
Published as a conference paper at ICLR 2024

GRAPHPULSE: TOPOLOGICAL REPRESENTATIONS FOR
TEMPORAL GRAPH PROPERTY PREDICTION

Kiarash Shamsi1 Farimah Poursafaei2,3 Shenyang Huang 2,3 Tran Gia Bao Ngo1

Baris Coskunuzer4 Cuneyt Gurcan Akcora5

1Department of computer science, University of Manitoba, 2Mila - Quebec AI Institute,
3School of Computer Science, McGill University, 4University of Texas at Dallas,
5AI Institute - University of Central Florida
[shamsik1@myumanitoba.ca, farimah.poursafaei@mila.quebec,
shenyang.huang@mail.mcgill.ca, ngot1@myumanitoba.ca,
coskunuz@utdallas.edu, cuneyt.akcora@ucf.edu]

ABSTRACT

Many real-world networks evolve over time, and predicting the evolution of such
networks remains a challenging task. Graph Neural Networks (GNNs) have
shown empirical success for learning on static graphs, but they lack the abil-
ity to effectively learn from nodes and edges with different timestamps. Con-
sequently, the prediction of future properties in temporal graphs remains a rel-
atively under-explored area. In this paper, we aim to bridge this gap by intro-
ducing a principled framework, named GraphPulse. The framework combines
two important techniques for the analysis of temporal graphs within a Newto-
nian framework. First, we employ the Mapper method, a key tool in topological
data analysis, to extract essential clustering information from graph nodes. Next,
we harness the sequential modeling capabilities of Recurrent Neural Networks
(RNNs) for temporal reasoning regarding the graph’s evolution. Through exten-
sive experimentation, we demonstrate that our model enhances the ROC-AUC
metric by 10.2% in comparison to the top-performing state-of-the-art method
across various temporal networks. We provide the implementation of GraphPulse
at https://github.com/kiarashamsi/GraphPulse.

1 INTRODUCTION

Real-world interaction networks, such as financial and cryptocurrency networks, experience contin-
uous evolution due to the emergence of new transactions and users. Predicting the dynamic changes
in the graph structure of these networks over time poses a significant challenge. While Graph Neural
Networks have proven effective for learning graph representations in static graphs (Xu et al., 2018),
temporal graphs differ significantly because nodes and edges continuously change at various times-
tamps. Classical GNNs are not well-suited for temporal graphs as they do not effectively utilize
crucial temporal information, such as alterations in the graph structure over time. Hence, there is a
pressing need for a novel approach to adapt GNNs successfully to temporal graph settings, giving
rise to a new field known as Temporal Graph Neural Networks (TGNNs).

In order to understand the evolution of a temporal graph, it is essential to capture the global graph
structure across time points and then quantify the changes and evolution that the graph has un-
dergone. For instance, in a subsequent time step, the graph might introduce a new node or es-
tablish an edge between two existing nodes to significantly shorten the graph diameter. While
random graph models such as the Erdos-Renyi graph (Erdős & Rényi, 1960) and the Stochastic
Block Models (SBMs) (Holland et al., 1983) have been studied extensively in the static graph litera-
ture (Barabási, 2013), there is few theoretical work studying the evolution of temporal graphs in the
transition space of graph generative models.

We aim to close this gap and introduce GraphPulse to efficiently capture the evolving structure
of a graph over time in an innovative temporal framework. Our principled approach posits two
hypotheses. First, we suggest that the evolution of a graph can be represented as a temporal trajectory

1

https://github.com/kiarashamsi/GraphPulse

Published as a conference paper at ICLR 2024

(a) Daily transaction graph of an Ethereum token (b) TDA Mapper network of the graph in 1a.

Figure 1: Illustration of TDA Mapper Network. The daily transaction graph of an Ethereum token (a) is
transformed into a concise Mapper network (b), where nodes represent clusters of token investors, and edges
are assigned weights based on the shared number of nodes between clusters. Node sizes indicate cluster sizes
and node colors are Disconnected components, highlight node groups with divergent graph characteristics
compared to the rest of the nodes.

in a Newtonian phase space (Newton, 1833). Second, we propose that a topological technique,
Mapper (Singh et al., 2007), can be effectively employed to model this trajectory. Mapper generates
concise and principled visual representations of data, as exemplified in Figure 1. As a third step, we
utilize the topological information in a Recurrent Neural Network to predict a graph feature in the
future.

We demonstrate the effectiveness of our approach in two types of experiments. First, we empiri-
cally prove that Mapper networks can capture temporal trajectories effectively by considering two
common phase spaces for graphs: Erdos-Renyi graphs (Erdős & Rényi, 1960) and Stochastic Block
Models (SBMs) (Holland et al., 1983; Barabási, 2013). Subsequently, we introduce a unique task
focused on predicting graph properties in dynamic graphs and demonstrate that the GraphPulse out-
performs existing Graph Neural Network and Temporal Graph Neural Network models in social
and cryptocurrency networks. In nine temporal network scenarios within these contexts, our model
consistently surpasses state-of-the-art approaches in eight instances.

Our Contributions:

• We present a novel framework, GraphPulse, for analyzing the evolution of temporal graphs,
grounded in phase space transition. We empirically show that the TDA Mapper algorithm is
highly effective at capturing the evolution of temporal graphs in the phase space.

• We introduce a unique and valuable task involving the prediction of temporal graph properties in
the future. GraphPulse takes advantage of sequential modeling to capture temporal variations, and
it effectively integrates node feature information into the model using the TDA Mapper algorithm.

• We create seven original cryptoasset networks for the temporal graph property task and publish
them to serve as temporal benchmark datasets for future research.

• Empirically, GraphPulse significantly outperforms state-of-the-art temporal graph learning models
in eight out of nine networks from both social and transaction network domains.

2 BACKGROUND AND RELATED WORK

In this section, we first define a temporal or dynamic graph and its property. Then, we give the
related work for Topological Data Analysis on graphs and temporal graph neural networks.

Discrete Time Dynamic Graphs. A Discrete Time Dynamic Graph (DTDG) is defined as a series
of snapshot graphs denoted as G = {Gt1 ,Gt2 , . . . ,Gtn}, each Gti = (Vi, Ei) represents the graph at
time step i and Vi and Ei ⊆ Vi × Vi are the set of nodes and edges at time i respectively. The graph
can be directed or undirected and the Nodes can also have attributes.

Temporal Graph Property Prediction. The goal of the Temporal Graph Property Prediction task
is to predict a specific property of a temporal graph over a future time interval in a Discrete Time

2

Published as a conference paper at ICLR 2024

Dynamic Graph. Formally, given a DTDG G, we define a target time interval [n + δ1, n + δ2],
where δ1 and δ2 are non-negative integers with δ1 ≤ δ2. The objective is to predict the values
of the chosen graph property within the specified future interval [n + δ1, n + δ2]. Examples of
graph properties include metrics such as graph density, the count of newly added edges, and the
cumulative weight of edges across the graph. Other temporal graph properties include temporal
global efficiency, temporal-correlation coefficient, and temporal betweenness centrality can also be
explored in the future (Nicosia et al., 2013).

2.1 TDA & MAPPER

Existing methods in Topological Data Analysis can be categorized into two main approaches: per-
sistent homology (PH) and Mapper. PH studies the evolution of topological features (connected
components, loops, voids, etc.) of a dataset at various spatial resolutions Kyriakis et al. (2021). PH
has recently been utilized as a powerful feature extractor and combined with deep learning meth-
ods (Hofer et al., 2020; Carrière et al., 2020; Chen et al., 2021; Horn et al., 2021) in node and
graph classification tasks. However, PH-based methods face limitations in their application to large
networks due to their high computational complexity.

The “Mapper” method was introduced by Singh et al. (2007) and further elaborated by Carlsson
(2009). This approach serves the purpose of converting complex, high-dimensional data into a
more comprehensible and coordinate-independent graphical representation to adeptly capture the
underlying topological attributes of the data (Van Veen et al., 2019; Tauzin et al., 2021). Over the
past decade, the Mapper technique has found fruitful applications in various domains (Lum et al.,
2013; Kamruzzaman et al., 2019; Zhou et al., 2021) yielding remarkable outcomes. More recently,
the Mapper algorithm found utility in the domain of graph representation learning, as highlighted in
the works of Hajij et al. (2018); Bodnar et al. (2021). However, to the best of our knowledge, this
is the first work to utilize Mapper in temporal Graph ML.

2.2 TEMPORAL GRAPH NEURAL NETWORKS

Temporal Graph Neural Networks (TGNNs) have shown promising performance on tasks such as
link prediction and node classification (Rossi et al., 2020; Souza et al., 2022; Pareja et al., 2020; You
et al., 2022; Huang et al., 2023c). Kazemi et al. (2020) categorize temporal graphs into Discrete
Time Dynamic Graphs (DTDGs) (You et al., 2022; Gao & Ribeiro, 2022; Pareja et al., 2020; Haji-
ramezanali et al., 2019; Yang et al., 2021) and Continous Time Dynamic Graphs (Xu et al., 2020;
Rossi et al., 2020; Poursafaei et al., 2022; Souza et al., 2022; Luo & Li, 2022; Jin et al., 2022). In
this work, we focus on DTDGs where the temporal graph is modelled as a sequence of snapshots.
Although tasks like link prediction and anomaly detection in temporal graphs have gained popular-
ity, there is still a lack of exploration in graph-level tasks specifically tailored for temporal graphs.
One related task is network change point detection that aims to detect time points where the tempo-
ral graph undergoes drastic structural changes (Huang et al., 2020; Miller & Mokryn, 2020; Wang
et al., 2017; Huang et al., 2023b;a). While change point detection focus on detecting anomaly from
observed network structure, we focus on predicting future graph properties such as network growth
or shrinkage in this work.

The study of the expressiveness of GNNs often employs the Weisfeiler-Lehman (WL) test which
tests for graph isomorphism (Xu et al., 2018; Maron et al., 2019; Cotta et al., 2021). On temporal
graphs, recent work (Gao & Ribeiro, 2022; Souza et al., 2022) attempts to extend the WL test to
temporal graphs as converting them into static representations. However, real-world temporal net-
works typically deviates from the graph isomorphism based analysis due to the continuous addition
of nodes and edges at different timestamps. We argue that an alternative framework is necessary to
analyze the practical effectiveness of GNNs. We introduce a novel concept, called phase space, for
temporal graphs to address this need in Section 4.

3 MAPPER AND TOPOLOGICAL GRAPH REPRESENTATION

In this section, we explain the first component of GraphPulse, the Mapper, and its application to a
single graph. The core principle underlying Topological Data Analysis revolves around uncovering
latent data patterns through systematic analysis of data shapes, which are measured across various

3

Published as a conference paper at ICLR 2024

resolution scales (Chazal & Michel, 2021; Dey & Wang, 2022). TDA brings forth a range of com-
pelling advantages, notably pertinent within the realm of graph machine learning. Primarily, TDA
scrutinizes data shapes in a manner free from coordinate constraints, enabling systematic compari-
son of patterns derived from diverse data collection frameworks. This adaptability proves invaluable,
accommodating temporal scenarios such as comparing graphs in distinct time periods.

In this work, we employ the Mapper method as introduced by (Singh et al., 2007; Carlsson, 2009).
For a compact topological space X and a real-valued function f : X → R, the Mapper algorithm
provides a general framework to study the topological changes in X with respect to the function f ,
which is commonly referred to as a filter function or lens. The choice of lens is crucial in Mapper
construction as various lenses provide distinct insights on the data (Singh et al., 2007; Dey & Wang,
2022). In practice, X is mostly a point cloud in RN , and f is a function from RN to R representing
some domain information of the data. The output of the Mapper algorithm is the Mapper network,
which is considered a meaningful summary of the data, representing clusters and relations between
the clusters in the data.

To define the Mapper network, we need to explain the nerve of a cover. Let X be a point cloud in
RN . A cover of X is a set of open sets in RN , U = {Ui}mi=1 with X ⊂

⋃
i Ui. The 1D nerve of U is

a graph and is denoted as η1(U). Each node vi in η1(U) represents a cover element Ui, and an edge
exists between two nodes vi and vj if Ui ∩ Uj is nonempty for the corresponding cover elements.
The appendix Figure 4-a gives an example in which X is a 2D point cloud and the cover U of X
consists of a collection of rectangles on the plane.

While it is possible to use multiple scalar functions, to keep the exposition clear, we describe the
Mapper construction with a single scalar function f : X → R. We start with a finite cover of
f(X) ⊂ R using intervals, that is, a cover I = {Ik}nk=1 of f(X) ⊂ R such that f(X) ⊂

⋃
k Ik,

see Figure 4. This induces a cover U of X by considering the clusters induced by points in f−1(Ik)
for each k as a cover element. The 1D Mapper network of (X , f), denoted as Γ, is nothing but the
1D nerve of U , i.e. ΓX := η1(U).
For a point cloud X , several choices are to be made to compute the Mapper network ΓX . The first
and most important one is the lens function f : X → R. Another choice is the clustering method
for the point cloud. Finally, there are two tuning parameters. The first one is called resolution,
which is the number of intervals {Ik} to cover f(X). The second one is called gain which is the
percentage of overlaps of these intervals. Note that increasing the resolution gives a finer summary
by increasing the number of nodes in the Mapper network and makes the clusters smaller. On the
other hand, increasing gain adds more relation (edges) between the nodes (clusters). In Figure 4, the
resolution is 6, and the gain is the fixed intersection amount (e.g., 20%) between the intervals Ik and
Ik+1.

Note that the Mapper construction can be generalized to higher dimensions by choosing the lens
function f as a multivariate function, i.e., f : X → Rd (for d ≥ 2). In most cases, d = 2, and the
resulting Mapper network is referred to as a 2D Mapper network, where the corresponding cover
elements of R2 become rectangles.

Mapper for graphs. For any graph G, we take the set of nodes V = {v1, . . . , vn} and use their
feature vectors Xi ∈ RN as our point cloud XG = {X1, . . . ,Xn} ⊂ RN . Then, we obtain and
use the Mapper network ΓG of this point cloud XG as a summary of the feature information stored
in the graph G in our approach. The hyperparameters for our Mapper construction (lens function,
clustering method, resolution, and gain) are discussed in Section 6.

4 TRAJECTORIES OF TEMPORAL GRAPHS

In this section we explain the second component of the GraphPulse, where we represent graphs in
a space, enabling us to directly compare their Mapper representations. The concepts of phase space
and trajectory in this section will serve as the foundation on which we will build a new temporal
framework.

We propose a topological model for describing the progression of temporal graphs. Specifically, we
posit the presence of a phase space about a family of temporal graphs, wherein the sequence of tem-
poral graphs gives rise to a trajectory (path) within this phase space. Subsequently, for each graph,

4

Published as a conference paper at ICLR 2024

(a) The graph G1 has four nodes and three edges. In
G2, the graph gains two more nodes and two edges.
However, only in G3 do two triangular edges emerge
in the graph.

(b) Induced TDA Mapper networks Γ1,Γ2 and Γ3

for G1, G2 and G3 by using degree as the node fea-
ture. Mapper node sizes (denoted by numbers) indi-
cate cluster sizes.

Figure 2: Evolution of Graph Complexity. Mapper representations (b) of snapshot graphs (a)
where the Mapper lens uses the number of neighbors.

we induce its topological summary through the Mapper algorithm, which enables us to monitor the
evolution of these Mapper networks over time.

4.1 TRAJECTORY IN A PHASE SPACE

The core idea for our temporal framework is inspired by Newton’s laws of motion (Newton, 1833)
that specifies how a system’s variables change over time in response to forces acting upon it. The
idea of phase space emerges from Newtonian mechanics as a natural extension of these princi-
ples (Carroll, 2022). A phase space P refers to a multi-dimensional space where the state of a
system is represented by a set of coordinates corresponding to its variables. In our context, one can
imagine this notion as a correspondence map φ : P → S where S represents the space of graphs,
where any point x in the phase space P represents a graph φ(x) = Gx ∈ S. Hence, each point in
the phase space represents a graph instance: a specific configuration of the system’s variables,
capturing its instantaneous or momentary state (see Appendix Figure 8 for an example). In a dy-
namical system, the trajectories of a system’s evolution over time can be visualized as paths in the
phase space. This concept is crucial for analyzing the behavior, stability, and evolution of complex
systems by observing how their states change in response to various influences or forces.

Formally, let SP denote a family of graphs parameterized by the parameter space P . To simplify our
notation, we will employ Erdős-Rényi graphs as an illustrative example, where P = N× [0, 1] (see
Appendix Figure 6). In this context, the generative parameters are (n, p) ∈ P , where n signifies the
number of nodes, and p signifies the probability of an edge. This notation can be straightforwardly
extended to encompass scenarios involving more than two parameters. Consequently, for x ∈ P ,
Gx ∈ SP corresponds to the graph within SP associated with that parameter x. We assume a one-
to-one correspondence between the elements of P and the graphs within SP . Consider a dynamic
graph family {Ĝi} whose instances Gi

tj are in SP , i.e., Ĝi = (Gi
t1 ,G

i
t2 , . . . ,G

i
tn) an ordered sequence

of graphs. By using one-to-one correspondence, we induce a set of trajectories {x̂i} with x̂i =
(xi

1,x
i
2, . . . ,x

i
n), i.e., xi

j ∈ P is the the jth step of the ith trajectory which corresponds to the graph
Gi
tj ∈ S.

For any point xi
j ∈ P , we define a vector νij = xi

j+1 − xi
j where 1 ≤ j < n. The pair (xi

j , ν
i
j)

defines a discrete dynamical system in the parameter space P (Galor, 2007). Our idea is to learn this
induced discrete dynamical system in the parameter space and obtain some useful feature vectors for
future instances. In other words, by using the prediction of future trajectory points of xi in parameter
spaces, we extract useful feature vectors to predict the future instances of dynamic network Ĝi.

4.2 TRAJECTORY IN THE TOPOLOGICAL SPACE

Consider a temporal trajectory x̂ = (x0, . . . ,xn) with xi ∈ P , i.e., x̂ is an n-step trajectory with the
initial point x0 to the final point xn passing through intermediate points x1,x2, ...,xn−1. While we
move on the phase space P through x̂, the original graph family defines a corresponding trajectory
Ĝ = (G0, . . . ,Gn) in the space of graphs SP . Similarly, for the same trajectory x̂ ⊂ P , we induce
the corresponding TDA Mapper trajectory Γ̂ in the space of graphs where each Γi is the TDA Mapper
network of Gi by using the induced features (Section 3). We give an illustration of our TDA Mapper
networks on a toy example using only one node feature (node degree) in Figure 2.

5

Published as a conference paper at ICLR 2024

We hypothesize that trajectories can be captured and analyzed efficiently by using Mapper networks
of the snapshot graphs. To test our hypothesis, we run extensive experiments in two well-known
phase space settings, i.e., Erdős-Rényi and Barabási-Albert settings in Appendix A. For a given
trajectory x̂ = (x0, . . . ,xn) in the phase space P , we obtain the corresponding original graph
trajectory {Gi} and the corresponding TDA Mapper trajectory {Γi}. We compare the structural
changes in the original graph trajectory and changes in the TDA Mapper trajectory. In order to mea-
sure the structural similarity of graphs, we use a similarity measure induced from graph Laplacian
eigenvalues (Koutra et al., 2011). Specifically, our results in Appendix Figure 9 show that Map-
per based trajectory encodes neighborhood in the phase space more efficiently. Furthermore, as we
show in Section 6, our experimental findings demonstrate a significant enhancement in the predictive
capacity of our model within real-world networks due to these topological summaries.

4.3 ADVANTAGES OF TDA MAPPER NETWORKS

Our approach introduces a novel perspective to representing and visualizing the evolution of dy-
namic systems in parameter space. By doing so, we can gain several advantages over using tradi-
tional snapshot graphs for trajectory analysis, as follows.

Topological Features. Mapper networks focus on essential topological features, providing a nu-
anced view of graph evolution under changing parameters. Consider Figure 2a that shows three
graphs of increasing node counts and connectivity. As we transition from G1 to G2, the sole mod-
ification involves introducing two nodes while retaining the pattern of satellite nodes linking to
a crucial central node. Such a scenario is common on blockchain networks where addresses of
blockchain exchanges distribute tokens in airdrops (Victor, 2020). The Mapper encapsulates that
G1 and G2 are similar by creating a network of size two with a connecting edge for both Γ1 and
Γ2. Retaining such essential aspects in networks becomes particularly significant when addressing
complex interactions that might not be evident through simple node attributes (e.g., degree) alone.

Compressed Representation. Mapper networks compress complex data into compact yet meaning-
ful representations, enhancing visualization and robustness against data fluctuations. In Figure 2a,
we can add another triangle △ to G3 centered on the existing center graph node, but Mapper would
just include the two new graph nodes to the bottom Mapper node (i.e., cluster) of Γ3 without adding
a new mapper node.

Multi-Resolution. Mapper’s multi-resolution capability enables a detailed exploration of trajecto-
ries, revealing fine details and broader trends. As the trajectory moves through parameter space,
we can identify clusters (i.e., network nodes) and connections, unveiling significant regions and
transitions often hidden in raw snapshot graphs. With clear node and edge features, the resulting
visualizations offer valuable insights into dynamic system behavior across parameter trajectories.

Due to space limitations, we report a comparative analysis of snapshot graphs and their Mapper
networks in the Appendix. In particular, we demonstrate that Mapper networks exhibit greater
stability than the original snapshot graphs when subjected to minor perturbations within the phase
space. This observation underscores the considerable utility of Mapper summaries in predicting
trajectories. We further validate our hypothesis regarding Mapper efficiency through an empirical
evaluation of a novel task of predicting graph properties as we discuss in Section 6.

5 GRAPHPULSE

So far, we have explained how the Mapper-based topological representations can help us track graph
trajectories in the phase space. In this section, we describe the overall flow of GraphPulse and detail
the third step: sequential modeling.

Our methodology comprises a sequence of three distinct phases, illustrated in the visual repre-
sentation provided in Figure 3: partitioning, topological learning, and sequential modeling. The
partitioning step involves the conversion of input data into snapshot graphs denoted as Ĝ =
{Gt1 ,Gt2 , . . . ,Gtn}. In this work, we adopt 24-hour snapshots, although our model remains ap-
plicable to snapshots of varying durations.

In the topological learning step, we construct TDA Mapper representations for graphs
CT 1, . . . , CT n, each corresponding to a graph within {Ĝ}. To achieve this, we first extract graph

6

Published as a conference paper at ICLR 2024

Figure 3: GraphPulse Flowchart. The GraphPulse system workflow starts with snapshot graph ex-
traction, followed by the generation of Mapper networks. Next, a sequential LSTM+GRU model is
developed, incorporating features from both the original snapshot graphs and the Mapper networks.

node features X ∈ RN×d from the snapshot graph Gti , which serve as inputs for the TDA Mapper
(see Section 3). Example node features are the count of neighbors and the summation of incoming
edge weights, details of which are given in Section 6. TDA Mapper creates n Mapper networks for
n snapshots, which serve as the input for the sequential modeling step, as we explain next.

In the sequential modeling step, we aggregate pertinent features from both snapshot graphs and
Mapper networks such as the number of nodes and edges (see Section A.3 for our selected features).
Denoting snapshot graph features as Fsnapshot and Mapper network features as FMapper, where Fsnapshot
includes graph-level characteristic features of the snapshot graph such as the number of nodes and
edges, and FMapper encompasses characteristics such as node count and average node size. The
fusion of Fsnapshot and FMapper provides a holistic perspective on the system’s evolution. Equipped
with these features, we compose a sequence spanning n days, denoted as Sn, serving as input for our
specialized sequential model. This sequential model illuminates the dynamic interplay between the
changing graph property and the structural insights extracted from Mapper networks in an organized
manner.

The specific nature of the predicted graph property dictates the form of the sequential model. For
instance, for real-valued properties, a regression model may be appropriate, while binary properties
can be addressed using a classification model. This adaptable approach aligns the model’s structure
with the unique characteristics of the targeted graph property.

6 EXPERIMENTS

Graph property. We use network growth in terms of edge count as the predicted graph property.
Formally, let G be a graph, t be a specific time, δ1 and δ2 be time intervals, and E(t1, tn) denote the
multi-set of edges between times t1 and tn. We define the graph property P as:

P (G, t1, tn, δ1, δ2) =

{
1, if |E(tn + δ1, tn + δ2)| > |E(t1, tn)|
0, otherwise.

Setting n = 7, δ1 = 1, and δ2 = 7, we establish a meaningful and practical graph property. This
choice of parameters is valuable due to the application of 7-day predictions, which hold significance
in both financial contexts, such as Ethereum asset networks (Kim et al., 2021), where they can guide
financial decisions, and in the realm of social network infrastructure, like Reddit, where they aid in
planning maintenance activities.

Datasets. We perform experiments on MathOverflow (Paranjape et al., 2017) and Reddit-Body (Ku-
mar et al., 2018) datasets, and seven ERC20 token networks that we have extracted from the
Ethereum blockchain. The ERC20 token networks, consisting of real transaction data from the
beginning period of the Ethereum blockchain, provide valuable insights into the dynamics of digital
assets. A summary of the statistics of these datasets is presented in Table 2.

Mapper aspects. Section 3 constructed Mapper networks based on node features X , which we
construct by extracting outgoing edge weight sum, incoming edge weight sum, outgoing edge count,
and incoming edge count (see Section A.3 for feature definitions.) We used 2D-TSNE as our lens and

7

Published as a conference paper at ICLR 2024

Table 1: ROC-AUC results for the graph property prediction task. The bold results represent the best methods
for each dataset, and the underlined results represent the second-best methods.

Dataset GIN TDA-GIN EvolveGCN GRUGCN HTGN GraphPulse

Adex 0.4484±0.0681 0.6089±0.0574 0.7167±0.1096 0.6843±0.1594 0.7330±0.0849 0.8928±0.0022

Bancor 0.5895±0.0514 0.5114±0.0496 0.7931±0.1773 0.8588±0.0190 0.7412±0.0629 0.8722±0.0013

Aragon 0.3915±0.0608 0.4648±0.0499 0.7939±0.0875 0.7854± 0.0556 0.7781±0.0508 0.8926±0.0035

Dgd 0.5748±0.0163 0.5789±0.0469 0.7460±0.0225 0.6704±0.0557 0.6861±0.0530 0.7804±0.0062

Coindash 0.5065±0.0408 0.5015±0.0278 0.7002 ±0.0561 0.7321±0.0399 0.7530±0.0348 0.7904±0.0037

Iconomi 0.6079±0.0651 0.5158±0.0651 0.8379±0.0327 0.8105 ±0.0230 0.8221±0.0139 0.8518±0.0044

Centra 0.4252±0.0916 0.4777±0.1042 0.8663±0.1302 0.9001±0.0040 0.9044±0.0082 0.8670±0.0077

Reddit-Body 0.3563±0.0608 0.5281±0.0777 0.7709±0.0667 0.6591±0.0765 0.6557±0.0401 0.8692±0.0070

Mathoverflow 0.3789±0.0867 0.5953±0.1045 0.6734±0.0306 0.7405±0.0938 0.7881±0.0509 0.8008±0.0050

KMeans for the clustering algorithm. We set the Mapper hyperparameters as cls = 5, n cubes = 2,
and perc overlap = 0.4 and study their impact in Section A.4.

Fsnapshot and FMapper. In the sequential modeling step, we collect specific features from both snap-
shot graphs and Mapper networks. From the snapshot graphs, we extract three key features: the
number of nodes, the number of edges, and the average value of edge weights. Additionally, we
leverage Mapper networks to extract five supplementary features: the number of nodes, the number
of edges, the maximum cluster size, the average cluster size, and the average value of edge weights.

Models. We compare GraphPulse against two baselines and three state-of-the-art TGNNs models
(Appendix B details node, edge features, and graph types in models):

• The two baseline approaches adopt the powerful GIN framework (Xu et al., 2018) within a binary
graph classification context. We feed a static graph into GIN, encompassing edges from days t to
t + 7, denoted as Ĝi = (Gi

t1 ∪ Gi
t2 ∪ · · · ∪ Gi

t7) to predict the graph property. In a second variant
of GIN, we integrate cluster membership information from Mapper networks as additional node
features in a model called TDA-GIN. This baseline is designed to gauge the contribution of the
information within Mapper networks.

• The state-of-art models in TGNNs are EvolvedGCN (Pareja et al., 2020), GRUGCN (Seo et al.,
2018) and HTGN (Yang et al., 2021). EvolvedGCN focuses on evolving graph structures,
GRUGCN incorporates variational principles, and HTGN handles discrete time intervals in tem-
poral graphs. The models are notable advancements in the field of temporal GNNs.

Table 2: Dataset statistics. |Edaily| and |Vdaily| de-
note the average number of daily edges and nodes,
respectively. |G| indicates the total number of
snapshots. *Reported as (years,months,days).

Dataset |Edaily| |Vdaily| Duration* |G|

Adex 259.15 126.41 (0,10,6) 293
Bancor 320.84 154.97 (0,10,24) 311
Aragon 367.99 189.08 (0,11,19) 337
Dgd 90.16 29.32 (2,0,7) 720
Coindash 346.55 128.61 (0,9,11) 268
Iconomi 205.57 85.62 (1,6,12) 542
Centra 294.24 140.85 (0,9,5) 261

Reddit-Body 688.84 86 (1,1,20) 399
Mathoverflow 2532.75 124.09 (0,6,16) 183

Implementation details. GIN and TDA-GIN
models use a Graph Isomorphism Network with
64 hidden units followed by a target output di-
mension of two. Raw RNN and TDA RNN
models utilize LSTM and GRU layers with an
Adam optimizer and a learning rate of 1 ×
10−4. A hybrid LSTM-GRU model processes
sequences in a (7,3) and (7,5) format for input,
respectively. We evaluate the models using the
AUC-ROC score, a suitable metric for predic-
tion assessment. We ran all experiments on a
Dell PowerEdge R630, featuring an Intel Xeon
E5-2650 v3 Processor (10-cores, 2.30 GHz,
20MB Cache), and 192GB of RAM (DDR4-
2133MHz).

6.1 EVALUATION RESULTS

Table 1 shows the ROC-AUC results for the two baselines (GIN, TDA-GIN) and three TGNN mod-
els. GIN has > 0.5 AUC only in four of the nine datasets. All results are averages of five runs.
Incorporating topological information into GIN as node features, TDA-GIN improves the AUC val-

8

Published as a conference paper at ICLR 2024

ues in five datasets. The largest gain is noted in the MathOverflow dataset with +0.216. However,
the increased AUC values of TDA-GIN are still low.

The temporal GNN models have consistently high AUC values with HTGN having the highest mean
AUC of 0.770 across datasets. EvolvedGCN’s mean AUC is 0.764, while GruGCN follows closely
with a mean AUC of 0.759. GraphPulse has a mean AUC value of 0.849 and has the highest AUC
value for eight out of nine datasets.

Table 3: Ablation study. showcasing ROC-AUC
values by incorporating graph features Fsnapshot and
Mapper network features FMapper within a sequence-
based model.

Data Fsnapshot-RNN FMapper-RNN

Adex 0.8673± 0.0027 0.8831± 0.0050
Bancor 0.7981± 0.0078 0.8501± 0.0018
Aragon 0.6898± 0.0794 0.8819± 0.0014
Dgd 0.7689± 0.0090 0.7314± 0.0106
Coindash 0.7676± 0.0025 0.7790± 0.0018
Iconomi 0.8404± 0.0204 0.8417± 0.0048
Centra 0.8610± 0.0065 0.8673± 0.0068

Reddit-Body 0.8690± 0.0070 0.7735± 0.0125
Mathoverflow 0.7798± 0.0133 0.7522± 0.0057

GraphPulse employs features from both snapshot
graphs and Mapper networks within a sequential
model. This naturally raises the question: which
specific features contribute to the predictive ca-
pability of GraphPulse? To address this ques-
tion, we conduct an ablation study, where, we uti-
lize graph features and Mapper network features
in isolation within the same sequential model to
predict the targeted graph property. Table 3 in-
dicates that the median AUC value for Fsnapshot-
RNN is 0.7981, while for FMapper-RNN, the value
is 0.8501. While Mapper-based features result in
an overall higher AUC, it’s noteworthy that Graph-
Pulse achieves a considerably higher median AUC
of 0.8670, surpassing the AUC of both feature
sets in isolation. This observation provides com-
pelling evidence that the topological insights ac-
quired through Mapper offer complementary information to the snapshot graph-based features.

Table 4: Ablation study. ROC-AUC values when
removing a Mapper network feature from FMapper
within a sequence-based model for the Aragon net-
work.

Removed feature ROC-AUC

Number of nodes 0.8716± 0.0087
Number of edges 0.7341± 0.0466
Max cluster size 0.8799± 0.0024
Average cluster size 0.8650± 0.0089
Average edge weight 0.8530± 0.0409

To assess the importance of individual features
within the FMapper-RNN, we conduct a secondary
ablation study within the same sequence model for
the Aragon network which has the largest number
of nodes and edges per day among our datasets.
This study aims to identify key features that sig-
nificantly influence the FMapper-RNN model’s per-
formance. Table 4 indicates that removing the
number of edges (shared nodes between Mapper
clusters) causes the biggest drop in AUC values
for this dataset. Additionally, we assessed the
effectiveness of GraphPulse through two supple-
mentary graph property prediction tests: density
growth and node count growth. The detailed results for these tests are presented in Appendix D

Scalability. Due to space limitations, we report the computational complexity and scalability results
in Appendix E. Here we note that on the largest token network, GraphPulse completes the training
process 26% faster than the time required by the state-of-the-art HTGN method. Furthermore, TDA
Mapper can process snapshot graphs of 20,000 nodes in under 4 minutes.

7 CONCLUSION

We have introduced GraphPulse, a principled approach for predicting graph properties in temporal
graphs. By leveraging a combination of snapshot graphs and Mapper networks, GraphPulse capital-
izes on both structural and topological insights to enhance prediction accuracy. Through empirical
evaluations, we have demonstrated the effectiveness of GraphPulse across diverse datasets, show-
casing its superior performance compared to baseline methods. Notably, our approach demonstrates
scalability across both training and analysis phases, making it an adaptable solution for large-scale
temporal graph scenarios. GraphPulse presents a promising advancement in the field of temporal
graph property prediction, bridging the gap between structural and topological aspects for accurate
predictions.

9

Published as a conference paper at ICLR 2024

REPRODUCIBILITY

In line with ICLR’s commitment to promoting reproducibility in research, we have taken diligent
steps to ensure the reproducibility of our work presented in this paper. We provide open access to our
source code, which is available at the following link: https://github.com/kiarashamsi/
GraphPulse. This code includes the implementation of our novel models and algorithms, ensur-
ing that fellow researchers can readily access and reproduce our experimental results.

ETHICS STATEMENT

We would like to emphasize our commitment to conducting ethical research throughout the course of
this study. This research primarily involves the analysis and prediction of temporal graph properties
using machine learning techniques. We have taken ethical considerations into account at various
stages of our work. Our experiments do not involve human subjects, and we have not accessed any
sensitive or private information. The datasets used in this study are publicly available, and for the
Ethereum token networks analyzed, the raw data is publicly accessible to anyone on the web. We
do not share any address or transaction labels for the token networks. Our chosen graph property,
network growth, does not involve any individual address.

ACKNOWLEDGEMENTS

This work was partially supported by the Canadian NSERC Discovery Grant RGPIN-2020-05665:
Data Science on Blockchains, the National Science Foundation grants DMS-2202584 and DMS-
2220613, and the Simons Foundation grant # 579977. This research was also supported by the
Canadian Institute for Advanced Research (CIFAR AI chair program). Shenyang Huang is sup-
ported by Natural Sciences and Engineering Research Council of Canada (NSERC) Postgraduate
ScholarshipDoctoral (PGS D) Award and Fonds de recherche du Québec - Nature et Technologies
(FRQNT) Doctoral Award.

REFERENCES

Lada A Adamic and Bernardo A Huberman. Power-law distribution of the world wide web. Science,
287(5461):2115–2115, 2000.

Jeff Alstott, Ed Bullmore, and Dietmar Plenz. Powerlaw: a python package for analysis of heavy-
tailed distributions. PloS One, 9(1):e85777, 2014.

Albert-László Barabási. Network science. Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, 371(1987):20120375, 2013.

Cristian Bodnar, Cătălina Cangea, and Pietro Liò. Deep graph mapper: Seeing graphs through the
neural lens. Frontiers in Big Data, 4:680535, 2021.

G. Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46(2), 2009.

Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei Umeda.
Perslay: A neural network layer for persistence diagrams and new graph topological signa-
tures. In Silvia Chiappa and Roberto Calandra (eds.), The 23rd International Conference on
Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily,
Italy], volume 108 of Proceedings of Machine Learning Research, pp. 2786–2796. Proceedings
of Machine Learning Research, 2020. URL http://proceedings.mlr.press/v108/
carriere20a.html.

Sean Carroll. The Biggest Ideas in the Universe: Space, Time and Motion. Dutton, Hoboken, NJ,
2022. ISBN 9780593186589.

Frédéric Chazal and Bertrand Michel. An introduction to topological data analysis: fundamental
and practical aspects for data scientists. Frontiers in Artificial Intelligence, 4:108, 2021.

Yuzhou Chen, Baris Coskunuzer, and Yulia Gel. Topological relational learning on graphs. Advance
in Neural Information Processing Systems, 34:27029–27042, 2021.

10

https://github.com/kiarashamsi/GraphPulse
https://github.com/kiarashamsi/GraphPulse
http://proceedings.mlr.press/v108/carriere20a.html
http://proceedings.mlr.press/v108/carriere20a.html

Published as a conference paper at ICLR 2024

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. Advances in Neural Information Processing Systems, 34:1713–1726, 2021.

Tamal Krishna Dey and Yusu Wang. Computational topology for data analysis. Cambridge Univer-
sity Press, 2022.

Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17–60, 1960.

Oded Galor. Discrete dynamical systems. Springer Science & Business Media, 2007.

Jianfei Gao and Bruno Ribeiro. On the equivalence between temporal and static equivariant graph
representations. In International Conference on Machine Learning, pp. 7052–7076. Proceedings
of Machine Learning Research, 2022.

Mustafa Hajij, Bei Wang, and Paul Rosen. MOG: mapper on graphs for relationship preserving
clustering. CoRR, abs/1804.11242, 2018. URL http://arxiv.org/abs/1804.11242.

Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan Zhou,
and Xiaoning Qian. Variational graph recurrent neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland Kwitt. Graph filtration
learning. In International Conference on Machine Learning, pp. 4314–4323, 2020.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borg-
wardt. Topological graph neural networks. In International Conference on Learning Representa-
tions, 2021.

Shenyang Huang, Yasmeen Hitti, Guillaume Rabusseau, and Reihaneh Rabbany. Laplacian change
point detection for dynamic graphs. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 349–358, 2020.

Shenyang Huang, Samy Coulombe, Yasmeen Hitti, Reihaneh Rabbany, and Guillaume Rabusseau.
Laplacian change point detection for single and multi-view dynamic graphs. arXiv preprint
arXiv:2302.01204, 2023a.

Shenyang Huang, Jacob Danovitch, Guillaume Rabusseau, and Reihaneh Rabbany. Fast and at-
tributed change detection on dynamic graphs with density of states. In Pacific-Asia Conference
on Knowledge Discovery & Data Mining, pp. 15–26. Springer, 2023b.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
Jure Leskovec, Michael M. Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal
graph benchmark for machine learning on temporal graphs. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advance in Neural Information
Processing Systems, 2023c.

Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation learn-
ing on continuous-time dynamic graphs. Advances in Neural Information Processing Systems,
35:19874–19886, 2022.

Methun Kamruzzaman, Ananth Kalyanaraman, Bala Krishnamoorthy, Stefan Hey, and Patrick S
Schnable. Hyppo-x: A scalable exploratory framework for analyzing complex phenomics data.
IEEE/ACM transactions on computational biology and bioinformatics, 18(4):1535–1548, 2019.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. The Journal of Machine
Learning Research, 21(1):2648–2720, 2020.

Han-Min Kim, Gee-Woo Bock, and Gunwoong Lee. Predicting ethereum prices with machine
learning based on blockchain information. Expert Systems with Applications, 184:115480, 2021.

11

http://arxiv.org/abs/1804.11242

Published as a conference paper at ICLR 2024

Danai Koutra, Ankur Parikh, Aaditya Ramdas, and Jing Xiang. Algorithms for graph similarity and
subgraph matching. In Proceedings of the Ecological Inference Conference, volume 17. Citeseer,
2011.

Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. Community interaction and
conflict on the web. In Proceedings of the 2018 World Wide Web Conference on World Wide Web,
pp. 933–943. International World Wide Web Conferences Steering Committee, 2018.

Panagiotis Kyriakis, Iordanis Fostiropoulos, and Paul Bogdan. Learning hyperbolic representations
of topological features. In International Conference on Learning Representations, 2021.

Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and its applications, vol-
ume 3. Springer, 2008.

Pek Y Lum, Gurjeet Singh, Alan Lehman, Tigran Ishkanov, Mikael Vejdemo-Johansson, Muthu
Alagappan, John Carlsson, and Gunnar Carlsson. Extracting insights from the shape of complex
data using topology. Scientific reports, 3(1):1236, 2013.

Yuhong Luo and Pan Li. Neighborhood-aware scalable temporal network representation learning.
In Learning on Graphs Conference, pp. 1–1. Proceedings of Machine Learning Research, 2022.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in Neural Information Processing Systems, 32, 2019.

Hadar Miller and Osnat Mokryn. Size agnostic change point detection framework for evolving
networks. Plos one, 15(4):e0231035, 2020.

Isaac Newton. Philosophiae naturalis principia mathematica, volume 1. G. Brookman, 1833.

Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi, Giovanni Russo, and Vito Latora.
Graph metrics for temporal networks. Temporal networks, pp. 15–40, 2013.

Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal networks. In Proceed-
ings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 601–610,
2017.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. EvolveGCN: Evolving graph convolutional
networks for dynamic graphs. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Nicola Pezzotti, Boudewijn PF Lelieveldt, Laurens Van Der Maaten, Thomas Höllt, Elmar Eise-
mann, and Anna Vilanova. Approximated and user steerable tsne for progressive visual analytics.
IEEE Transactions on Visualization and Computer Graphics, 23(7):1739–1752, 2016.

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better eval-
uation for dynamic link prediction. Advances in Neural Information Processing Systems, 35:
32928–32941, 2022.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. In Neural Information Processing: 25th
International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Pro-
ceedings, Part I 25, pp. 362–373. Springer, 2018.

Gurjeet Singh, Facundo Mémoli, and Gunnar E Carlsson. Topological methods for the analysis of
high dimensional data sets and 3d object recognition. In Eurographics Symposium on Point-Based
Graphics, pp. 91–100, 2007.

Amauri Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. Provably expressive temporal graph
networks. Advances in Neural Information Processing Systems, 35:32257–32269, 2022.

12

Published as a conference paper at ICLR 2024

Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Matteo Caorsi, Anibal M
Medina-Mardones, Alberto Dassatti, and Kathryn Hess. giotto-tda: A topological data analysis
toolkit for machine learning and data exploration. The Journal of Machine Learning Research,
22(1):1834–1839, 2021.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. The Journal of Ma-
chine Learning Research, 9(11), 2008.

Hendrik Jacob Van Veen, Nathaniel Saul, David Eargle, and Sam W Mangham. Kepler mapper:
A flexible python implementation of the mapper algorithm. Journal of Open Source Software, 4
(42):1315, 2019.

Friedhelm Victor. Address clustering heuristics for ethereum. In Financial Cryptography and Data
Security: 24th International Conference, FC 2020, Kota Kinabalu, Malaysia, February 10–14,
2020 Revised Selected Papers 24, pp. 617–633. Springer, 2020.

Yu Wang, Aniket Chakrabarti, David Sivakoff, and Srinivasan Parthasarathy. Fast change point
detection on dynamic social networks. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence
Organization, 2017.

Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan. Inductive repre-
sentation learning on temporal graphs. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=rJeW1yHYwH.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Peter T Yamak, Li Yujian, and Pius K Gadosey. A comparison between arima, lstm, and gru for
time series forecasting. In Proceedings of the 2019 2nd International Conference on Algorithms,
Computing and Artificial Intelligence, pp. 49–55, 2019.

Menglin Yang, Min Zhou, Marcus Kalander, Zengfeng Huang, and Irwin King. Discrete-time tem-
poral network embedding via implicit hierarchical learning in hyperbolic space. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1975–1985,
2021.

Jiaxuan You, Tianyu Du, and Jure Leskovec. ROLAND: graph learning framework for dynamic
graphs. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pp. 2358–2366, 2022.

Laura A Zager and George C Verghese. Graph similarity scoring and matching. Applied mathematics
letters, 21(1):86–94, 2008.

Youjia Zhou, Methun Kamruzzaman, Patrick Schnable, Bala Krishnamoorthy, Ananth Kalyanara-
man, and Bei Wang. Pheno-mapper: an interactive toolbox for the visual exploration of phe-
nomics data. In Proceedings of the 12th ACM Conference on Bioinformatics, Computational
Biology, and Health Informatics, pp. 1–10, 2021.

13

https://openreview.net/forum?id=rJeW1yHYwH

Published as a conference paper at ICLR 2024

Appendix

A TDA MAPPER & GRAPH TRAJECTORY

TDA Mapper Example. We give a toy example for TDA Mapper networks in Figure 4 where for the
point cloud X we use the height function f : X → R as a lens. We use 6 intervals I = {I1, . . . , I6}
to cover f(X) (Figure 4b). By using the chosen clustering algorithm, we detect the clusters in
each f−1(Ik) for each k (Figure 4a). These clusters form elements of a cover of X . In particular,
as illustrated in Figure 4a, f−1(I2) induces two clusters of points that are enclosed by the blue
rectangles, while f−1(I1) produces a single cluster enclosed by an orange rectangle. The Mapper
network in Figure 4c is the nerve of this cover, where each node represents the corresponding cluster
and each edge represents that the clusters have non-empty intersections. The final Mapper network
gives a rough summary/sketch of the whole point cloud (Hajij et al., 2018). In TDA Mapper graphs,
nodes are associated with clusters of data points, and edges are drawn between nodes based on the
overlap or commonality of data points between the clusters. The edge weight reflects the strength of
this connection, indicating how many data points are included in the overlapped area.

A.1 MAPPER TRAJECTORIES

Let G be a graph where a monotonically increasing or decreasing function f , such as the number
of unique neighbors, is defined over the nodes, indicating changes by the addition of new nodes or
edges. Assume that the addition of a new node or edge pair creates a graphlet whose isomorphic
copies exist in G. Furthermore, assume that the function f remains unchanged over the nodes of
G′, a modified graph where node features are retained, and over N ′, the nodes of the new graphlet,
which have features similar to those in the existing nodes N (or the changes are for few nodes only
and minimal, as in a star-shaped graph and new nodes to be added at the periphery). If Mapper is
used to create a 2D representation that assigns data points to specific cubes, the following holds true:

—The addition of N ′ does not change the position of N within the Mapper network. Specifically,
the cluster that contains N can include N ′ without any modification.

Proof: By construction, Mapper identifies clusters based on similar function values. Since N ′ and
N have similar function values, they fall into the same cluster within the Mapper network. The
addition of N ′ does not affect the existing cluster structure since it shares the same function values
as N .

— Consequently, the graphlet’s addition to G does not change the similarity of G to G′.

Proof: Since N and N ′ fall into the same cluster within the Mapper network, this implies that their
topological features are similar in G and G′. Therefore, the addition of the graphlet, which did not
change the features of N , does not alter the similarity between G and G′. In other words, sim(G,G′)
remains unchanged.

—The graphlet that is added to G only changes sim(G,G′) if it brings additional information to the
graph.

Figure 4: Toy Example of Mapper. For a point cloud X (a), we define a lens function f : X → R
(b), and the induced covering defines a Mapper network where nodes represent clusters and edges
represent related clusters (c).

14

Published as a conference paper at ICLR 2024

Proof: By the definition of graph similarity, sim(G,G′) quantifies the amount of information shared
between the two graphs. If the graphlet introduced into G does not bring any new information
or topological changes to G, then sim(G,G′) remains the same. It only changes if the graphlet
contributes new, distinct features or structure to G.

Kolmogorov complexity Li et al. (2008) supports our argument. Kolmogorov complexity is a mea-
sure of the shortest possible length of a program that can generate a particular piece of data. In
the context of our argument, if the graphlet does not change the structure or features of G, then the
shortest program to generate G and G′ remains the same. This indicates that the additional informa-
tion brought by the graphlet can be quantified as the difference in program length, further supporting
our argument.

A.2 EMPIRICAL EVALUATION FOR MAPPER TRAJECTORIES

To demonstrate the efficiency of TDA Mapper in capturing trajectory (see Figure 8) information
within the phase space, we implement the following experimental setup. Initially, we establish a
reference graph and construct a grid of neighboring points positioned within the phase space around
this reference graph (refer to Figure 6). Each data point within this grid represents a graph instance
generated using the specific parameters corresponding to its location in the phase space.

Formally, we define nth-neighbourhood (or n-shell) of a graph G0 in the phase space P as the set
of all graphs in P whose distance to G0 is exactly equal to n with respect to supremum norm. For
example, in Figure 5, the red dot represents the reference graph G0, while all light blue graphs
represent 1st-neighbourhood of G0.

For instance, the reference graph can be an Erdős-Rényi graph characterized by p = 0.5 and n = 50.
Its phase space neighbors are produced by increasing and decreasing the values of n and p, resulting
in a graph with the chosen parameter pair. Consider Figure 5 as an example; an immediate neighbor,
neighbor 7, is generated with p = 0.5 and n = 51.

Figure 5: Erdős-Rényi Graph neigh-
bourhoods. The red dot indicates the
reference graph, with its neighbourhood
graphs in the phase space. first neigh-
bourhood indexed from 1 to 8.

Within this grid, we establish two key criteria. Firstly, ref-
erence graph should exhibit greater similarity to its 1-hop
neighbors compared to those beyond 1-hop. Secondly,
the 1-hop neighbors should possess similarity values that
are nearly identical since they are equidistant from the
reference graph.

To this end, we choose Erdős-Rényi graphs (Erdős &
Rényi, 1960) for their widespread usage and Stochastic
Block Models (Holland et al., 1983) for their ability to
capture community structures within networks. We ex-
perimented on a sample of 250 reference graphs gener-
ated by the Erdős-Rényi graph generator where we varied
the number of nodes n from 30 to 50 and p from 0.21
to 0.4 to make the phase space. For the Barabási-Albert
model, the phase base is defined with the number of nodes
n from 120 to 500 and the number of edges to attach from a new node to existing nodes m from
20 to 100. We randomly choose the value for each parameter for each model 50 times and use that
combination of parameters to generate reference graphs five times.

Graph Similarity Measure.

There are numerous graph similarity measures (Zager & Verghese, 2008). In our experiments, we
use the eigenvalue method for graph similarity measure (Koutra et al., 2011), where graph similarity
is defined based on the eigenvalues of the graph Laplacian. We chose this method because it allows
us to compare networks of different sizes, which is ideal for temporal graphs where nodes and edges
vary across time snapshots. The eigenvalue method involves utilizing the eigenvalues of the graph
Laplacian, and it proves to be suitable for our specific scenario.

Let A1 and A2 be two adjacency matrices of graphs G1 and G2, respectively. Let L1 = D1–A1 and
L2 = D2–A2 be the Laplacians of the graphs, where D1 and D2 are the corresponding diagonal
matrices of degrees. Considering that the eigenvalues of Lj are denoted as {λj1, λj2, ...}, we define

15

Published as a conference paper at ICLR 2024

...

...

Extract Node Features

Random Graph Generator TDA Mapper

...

Figure 6: Simulating Graph Similarity. We generate k graphs using a graph generator model (e.g., Erdős-
Rényi) with parameters (p and n). Average similarity to neighbors in phase spaces is computed, revealing
insights into graph continuity across parameter values.

the similarity between the graphs as follows:

sim(G1,G2) =

k∑
i=1

(λ1i − λ2i)
2

where k is the smallest value that satisfies the following condition:

min{
∑k

i=1 λ1i∑|V1|
i=1 λ1i

,

∑k
i=1 λ2i∑|V2|
i=1 λ2i

} > 0.9

It is understood as the top k eigenvalues containing 90% of the energy Koutra et al. (2011). Please
note that this method yields unbounded similarity scores within the [0,∞] range. When the dissim-
ilarity score approaches 0, it indicates a high degree of dissimilarity between the graphs, whereas
higher values suggest greater dissimilarity (Koutra et al., 2011).

Figure 7: Similarity score comparison.
Using original graphs and extracted TDA
Mapper graphs based on original node
features for similarity score comparison.

Similarity Score Comparison. Having selected a sim-
ilarity function, we now turn our attention to how we
compare the Mapper trajectories with those of the snap-
shot graphs. Figure 7 illustrates the main idea in our ex-
periments for comparing the similarity scores of origi-
nal graphs and their topological counterparts.

First, for any graph G, we use TDA Mapper to induce a
summary graph Γ (which is the Mapper network of G)
by using its node features. We consider the following
features to represent the nodes: PageRank, Degree Cen-
trality, Closeness Centrality, Betweenness Centrality,
clustering coefficient, and the number of neighbors. We
consider these features because they can be computed
from any graph without node or edge labels, which is
preferable in our setting where labels might be difficult
to collect. For each graph G, the nodes V are represented as a point cloud XG in the feature space
RN×d. Then, by applying TDA Mapper on the point cloud XG ⊂ RN×d, we obtain its Mapper
network ΓG .

Now, consider two neighboring graphs G1 and G2 in the phase space (e.g., Erdős-Rényi, Barabási-
Albert), and let their similarity score be s12, i.e. s12 = sim(G1,G2). Now, let Γ1 and Γ2 be
their induced Mapper networks. Let ζ12 be their similarity score, i.e., ζ12 = sim(Γ1,Γ2) By our
definition, if ζ12 is smaller than s12, then the induced Mapper networks are more similar to the
original graphs. This interprets that Mapper networks inherit the similarity information better than
the original graphs, hence they capture graph trajectory better.

Results. In Tables 5 and 6, we report the median similarity scores for original graphs and TDA Map-
per networks in log10 base for both Erdős-Rényi and Barabási-Albert setting. Due to the unstable

16

Published as a conference paper at ICLR 2024

Figure 8: Adex Network Trajectory. A seven-day trajectory for the Adex network within the phase
space of α and |V |. We assume that the network follows a power law model (Adamic & Huberman,
2000), and fit graph data to compute the α exponent of the model (see appendix C). For the network,
the power law exponent α moves from 2 to 16.

frequency of outliers, we use the median to calculate the average similarity score of four neighbour-
hoods instead of the mean since the median is more robust to outliers than the mean. However, both
Mapper networks and original graphs become increasingly dissimilar to the reference graph as the
distance (modeled with the k-hop neighbourhood) in the phase space increases. Considering this,
we see a significant increase in the similarity score in the original graphs while the induced TDA
Mapper networks remains highly steady.

Table 5: Dissimilarity scores in the Erdős-Rényi setting with their standard deviations.

Neighborhood TDA (log10) Original (log10) σTDA σoriginal

1 0.9364 2.0726 0.15 0.25

2 0.9430 2.6166 0.11 0.23

3 0.9548 2.9734 0.09 0.22

4 0.9769 3.2091 0.08 0.22

Table 6: Dissimilarity scores in the Barabási-Albert setting with their standard deviations.

Neighborhood TDA (log10) Original (log10) σTDA σoriginal

1 0.9392 3.6165 0.33 0.20

2 0.9516 4.0612 0.31 0.19

3 0.9756 4.3289 0.32 0.20

4 0.9797 4.5013 0.30 0.20

Figure 9 shows that TDA Mapper yields nearly identical dissimilarity values for the neighbors of
the reference graph. The result further offers evidence that TDA Mapper based trajectories would
better capture the graph’s moves in the phase space.

With the two criteria fulfilled by these empirical results, we conclude that the TDA Mapper can
efficiently capture and model graph trajectories in the phase space.

17

Published as a conference paper at ICLR 2024

(a) Erdős-Rényi setting. (b) Barabási-Albert setting.

Figure 9: Initial Neighbourhood Comparison. Comparison of similarity scores in the initial neigh-
bourhood for Erdős-Rényi and Barabási-Albert configurations. Refer to Figure 5 for neighbor in-
dices. Given the proximity of these neighbors to the reference graph in phase space, we expect their
dissimilarity to exhibit both low variability and similarity among themselves. Notably, TDA Map-
per scores demonstrate greater stability and lower values than the dissimilarity scores of the original
graphs.

Stability of Mapper networks. We also want to underline the stability of Mapper networks with
respect to small changes, and in particular, their robustness against noise. As Figure 5 shows ev-
ery reference graph (red dot) has 8 neighbors (light blue dots) in their first neighbourhood in a
2-parameter phase space (e.g., Erdős-Rényi, Barabási-Albert). In Figures 9a and 9b, we consider
the first neighbourhoods of the reference graphs, and give the average similarity scores between
the reference graphs and these 8 graphs in their first neighbourhood for both Erdős-Rényi, Barabási-
Albert settings. Changes in the Erdős-Rényi and Barabási-Albert parameters result in fluctuating the
dissimilarity score between the original and reference graphs. Each time a new neighbor graph is
created, the number of nodes n and probability p increases or decreases by 2 and 0.05, respectively.
These small changes are considered as noise to the graph’s trajectory. While there is a fluctuation in
dissimilarity scores between the original graph, dissimilarity scores between TDA graphs are stable.
Therefore, it is concluded that the TDA method is robust to the noise of graph trajectory.

A.3 FEATURES FOR TDA MAPPER

To induce our TDA Mapper networks for a given graph G, we use the following node features to
induce a point cloud XG in the feature space RN and follow the method described in Section 3. The
node features we use are as follows:

1. Outgoing Edge Weight Sum: For each node in the snapshot graph, this feature calculates
the sum of the weights of all outgoing edges connected to that node. It provides information
about the total influence or importance of the node in sending information to its neighbors.

2. Incoming Edge Weight Sum: Similar to the previous feature, this one calculates the sum
of the weights of all incoming edges connected to each node in the snapshot graph. It
represents the total influence or importance of the node in receiving information from its
neighbors.

3. Outgoing Edge Count: This feature keeps track of how many edges leave each node in
the snapshot graph. The number of other nodes the node is directly connected to as well as
its level of connectedness are reflected by this.

4. Incoming Edge Count: The number of incoming edges to each node in the snapshot graph
is counted by this feature. It gives details on how many nodes are connected to a single node
directly.

A.4 DEPENDENCY ON MAPPER PARAMETERS

The configurability of TDA Mapper is enhanced by its set of hyperparameters. These parameters
provide users with the ability to customize TDA Mapper’s functionality, allowing for alignment with

18

Published as a conference paper at ICLR 2024

Table 7: Similarity scores in the Erdős-Rényi setting with ”rough” Mapper parameters, which con-
stitute an imposed failure scenario.

neighborhood TDA (log10) Original (log10) σTDA σoriginal

1 0.0 2.0743 0.0 0.28

2 0.0 2.5988 0.0 0.25

3 0.0 2.9810 0.0 0.24

4 0.0 3.2105 0.0 0.25

their specific data and analytical goals. This adaptability facilitates the comprehensive capture and
visualization of topological features within diverse datasets. The hyperparameters of TDA Mapper
include:

• Number of Cubes (n cubes): Number of hypercubes along each dimension of the pro-
jected point cloud using the lens function.

• Percentage of Overlaps (perc overlap): Percentage of overlap between adjacent cubes
calculated along each dimension.

• Number of Clusters (cls): Number of clusters in the K-means algorithm that determines
the number of inner clusters formed within each cube.

The effectiveness of the GraphPulse can be influenced by the choice of parameters in the Mapper
algorithm.

Figure 10: Adex Network Mapper Analysis. 3d AUC plot
over Mapper parameter for the Adex network. Predictive
performance (ROC-AUC) is consistently above 0.8 for the
region 0.2 < overlap < 0.45 and 4 < cubes < 8.

In experiments conducted in A.2,
we set the hyperparameters as
cls = 5, n cubes = 2, and
perc overlap (gain) = 0.4 to induce
our Mapper networks, where cls rep-
resents how fine the clustering in the
point cloud, n cubes (interval size)
represents how big the clusters are,
and finally, perc overlap represents
how fine the connections between the
clusters are. Our experimental results
in Figure 10 show that Mapper net-
work representations remain stable
under small changes in the phase
space.

It is noteworthy that the level of
view granularity in Mapper is an im-
portant parameter. If we increase
perc overlap significantly, this will
add an edge between most Mapper
clusters, and the resulting Mapper
network will be a very dense (some-
times complete) graph. We show
this dependency with the following
experiment in the following Mapper
setting: cls = 5, n cubes = 2, and perc overlap = 0.7. In Table 7, we see that the resulting TDA
graphs are summarizing too much, and there is no change in the Mapper network even if the original
graphs are changing.

19

Published as a conference paper at ICLR 2024

Table 8: Summary of analyzed models.

Model Type Data Edge Feature Node Feature

GIN GNN {Gt1 ∪ Gt2 ∪ · · · ∪ Gtn} edge weight —
TDA-GIN GNN {Gt1 ∪ Gt2 ∪ · · · ∪ Gtn} edge weight mapper cluster membership

EvolvedGCN TGNN Gt1 ,Gt2 . . .Gtn edge weight —
GRUGCN TGNN Gt1 ,Gt2 . . .Gtn edge weight —

HTGN TGNN Gt1 ,Gt2 . . .Gtn edge weight —

Fmapper-RNN TDA+RNN Γ1, . . . ,Γn edge weight NA
Fsnapshot-RNN RNN Gt1 ,Gt2 . . .Gtn edge weight NA
GraphPulse TDA+RNN Gt1 ,Gt2 . . .Gtn edge weight —

B BASELINE MODELS

In our evaluation of different models, we included baseline models using Graph Neural Networks
(GNNs) and Recurrent Neural Networks (RNNs) to tackle our graph-based property prediction task.
Here, we will provide explanations for all the baseline models employed in our study. Table 8
presents an overview of the model summary information.

B.1 GNNS AND OUR MODELS

GNNs: For the GNN baselines, we employed the Graph Isomorphism Network (GIN) as a static
model due to its remarkable capacity for capturing both local and global graph structures, making
it adaptable for tasks such as graph classification, node classification, and link prediction. Also, we
used three state-of-the-art GNN models including EvolvedGCN, GRUGCN, and HTGN as base-
lines.

GIN. We extract each snapshot graph and augment it with four essential node features. The follow-
ing features are included: Outgoing Edge Weight Sum, Incoming Edge Weight Sum, Outgoing Edge
Count, and Incoming Edge Count.

After incorporating these four node features into the graph representation, Based on the chronologi-
cal order, the graphs are divided into 80% training and 20% testing data, which are then fed into the
model. We employ a Graph Isomorphism Network (GIN) model for graph classification. The GIN
model consists of four middle layers with 64 hidden units followed by a target output dimension of
two, which serves as label prediction. We use Adam optimizer with a learning rate of 0.0001.

TDA-GIN. The TDA-GIN method is a two-step approach that builds upon the previous static GIN
method. First, we extract the same graph with the four node features explained earlier for each node.
Additionally, we leverage these node features as input for a TDA Mapper algorithm, which forms
clusters by grouping similar nodes together. This process yields a new TDA graph, and for each
node in this graph, we incorporate the cluster size as a node feature.

We perform a grid search on parameter combinations to determine the ideal combination of TDA
Mapper parameters. We choose the most advantageous combination through this optimization pro-
cess in order to produce the most instructive TDA graph for learning and classification. The TDA-
GIN method enhances the representation and classification of temporal graphs by incorporating
TDA techniques into the GIN framework, leading to better prediction performance.

While TDA-GIN incorporates additional structural information through the TDA Mapper represen-
tation, it has been observed that for temporal tasks, this method may not always yield improved
results. The temporal nature of the data brings challenges related to dynamic changes, time depen-
dencies, and evolving patterns, which may not be fully captured by the TDA-GIN approach. As
a result, the benefits gained from TDA-based graph representations may not always translate into
superior performance for temporal graph property prediction tasks.

RNNs: For our RNN baseline, we developed a hybrid LSTM-GRU model, combining the strengths
of both architectures to address the specific challenges posed by our dataset and task. A hybrid
LSTM+GRU model often exhibits superior performance compared to standalone LSTM and GRU

20

Published as a conference paper at ICLR 2024

models due to its ability to effectively combine the unique advantages of both architectures. LSTM
excels at capturing long-range dependencies in sequential data, making it suitable for tasks involving
context over extended sequences. On the other hand, GRU is computationally more efficient and can
capture short-term dependencies effectively (Yamak et al., 2019). By blending these two architec-
tures into a hybrid model, we harness the capacity to capture both short and long-term dependencies
simultaneously. This enables the model to better understand the complex temporal relationships
present in the data, which might be challenging for standalone LSTM or GRU models to grasp in-
dividually. Moreover, A hybrid LSTM+GRU model leverages the diverse internal structures and
regularization mechanisms of LSTM and GRU models to improve performance and generalization
in sequential data tasks, making it a versatile choice. This combination creates an ensemble-like
effect, enhancing the model’s ability to capture different data features and reduce overfitting risk.

Fsnapshot-RNN. The Fsnapshot-RNN method entails building a temporal daily pipeline to capture the
temporal component of the data. We extract daily graphs for each day from each snapshot, which
contains seven days’ worth of data. We extract three graph-level features from each graph, including
the number of nodes, the number of edges, and the average value of edge weights. We give this
feature a constant value if the graph is unweighted. After these features are extracted, a sequence of
three features is created for seven consecutive days, producing a sequence with the shape (7,3) for
each snapshot. To carry out the classification task, a hybrid LSTM-GRU model gets these sequences
and their corresponding labels. Based on the chronological order, the sequences are divided into
80% training and 20% testing data, which are then fed into the model. Our RNN model consists of
two LSTM layers, two GRU layers, and a dense layer for classification. Each snapshot has binary
classification labels in the model’s output. The AUC-ROC is the evaluation metric employed for this
task.

FMapper-RNN. The FMapper-RNN method consists of two main steps. In the first step, similar to the
previous model, we construct daily graphs from the temporal data. For each daily graph, we utilize
the four features previously discussed in the initial section to generate a TDA graph. This involves
extracting the four features for each node in the daily graphs and subsequently constructing a TDA
Mapper network for each individual day.

From the TDA daily graphs, we extract five additional features, namely the number of nodes, the
number of edges, the maximum cluster size, the average cluster size, and the average value of edge
weights with the shape (7,5) for each snapshot. These features are then used to create a sequence
representing seven consecutive days. This sequence is fed into the same LSTM-GRU model de-
scribed before for the classification task. The subsequent steps are identical to the previous model.
The sequences are partitioned into 80% training and 20% testing data, based on the chronologi-
cal order, and are employed as input for the hybrid LSTM-GRU model. The model outputs binary
classification labels for each snapshot, and the performance is evaluated using the AUC-ROC metric.

B.2 TEMPORAL GRAPH REPRESENTATION LEARNING METHODS

Our work relates to graph representation learning in a dynamic setting. Here, we further elaborate
temporal graph learning methods considered as baselines and provide the experimental details.

EvolveGCN (Pareja et al., 2020) captures the dynamism of a graph sequence, EvolveGCN adapts a
GCN architecture and uses an RNN to evolve the GCN parameters through the temporal aspect. In
this way, the weights of the GCN are dynamically and automatically updated by the RNN module
allowing the GCN module to change even during the test time.

GCRN (or GRUGCN) (Seo et al., 2018) is a deep learning model aiming to predict structured
sequences of data. GCRN basically exploits a CNN architecture and applies it to the graph data to
identify the spatial structures. Furthermore, it utilizes an RNN module on top of that to encompass
the dynamic of the network.

HTGN (Yang et al., 2021). While most temporal graph representation learning methods focus on
modeling structural and temporal dependencies in Euclidean space, Hyperbolic Temporal Graph
Networks (HTGN) grasp the high capacity and hierarchical awareness of hyperbolic space. HTGN
utilizes hyperbolic graph neural networks and hyperbolic gated recurrent neural networks to capture
the evolutionary patterns of dynamic graphs.

21

Published as a conference paper at ICLR 2024

It is noteworthy that these methods are mainly optimized for node-level tasks namely node classifica-
tion. Since we are focusing on the graph property prediction task, we modify the decoder component
of these methods. In particular, we added a pooling layer on top of the encoder module to provide a
graph-level representation. The output of the pooling layer is then fed to the final classifier for the
downstream task of graph property prediction.

Experimental Details. The experimental parameters are set according to the best practices proposed
in baseline methods (Yang et al., 2021). For all these methods, we used the in-degree, out-degree,
weighted in-degree, and weighted out-degree of the nodes as their initial features. We set the final
embedding dimension as 16, and used a mean-pooling layer for generating graph-level representa-
tions. All methods are composed of one layer of recurrent units and two-layer graph convolutions.
For HTGN, the number of historical windows in the HTA module is set to 5. For all methods, we
utilized a chronological %80–%20 split of the graph snapshot sequence as our train-validation and
test data, respectively.

C THE PHASE SPACE FOR TOKEN NETWORKS

A token network on Ethereum can be conceptualized as a dynamic graph-based decentralized
ecosystem. In this ecosystem, nodes represent participants or entities within the network, which
can include users, smart contracts, or even devices. Edges between nodes symbolize various inter-
actions and transactions involving tokens. These interactions could include transfers, trades, or other
token-related activities.

Table 9: α values for the power-law distri-
butions of the degree distributions of 7 token
datasets

Data α

Adex 4.4387
Bancor 3.8886
Aragon 3.3336
Dgd 3.3696
Coindash 4.8846
Iconomi 3.3369
Centra 3.7404

We model token networks as power law
graphs Adamic & Huberman (2000) where
the phase space is given with |V | and the exponent
α. In power law graphs, P (x) ∝ x−α where x
is the node degree. Table 9 shows the α values,
as described by Alstott et al. (2014), for token
networks. A high alpha indicates that there
are fewer nodes with very high degrees (hubs)
compared to nodes with lower degrees. This leads
to a more concentrated distribution, where a small
number of nodes have extremely high degrees,
and the majority of nodes have relatively low
degrees. Different real-world systems exhibit
different alpha values, reflecting the diversity in
the distribution of node degrees. For instance, in the World Wide Web, alpha values typically
range from 2 to 3 Adamic & Huberman (2000). As the table shows, the token networks exhibit
significantly high α values.

D ADDITIONAL GRAPH PROPERTIES

In addition to network growth in edges, we have carried out two experiments to test the predictive
power of GraphPulse: predicting the network growth in node count and density.

Table 10 displays the results of the node count experiments. Among the nine datasets utilized in
the experiment, GraphPulse achieves the highest AUC in five datasets and the second-highest AUC
in the Iconomi dataset. EvolveGCN attains the highest AUC value in the four datasets; however, it
produces poor results in Adex and Coindash. Among the methods, GraphPulse boasts the highest
mean AUC (0.8044). HTGN consistently delivers high AUC results, consequently achieving the
second-highest mean AUC at 0.7912.

Table 11 illustrates the results for the density property prediction experiments. In this task, Graph-
Pulse outperforms other methods in four of nine datasets and is the second-best method in the Bancor
and Aragon datasets. EvolveGCN attains the highest AUC value in three datasets; however, it pro-
duces poor results in Coindash and Bancor. HTGN and GRUGCN both achieve the best result in
only one dataset. Among the methods, HTGN has the best mean AUC (0.7558). GraphPulse has

22

Published as a conference paper at ICLR 2024

the second-best mean AUC at (0.7403) however GraphPulse has the best median value (0.7832) and
consistently delivers high AUC results for all of the datasets with AUC higher than (0.65)

Table 10: ROC-AUC results for the graph node count prediction task.

Dataset GIN TDA-GIN EvolveGCN GRUGCN HTGN GraphPulse

Adex 0.5899±0.0486 0.5002±0.0180 0.5699±0.3690 0.5566±0.3141 0.7720±0.1100 0.8224±0.0047

Bancor 0.4724±0.0377 0.5879±0.0627 0.8078±0.1688 0.8165±0.0266 0.6859±0.0781 0.8182±0.0115

Aragon 0.5121±0.0918 0.4880±0.0096 0.7020±0.0886 0.6637±0.0380 0.6335±0.0223 0.7416±0.0116

Dgd 0.5334±0.0519 0.5400±0.0625 0.8291±0.0609 0.7497±0.0629 0.8115±0.0263 0.7851±0.0046

Coindash 0.4582±0.0965 0.4637±0.0497 0.6055±0.1954 0.7900±0.019 0.7969±0.0194 0.8078±0.0067

Iconomi 0.6515±0.0200 0.5512±0.0335 0.9086±0.0240 0.8505±0.0200 0.8334±0.0261 0.8582±0.0069

Centra 0.5034±0.0994 0.5637±0.0248 0.8221±0.1334 0.8726±0.0035 0.8753±0.0040 0.8790±0.0046

Reddit-B 0.4995±0.0329 0.5365±0.0411 0.9408±0.0164 0.8147±0.0516 0.8289±0.0424 0.7283±0.0092

Mathoverflow 0.6314±0.0632 0.4559±0.0784 0.9257±0.0026 0.8352±0.0485 0.8933±0.0530 0.8404±0.0041

Table 11: ROC-AUC results for the graph density prediction task.

Dataset GIN TDA-GIN EvolveGCN GRUGCN HTGN GraphPulse

Adex 0.4763±0.0645 0.4929±0.0206 0.7634±0.3037 0.7234±0.3040 0.7356±0.2419 0.7938±0.0017

Bancor 0.5320±0.0367 0.5529±0.0209 0.5810±0.1683 0.8120±0.0154 0.7492±0.0753 0.7661±0.0077

Aragon 0.4571±0.1195 0.4896±0.0514 0.7938±0.0887 0.6419±0.0151 0.6680±0.0511 0.7832±0.0050

Dgd 0.5228±0.0755 0.5475±0.0581 0.8711±0.0292 0.7881±0.0274 0.8171±0.0108 0.7958±0.0088

Coindash 0.4326±0.0646 0.4694±0.0406 0.5021±0.1506 0.7744±0.0051 0.7679±0.0043 0.7767±0.0125

Iconomi 0.7209±0.0582 0.5086±0.0588 0.9146±0.0082 0.8927±0.0085 0.8784±0.0051 0.8444±0.0105

Centra 0.3991±0.0417 0.5622±0.0746 0.7196±0.1631 0.8434±0.0028 0.8491±0.0017 0.8908±0.0050

Reddit-Body 0.4014±0.0569 0.5329±0.0236 0.7072±0.0437 0.6055±0.0633 0.6093±0.0347 0.7270±0.0109

Mathoverflow 0.7421±0.0469 0.5133±0.0710 0.6720±0.1883 0.7335±0.0352 0.7475±0.0284 0.6846±0.0100

E SCALABILITY ANALYSIS

Figure 11: Methods Training Time. Comparison
of Training Time for Methods on the Dgd Net-
work. GraphPulse completes the training process
26% faster than the time required by the state-of-
the-art HTGN method.

The computational cost of GraphPulse is dom-
inated by the cost of reducing our 4D feature
data X to a 2D form to be used by Mapper.
We have used tSNE (Van der Maaten & Hinton,
2008) for the reduction which has a quadratic
computational complexity in the number of
data points. The cost can be significantly re-
duced by using tSNE approximations (Pezzotti
et al., 2016). We leave this improvement to
future work. Once a lens is selected, creating
the TDA Mapper network involves sorting data
points (graphs), which is an O(n logn) opera-
tion where n is the number of graphs.

We demonstrate GraphPulse’s scalability
through two key aspects: end-to-end model
training costs for the most resource-intensive
dataset, and the computational overhead of
Mapper analysis for daily snapshot graphs.

Figure 11 illustrates the computational time re-
quirements of the considered models on the
Dgd network, which boasts the largest number
of snapshots (720). Notably, GraphPulse completes training in 1550 seconds, while HTGN demands
over 2100 seconds for the same task.

The processing time of GraphPulse encompasses three distinct stages: the extraction of TDA se-
quences, the extraction of daily sequences, and the training of the RNN model. Notably, the TDA

23

Published as a conference paper at ICLR 2024

(a) Daily cost of TDA Mapper creation for all token
networks. Each data point is a snapshot graph from
a token. As shown, most of the daily graphs have
less than 750 nodes.

(b) The cost of extracting TDA features for graphs
using the Erdős-Rényi graph generation model with
p = 0.3.

Figure 12: TDA Mapper Scalability. The daily cost of TDA Mapper for token networks is il-
lustrated in (a). The mapper cost has a direct relation with the size of the graph. (b) shows the
increasing cost of TDA Mapper with the growing size of the graph.

sequence extraction phase is the most time-consuming component of this process. Consequently,
the overall execution time for GraphPulse and FMapper-RNN is significantly higher when compared
to the FSnapshot-RNN model, primarily due to the additional computational requirements of TDA
sequence extraction.

Given that the extraction of TDA sequences constitutes a significant portion of GraphPulse’s pro-
cessing time, we conducted a comprehensive analysis focused on the daily TDA cost. Figure 12
presents the outcomes of this analysis, shedding light on the question of how substantial the daily
cost can be while still permitting efficient TDA processing. Remarkably, the results illustrate that
TDA remains highly effective, even with graphs containing approximately 20,000 nodes, processing
them in under 4 minutes. Furthermore, the experiments reveal that a majority of the daily networks
processed exhibit fewer than 1,000 nodes, ensuring swift processing. This evidence underscores the
scalability of TDA for real-world daily graphs within the GraphPulse framework.

These results collectively underscore GraphPulse’s outstanding scalability in temporal graph ma-
chine learning. By efficiently managing training costs and Mapper analysis, GraphPulse offers a
high degree of scalability across various datasets, establishing its suitability for larger and more
complex temporal graph scenarios.

24

	Introduction
	Background and Related Work
	TDA & Mapper
	Temporal Graph Neural Networks

	Mapper and Topological Graph Representation
	Trajectories of Temporal Graphs
	Trajectory in a Phase Space
	Trajectory in the Topological Space
	Advantages of TDA Mapper networks

	GraphPulse
	Experiments
	Evaluation Results

	Conclusion
	TDA Mapper & Graph Trajectory
	Mapper Trajectories
	Empirical Evaluation for Mapper Trajectories
	Features for TDA Mapper
	Dependency on Mapper Parameters

	Baseline Models
	GNNs and Our Models
	Temporal Graph Representation Learning Methods

	The Phase Space for Token Networks
	Additional Graph Properties
	Scalability Analysis

