (1) p1 is assigned to b1 alone, and p2 to b2 alone. (2) Every dummy uz with
1 ≤ z ≤ k is assigned to some aj ∈ A alone. (3) Every original vi ∈ V is assigned to some original
post.

Proof. Let Π be a CP assignment of Ik with Π = (Sa)a∈A∗ . To show the first part of statement (1),
we observe that if p1 is assigned to b1, then |Sb1 | = 1, due to the maximum congestion of p1 towards
b1. Thus, it suffices to show that p1 is indeed assigned to b1. Suppose, for the sake of contradiction,
that p1 was assigned to b2 instead; note that he will not be assigned to any original post aj due to
his maximum congestion towards aj . Then, by the maximum congestion of p2 towards b2, agent p2
could not be assigned to b2. No original agent could be assigned to b2 either, due to his maximum
congestion towards b2. Hence, we would have Sb2 = {p1} and p2 would envy p1, a contradiction to
the competitiveness.

2By Lemma 1(2)–(3), we only need to consider the first n+ k + 2 tuples in each preference list.

6

The second part of statement (1) follows directly from the first part since b2 is the only acceptable
post left for p2 and his maximum congestion towards b2 is one.

By statement (1) and the maximum congestions, every dummy agent uz can only be assigned to
some original post alone, proving statement (2). The last statement follows directly from the first two
statements.

Now, we show the correctness of the construction.

Lemma 3. An instance I admits a CP assignment if and only if there exists an integer k with
max(0,m − n) ≤ k ≤ m − 1 such that the instance Ik created by Construction 1 admits a CP
assignment with all posts being non-empty.

Proof. Let I = (A, V, (⪰v)v∈V). The “only if” part is straightforward: Let Π = (Sa)a∈A denote
a CP assignment of I , and let A′ denote the set of empty posts under Π with k = |A′|. Clearly,
(0,m − n) ≤ k ≤ m − 1. Consider the instance Ik created according to Construction 1 on (I, k).
We claim that the following assignment Πk for Ik is CP where every post is non-empty.

– For each a ∈ A′, take a unique dummy agent uz and assign Πk(a) = {uz}; note that there are
exactly k = |A′| many dummy agents.

– For each non-empty post a ∈ A \A′, let Πk(a) = Π(a).
– Let Πk(b1) = {p1} and Πk(b2) = {p2}.

We continue to show why the derived assignment Πk is CP for Ik. Since no post is empty, showing
competitiveness reduces to showing that no agent is envious. This is clearly the case for all dummy
agents including p1 and p2 since they are assigned to one of their most preferred posts alone. No
original agent envies any other original agent or any dummy agent since Π is CP for I . No original
agent v ∈ V envies p1 or p2 since p1 and p2 are assigned to b1 and b2, Π is TG for I , and b1 and b2
occurs at the end of ⪰∗

v . This shows that Πk is CP for Ik, as desired.

For the “if” part, let k be an integer between max(0,m − n) and m − 1 such that the created
instance Ik admits a CP assignment Πk without empty post. We claim that the assignment Π derived
from Πk by omitting all dummy agents and the posts p1 and p2 is CP for I .

We first show that Π is a valid assignment for I . By Observation 1(2), every dummy agent is assigned
to some original post alone, and hence for each aj ∈ A that is not assigned any dummy agent (i.e.,
{u1, . . . , uk} ∩ Πk(aj) = ∅), we have Π(aj) = Πk(aj); and Π(aj) = ∅, otherwise. This implies
that Π(aj) ⊆ V .

By Observation 1(3), every original agent is assigned to an original post, confirming that Π is indeed
a valid assignment for I .

Next, suppose, for the sake of contradiction, that Π is not competitive and let v and a be an agent
and a post, respectively, such that (a,max(|Π(a)|, 1)) ≻v (a′, |Π(a′)|) where a′ is the post that
v is assigned to by Π. We infer that Π(a) cannot be empty since otherwise by Construction 1
and by Observation 1(2) we would have that Πk(a) = {uz} for some dummy agent uz . This
further implies that v envies uz in Ik, a contradiction to the competitiveness of Πk. Since Π(a)
is not empty and v ∈ Π(a′), again by Construction 1 and by Observation 1(2), we have that
Π(a) = Πk(a) and Π(a′) = Πk(a

′). Since ⪰∗
v is an extension of ⪰v for each v ∈ A, we obtain that

(a, |Πk(a)|) ≻∗
v (a′, |Πk(a

′)|) a contradiction to the competitiveness of Πk.

3.2 Determining CP Assignments with No Empty Posts

In this subsection, we show how the while-loop in lines 4–16 works. As already discussed in the
beginning of Section 3, by Lemma 2, we need to determine the desired congestion vector. To achieve
this, we iteratively update an integer table T , which stores the congestion level for each post that a CP
assignment should not fall below. Each iteration has three phases. In Phase 1 (lines 5–7), we construct
a flow network with capacities corresponding to T and determine whether there exists a perfect
flow, i.e., the value of the flow is equal to the number of agents. If this is the case, we derive and
return the corresponding CP assignment (line 7). Otherwise, we proceed with Phase 2 (lines 8–14),
where we find an obstruction (see Definition 3) containing posts whose congestion levels need to
be incremented necessarily. In Phase 3 (line 15), we update the table entries of the posts from the

7

obstruction. In the remainder of the subsection, we address these phases in details. We first introduce
necessary concepts, starting flow networks; see Example 2 for an illustration.
Construction 2 (Flow network). Given an instance I = (A, V, (⪰v)v∈V) together with a congestion
table T which has an entry 1 ≤ T [a] ≤ |V | for each post a ∈ A, we construct a network N = (G, c),
where G = (Â ∪ V̂ ∪ {s, t}, E) is a directed graph with dedicated source s and target t, and
c : E(G) → [|V |] is a capacity function:

(i) For each a ∈ A, create a vertex â. Let Â = {â | a ∈ A}.
(ii) For each v ∈ V , create a vertex v̂. Let V̂ = {v̂ | v ∈ V }.

(iii) For each post a ∈ A, create an arc (s, â) from the source s and set the capacity c(s, â) = T [a].
(iv) For each agent v ∈ V , create an arc (v̂, t) to the target t and set the capacity c(v̂, t) = 1.
(v) For each agent v ∈ V and each post a, if v considers (a, T [a]) as the most preferred tuple

among all tuples (a′, T [a′]), a′ ∈ A, then create an arc (â, v̂) with capacity c(â, v̂) = 1.

The capacity function c is c(e) = T [a] if e = (s, â) with a ∈ A; otherwise c(e) = 1.

Example 2. Consider the first instance in Example 1 and start with T = (1, 1). The flow network is
given on the right, where a label with “x : y” means the corre-
sponding arc has capacity x and a maximum flow has value y on
that arc. For this network, the maximum flow value is 2. It is not
a perfect flow since agent v3 is not assigned. This implies that
no assignment with congestion vector T = (1, 1) is CP.

v̂1

â1

v̂2

v̂3
â2

s t

1:1

1:1
1:1

1:1

1:1
1:1

1:0

1:0 1 :0

We need the following concepts to derive an assignment from a flow.
Definition 2 (Perfect flows and the derived assignment). Let (G, c) denote the network created by
Construction 2 for an instance I = (A, V, (⪰v)v∈V), together with a table T ∈ [|V |]|A|. A flow of
(G, c) is a function f : E(G) → [|V |]∪{0}3 that assigns to each arc a value, satisfying the following:
f(e) ≤ c(e) for all e ∈ E(G), and

∑
(x,y)∈E(G) f(x, y) =

∑
(z,x)∈E(G) f(z, x) for all x ∈ Â ∪ V̂ .

The value of a flow equals the net flow into the sink t: v(f) =
∑

(x,t)∈E(G) f(x, t). A flow is called
perfect if the value of f is |V |; this means that with a perfect flow, every arc (v̂, t) to the sink is
saturated.

Given a perfect flow f , we derive a congested assignment Π for the original instance I by setting
Π(a) = {v | f(â, v̂) = 1} for each post a ∈ A.

We also need the concept of obstructions, which are witnesses for the absence of a perfect flow. This
is similar to the forbidden substructure of a perfect matching in Hall’s marriage theorem.

Definition 3 (Obstruction). Let (G, c) be a network with G = (Â ∪ V̂ ∪ {s, t}, E). A pair (A′, V ′)

with A′ ⊆ Â and V ′ ⊆ V̂ is called an obstruction for (G, c) if the following holds:

(i) ∅ ≠ V ′ ⊆ V̂ ;
(ii) A′ = {â ∈ Â | ∃v̂ ∈ V ′ with (â, v̂) ∈ E(G)}, i.e., A′ is equal to the in-neighborhood of V ′;

(iii) For each â ∈ A′, c(s, â) < |{v̂ ∈ V ′ | (â, v̂) ∈ E}|.
(iv)

∑
â∈A′ c(s, â) < |V ′|.

A′ can be seen as a minimal set of posts a with congestions that are not enough to accommodate all
agents from V ′ according the congestion table T .

Throughout the remainder of the section, by an iteration, we mean the execution of lines 5–7 if a CP
assignment is found, and lines 5–15 otherwise. For each iteration z ≥ 1, we use Tz to denote the
table at the beginning of iteration z (i.e., at line 5).

The correctness of the three phases is based on Lemmas 4 to 6 which we present next. Lemma 4
guarantees that the second phase always finds some critical posts to increment their congestions.
Lemma 4 (⋆). Each (A′, V ′) computed in Phase 2 in lines 8–14 is an obstruction.

Lemma 5 ensures that increasing the table entries is safe and that the no-answer in line 16 is correct.

3Note that since the capacity values are integral, we can assume without loss of generality that the flow is a
also integral.

8

Lemma 5 (⋆). Assume that I admits a CP assignment Π with no posts being empty. Then, for each
iteration z ≥ 1, each obstruction (A′, V ′) found in iteration z, and each post a ∈ A, the following
holds. If â ∈ A′, then |Π(a)| ≥ Tz[a] + 1; otherwise |Π(a)| ≥ Tz[a].

Lemma 6 ensures that the returned assignment is CP.

Lemma 6 (⋆). If Π is an assignment returned in line 7, then Π is CP and has no empty post.

We have everything ready to show the correctness.

Theorem 1 (⋆). Algorithm 1 correctly decides whether an instance has a CP assignment in O(m2 ·
(n+m)2) time, where m and n denote the number of posts and agents, respectively.

Proof. Let I ′ be an instance. By Lemma 3, we only need to show that I ′ is a yes instance if and only
if there exists a k ∈ {max(0,m−n), . . . ,m− 1} such that line 7 returns an assignment where every
post is non-empty and is CP for the instance I constructed in line 2.

This reduces to showing that lines 3–16 correctly decide whether I admits a CP assignment with
all posts being non-empty. Clearly, if line 7 returns an assignment Π, then by Lemma 6, Π is CP
and every post is assigned at least one agent. Hence, to show the correctness, we need to show
that whenever line 16 returns no, I does not admit a CP assignment where every post is non-empty.
Towards a contradiction, suppose that I admits a CP assignment, say Π, where every post is non-
empty. Since line 16 returns no, in the second last iteration z, we have

∑
a∈A Tz[a] ≤ |V |, but after

the update of some table entries the sum exceeds |V |. Let Tz+1 denote the table entries at the end of
iteration z. By assumption,

∑
a∈A Tz+1[a] > |V | and

∑
a∈A Tz[a] ≤ |V |.

Since we updated some table entries, we must have found an obstruction (A′, V ′) in iteration z
according to which we made the update. By Lemma 5, we infer that for all posts a ∈ A, it holds that
|Π(a)| ≥ Tz[a] + 1 = Tz+1[a] if â ∈ A′, and |Π(a)| ≥ Tz[a] = Tz+1[a] if â /∈ A′. This implies that
|Π(a)| ≥ Tz+1[a] holds for all a ∈ A. Then,

∑
a∈A |Π(a)| ≥

∑
a∈A Tz+1[a] > |V |, a contradiction

to Π being a valid assignment. The running time analysis is deferred to Appendix B.6

4 Two Optimization Variants

In this section, we continue with Q2 and Q3 from the introduction. Specifically, we investigate the
computational complexity of finding TG assignments that are additionally either EF or maximally CP.

EF and TG assignments. We first focus on EF and TG assignments, and show that it is NP-hard to
find such assignments. Let EF+TG refer to the problem of determining whether a given instance
has an EF and TG assignment. We reduce from the NP-complete EXACT COVER BY 3-SETS (X3C)
problem. The input of X3C is a pair (U,S), where U = {u1, . . . , u3n} is a finite set of 3n elements,
and S is a family of subsets S = {C1, . . . , Cm} with Cj ⊆ U and |Cj | = 3 for each j ∈ [m]. The
question is whether there exist an exact cover J ⊆ [m] for U , i.e., |J | = n and

⋃
j∈J Cj = U . Note

that X3C remains NP-hard even if each element appears in exactly three subsets [22], meaning that
m = 3n.

Theorem 2 (⋆). EF+TG is NP-complete; hardness holds even if there are no ties.

Proof. NP-containment is clear since one can check in polynomial time whether a given assignment
is EF and TG. Now, we focus on NP-hardness and reduce from X3C. Let I = (U,S) denote an
instance of X3C with U = {u1, . . . , u3n}and S = (Cj)j∈[m] such that every element in U appears
in exactly three members of S; note that m = 3n ≥ 3.

We create an instance I ′ of CONGESTED ASSIGNMENT as follows. For each member Cj ∈ S , create
a set-post aj ; For each element ui ∈ U , create an element-agent vi; Create two dummy posts b1 and
b2 and 4m dummy agents p1, p2, . . . , p2m, q1, q2, . . . , q2m. Let A = {aj | j ∈ [m]} ∪ {b1, b2} and
V = {vi | i ∈ [3n]} ∪ {pj , qj | j ∈ [2m]}.

We describe the preferences of the agents, where the last “· · · ” denote an arbitrary but fixed order
of the rest of the tuples. ⟨α, s, t⟩ = (α, s) ≻ (α, s+ 1) ≻ · · · ≻ (α, t) depict the preference list on
tuples for post α and congestions ranging between s and t with s ≤ t.

9

– The preferences of agent vi is defined as follows, where Cj , Ck, Ct denote the three members in S
that contain ui with j < k < t: vi : (aj , 1) ≻ (ak, 1) ≻ (at, 1) ≻ (aj , 2) ≻ (ak, 2) ≻ (at, 2) ≻
(aj , 3) ≻ (ak, 3) ≻ (at, 3) ≻ ⟨b2, 1, 3n+ 4m− 9⟩ ≻ · · · .
In other words, each agent vi considers the three posts which correspond to the sets that contain
ui most acceptable, followed by b2. He does not consider any other post acceptable.

– All dummy agents pj , j ∈ [2m], have pj : (a1, 1) ≻ . . . ≻ (am, 1) ≻ (a1, 2) ≻ . . . ≻ (am, 2) ≻
⟨b1, 1, 2m+ 3n⟩ ≻ · · · .
Briefly put, each dummy agent pj always wants to go to a set-post with congestion one or two.

– All dummy agents qj , j ∈ [2m], only consider b1 and b2 acceptable, but prefers b2 over b1:
qj : ⟨b2, 1, 2m⟩ ≻ ⟨b1, 1, 2m+ 3n⟩ ≻ · · · .

Clearly, the construction can be done in polynomial time. One can verify that the constructed
preferences do not contain ties. The maximum congestions of the agents are depicted in the following
table, where vi is an element-agent with ui appearing in C1, C2, Cm:

a1 a2 a3 · · · am b1 b2
vi 3 3 0 · · · 3 0 3n+ 4m− 9
pz 2 2 2 · · · 2 3n+ 2m 0
qz 0 0 0 · · · 0 3n+ 2m 2m

The correctness proof is deferred to Appendix C.1

We conclude the study of EF+TG with two simple FPT algorithms. The first algorithm is based on
brute-force searching all possible TG assignments while the second one on guessing the empty posts
and applying Algorithm 1 that checks whether a CP assignment exists.
Theorem 3 (⋆). EF+TG is FPT with respect to the number n of agents and the number m of posts,
respectively.

Maximally CP assignments. Now, we turn to maximally CP assignments and define the decision
variant MAXCP+TG: Given an instance I and a non-negative integer t, does there exists a TG
assignment with at most t unsatisfied agents? We first show that MAXCP+TG is W[1]-hard wrt. the
number t of unsatisfied agents; the W[1]-hardness is via reducing from the W[1]-complete CLIQUE
problem [20]. Fortunately, when t is constant, the problem can be solved in polynomial time.
Theorem 4 (⋆). MAXCP+TG is W[1]-hard and in XP with respect to the number t of unsatisfied
agents. The W[1]-hardness holds even if there are no ties.

Using an idea similar to the one for Theorem 3 and by applying the algorithm behind Lemma 2, we
obtain further parameterized algorithms for MAXCP+TG.
Theorem 5 (⋆). MAXCP+TG is FPT with respect to n, and in XP with respect to m, where n and m
denote the number of agents and the number of posts, respectively.

Finally, we show that finding maximally CP assignment remains W[1]-hard even if we give up TG.
Theorem 6 (⋆). Deciding whether an instance of CONGESTED ASSIGNMENT has an assignment
with at most t unsatisfied agents is W[1]-hard with respect to t.

5 Conclusion

We investigated congested assignments with congestion-averse agents, focusing on competitiveness
(CP), envy-freeness (EF), and maximal competitiveness (maxCP). We devised a novel network-flow-
based algorithm to identify CP assignments. We then proved NP-hardness of finding an assignment
that is top-guaranteed and either EF or maxCP. We complement these hardness results with several
parameterized algorithms. We also show that relaxing top-guarantees does not reduce the complexity:
Finding a maxCP assignment remains NP-hard.

For future research, we suggest exploring congested assignments with weighted agents [6] and
scenarios where agents have varying responses to congestion. Additionally, in applications like urban
traffic, exploring control management strategies, such as identifying the minimum number of posts
to remove to achieve a competitive assignment, presents another intriguing avenue. Considering
that our work mainly focuses on providing theoretical analysis of congested assignment complexity,
empirically validating the algorithms shown in this paper could be another interesting direction.

10

Acknowledgement

This work was supported by the Vienna Science and Technology Fund (WWTF) [10.47379/
VRG18012] and the National Natural Science Foundation of China (Grants No. 61772314,
61761136017 and 62072275). We would like to thank the reviewers for their helpful comments.

References
[1] A. Abdulkadiroğlu and T. Sönmez. School choice: A mechanism design approach. American

economic review, 93(3):729–747, 2003.

[2] H. Ackermann, H. Röglin, and B. Vöcking. On the impact of combinatorial structure on
congestion games. Journal of the ACM, 55(6):25:1–25:22, 2008.

[3] H. Aziz, S. Gaspers, Z. Sun, and T. Walsh. From matching with diversity constraints to matching
with regional quotas. In Proceedings of the 18th International Conference on Autonomous
Agents and Multiagent Systems, page 377–385, 2019. ISBN 9781450363099.

[4] C. Ballester. NP-completeness in hedonic games. Games and Economic Behavior, 49(1):1–30,
2004.

[5] P. Biró, T. Fleiner, R. W. Irving, and D. Manlove. The College Admissions problem with lower
and common quotas. Theoretical Computer Science, 411(34-36):3136–3153, 2010.

[6] A. Bogomolnaia and H. Moulin. Fair congested assignment. Mathematics of Operation
Research, pages 1–19, 2025. URL https://doi.org/10.1287/moor.2024.0581.

[7] I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, and E. Papaioannou. Scheduling to maximize
participation. Theoretical Computer Science, 402:142–155, 2008.

[8] D. Chakrabarty, A. Mehta, and V. Nagarajan. Fairness and optimality in congestion games. In
Proceedings 6th ACM Conference on Electronic Commerce, pages 52–57. ACM, 2005.

[9] J. Chen, R. Ganian, and T. Hamm. Stable matchings with diversity constraints: Affirmative
action is beyond NP. In C. Bessiere, editor, Proceedings of the 29th International Joint
Conference on Artificial Intelligence, pages 146–152, 2020.

[10] G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion games. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 67–73, 2005.

[11] G. Christodoulou, M. Gairing, Y. Giannakopoulos, D. Poças, and C. Waldmann. Existence
and complexity of approximate equilibria in weighted congestion games. Mathematics of
Operations Research, 48(1):583–602, 2023.

[12] A. Copland. School choice and class size externalities, 2023.

[13] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015.

[14] A. Darmann. A social choice approach to ordinal group activity selection. Mathematical Social
Sciences, 93:57–66, 2018.

[15] A. Darmann. Stable and pareto optimal group activity selection from ordinal preferences.
International Journal of Game Theory, 47(4):1183–1209, 2018.

[16] A. Darmann. Manipulability in a group activity selection problem. Social Choice and Welfare,
52(3):527–557, 2019.

[17] A. Darmann and J. Lang. Group activity selection problems. In U. Endriss, editor, Trends in
computational social choice, pages 87–103. AI Access, 2017.

[18] A. Darmann, E. Elkind, S. Kurz, J. Lang, J. Schauer, and G. J. Woeginger. Group activity
selection problem. In Proceedings of the 8th Workshop on Internet and Network Economics,
volume 7695 of Lecture Notes in Computer Science, pages 156–169, 2012.

11

https://doi.org/10.1287/moor.2024.0581

[19] A. Darmann, E. Elkind, S. Kurz, J. Lang, J. Schauer, and G. J. Woeginger. Group activity
selection problem with approval preferences. International Journal of Game Theory, 47(3):
767–796, 2018.

[20] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness II: On
completeness for W[1]. Theoretical Computer Science, 141(1&2):109–131, 1995.

[21] R. Ganian, S. Ordyniak, and C. S. Rahul. Group activity selection with few agent types.
Algorithmica, 85(5):1111–1155, 2023.

[22] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical computer
science, 38:293–306, 1985.

[23] S. Gupta, S. Roy, S. Saurabh, and M. Zehavi. Group activity selection on graphs: Parameterized
analysis. In Proceedings of the 10th international symposium on algorithmic game theory,
volume 10504 of Lecture Notes in Computer Science, pages 106–118, 2017.

[24] D. Gusfield. Three fast algorithms for four problems in stable marriage. SIAM J. Comput., 16
(1):111–128, 1987.

[25] K. Hamada, K. Iwama, and S. Miyazaki. The Hospitals/Residents problem with lower quotas.
Algorithmica, 74(1):440–465, 2016.

[26] A. Hayrapetyan, É. Tardos, and T. Wexler. The effect of collusion in congestion games. In
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages 89–98, 2006.

[27] A. Igarashi, D. Peters, and E. Elkind. Group activity selection on social networks. In Proceedings
of the 31st AAAI Conference on Artificial Intelligence, pages 565–571, 2017.

[28] H. Konishi, S. Weber, and M. L. Breton. Free mobility equilibrium in a local public goods
economy with congestion. Research in Economics, 51:19–30, 1997.

[29] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer, 2007.

[30] H. Lee and Y. Shoham. Stable invitations. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence, pages 965–971, 2015.

[31] D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants of stable
marriage. Theor. Comput. Sci., 276(1-2):261–279, 2002.

[32] C. A. Meyers and A. S. Schulz. The complexity of welfare maximization in congestion games.
Networks, 59(2):252–260, 2012.

[33] I. Milchtaich. Congestion games with player-specific payoff functions. Games & Economic
Behavior, 13(27):111–124, 1996.

[34] M. Milinski. An evolutionarily stable feeding strategy in sticklebacks. Ethology, 51(1):36–40,
1979.

[35] W. Phan, R. Tierney, and Y. Zhou. Crowding in school choice. Technical report, Kyoto
University, 2021.

[36] R. W. Rosenthal. A class of games possessing pure-strategy nash equilibria. International
Journal of Game Theory, 2:65–67, 1973.

[37] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge, 2012.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide proofs for all stated results. They can be found in the main part or
appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The model studied in our paper is a theoretical and abstract model. Our
analysis is based on worst case analysis. There are no experiments.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13

Answer: [Yes]

Justification: We provide proofs for all stated results. They can be found in the main part or
appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: There are no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: As mentioned, there are no experiments. But all stated results are proved in
the main part or appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: As mentioned, there are no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: As mentioned, there are no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: As mentioned, there are no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research is theoretical and has no harm to the society or human.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We investigated fair assignment with congestion-averse agents. Fairness is
a relevant property that a society would want to achieve. Hence, it could have potentially
positive impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

16

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our research does not have experiments.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: As mentioned, there are no experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

17

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: As mentioned, there are no experiments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: As mentioned, there are no experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: As mentioned, there are no experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our research is original.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

Supplementary Material for the Paper “Assignments for
Congestion-Averse Agents:

Seeking Competitive and Envy-Free Solutions”

A Additional Material for Section 2

A.1 Proof of Lemma 1

Lemma 1 (⋆). (1) CP implies EF, but the converse does not hold.
(2) CP implies NS, but the converse does not hold.
(3) NS implies TG and NW, but the converse does not hold.
(4) EF is incomparable to NS, to TG, and to NW, respectively; TG is incomparable to NW.

Proof. (1) Clearly, CP implies EF by definition. Now, to show that the converse does not hold, let
us consider Example 1. Clearly assigning every agent to post a1 is EF, but it is not CP since all
agents prefer (a2, 1) to (a1, 3).

(2) As already mentioned, the implication has been discussed by Bogomolnaia and Moulin [6]
already. For the sake of completeness, we provide a proof by showing the contra-positive.
Let Π be an assignment that is not NS and let there be an agent v ∈ V and a post a ∈ A such that
v prefers (a, |Π(a)|+ 1) to (a∗, |Π(a∗)|) where a∗ denotes the post that v is assigned to. If a is
empty, then clearly, Π is wasteful and hence not CP. If a is non-empty, then since every agent is
averse against congestions, we infer that v prefers (a, |Π(a)|) to (a∗, |Π(a∗)|), and hence not CP
either.
Now, to show that the converse does not hold, let us consider Example 1 again. As already
discussed there, Π1 is NS, but not CP.

(3) That NS implies NW follows directly from definition. That “NS implies TG” has also been
shown by Bogomolnaia and Moulin [6]. Again, for the sake of completeness, we provide a proof
here by showing the contra-positive. Let Π be an assignment that is not TG, and let v ∈ V be an
agent and a∗ a post such that v is assigned to a∗ while (a∗, |Π(a∗)|) is not among his top-|V |
choices. Let X = {(a, d) | (a, d) ≻v (a∗, |Π(a∗)|)} be the set consisting of all tuples that v
prefers to (a∗, |Π(a∗)|). Then, |X| ≥ |V |. For each a ∈ A, let δ(a) denote the largest congestion
such that (a, δ(a)) ∈ X , i.e., δ(a) = max(a,d)∈X{d} and δ(a) = 0 if no tuple (a, d) exists in X .
Then,

∑
a∈A δ(a) = |X| ≥ |V | =

∑
a∈A |Π(a)|. By assumption, we have that δ(a∗) < |Π(a∗)|.

This implies that there must exist a post a ∈ A \ {a∗} such that δ(a) > |Π(a)|. By definition,
we infer that (a, |Π(a)|+ 1) ∈ X , and hence (a, |Π(a)|+ 1) ≻v (a∗, |Π(a∗)|), witnessing that
Π is not NS.
It is quite straightforward to come up with a TG and NW assignment which is not NS. Let us
consider the following example.
v1 : (a1, 1) ≻ (a1, 2) ≻ (a2, 1) ≻ · · · ,
v2 : (a1, 1) ≻ (a2, 1) ≻ (a1, 2) ≻ · · · ,
v3 : (a3, 1) ≻ (a3, 2) ≻ (a3, 3) ≻ · · · .

Π3 :
a1 a2 a3
v2 v1 v3

Π4 :
a1 a2 a3

v1, v2 v3

Π3 is clearly TG and NW. It is not NS however, since v1 prefers (a1, 2) to (a2, 1).
(4) Let us consider Example 1. Assigning every agent to the same post is clearly EF, but not TG and

not NW. Hence, it is not NS by Statement (3). As already argued in Example 1, Π1 is NS, TG,
and NW, but not EF.
Assigning v1 and v2 to a2, and v3 to a1 is NW, but not TG: For v1, tuple (a2, 2) is not in his top
3 choices.
Now, let us consider the example from item. Π4 is TG but not NW.

By definition, we observe the following:
Observation 2. For an arbitrary tie-breaking rule,

∑
a∈A λ(v, a) = |V | holds for every v ∈ V .

A.2 Proof of Lemma 2

Lemma 2 (⋆). Given a congestion vector s⃗ with
∑

a∈A s⃗[a] = |V |, in polynomial-time one can
determine the smallest number t of unsatisfied agents among all assignments whose congestion
vectors equal s⃗; the corresponding assignment can found in polynomial time.

20

Proof. The idea is to iterate over all possible number t ∈ {0, 1, . . . , |V |} and check whether there
exists an assignment with congestion vector s⃗ and exactly t unsatisfied agents. The later problem
can be solved via determining whether a perfect b⃗-matching exists, which can be done in polynomial
time [29, Chapter 12].

Let (A, V, (⪰)v∈V) be an instance of CONGESTED ASSIGNMENT. To check whether there exists an
assignment with congestion vector s⃗ and exactly t unsatisfied agents, we construct a bipartite graph G
on two disjoints X and Y with X = A ∪ {a0} and Y = V ∪ {w1, . . . , wt}, where the wz’s are the
dummy agent-vertices and a0 is a dummy post-vertex.

We add an edge between every original post aj and every dummy agent-vertex wz , and an edge
between the dummy post-vertex a0 and every original agent vi. We also add an edge between every
original post and original agent, but will delete some according to the congestion vector. In other
words, the graph on X and Y is almost a complete bipartite graph, except there are no edges between
the dummy post a0 and any dummy agent wz , z ∈ [t].

We delete from the bipartite graph the following edges: For each original agent v and each two
original posts a and a′, if v prefers (a,max(1, s⃗[a])) to (a′, s⃗[a′]), then we delete the edge {a′, v}.
This is because if v would be satisfied, he will never be assigned to a′ since either the post is wasteful
or he envies some agent that is assigned to a.

This completes the construction of the graph G. We check whether there exists a perfect b⃗-matching4

for G where b⃗[a0] = t, b⃗[aj] = s⃗[aj] for all aj ∈ A, and b⃗[y] = 1 for all y ∈ Y . We answer no if
no such matching exists. Otherwise, let M be the perfect b⃗-matching, and we return the following
partition as assignment Π. For each post aj ∈ A and agent vi ∈ V , let Π(vi) = aj if {vi, aj} ∈ M .
Let V ′ be the remaining agents that are unassigned; note that these agents are matched to a0 by
definition. As long as the congestion of some aj ∈ A is not equal to s⃗[aj] = b⃗[aj], pick an agent
from V ′ and assign him to aj .

For the correctness, it is straightforward that if Π is an assignment with congestion vector s⃗ and
exactly t unsatisfied agents V ′, then the following matching is a perfect b⃗ matching: Let M(vi) = aj
if vi ∈ V \ V ′, and M(vi) = a0 if vi ∈ V ′. Finally, for each original post aj , if it is assigned n̂
unsatisfied agents, then we pick n̂ distinct dummy agent-vertices and match them to aj .

If M is a perfect b⃗-matching for G, then a0 is matched with exactly t original agents V ′ who will be the
unsatisfied agents. Clearly, the assignment Π given by our algorithm above has the desired congestion
vector s⃗. We show that only the agents from V ′ may be unsatisfied. Consider an arbitrary agent vi ∈
V \ V ′ and post aj ∈ A \ {Π(vi)}. For a contradiction, suppose vi prefers (aj ,max(1, |Π(aj)|))
to (a∗, |Π(a∗)|), where vi is assigned to a∗, i.e., {vi, a∗} ∈ M . By the definition of Π, it follows
that vi prefers (aj ,max(1, s⃗(aj))) to (a∗, s⃗(a∗)), implying that edge {vi, a∗} does not exist in the
constructed bipartite graph and cannot be matched under M , a contradiction.

Since checking the existence of a perfect b⃗-matching and finding such a matching if it exists can be
done in polynomial time by reducing to finding a perfect matching, the whole approach can be done
in polynomial time as well. This completes the proof.

For an illustration, consider the first instance in Example 1. Let the congestion vector be s⃗ = (2, 1)

and the number of unsatisfied agents be t = 0. The following bipartite graph G has a perfect b⃗-
matching, indicated by the red lines.

b⃗ :
a0 â1 â2 v̂1 v̂2 v̂3
0 2 1 1 1 1

v̂1

â1

v̂2 a0

v̂3

â2

Indeed, the corresponding b⃗-matching yields a CP assignment which is Π2 and it has only satisfied
agents.

4A b⃗-matching M is perfect if
∑

e∈M : u∈e 1 = b⃗[u] holds for all vertices u.

21

B Additional Material for Section 3.1

B.1 Example of Construction 1

Let us consider the four agents with the following preference lists.

v1 : (a1, 1) ≻ (a2, 1) ≻ (a3, 1) ∼ (a1, 2) ∼ (a2, 2) ≻ · · · ,
v2, v3 : (a2, 1) ≻ (a1, 1) ≻ (a3, 1) ∼ (a1, 2) ∼ (a2, 2) ≻ · · · ,
v4 : (a1, 1) ∼ (a2, 1) ≻ (a1, 2) ∼ (a2, 2) ≻ (a3, 1) ≻ · · · ,

One can observe that if every post is non-empty, then a1 or a2 will have congestion one. If a1 has
congestion one, then v1 has to be assigned to a1 alone and v4 to a2 alone, leaving v2 and v3 to be
envious. If a2 has congestion one, then v2 or v3 will be envious. One can verify that assigning any
two agents to a1 and the remaining two to a2 is competitive, leaving a3 empty.

Now, let us “guess” that the number of empty post is k = 1. For k = 1, we augment the instance
with one dummy agent u1 and two auxiliary agents p1 and p2, and two dummy posts b1 and b2. Their
preference lists are as follows:

u1 : (a1, 1) ∼ (a2, 1) ∼ (a3, 1) ≻ (b1, 1) ≻ (b1, 2) ≻ (b1, 3);
p1 : (b1, 1) ≻ (b2, 1) ≻ (b2, 2) ≻ · · · ≻ (b2, 5);
p2 : (b2, 1) ≻ (b1, 1) ≻ (b1, 2) ≻ · · · ≻ (b1, 5).

One can verify that in the original instance, every CP assignment will leave a3 empty, and in
the augmented instance, every CP assignment will assign the dummy agent u1 to a3 alone. The
correctness is given by Lemma 3.

B.2 Example of Algorithm 1

Consider the first instance in Example 1 and let us assume that we are in the case with k = 0,
meaning that we can ignore a0 and the dummy agents. Initially, T [a1] = T [a2] = 1, implying
that the condition in Line 4 is satisfied, so we can start with the first iteration. In the first iteration,
where T = (1, 1), the network and its maximum flow constructed in Phase 1 (Lines 5–6) have been
discussed in Example 2 already. Hence, we proceed with line 7. Let the maximum flow f be as
indicated in Example 2, i.e., f(â1, t) = f(â2, t) = 1 and f(â3, t) = 0. Since f does not have
value |V | = 3, we proceed with Phase 2, where we find an obstruction in Lines 8–14. We start with
V ′ = {v̂3} and A′ = ∅ since v̂3 is the only vertex with f(v̂3, t) = 0. In the while-loop in lines 10–14,
we first find â1 and compute A′ = {â1}. Then, we compute V ′ = {v̂3, v̂1} in line 13. Since no
further post â exists that has an arc to any agent v̂ in V ′ (see the figure in Example 2), we stop
with A′ = {â1} and V ′ = {v̂3, v̂1}. One can check that if a1 would stay with congestion one, then
no CP assignment can exist since both v1 and v3 would envy the only agent that is assigned to a1.
We will later show that in order to have a CP assignment, it is necessary to increase the congestion
of every post in A′. In Phase 3, we increment T [a1] to 2, while the other post stays with T [a2] = 1.
This completes the first iteration.

At line 4, since T [a1] + T [a2] = 3 ≤ |V |, we continue with the second iteration. In the following,
the tuples considered in Construction 2(v) are boldfaced.

v1 : (a1, 1) ≻ (a1, 2) ∼ (a2, 1) ≻ (a2, 2) ≻ · · · ,
v2 : (a1, 1) ∼ (a2, 1) ≻ (a1, 2) ∼ (a2, 2) ≻ · · · ,
v3 : (a1, 1) ≻ (a1, 2) ≻ (a2, 1) ≻ (a2, 2) ≻ · · · .

One can verify that among all tuples (a, T [a]), a ∈ A, tuple (a1, 2) is the most preferred tuple of v1
and v3, while (a2, 1) is the most preferred tuple of v1 and v2. Hence, the network and maximum flow
(highlighted with red lines) constructed in Phase 1 are as given in Figure 2; note that this corresponds
to the bipartite graph in Appendix A.2.

In Line 6, we verify that the maximum flow is a perfect flow (i.e., with value |V |). Hence, we derive
and return an assignment according to Definition 2. This is exactly Π2 from Example 1.

One can verify that the second instance of Example 1 where every agent has the same preference
list as v2 will lead to the sum of the congestion entries to exceed |V | = 3 in the second iteration,
certifying that the instance does not have a CP assignment, no matter with or without empty posts.

22

v̂1

â1
v̂2

v̂3

â2

s t

1:1

1:1
1:1

2:2

1:1

1:1
1:1

1:1

1:
0

Figure 2: Flow network for iteration 2 where T = (2, 1). For more information, see Appendix B.2.

B.3 Proof of Lemma 4

Lemma 4 (⋆). Each (A′, V ′) computed in Phase 2 in lines 8–14 is an obstruction.

Proof. Let (A′, V ′) be the pair computed in lines 8–14 in some iteration z. Let (G, c) be the network
with G = (Â ∪ V̂ ∪ {s, t}, E) and f the maximum flow computed in this iteration. We aim to show
that (A′, V ′) satisfies the properties in Definition 3.

By line 7, f fails to have value |V |, i.e.,
∑

v̂∈V̂ f(v̂, t) < |V |. Hence, there must be a vertex v̂∗ ∈ V̂
with f(v̂∗, t) = 0. Let v̂∗ be such a vertex that is added to V ′ in line 9. Then, the first part of
property (i) is clear since v̂∗ ∈ V ′ (line 9) and we only add vertices from V̂ to V ′; see line 13.

Property (ii) is also clear due to line 11.

Let us consider property (iii). Clearly, for every vertex â ∈ A′ with (â, v̂∗) ∈ E(G) we must have
that f(s, â) = c(s, â) as otherwise we could increase the flow by one by setting f(s, â) = f(s, â)+1
and f(â, v̂∗) = f(v̂∗, t) = 1. By line 13, every out-neighbor v̂ of â with f(â, v̂) = 1 is added to V ′.
Together with v̂∗, we obtain that c(s, â) < |{v̂ ∈ V ′ | (â, v̂) ∈ E}| since f(v∗, t) = 0, as desired.

Consider an arbitrary vertex â ∈ A′ with (â, v̂∗) /∈ E(G). Suppose, towards a contradiction, that â
does not satisfy property (iii), meaning that c(s, â) ≥ |{v̂′ ∈ V ′ | (â, v̂′) ∈ E(G)}|. We aim to show
that there is an “augmenting” path from â to v̂∗, with arcs having flow values alternating between
zero and one, which is a witness for the flow to be not maximum.

Let us go through the repeat-loop in lines 10–14. Observe that in each round of this loop, we aim at
finding a vertex â not already in A′ that has an out-arc to some agent-vertex from V ′; V ′ is initialized
with V ′ = {v̂∗}. This implies that we can find a vertex in v̂x ∈ V ′ \ {v̂∗} due to which we add â in
line 11. Further, for each vertex v̂′ in V ′ \ {v̂∗}, we can also find a vertex â′ in a previous round such
that f(â′, v̂′) = 1 in line 13. Let âx be the vertex from A′ due to which we add v̂x, i.e., f(âx, v̂x) = 1.
Since each vertex in V ′ has only one out-arc with capacity one, due to the conservation constraint
of the flow f , we infer that f(â, v̂x) = 0; recall that f(âx, v̂x) = 1. Repeating the above reasoning,
there must be a vertex v̂x−1 from V ′ \ {v̂x} due to which we add âx. Then, either v̂x−1 = v̂∗ or
v̂x−1 ̸= v̂∗.

In the former case, we infer that (â, v̂x, âx, v̂∗) is an augmenting path since by assumption â has
enough capacity to accommodate all incident agents, including v̂x. Thus, flipping the flow values
along the path would increase the value of the flow:

f(s, â) = f(s, â) + 1, f(â, v̂x) = 1, f(âx, v̂x) = 0, f(âx, v̂
∗) = f(v̂∗, t) = 1, a contradiction.

In the latter case, since V ′ is finite and no vertex from V̂ can obtain more than one positive flow, by
repeating the above reasoning, we must end up with an arc to v̂∗ with zero flow; recall that v̂∗ ∈ V ′.
Then, we again obtain an augmenting path P = (â, v̂x, âx, . . . , â0, v̂0 = v̂∗). Analogously, we can
increase the total flow by flipping the flow values along this path, a contradiction.

It remains to show property (iv). This is clear since otherwise for each vertex v̂ ∈ V ′ we could find a
vertex â ∈ A′ and set f(â, v̂) = f(v̂, t) = 1. In particular, the starting vertex v̂∗ would have positive
flow going through it, a contradiction.

23

B.4 Proof of Lemma 5

Lemma 5 (⋆). Assume that I admits a CP assignment Π with no posts being empty. Then, for each
iteration z ≥ 1, each obstruction (A′, V ′) found in iteration z, and each post a ∈ A, the following
holds. If â ∈ A′, then |Π(a)| ≥ Tz[a] + 1; otherwise |Π(a)| ≥ Tz[a].

Proof. Let us consider the first iteration and let (A′, V ′) be the found obstruction. Since Π does not
have empty posts, the statement clearly holds for all posts a ∈ A with â /∈ A′. Let N = (G, c) denote
the network and f the maximum flow of N computed in the first phase. Let P = {v ∈ V | v̂ ∈ V ′}
and Q = {a ∈ A | â ∈ A′} be the set of agents and posts that correspond to the vertices in V ′ and
A′, respectively.

Suppose, for the sake of contradiction, that there exists a post a ∈ Q with |Π(a)| ≤ T1[a] = 1.
By Definition 3(iii), more than c(s, â) = T1[a] = 1 vertex from V ′ is incident to â in G. By
Construction 2(v), at least two agents from P consider (a, 1) as one of the most preferred tuples.

Since |Π(a)| ≤ 1, at least one agent from P is not assigned to a but considers (a, 1) as one of the
most preferred tuples. Let v0 ∈ P be such an agent. Then, he must be assigned to some other
post a0 such that (a0, |Π(a0)|) is one of the most preferred tuples for v0 as well. This implies that
|Π(a0)| = 1 since we are in the first iteration. By Construction 2(v), we infer that (â0, v̂0) ∈ E(G),
and by line 11, that â0 ∈ A′.

By Definition 3(iii), more than c(s, â0) = T1[a0] = 1 vertex from V ′ is incident to â0 in G, and we
can find another agent v1 ∈ P that is not assigned to a0 but considers (a0, 1) as one of the most
preferred tuples. Again, this agent v1 will be assigned to some post a1 with (a1, 1) being one of the
most preferred tuples of v1. By Construction 2(v), we infer that (â1, v̂1) ∈ E(G), and by line 11 that
â1 ∈ A′. Repeating the above reasoning, we will be able to find a distinct vertex âi ∈ A′ for each
vertex v̂i ∈ V ′ such that Π(ai) = {vi}. That is, |A′| ≥ |V ′|, a contradiction to Definition 3(iv) since
|A′| =

∑
â∈A′ c(s, â) < |V ′| in this case.

Now, let us consider other iterations. For each z, let (A′
z, V

′
z) be the obstruction found in iteration z.

Note that the table entries never decrease. Hence, if the statement were incorrect, there must be an
iteration z ≥ 2 where the statement holds in all iterations z′ ≤ z − 1 but not in iteration z.

Suppose, for the sake of contradiction, that the statement is incorrect and let z be the index of the first
such iteration where the statement is incorrect. That is, in all iterations z′ ≤ z − 1, we have that for
all a′ ∈ A,

if â′ ∈ A′
z , then |Π(a′)| ≥ Tz′ [a′] + 1; otherwise |Π(a′)| ≥ Tz′ [a′] (1)

but there exists a post a such that

if â ∈ A′
z , |Π(a)| ≤ Tz[a]; if â /∈ A′

z , then |Π(a)| < Tz[a]. (2)

First, observe that â ∈ A′
z since otherwise Π(a) ≥ Tz−1[a] = Tz[a] by line 15, a contradiction to the

assumption.

Next, we claim that Tz[a] = |Π(a)|. If â ∈ A′
z−1 (i.e., â was in the obstruction found in iteration z−

1), then by assumption (1)–(2) and by line 15, we infer |Π(a)| ≥ Tz−1[a] + 1 = Tz[a] ≥ |Π(a)|, as
desired. If â /∈ A′

z−1, then again by assumption (1)–(2) and by line 15, we infer |Π(a)| ≥ Tz−1[a] =
Tz[a] ≥ |Π(a)|, as desired as well.

Recall that we inferred that â ∈ A′
z . Let (G, c) denote the network constructed in iteration z. By

Lemma 4, (A′
z, V

′
z) is an obstruction for (G, c). Let v̂∗ ∈ V ′ be the starting vertex with f(v̂∗, t) = 0.

By Definition 3(iii), more than c(s, â) = Tz[a] vertices from V ′
z exist that have a as an in-neighbor.

By Construction 2 (v), more than Tz[a] = |Π(a)| agents from V ′
z consider (a, Tz[a]) as one of the

most-preferred tuples among all (a′, Tz[a
′]). Hence, at least one of such agents is not assigned to a

by Π.

Let v̂ ∈ V ′
z be a vertex whose corresponding agent v considers (a, |Π(a)|) as one of the most

preferred tuples but is assigned to some other post a′ ̸= a. Then, (â, v̂) ∈ E(G). To prevent v from
being envious (recall that no post is empty), we must have that (a′, |Π(a′)|) ⪰v (a, |Π(a)|).
We claim that â′ ∈ A′

z as well. Since (a, |Π(a)|) is one of the most-preferred tuples of v among
all (a′, Tz[a

′]), by previous paragraph and by congestion aversion, we infer that Tz[a
′] ≥ |Π(a′)|.

If Tz[a
′] > |Π(a′)|, then by line 15, there must exists an iteration z′ ∈ [z − 1] where â′ ∈ A′

z′

24

and Tz′ [a′] = |Π(a′)|, a contradiction to (1). Hence, Tz[a
′] = |Π(a′)|, implying that (a′, Tz[a

′]) is
also one of the most preferred tuples of v among all (a′′, Tz[a

′′]). By Construction 2(v), we have
(â′, v̂′) ∈ E(G), and by line 11, we have â′ ∈ A′

z , as desired.

By Definition 3(iii), we infer that more than c(a′) = Tz[a
′] = |Π(a′)| vertices from V ′

z have in-arcs
from â′. By Construction 2(v), more than c(a′) = Tz[a

′] = |Π(a′)| agents consider (a′, |Π(a′)|) as
one of the most preferred tuples among all (p, T [p]), p ∈ A.

Analogously, we can again find another vertex v̂′ ∈ V ′
z such that v′ considers (a′, |Π(a′)|) as one

of the most preferred tuples among all (p, T [p]), p ∈ A, but is assigned to some other post a′′ ̸= a′

with â′′ ∈ A′
z and Tz[a

′′] = |Π(a′′)|. By repeating this argument, we infer that every vertex α̂ ∈ A′
z

has Tz[α] = |Π(α)|. By Definition 3(iv), we have that |V ′
z | >

∑
α̂∈A′

z
c(s, α̂) =

∑
α̂∈A′

z
Tz[α] =∑

α̂∈A′
z
|Π(α)|. So there must be a vertex µ̂ ∈ V ′

z such that µ is assigned to a post b with b̂ /∈ A′
z .

By line 11 and Construction 2(v), let α̂ ∈ A′
z with (α̂, µ̂) ∈ E(G) such that (α, Tz[α]) is a most

preferred tuple of µ among all tuples (p, Tz[p]), p ∈ A.

By our previous argument, we have that Tz[α] = |Π(α)|. By CP, we have that (b, |Π(b)|) ⪰v

(α, |Π(α)|). Since (α, Tz[α]) is a most preferred tuple of µ among all tuples (p, Tz[p]), p ∈ A, we
further infer that Tz[b] ≥ |Π(b)|.

Since b /∈ A′
z , meaning by line 11 that (b̂, µ̂) /∈ E(G), by Construction 2(v), we further infer that

|Π(b)| < Tz[b]. By line 15, there must exist an iteration z′ ∈ [z − 1] with Tz′ [b] = Π(b) and Tz′ [b]
was incremented. This is a contradiction to (1) however.

B.5 Proof of Lemma 6

Lemma 6 (⋆). If Π is an assignment returned in line 7, then Π is CP and has no empty post.

Proof. Let z be the integration and f be the perfect flow based on which Π is computed in line 7. By
the definition of perfectness (see Definition 2), the value of f equals the number |V | of agents. This
means that

∑
a∈A |Π(a)| = |V |. By the capacity constraints, we obtain that |V | =

∑
a∈A |Π(a)| ≤∑

a∈A Tz[a] ≤ |V |, the last inequality holds due to the while-loop-condition in line 4. Hence, for
each post a ∈ A we must have that |Π(a)| = Tz[a] since |Π(a)| ≤ Tz[a] holds by the capacity
constraints in Construction 2(iii).

This implies that Π(a) ̸= ∅ since Tz[a] ≥ 1. Hence, to show that Π is CP, it suffices to show that for
each agent v that is assigned to a post a and for each post a′ with a′ ̸= a it holds that (a, |Π(a)|) ⪰v

(a′, |Π(a′)|). Towards a contradiction, suppose that (a′, |Π(a′)|) ≻v (a, |Π(a)|). By the reasoning
above, it follows that (a′, Tz[a

′]) ≻v (a, Tz[a]), a contradiction to Construction 2(v).

B.6 Continuation of the proof of Theorem 1

Theorem 1 (⋆). Algorithm 1 correctly decides whether an instance has a CP assignment in O(m2 ·
(n+m)2) time, where m and n denote the number of posts and agents, respectively.

It remains to analyze the running time. The main body of the algorithm is a for-loop (line 1) and
has at most m iterations. In each iteration k, the algorithm constructs a new instance I according
to Construction 1. Note that I has O(n+m) agents and O(m) posts, and it can be constructed in
O((n+m)2) time since each agent has O(n+m) tuples in his preference list. Then, we continue
with the big while-loop in lines 4–16. If we can show the while-loop run in O(m · (n+m)2) time,
we obtain our desired running time of O(m2 · (n+m)2).

So, it remains to analyze the while-loop. In line 3, initializing the table T needs O(m) time.
The while-loop (lines 4–15) runs at most n times since no table entries are ever decreased and in
each iteration at least one table entry is increased by one. For each iteration, we first construct a
network N = (G, c) based on (I, T); see Construction 2. The directed graph G has O(n + m)
vertices and O(m · n) arcs, and each capacity value is in O(n). Hence, constructing the network
needs O(m · n) time.

25

Afterwards, there are three phases. The first phase (lines 5–7) finds a maximum flow for N and
checks whether its value is |V |. Computing a maximum flow can be done in O(m · n) time and
comparing two values needs constant time. Hence, the first phase needs O(m · n) time.

The second phase (lines 8–14) finds an obstruction (A′, V ′) by first finding a vertex v̂∗ with f(v̂∗, t) =
0. This can be done in O(1) time if we store such information when we compare the value of the
flow with |V | in the first phase. Hence, the initialization of V ′ and A′ needs O(1) time. Then, the
algorithm goes to the repeat-loop in lines 10–14. To analyze the running time of this loop, we observe
that there are O(m · n) arcs between A′ and V ′ and each arc only needs to be checked at most once
during the whole loop (line 11). Adding new vertices to V ′ can be done in O(m · n) time as well
since for each newly added alternative â there are at most n vertices v̂ from V̂ with positive flow
from â to v̂. Hence, the repeat-loop needs O(m · n) time.

It is straightforward that the last phase (lines 15–15) runs in O(m) time. Summarizing, we obtain
that the desired O(m · n2) time for the while-loop.

C Additional Material for Section 4

C.1 Correctness of the Construction in the Proof of Theorem 2

Theorem 2 (⋆). EF+TG is NP-complete; hardness holds even if there are no ties.

Proof of the correctness of the construction. Correctness. It remains to show the correctness, i.e.,
I has an exact cover if and only if I ′ admits an EF and TG assignment.

For the “only if” part, let J ⊆ [m] denote an exact cover for I . Then, we claim that the following
assignment Π is EF+TG:

– For each j ∈ J , let Π(aj) = {vi | ui ∈ Cj}.
– For each j ∈ [m] \ J , let Π(aj) = ∅.
– Let Π(b1) = {pj | j ∈ [2m]} and Π(b2) = {qj | j ∈ [2m]}.

Since each set-post contains either zero or three agents, no dummy agent envies any element-agent.
The dummy agents also do not envy each other due to their preferences. Similarly, no two element-
agents envy each other and no element-agent envies any dummy agent since he does not like b1 or b2
more.

For “if” part, let Π be an EF and TG assignment for the constructed instance. We aim at showing
that the set-posts that are assigned element-agents constitute an exact cover. To this end, let J = {j |
∃vi with vi ∈ Π(aj)}. We first show two claims.

Claim C.1.1. For each set-post aj it holds that |Π(aj)| ∈ {0, 3}.

Proof. Since there are 2m dummy agents {p1, p2, . . . , p2m}, but there are only m set-posts, at least
one dummy agent, say pz , is not assigned to a set-post alone. Hence, for every set-post aj , it holds
that |Π(aj)| ̸= 1 since otherwise pz would envy the agent that is assigned to aj . Since the maximum
congestion for every set-post is 3, we further infer that |Π(aj)| ∈ {0, 2, 3} holds for every set-post aj .
In particular, this implies that no dummy agent pz with 1 ≤ z ≤ 2m is assigned to a set-post alone.

Towards a contradiction, suppose that there exists a set-post aj with |Π(aj)| /∈ {0, 3}. This implies
that |Π(aj)| = 2. Then, every dummy agent pz with 1 ≤ z ≤ 2m is to be assigned a set-post since
otherwise he would envy the two agents that are assigned to aj . Since there are exactly 2m dummy
agentsp1, . . . , p2m, this means that every set-post ax, x ∈ [m], must have |Π(x)| = 2. Then, no other
agent can be assigned to the set-post. However, all element-agents will envy all pi’s, a contradiction.
This concludes the proof. (end of the proof of Claim C.1.1 ⋄)

By Claim C.1.1, we know that each set-post is assigned either zero or three agents. Next, we show
that every element-agent vi is assigned to an acceptable set-post.

Claim C.1.2. For each element-agent vi it holds that Π(vi) ∈ {aj | j ∈ [m] and ui ∈ Cj}.

26

Proof. Suppose this is not true, and by TG let vi denote an element-agent that is assigned to b2;
note that vi does not find b1 acceptable. Since there are 2m dummy agents qz each with con-
gestion 2m for b2, at least one of them is not assigned to b2. This agent envies vi, a contradic-
tion. (end of the proof of Claim C.1.2 ⋄)

Claim C.1.2 implies that J is a set cover, while Claim C.1.1 implies that |J | ≤ n. Altogether we
conclude that J is an exact cover.

C.2 Proof of Theorem 3

Theorem 3 (⋆). EF+TG is FPT with respect to the number n of agents and the number m of posts,
respectively.

Proof. We first consider the parameter n. Let I = (A, V, (⪰v)v∈V) be an instance of CONGESTED
ASSIGNMENT. Due to TG, each agent is assigned to one of his first n tuples. Hence, for each
agent vi ∈ V , we guess (by brute-force searching) which of his first n tuples that vi is “assigned”
to, i.e., (a, d). After assigning all the agents, we check in linear time whether this results in a valid
assignment, i.e., if we vi “assign” (a, d), then there must be exactly d agents that are guessed to be
“assigned” to (a, d). This check can be done in O(n2 +m) time. We abandon the current guess if it
does not give a valid assignment; otherwise we proceed to check EF in O(n2) time.

Since there are n agents, each with n choices, the whole procedure can be done in O(nn · (n2 +m))
time, which is an FPT time with respect to n.

Now, we consider the parameter m. Let I = (A, V, (⪰v)v∈V) be an instance of CONGESTED
ASSIGNMENT. We guess (by brute-force searching) the set of empty posts A′ ⊆ A in the sought
solution. Then, we modify the preference list ⪰v of each agent v as follows: First, truncate ⪰v by
removing all tuples (a, d) with ranks are higher than n; then, remove all tuples (a′, d′) with a′ in A′.
Denote the new preference list as ⪰′

v . Let I ′ = (V,A \A′, (⪰′
v)v∈V) denote the modified instance.

Since for assignments with all posts being non-empty, CP and EF are equivalent, we infer that I
admits an EF and TG assignment where all posts in A′ are empty and the rest is non-empty if and
only if I ′ admits CP assignment where all posts are non-empty. The latter problem can be checked in
polynomial time via lines 3–16 in Algorithm 1. The running time depends on the running time of the
while-loop, which is m(n+m)2 time. See the proof in Appendix B.6 for more details. Since there
are 2m subsets of empty posts to check, the overall running time is 2m ·m · (n+m)2, which is an
FPT time with respect to m.

Clique. The following graph problem is W[1]-complete with respect to the clique size h [20]. We
will use it to show W[1]-hardness for finding a a maximally competitive assignment.

CLIQUE
Input: An undirected graph G=(U,E), an integer h ≥ 0.
Question: Does G admit a clique of size h, i.e., a size-h subset U ′ ⊆ U which induces a
complete subgraph?

C.3 Proof of Theorem 4

Theorem 4 (⋆). MAXCP+TG is W[1]-hard and in XP with respect to the number t of unsatisfied
agents. The W[1]-hardness holds even if there are no ties.

Proof. We first show the W[1]-hardness by providing a parameterized reduction from the CLIQUE
problem.

Let I = (G = (U,E), h) denote an instance of CLIQUE with U = {u1, . . . , u|U |} and E =
{e1, . . . , e|E|}. We create a MAXCP+TG instance I ′ = (A, V, (⪰v)v∈V , t) as follows. Let t =
h+ h(h− 1). We will show that the agents corresponding to the vertices and edges of a size-h clique
are the only unsatisfied agents.

– For each vertex ui ∈ U , create a vertex-post ai, a vertex-agent wi, and h− 1 copies of wi, denoted
as w̃z

i with z ∈ [h− 1].

27

– For each edge eℓ ∈ E with eℓ = {ui, uj}, create an edge-post bℓ and three edge-agents e∗ℓ , eiℓ, and
ejℓ .

– Create L dummy agents x1, · · · , xL with L = |U |(h− 2) + (|U | − h− 1) + (h(h− 1)− 1) +

(|E| −
(
h
2

)
− 1) + (t+ 1).

– Create five auxiliary posts a0, ã0, b0, y, c0. Post y shall accommodate all L dummy agents, while
c0 is a “blocker” making sure that agents are assigned to the desired posts.

Let V = W ∪
⋃

ui∈U

W̃i ∪ {e∗ℓ , eiℓ, e
j
ℓ | eℓ ∈ E, eℓ = {ui, uj}} ∪ {xi | i ∈ [L]}, and

A = {ai | ui ∈ U} ∪ {bℓ | eℓ ∈ E} ∪ {a0, ã0, b0, y, c0}, where W = {wi | ui ∈ U} and
W̃i = {w̃z

i | z ∈ [h]}. Let n = |V |.

Preferences. We state the preferences of the agents, restricted to the first n tuples. Here,
⟨α, s, t⟩ = (α, s) ≻ (α, s + 1) ≻ · · · ≻ (α, t) depicts the preference list on tuples for post α and
congestions ranging between s and t. Note that we also briefly explain the main purpose of these
preferences in italicized text.

– The dummy agent xi with i ∈ [L] has the following preference list:
xi : ⟨a1, 1, h− 2⟩ ≻ ⟨a2, 1, h− 2⟩ ≻ · · · ≻ ⟨a|U |, 1, h− 2⟩ ≻ ⟨a0, 1, |U | − h− 1⟩ ≻

⟨ã0, 1, h(h− 1)− 1)⟩ ≻ ⟨b0, 1, |E| −
(
h

2

)
− 1⟩ ≻ ⟨y, 1, L⟩ ≻ ⟨c0, 1, n+ (t+ 1)− 2L⟩.

The dummy agents shall ensure some minimum number of agents assigned to each post (except bℓ
and y): At least h− 1, |U | − h, h(h− 1), and |E| −

(
h
2

)
agents are to be assigned to ai(i ∈ [|U |]),

a0, ã0, and b0, respectively. The reason is that since at least t+1 dummy agents are to be assigned
to y or c0, they would envy the agents assigned to a post if its congestion is less than or equal
to the maximum congestion of xi to that post, which is not possible for a yes instance. Indeed,
the dummy agents can only be assigned to y.

– The vertex-agent wi with i ∈ [|U |] has the following preference list:
wi : ⟨a0, 1, |U | − h− 1⟩ ≻ ⟨ai, 1, h− 2⟩ ≻ (a0, |U | − h) ≻ (ai, h− 1) ≻ (ai, h) ≻ ⟨c0, 1, n− |U |⟩.
We will show that exactly |U | − h vertex-agents wi are assigned to a0. Consequently, there remain
h vertex-agents vi that are assigned to ai. They shall correspond to the clique-vertices if G admit
a size-h clique.

– For each i ∈ [|U |], all copy-agents w̃z
i with z ∈ [h − 1] of the vertex-agent wi have the same

preference list:
w̃z

i : ⟨ã0, 1, h(h− 1)− 1⟩ ≻ ⟨ai, 1, h− 1⟩ ≻ (ã0, h(h− 1)) ≻ ⟨c0, 1, n− (h+ 1)(h− 1)⟩.
The copy-agents shall ensure that all w̃z

i , z ∈ [h − 1], are jointly assigned to either ã0 or ai. If
they are assigned to ai, then no other agent (including wi) can be assigned to ai. This corresponds
to the case that the vertex ui is not in the clique.

– The edge-agents e∗ℓ , eiℓ and ejℓ with eℓ = {ui, uj} have the following preference lists:

e∗ℓ : ⟨b0, 1, |E| −
(
h

2

)
− 1⟩ ≻ (bℓ, 1) ≻ (b0, |E| −

(
h

2

)
) ≻ (bℓ, 2) ≻ ⟨c0, 1, n− (|E| −

(
h

2

)
)− 2⟩.

eiℓ : (bℓ, 1) ≻ (bℓ, 2) ≻ ⟨ai, 1, h⟩ ≻ ⟨c0, 1, n− h− 2⟩.
ejℓ : (bℓ, 1) ≻ (bℓ, 2) ≻ ⟨aj , 1, h⟩ ≻ ⟨c0, 1, n− h− 2⟩.

Note that e∗ℓ can only be assigned to bℓ or b0, and eiℓ (resp. ejℓ) only to ai (resp. aj) or bℓ. If
e∗ℓ is assigned to bℓ and does not envy other agents, then no other agent can be assigned to bℓ,
as otherwise at least |E| −

(
h
2

)
+ 1 agents must be assigned to b0, which is impossible due to

top-guarantees. Therefore, if e∗ℓ is assigned to bℓ, then eiℓ and ejℓ have to be assigned to ai and
aj , respectively. We will show that e∗ℓ cannot be unsatisfied, and having eiℓ and ejℓ assigned to
ai and aj , respectively, corresponds to having the edge eℓ in a size-h clique.

The maximum congestions of the agents are depicted in Table 1.

Correctness. Clearly, the construction can be done in polynomial time and no agent has ties in
his preference list. It remains to show the correctness, i.e., I has a clique of size h if and only if
I ′ admits a TG assignment with t = h+ h(h− 1) agents being unsatisfied.

28

a1 . . . a|U | a0 ã0 bℓ b0 y c0
w1 h 0 0 |U | − h 0 0 0 0 n− |U |
... 0 h 0 |U | − h 0 0 0 0 n− |U |

w|U | 0 0 h |U | − h 0 0 0 0 n− |U |
w̃z

1 h− 1 0 0 0 h(h− 1) 0 0 0 n− h2 + 1
... 0 h− 1 0 0 h(h− 1) 0 0 0 n− h2 + 1

w̃z
|U | 0 0 h− 1 0 h(h− 1) 0 0 0 n− h2 + 1

e∗ℓ 0 0 0 0 0 2 |E| −
(
h
2

)
0 n− (|E| −

(
h
2

)
)− 2

eiℓ h 0 0 0 0 2 0 0 n− h− 2

ejℓ 0 0 h 0 0 2 0 0 n− h− 2

xz h− 2 h− 2 h− 2 |U | − h− 1 h(h− 1)− 1 0 |E| −
(
h
2

)
− 1 L n+ (t+ 1)− 2L

Table 1: Maximum congestions of the agents constructed for Theorem 4. For an illustration, we
assume that eℓ = {u1, u|U |}.

The “only if” part. Let C ⊆ U denote an h-clique for I . Let EC ⊆ E denote the edge set associated
with C, i.e., EC = {eℓ = {ui, uj} | ui, uj ∈ C}. Then, we claim that the following assignment Π
is a TG assignment with t unsatisfied agents.

– For each ui ∈ C, assign wi to ai, and assign w̃z
i with z ∈ [h− 1] to ã0.

– For each ui /∈ C, assign w̃z
i with z ∈ [h− 1] to ai, and assign wi to a0.

– For each eℓ = {ui, uj} ∈ EC , assign eiℓ to ai, e
j
ℓ to aj , and e∗ℓ to bℓ.

– For each eℓ = {ui, uj} /∈ EC , assign eiℓ and ejℓ to bℓ, and e∗ℓ to b0.
– Assign xz to y with z ∈ [L].

Clearly, Π is TG with the following congestion vector.

Observation 3. Π is TG and satisfies the following.

(i) |Π(a0)| = |U | − h, |Π(ã0)| = h(h− 1), |Π(b0)| = |E| −
(
h
2

)
, and |Π(y)| = L.

(ii) For each ui ∈ C, it holds that Π(ai) = {wi, w̃
z
i | z ∈ [h− 1]}.

For each ui ∈ U \ C, it holds that |Π(ai)| = {w̃z
i | z ∈ [h− 1]}.

(iii) For each eℓ ∈ E, if eℓ ∈ EC , then |Π(bℓ)| = 2; otherwise |Π(bℓ)| = 1.

Let V ′ = {wi | ui ∈ C}∪{eiℓ, e
j
ℓ | eℓ ∈ EC with eℓ = {ui, uj}}. Note that |V ′| = t. We aim to show

that all agents except those from V ′ are satisfied. By the above observation, it is straightforward that
every dummy agent xz is satisfied, every agent that does not correspond to the clique vertices is sat-
isfied, and the copies w̃z

i of all vertex-agents are also satisfied. It remains to consider the edge-agents
that are not in V ′. Let eℓ ∈ E with eℓ = {ui, uj}. Clearly, if eℓ /∈ EC , then the two edge-agents eiℓ and
ejℓ are satisfied since they are assigned to their most preferred post. Agent e∗ℓ with eℓ /∈ EC is also sat-
isfied since he is assigned to b0 with congestion |E|−

(
h
2

)
which is better than (bℓ, 2). If eℓ ∈ EC , then

agent e∗ℓ is satisfied since he is assigned to bℓ alone which is better than (b0, |E| −
(
h
2

)
). Hence, only

the agents in V ′ are unsatisfied. Since |V ′| = t, this concludes the proof for the “only if” direction.

The “if” part. Let Π be a TG assignment with at most t unsatisfied agents. We aim to show that
the following vertex subset C is a size-h clique: C = {ui | |Π(ai)| ≥ h}. Before we show this, we
observe the following regarding the congestions and assignments of the posts.

Claim C.3.1. (1) |Π(a0)| = |U | − h, |Π(ã0)| = h(h− 1), and |Π(b0)| = |E| −
(
h
2

)
.

(2) For each ui ∈ U , it holds that |Π(ai)| ∈ {h− 1, h}.
(3) For each eℓ ∈ E, it holds that |Π(bℓ)| ≤ 2.
(4) Π(a0) ⊆ {wi | ui ∈ U}, Π(ã0) ⊆ {w̃z

i | i ∈ [|U |], z ∈ [h− 1]}, and Π(b0) ⊆ {e∗ℓ | eℓ ∈ E}.
(5) All edge-agents E∗ = {e∗ℓ | eℓ ∈ E} are satisfied.

Proof. We show the first two statements together by considering the dummy agents.

Since Π is TG and the maximum congestion of dummy xz for a0, ã0, b0, and ai with i ∈ [|U |] are
|U |−h−1, h(h−1)−1, |E|−

(
h
2

)
−1, and h−2, respectively, we infer by simple calculation that there

29

are more than t dummy agents who are assigned to y or c0. Since Π does not have more than t unsatis-
fied agents, this further implies that there is at least one satisfied dummy agent xz who is assigned to y
or c0. By his preferences, every tuple that he prefers to (y, t+ 1) must have congestion that exceeds
his maximum durable congestion. This implies that |Π(a0)| ≥ |U | − h, |Π(ã0)| ≥ h(h − 1), and
|Π(b0)| ≥ |E|−

(
h
2

)
, for |Π(ai)| ≥ h−1. Since no agent allows more than the aforementioned conges-

tions (except for ai), we further infer that |Π(a0)| = |U |−h, |Π(ã0)| = h(h−1), and |Π(b0)| = |E|−(
h
2

)
. For ai, since the maximum congestion of any agent for ai is h, we infer that h−1 ≤ |Π(ai)| ≤ h.

Statement (3) is straightforward by observing the maximum congestion of any agent towards bℓ is two.

The first part of statement (4) follows from the fact that the only agents that have (a0, |U | − h) in
their top n choices are the vertex-agents. Similarly, we can show that the other parts of statement (4)
are also correct.

To show statement (5), let us analyze which agents are unsatisfied. To this end, de-
fine W ′ = {wi ∈ W | wi /∈ Π(a0)}. By statements (1) and (4), we infer that |W ′| = h.

Further, every agent wi in W ′ is unsatisfied since by statement (2) that |Π(ai)| ≥ h− 1, any agent
not assigned to a0 will envy those that are assigned to a0. This implies that at most 2

(
h
2

)
agents other

than W ′ can be unsatisfied.

By statement (2), partition the posts {ai | ui ∈ U} into A1 and A2 with A1 = {ai | ui ∈
U ∧ |Π(ai)| = h − 1} and A2 = {ai | ui ∈ U ∧ |Π(ai)| = h}. Note that by the top-guarantees,
every post ai from A2 can only be assigned vertex-agents wi or edge-agent eiℓ for some edge eℓ ∈ E
with ui ∈ eℓ. However, this implies that every agent assigned to post ai ∈ A2 is unsatisfied since wi

prefers (a0, |U | − h) to (ai, h− 1) and every edge-agent eiℓ (with ui ∈ eℓ) prefers (bℓ, 2) to (ai, h);
recall by statements (1) and (3) that |Π(a0)| = |U | − h and |Π(bℓ)| ≤ 2. This further implies that
|A2| ≤ h since t = h+ h(h− 1) = h2 can be unsatisfied.

By statement (1), we have that |Π(ã0)| = h(h− 1). Since every vertex-agent has h− 1 copies, there
are at least h vertices each of which has a copy-agent assigned to ã0. Since every copy-agent ezℓ
corresponding to vertex ui prefers (ai, h − 1) to (ã0, h(h − 1)), it follows that at least h − |A2|
copy-agents will be unsatisfied, namely those whose corresponding vertex-post has congestion h− 1.

Since at most h vertex-agents and at most (|U | − h)(h − 1) copy-agents can be assigned to any
vertex-post ai, the number of edge-agents eiℓ that have to be assigned to some vertex-post ai is at least

|A1| · (h− 1) + |A2| · h−
(
h+ (|U | − h)(h− 1)

)
= h(h− 1)− (h− |A2|).

Observe that each edge-agent eiℓ that is assigned to some vertex-post ai is unsatisfied. This implies
that at least h(h− 1)− (h−|A2|) edge-agents are unsatisfied. Together with the h−|A2| unsatisfied
copy-agents, no more other agent can be unsatisfied. In other words, every edge-agent e∗ℓ must be
satisfied, as desired. (end of the proof of Claim C.3.1 ⋄)

Now, we are ready to show that C is a clique of size h. We first show that C has size h. Define
W ′ = {wi | Π(wi) ̸= a0}. By the preferences of the vertex-agents and by Claim C.3.1(1), |W ′| = h
and every vertex-agent in W ′ is unsatisfied. By Claim C.3.1(1) and by the maximum congestions
of the agents towards b0, we infer that Π(b0) consists of exactly

(|E|−{h
2}

)
edge-agents e∗ℓ , ℓ ∈ [|E|].

By Claim C.3.1(5), every remaining edge-agent e∗ℓ that is not assigned to b0 must be assigned to the
corresponding edge-post bℓ alone. This implies that the remaining two edge-agents eiℓ and ejℓ with
eℓ = {ui, uj} are not assigned to bℓ and hence unsatisfied; they both envy e∗ℓ . Define E′ = {eiℓ, e

j
ℓ |

Π(e∗ℓ) = bℓ}. Then, |E′| = h(h−1) and it yields h(h−1) unsatisfied edge-agents by Claim C.3.1(1).
Together with the h unsatisfied vertex-agents in W ′, we infer that every copy-agent w̃z

i is satisfied. In
particular, it means that for each copy-agent w̃z

i that is assigned to ã0 it must hold that |Π(ai)| = h.
Recall that there are at least h vertices ui each of which has a copy-agent assigned to ã0. This further
implies that there are at least h vertex-posts that each have congestion h, that is |C| = h.

It remains to show that C is a clique. Let E′′ = {eℓ | eiℓ ∈ Π(ai) for some ui ∈ C} be the set
consisting of all edges whose corresponding edge-agents are assigned to some vertex-post. Clearly,
|E′′| ≥

(
h
2

)
since C = h; note that the equality holds only if C induces a clique. Towards a

contradiction, suppose that C contains two vertices ui and uj that are not adjacent with each other.
This implies that |E′′| >

(
h
2

)
. Let us consider each edge eℓ ∈ E′′ and let eℓ = {ui, uj} with i < j.

30

By definition, at least one of the two edge-agents eiℓ and ejℓ is assigned to ai and he is unsatisfied. We
claim that both edge-agents are unsatisfied. Without loss of generality, assume that Π(eiℓ) = ai and
is unsatisfied. If ejℓ is assigned to vertex-post aj or c0, then he is unsatisfied as well. Otherwise, ejℓ
is assigned to post bℓ alone, making e∗ℓ unsatisfied which is not possible according to Claim C.3.1(5).
Hence, both eiℓ and ejℓ are satisfied. Since there can be only h(h − 1) unsatisfied edge-agents, we
conclude that |E′′| =

(
h
2

)
, as desired.

Now, we turn to the XP result. The ideas is to guess the unsatisfied agents and the posts that they
are assigned to, and replace them with dummies and run Algorithm 1 for the reduced instance. More
precisely, we guess who are the unsatisfied agents in O(nt) time; denoting the set of unsatisfied agents
as V ∗ = {v∗1 , . . . , v∗t }. For each V ∗, we further guess which posts they are assigned to in O(mt)
time, denoted as A∗ = {a∗1, . . . , a∗t } with a∗z being the post that v∗z will assigned to and z ∈ [t].

Then we create t dummy agents P = {pz | z ∈ [t]} and set their preference list as
pz : (a

∗
z, 1) ≻ · · · ≻ (a∗z, n) ≻ · · · . We replace the agents V ∗ with the dummies and use Algorithm 1

to solve the resulting instance. If Algorithm 1 returns no on the current guess, we proceed with the next
guess; otherwise, let Π be CP assignment returned by Algorithm 1. It is straightforward that replacing
each dummy Pz with v∗z in the assignment yields a TG assignment with at most t unsatisfied agents.

The overall running time is O(ntmt).

C.4 Proof of Theorem 5

Theorem 5 (⋆). MAXCP+TG is FPT with respect to n, and in XP with respect to m, where n and m
denote the number of agents and the number of posts, respectively.

Proof sketch. Parameter n: We first guess a subset V ′ of unsatisfied agents. Afterwards, similarly
to Theorem 3, we guess for each satisfied agent V \ V ′ one of his first n tuples and check whether
the |V \ V ′| guesses yield a valid assignment ΠV ′ and store the number of unsatisfied agents. Finally,
we select one valid ΠV ′ with fewest unsatisfied agents. The whole approach can be done in FPT time
wrt. n.

Parameter m: For the XP-algorithm, we guess the congestion vector s⃗ with s⃗[j] ∈ {0, . . . , n} and
Σs⃗ = n and use the algorithm behind Lemma 2 to determine the minimum number of unsatisfied
agents. The overall running time is nm · (m+ n)O(1), which is XP wrt. m.

C.5 Proof of Theorem 6

Theorem 6 (⋆). Deciding whether an instance of CONGESTED ASSIGNMENT has an assignment
with at most t unsatisfied agents is W[1]-hard with respect to t.

Proof. We reduce from the W[1]-complete problem CLIQUE; the definition can be found ahead of
Appendix C.3.

Let I = (G = (U,E), h) denote an instance of CLIQUE with U = {u1, . . . , un̂} and E =
{e1, . . . , em̂} being the vertex set and edge set, respectively. Without loss of generality, we as-
sume that n̂ > 3h+

(
h
2

)
and m̂ > 2h+ 2

(
h
2

)
as the problem remains W[1]-hard in this case.

The idea is to construct an instance I ′ = (A, V, (⪰v)v∈V) of CONGESTED ASSIGNMENT such that
the unsatisfied agents correspond to the vertices and edges of a size-h clique. We set the number of
unsatisfied agents to t = 2h+

(
h
2

)
, and let L and R be two very large numbers such that L > 2t and

R > (L+ 2) · (n̂+ m̂) + h. For the sake of brevity, let N = (L+ 2) · (n̂+ m̂) + 2R, and we will
create exactly N agents.

Posts and agents.

– For each vertex ui ∈ U , create one vertex-post ai and L+ 2 vertex-agents wi, pi, pzi , z ∈ [L].
– For each edge eℓ ∈ E, create one edge-post bℓ and L+ 2 edge-agents eℓ, fz

ℓ , z ∈ [L+ 1].
– Create 2R dummy agents xz, yz , z ∈ [R].
– Create 3 auxiliary posts a0, b0, and c0.

31

Let A = {ai | i ∈ [n̂]}, B = {bℓ | ℓ ∈ [m̂]}, W = {wi | i ∈ [n̂]}, P = {pi | i ∈ [n̂]}, Pi = {pzi |
z ∈ [L], i ∈ [n̂]}, Fℓ = {fz

ℓ | z ∈ [L + 1]}, X = {xz | z ∈ [R]}, and Y = {yz | z ∈ [R]}. Then,
we set A = A ∪B ∪ {a0, b0, c0}, and V = W ∪ P ∪

⋃
i∈[n̂]

Pi ∪ E ∪
⋃

ℓ∈[m̂]

Fℓ ∪X ∪ Y . In total, we

have created n̂+ m̂+ 3 posts and N agents.

Preferences. For two numbers s, t ∈ [N] and post α ∈ A, let ⟨α, s, t⟩ = (α, s) ≻ (α, s + 1) ≻
· · · ≻ (α, t) depict the preference list on tuples for post α and congestions ranging between s and t.
The notation “∗ ∗ ∗” refers to an arbitrary but congestion-averse preferences of the tuples that are not
explicitly mentioned.

(i) For each vertex ui ∈ U , the vertex-agents wi ∈ W , pi ∈ P , and pzi ∈ Pi, z ∈ [L], have the
following preference lists:

wi : ⟨a0, 1, n̂− h⟩ ≻ ⟨ai, 1, L+ 2⟩ ≻ ⟨c0, 1, N⟩ ≻ ∗ ∗ ∗ ≻ ⟨b0, 1, N⟩ ≻ ⟨a0, n̂− h+ 1, N⟩,
pi : ⟨ai, 1, L+ 1⟩ ≻ ⟨a0, 1, n̂− h⟩ ≻ (ai, L+ 2) ≻ ⟨c0, 1, N⟩ ≻ ∗ ∗ ∗ ≻ ⟨b0, 1, N⟩ ≻ ⟨a0, n̂− h+ 1, N⟩,
pzi : ⟨ai, 1, L+ 2⟩ ≻ ⟨c0, 1, N⟩ ≻ ∗ ∗ ∗ ≻ ⟨b0, 1, N⟩ ≻ ⟨a0, 1, N⟩.

(ii) For each edge eℓ ∈ E, the edge-agents eℓ, fz
ℓ , z ∈ [L+ 1], have the following preference lists,

where we assume eℓ = {ui, uj}:

eℓ : ⟨b0, 1, m̂−
(
h

2

)
⟩ ≻ ⟨bℓ, 1, L+ 2⟩ ≻ ⟨c0, 1, N⟩ ≻ ∗ ∗ ∗ ≻ ⟨b0, m̂−

(
h

2

)
+ 1, N⟩ ≻ ⟨a0, 1, N⟩.

fz
ℓ : ⟨bℓ, 1, L+ 1⟩ ≻ ⟨ai, 1, L+ 1⟩ ≻ ⟨aj , 1, L+ 1⟩ ≻ (bℓ, L+ 2) ≻ ⟨c0, 1, N⟩ ≻ ∗ ∗ ∗ ≻

⟨b0, 1, N⟩ ≻ ⟨a0, 1, N⟩.

(iii) The preference lists of the dummy agent xz ∈ X and yz ∈ Y are as follows:

xz : ⟨a0, 1, n̂− h− 1⟩ ≻ ⟨a1, 1, L⟩ ≻ · · · ≻ ⟨an̂, 1, L⟩ ≻ ⟨c0, 1, 2R⟩ ≻ ⟨a1, L+ 1, N⟩ ≻ · · · ≻
⟨an̂, L+ 1, N⟩ ≻ ⟨c0, 2R+ 1, N⟩ ≻ ∗ ∗ ∗ ≻ ⟨b0, 1, N⟩ ≻ ⟨a0, n̂− h,N⟩ ≻ ⟨a0, 1, N⟩.

yz : ⟨b0, 1, m̂−
(
h

2

)
− 1⟩ ≻ ⟨b1, 1, L⟩ ≻ · · · ≻ ⟨bm̂, 1, L⟩ ≻ ⟨c0, 1, N⟩ ≻ ∗ ∗ ∗ ≻

⟨b0, m̂−
(
h

2

)
, N⟩ ≻ ⟨a0, 1, N⟩.

This completes the construction of the instance I ′, which can clearly be done in polynomial time.
Note that it is also a parameterized reduction since the parameter t = 2h +

(
h
2

)
is a polynomial

function in h. It remains to show the correctness, i.e., I has a size-h clique if and only if I ′ has an
assignment with at most t unsatisfied agents.

For the “only if” part, let U ′ be a clique of size h. We construct the following assignment Π and
show that it has at most t unsatisfied agents.

(1) For each vertex ui ∈ U , assign all agents from Pi ∪ {pi} to ai. Additionally assign wi to ai if
ui ∈ U ′; otherwise assign wi to a0.

(2) For each edge eℓ ∈ E, assign all agents from Fℓ to bℓ. Additionally assign eℓ to bℓ if eℓ ⊆ U ′,
i.e., both its endpoints are in U ′; otherwise assign eℓ to b0.

(3) Assign all agents from X ∪ Y to c0.

To see who is unsatisfied, let W ′ = {wi ∈ W | wi ∈ Π(ai)}, P ′ = {pi ∈ P | pi ∈ Π(ai)}, and
E′ = {eℓ ∈ E | eℓ ∈ Π(bℓ)}. We claim that all agents but those from W ′ ∪ P ′ ∪ E′ are satisfied.

In the following, we say that a post α is the most preferred post for agent q if every tuple that is contains
a post other than α is less preferred than (α, |Π(α)|). Further, a tuple (α, d) is a most preferred
feasbile tuple for agent q if every tuple (α′, d′) that is preferred to (α, d) has congestion |Π(α′)| > d′.

Clearly, every agent in X ∪ Y is satisfied since (c0, 2R) is his most preferred feasible tuple. Every
agent in (

⋃
i∈[n̂]

Pi) ∪ (W \W ′) ∪ (P \ P ′) ∪ (E \ E′) is satisfied since he is assigned to his most

preferred post. Every agent fz
ℓ ∈ Fℓ is also satisfied since either he is assigned to his most preferred

32

post (if eℓ is not a “clique” edge) or |Π(ai)| = |Π(aj)| = L + 2 so (bℓ, L + 2) remains his most
preferred feasible tuple. This concludes the proof for the “only if” direction.

For the “if” direction, let Π denote an assignment with at most t unsatisfied agents. Before we
construct a clique, let us analyze the preferences and Π would look like.

Claim C.5.1. Π satisfies the following.

(1) |Π(a0)| = n̂− h and |Π(b0)| = m̂−
(
h
2

)
.

(2) Every agent from W that is not assigned to a0 is unsatisfied and every agent from E that is not
assigned to b0 is unsatisfied.

(3) For each ai ∈ A we have that |Π(ai)| ≥ L+1 and for each bℓ ∈ B we have that |Π(bℓ)| ≥ L+1.
(4) It holds that |Π(c0)| ≤ 2R.
(5) For each ai ∈ A we have that |Π(ai)| ≤ L+2 and for each bℓ ∈ B we have that |Π(bℓ)| ≤ L+2.

Proof. Statement (1): The lower bounds are straightforward since all agents from W ∪ X prefer
(a0, n̂ − h − 1) to any other tuple that does not contain a0: If |Π(a0)| < n̂ − h would hold,
then more than |W ∪ X| − (n̂ − h) > R agents will be unsatisfied, which is not possible since
R > (L + 2) · (n̂ + m̂) > t. Similar reasoning shows that |Π(b0)| ≥ m̂ −

(
h
2

)
by considering the

preferences of E ∪ Y . Now, we show the upper bounds. Suppose, for the sake of contradiction,
that |Π(a0)| > n̂− h. Then, since no agent considers (a0, n̂− h+ 1) more valuable than any other
tuple that does not contain a0, all agents assigned to a0 are unsatisfied. Since we can assume that
n̂ > 3h+

(
h
2

)
, it follows that more than t agents will be unsatisfied, a contradiction. Similarly, since

we have just shown that |Π(a0)| ≤ n̂ − h, from the remaining possible tuples, no agent considers
(b0, m̂−

(
h
2

)
) more valuable than any tuple that does not contain b0 (except (a0, n̂− h+ z), z ≥ 1,

which is excluded). Consequently, by the fact that m̂ > 2h+ 2
(
h
2

)
, we infer that |Π(b0)| ≤ m̂−

(
h
2

)
as otherwise all agents assigned to b0 are unsatisfied the number of which exceeds t.

Statement (2): This statement follows directly from the previous statement and from the preferences
of the agents in W ∪ E.

Statement (3): We show the lower bound by iterating through all i ∈ [n̂]. By Statement (1), every
agent in X ∪ P1 ∪ {p1} prefers (a1, L) to every other tuple that does not contain a1 (excluding a0).
Hence, |Π(a1)| ≥ L+1 as otherwise more than R−L > t agents from X are not assigned to a1 and
will be unsatisfied. By applying the above reasoning for the next i ≥ 2, we infer that |Π(ai)| ≥ L+1
holds for all i ∈ [n̂]. Similarly, we infer that |Π(bℓ)| ≥ L+ 1 holds for every ℓ ∈ [m̂].

Statement (4): Suppose this is not true, i.e., |Π(c0)| ≥ 2R+ 1. Then, by Statements (1)–(2) and by
the bound t = 2h+

(
h
2

)
, at most h agents from V \ (W ∪ E) can be unsatisfied. By construction,

every agent in X that is assigned to c0 will be unsatisfied since he prefers (a1, L+1) to (c0, 2R+1).
Hence, at most h agents from X can be assigned to c0. This means that at least 2R+ 1− h agents
from W ∪ P ∪

⋃
i∈[n̂]

Pi ∪ E ∪
⋃

ℓ∈[m̂]

Fℓ ∪ Y need to be assigned to c0. This is not possible however

since R > (L+ 2) · (n̂+ m̂) + h and |Y | = R.

Statement (5): Let i ∈ [n̂]. The statement follows directly from the fact that every agent
prefers (c0, 2R) to (ai, L + 3) and |Π(c0)| ≤ 2R (see Claim C.5.1(1)): |Π(ai)| > L + 2
would hold, then all agents assigned to ai are unsatisfied, the number of which exceed t since
L > 2t. (end of the proof of Claim C.5.1 ⋄)

The next statement is about the structure of the agents assigned to A ∪B.

Claim C.5.2. Let A′ = {ai ∈ A : |Π(ai)| = L+ 2} and B′ = {bℓ ∈ B : |Π(bℓ)| = L+ 2}. Then,
Π satisfies the following.

(1) |A′|+ |B′| ≥ h+
(
h
2

)
.

(2) For each post ai ∈ A′, at least two agents in Π(ai) are unsatisfied; for each post bℓ ∈ B′, at
least one agent in Π(bℓ) is unsatisfied.

(3) |A′| ≤ h and |B′| ≥
(
h
2

)
.

(4) For each post bℓ ∈ B′ it holds that |Π(ai)| = |Π(aj)| = L+ 2 where eℓ = {ui, uj}.

33

Proof. Statement (1): This can be shown by simple calculation. By Claim C.5.1(1) and (4), at least
(L+2) · (n̂+ m̂)− (n̂− h)− (m̂−

(
h
2

)
) = (L+1) · (n̂+ m̂) + h+

(
h
2

)
agents are assigned to the

posts of A ∪ B. By Claim C.5.1(3) and (5), each post in A ∪ B is assigned either L + 1 or L + 2
agents. That is, at least h+

(
h
2

)
of the post in A ∪B are each assigned L+ 2 agents, confirming that

|A′|+ |B′| ≥ h+
(
h
2

)
.

Statement (2): For each post ai ∈ A′, since |Π(ai)| = L + 2 and |Pi| = L, at least two agents in
Π(ai) are not from Pi, i.e., |Π(ai) \ Pi| ≥ 2 We claim that the agents in Π(ai) \ Pi are unsatisfied
by considering the preferences of all agents except Pi: Every agent from W ∪ P prefers (a0, n̂−
h) to (ai, L + 2). Every agent from E prefers (b0, m̂ −

(
h
2

)
) to (ai, L + 2). Every agent from

(
⋃

i′∈[n̂]\{i} Pi) ∪ (
⋃

ℓ∈[m̂] Fℓ) ∪ X ∪ Y prefers (c0, 2R) to (ai, L + 2). Since |Π(a0)| = n̂ − h,
|Π(b0)| = m̂ −

(
h
2

)
, and |Π(c0)| ≤ 2R (see Claim C.5.1s(1) and (4)), we infer that every agent in

Π(ai) \ Pi is unsatisfied.

Similarly, for each post bℓ ∈ B′, since |Π(bℓ)| = L+ 2 and |Fℓ| = L+ 1, at least one agent in Π(bℓ)
is not from Fℓ. We claim that the agents in Π(bℓ) \ Fℓ are unsatisfied by considering the preferences
of all agents except Pi: Every agent from W ∪ P ∪ (

⋃
i∈[n̂] Pi) ∪ (

⋃
ℓ′∈[m̂]\{ℓ} Fℓ) ∪X ∪ Y prefers

(c0, 2R) to (bℓ, L + 2). Every agent from E prefers (b0, m̂ −
(
h
2

)
) to (bℓ, L + 2). Again, since

|Π(b0)| = m̂ −
(
h
2

)
and |Π(c0)| ≤ 2R (see Claim C.5.1(1) and (4)), we infer that every agent in

Π(bℓ) \ Fℓ is unsatisfied.

Statement (3): Statement (2) implies that at least 2|A′|+ |B′| agents are unsatisfied. By the upper
bound that t ≤ 2h+

(
h
2

)
and by Statement (1), we infer that |A′| ≤ h, and hence |B′| ≥

(
h
2

)
.

Statement (4): Suppose, towards a contradiction, that |Π(ai)| ≠ L+ 2. Then, by Claim C.5.1(3) and
(5), it follows that |Π(ai)| = L+ 1. We claim that every agent assigned to bℓ is unsatisfied. Let us
consider an arbitrary agent q ∈ Π(bℓ). Clearly, if q ∈ W∪P∪

⋃
ℓ∈[m̂] Pℓ∪X∪Y ∪E∪F \({eℓ}∪Fℓ),

then he is unsatisfied since he prefers (c0, 2R) to (bℓ, L+2). If q = eℓ, then he is unsatisfied since he
prefers (b0, m̂−

(
h
2

)
) to (bℓ, L+2), while if q ∈ Fℓ, then he is unsatisfied since he prefers (ai, L+1)

to (bℓ, L+ 2) as well. This concludes the proof that every agent in Π(bℓ) is unsatisfied, implying that
more than L > 2t agents is unsatisfied, a contradiction.

By an analogous reasoning, we can show that |Π(aj)| = L+2. (end of the proof of Claim C.5.2 ⋄)

Now, we are ready to show the existence of a size-h clique. By Claim C.5.2(3), B′ corresponds
to at least

(
h
2

)
edges. Hence, there are at least h vertices incident to any edge corresponding to B′.

For each vertex ai that is “incident” to any edge-post in B′, we know by Claim C.5.2(4) that its
corresponding vertex-post ai must be assigned L+ 2 posts. By Claim C.5.2(3), there are at most h
such vertex-posts. Hence, there are exactly h vertex-posts that are each assigned L+ 2 agents, and
this is possible if and only if they form a size-h clique.

34

	Introduction
	Preliminaries
	Algorithms for CP Assignments
	Reducing to Determining CP Assignments with No Empty Posts
	Determining CP Assignments with No Empty Posts

	Two Optimization Variants
	Conclusion
	Additional Material for Section 2
	Proof of lem:relation
	Proof of lem:cong-profile

	Additional Material for Section 3.1
	Example of Cons:instance
	Example of Alg:CPTies
	Proof of lem:obstruction
	Proof of lem:CP-assignment
	Proof of lem:return-correct
	Continuation of the proof of thm:main

	Additional Material for Section 4
	Correctness of the Construction in the Proof of thm:EF-NP-hard
	Proof of thm:EFTF-fpt-n-m
	Proof of thm:TF+EF-W[1]hard+XP
	Proof of thm:MaxCPTF-fpt
	Proof of thm:maxCP-W[1]h

