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Abstract

The field of few-shot learning has made remarkable strides in developing powerful1

models that can operate in the small data regime. Nearly all of these methods2

assume every unlabeled instance encountered will belong to a handful of known3

classes for which one has examples. This can be problematic for real-world4

use cases where one routinely finds ‘none-of-the-above’ examples. In this paper5

we describe this challenge of identifying what we term ‘out-of-support’ (OOS)6

examples. We describe how this problem is subtly different from out-of-distribution7

detection and describe a new method of identifying OOS examples within the8

Prototypical Networks framework using a fixed point which we call the generic9

representation. We show that our method outperforms other existing approaches in10

the literature as well as other approaches that we propose in this paper. Finally, we11

investigate how the use of such a generic point affects the geometry of a model’s12

feature space.13

1 Introduction14

Over the past decade, deep learning-based methods have achieved state-of-the-art performance in15

a range of applications including image recognition, speech recognition, and machine translation.16

There are many problems however, where deep learning’s utility remains limited because of its need17

for large amounts of labeled data. The field of few-shot learning [26] aims to develop methods for18

building powerful machine learning models in the limited-data regime.19

The common paradigm in few-shot learning is to assume that for each unlabeled instance, one has at20

least one labeled example belonging to the same class. At inference time then, classification of an21

unlabeled example x simply involves determining which of a fixed number of known classes x is22

most likely to belong to. In real-world problems on the other hand, it is frequently the case that one23

does not have labeled examples of every possible class that has support in a data distribution. This24

is particularly true in science and medical applications where it is time and cost prohibitive to have25

a subject matter expert sift through an entire dataset and identify all classes therein. Establishing26

methods of detecting whether or not unlabeled input belongs to any known class is thus critical to27

making few-shot learning an effective tool in a broad range of applications.28

We define a datapoint to be out-of-support (OOS) if it does not belong to a class for which we have29

labeled examples, but was still drawn from the same data distribution as the labeled examples we30

have. We call the problem of identifying such instances the out-of-support detection problem. As31

we explain in Section 2.3, OOS detection resembles, but is distinct from, out-of-distribution (OOD)32

detection where one attempts to identify examples which were drawn from a different data distribution33

entirely, (see Figure 1 for an illustration of the difference between these two types of problems). To34
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our knowledge the OOS detection problem was first articulated in the literature only recently in [25],35

where two algorithms were proposed within the metric-based few-shot setting.36

In this paper we describe a new approach to OOS detection which we call Generic Representation37

Out-Of-Support (GROOS) Detection. The name is inspired by the concept of generic points in38

algebraic geometry, which are points for which all generic properties of a geometric object are true39

[6]. Our method uses a so-called generic representation to represent the data distribution as a whole40

but no individual class in particular. Like the methods proposed in [25], our method can be adapted41

to work with a range of metric-based few-shot models. For simplicity, in this paper we focus on42

a Prototypical Networks [21] setting where the generic representation is simply a point in feature43

space. To predict whether an unlabeled instance q is OOS or not, one compares the distances from44

the encoding of q to each class representation and the generic representation. If the image of q is45

sufficiently close to the generic representation and sufficiently far from all class representations, it is46

predicted to be OOS. We state a pair of inequalities (1) relating the distances between query points,47

class prototypes, and the generic representation which need to be satisfied in order for GROOS48

detection to be able to correctly predict when q is OOS and also correctly predict the class of q when49

q is in-support. We analyze how these constraints effect the geometry of a model’s feature space,50

characterizing its structure through three Propositions (Propositions 4.1, 4.2, and 4.3). We also show51

that for GROOS to be successful, additional ‘second-order’ relationships between prototypes and the52

generic representation need to hold.53

We benchmark GROOS detection against two recently proposed methods - LCBO and MinDist [25] -54

as well as an additional method - Background OOS detection - which we describe in this paper. We55

find that GROOS detection not only on average outperforms previous benchmarks (Section 4.1), but56

an adapted version of GROOS called Centered GROOS tends to outperform other OOS detection57

methods in settings that require significant model generalization (Section 4.2). Despite the strong58

relative performance of Centered GROOS detection in this latter setting, it is clear that the community59

still has a considerable amount of work to do before few-shot models can satisfactorily detect OOS60

examples when evaluated on datasets significantly different from those that they were trained on.61

In summary, our contributions in this paper include:62

• We introduce the GROOS detection method, which is designed to solve the out-of-support63

detection problem in few-shot learning using a generic representation.64

• We benchmark GROOS detection against existing metric-based methods in the literature and65

an additional OOS detection method, Background OOS Detection, which we describe in this66

paper. We show that GROOS out-performs these approaches both in a traditional few-shot train-67

evaluation setting, and in a more challenging setting where models are trained on ImageNet and68

then evaluated on a diverse range of datasets.69

• We state two inequalities relating class prototypes, the generic representation, and encoded70

query points, which must be satisfied in order for both OOS detection and standard in-support71

classification to be effective. Motivated by these inequalities we prove three propositions which72

relate feature space geometries that arise from the standard Prototypical Networks problem and73

the feature space geometries that arise from GROOS.74

2 Background and related work75

2.1 Few-shot learning and Prototypical Networks76

There are a range of approaches that have been used to address the challenges of few-shot learn-77

ing. Fine-tuning methods [1, 2] use transfer learning followed by fine-tuning to train models with78

limited data. Data augmentation methods [5] leverage augmentation and generative approaches to79

produce additional training data. Gradient-based meta-learning [4, 19] is a class of methods that use80

sophisticated optimization techniques to learn strong initial weights which can be adapted to a new81

task with a small number of gradient steps. The algorithm we propose in this paper is related to a82

fourth class of algorithms called metric-based models. In these models an encoder function is trained83

to embed data into a space where a distance metric (either hard-coded or learned) captures some84

task-appropriate notion of similarity. Well-known examples of metric-based few-shot models include85

Prototypical Networks [21], Matching Networks [23], and Relational Network [22].86
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An episode is the basic unit of few-shot inference and training. It consists of a set S of labelled87

examples known as the support set and an unlabeled set Q known as the query set. Within an88

episode, a model uses elements in S to predict labels for elements in Q. We assume that elements89

of S belong to classes Cin = {1, . . . , k}. For convenience, we decompose S into a disjoint union:90

S =
⋃
c∈Cin Sc, where Sc contains only those elements of S with label c. We will assume that the91

size n = |Sc| is constant for all c ∈ Cin. The integer n is known as the shots of the episode, while92

the integer k is known as the ways. In this paper we will assume that Q has been drawn from a93

distribution p, and each set Sc has been drawn from the conditional distribution p(y = c).94

By few-shot training we mean the process of calculating the loss for an entire episode and then95

using that loss to update the weights of the model. Few-shot inference has an analogous meaning. A96

few-shot split is a partition of a dataset into train and test sets by class, so that all examples from a97

given class are contained in either the train or test split, but not in both.98

Prototypical networks (ProtoNets) [21] uses an encoder function f : X → Rd to map elements of99

both Q and S into metric space Rd (which we will always assume is equipped with the Euclidean100

metric). In Rd, a centroid γc is formed for each set fθ(Sc). γc is referred to as the prototype which101

represents class c in Rd. The model predicts the class of an unlabelled query point q based on102

the solution to argminc∈Cin ||γc − fθ(q)||. Note that in the case where one needs probabilities103

associated with a prediction, one can apply a softmax function to the distance vector [−dc]c∈Cin104

where dc = ||γc − fθ(x)||.105

2.2 The out-of-support detection problem106

As mentioned in the Introduction, it is commonly assumed in the literature that all elements of Q107

have a label from Cin. It was observed in [25] that in many real-world cases, this assumption is108

unrealistic. In that work the authors referred to an example q ∈ Q that does not belong to a class in109

Cin as being “out-of-episode”. We feel it is more appropriate to describe such examples as being110

out-of-support (OOS), since any elements found in Q can be said to be part of the episode. Following111

[25] we decompose Q as Q = Qin ∪ Qout where Qin are those elements that are in-support and112

Qout are those elements that are OOS. It is also convenient to use C to denote the set of all labels on113

elements from S ∪Q, with C decomposing as the disjoint union C = Cin ∪ Cout where Cout are114

simply those classes for which there are unlabeled examples in Q but no labeled examples in S. Note115

that the user generally does not have knowledge of Cout.116

The out-of-support (OOS) detection problem then involves identifying those elements of Q that do117

not belong to any class in Cin. All the methods for OOS detection described or introduced in this118

paper use a confidence score ϕ : X → R that maps a query point q ∈ Q to a value in R. In general,119

ϕ also depends on the full support set S as well as the encoder fθ, but to simplify notation we assume120

these dependencies are implicit.121

The authors of [25] proposed two methods for OOS detection. Both are presented as an additional122

component that can be added to Prototypical Networks and it is in this context that we will describe and123

evaluate them. The first uses a function called the Minimum Distance Confidence Score (MinDist),124

ϕdist : X → R which is defined as ϕdist(q, fθ) = −minc∈Cin ||γc − fθ(q)||. A query q is125

predicted to be OOS if ϕdist(q) < t for some t < 0. The second method proposed in [25] is the126

Learnable Class BOundary (LCBO) Network which is a parametric class-conditional confidence127

score ϕLC : X → R. ϕLC uses a small, fully-connected neural network hθ′ : Rd → R to128

produce scores for each prototype/query pair (q, γc). The confidence score ϕLC is defined as129

ϕLC(q) = maxc∈Cin

(
hθ′(γc, fθ(q))

)
. The model predicts that q is OOS if ϕLC(q) < t for some130

predetermined threshold t. The authors of [20] consider methods for handling few-shot classification131

tasks in the presence of OOS examples. While their methods are conceptually similar to ours, their132

work differs in that they neither consider OOS detection nor distribution shift like we do.133

2.3 Out-of-distribution detection134

Out-of-distribution (OOD) detection aims to develop methods that can identify whether or not a data135

point x was drawn from some known distribution p. Methods for doing this within the context of136

deep learning models include: using a model’s largest softmax output value as a confidence score137

[9, 13] and ODIN [15] which suggests identifying OOD examples through the use of model gradients138

and sofmax temperature scaling. Standard benchmarks for OOD detection focus on using OOD139
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Figure 1: A diagram illustrating the difference between out-of-support detection and out-of-
distribution detection for a few-shot task where one attempts to identify images of Newfoundlands
and pugs from a dataset of dog images.

detection methods to identify examples drawn from very visually distinct distributions. For example,140

a common experiment attempts to detect Gaussian noise or MNIST [14] images injected into the141

CIFAR10 dataset [11].142

OOS detection differs from OOD detection in that, in general, the conditional distributions corre-143

sponding to elements belonging to Cin and Cout only vary in subtle and arbitrary ways. Consider the144

example summarized in Figure 1 where S and Q consist of images of dogs. While it is true that the145

distribution of dog images belonging to classes Cin = {Newfoundland, pug} is different than those146

belonging to classes Cout = {Labrador, Tibertan terrier}, these differences are slight (and focus on147

very specific aspects of the input) relative to differences in distribution that OOD detection methods148

are designed to detect. Indeed, [25] showed that a few-shot analogue of [9] applied to a ProtoNet149

model struggled on the OOS detection problem. Additionally, OOD detection methods generally150

assume that even if a model has not seen examples of OOD data, it has seen many examples of151

in-distribution data. This is not the case for few-shot models which only have a handful of classes152

that they can use to characterize “in-distribution”. In fact, in the generalization-focused evaluation153

setting described in Section 4.2, few-shot models could be described as operating exclusively out-of-154

distribution in relation to their training set. Finally, while OOD examples are defined with respect to155

an entire dataset, OOS examples are only defined via a small support set, and this definition can vary156

from episode to episode. As suggested in [25], all these differences argue for identifying few-shot157

OOS detection as a problem which is distinct from OOD detection, requiring its own set of methods.158

3 OOS detection with a generic point159

In this section we describe our proposed Generic Representation Out-Of-Support (GROOS) Detection160

method. Let fθ : X → Rd be the encoder (for example, when X is an image space, then fθ might161

be a ResNet [7] with the final linear classification layer removed). Let L : Rd → Rd be an affine162

map, so that L(x) =Wx+ b for some matrix (weights) W and vector (bias) b. We construct a new163

encoder by composing hθ = L ◦ fθ : X → Rd.164

Next choose a point γoos ∈ Rd which will be called the generic representation and a threshold165

0 ≤ t ≤ 1. There are many potential choices for γoos but we find that the origin works well in166

practice. Inference with hθ is similar to inference with the standard ProtoNets (Section 2.1). For an167

n-shot, k-way support set S = ∪c∈CinSc, with support set labels Cin = {1, . . . , k}, and query q,168

hθ(S) and hθ(q) are calculated and centroid prototypes γc are computed for each set hθ(Sc) with169

c ∈ Cin. We compute the vector dq := (d1, . . . , dk, doos) where di := ||γi − hθ(q)||. Finally, let170

softmax : Rk+1 → Rk+1 be the standard softmax function. Following the notation in Section 2.2171

we define ϕgen : X → R to be ϕgen(q) := [softmax(−dq)]k+1 where [softmax(−dq)]k+1 is172

the (k + 1)st output coordinate corresponding to encoded query distance from γoos. If ϕgen(q) > t173

then we predict that q is OOS. If ϕgen(q) < t, then we predict that q is in-support and we use the174

other k softmax outputs from softmax(−dq) to predict its class. Informally, this process consists of175

comparing the distance of the encoded query point from the generic representation to its distance to176

other support prototypes. If the query is sufficiently closer to the generic representation than it is to177

other prototypes, then it is predicted as OOS. This process is summarized in Algorithm 1.178
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Algorithm 1 Generic Representation Out-Of-Support (GROOS) Detection
Input: Encoder function hθ : X → Rd, generic representation γoos ∈ Rd, support set S =
S1 ∪ · · · ∪ Sk with corresponding label set Cin = {1, . . . , k}, query q, threshold 0 ≤ t ≤ 1.
for c ∈ Cin do

Compute prototype centroid γc from hθ(Sc)
Compute dc = ||γc − hθ(q)||

end for
Compute doos = ||γoss − hθ(q)||
Set dq = (d1, . . . , dk, doos) and compute ϕgen(q) = [Softmax(−dq)]k+1

if ϕgen(q) > t then
q is predicted as OOS

else
q is predicted as in-support, belonging to class c∗ = argminc∈Cin dc.

end if

One can ask what metric properties an encoded dataset hθ(D) must have in order for GROOS179

detection to be effective on all possible combinations of support and query sets. For simplicity180

we assume that prototypes γ1, . . . , γk and generic representation γoos are fixed (empirically we181

find that prototypes are fairly stable when the number of shots is high enough so this is not an182

unreasonable approximation). (1) To ensure in-support examples are always predicted correctly, hθ183

must map any x ∈ D with label c ∈ C closer to γc than to any other prototype or γoos. That is184

||hθ(x)−γc|| < ||hθ(x)−γc′ || for all c′ ∈ C∪{oos} such that c 6= c′. (2) One the other hand, when c185

is not represented in the support set, then hθ(x) must be closer to γoos than to any other class prototype186

which is not γc (which does not appear in the episode). Specifically, ||hθ(x)−γoos|| < ||hθ(x)−γc′ ||187

for all c′ ∈ C such that c′ 6= c. These inequalities can be combined for the single expression188

||hθ(x)− γc|| < ||hθ(x)− γoos|| < ||hθ(x)− γc′ || for c′ ∈ C, c′ 6= c. (1)

Inequality (1) suggests that if one is not able to actually train hθ on dataset D (or a similar dataset),189

and hence hθ is not able to learn how to arrange encoded data around γoos, then another sensible190

option is to choose γoos to be the centroid of hθ(S ∪Q). We call this alternative version of GROOS191

detection Centered GROOS Detection. We will see that it works better than the standard version of192

GROOS detection when the test set differs significantly from the training set.193

3.1 Background detection194

We introduce a second OOS detection model to serve as an additional benchmark. We call it195

Background Detection since it was inspired by the “background class” described in [27]. Background196

detection consists of an encoder function hθ : X → Rd such as a ResNet, with its final classification197

layer replaced with a linear layer L : Rd → Rd and two predetermined constants M > 0 and198

0 ≤ t ≤ 1. An episode with support set S = ∪c∈CinSk and query q proceeds with the usual199

calculation of class centroids γc for c ∈ Cin. Using constant M and distances ||γc−hθ(q)|| between200

encoded query and prototypes the vector dq := (d1, . . . , dk,M) is obtained. The confidence function201

ϕback : X → R associated with this method is then: ϕback(q) :=
[
softmax(−dq)

]
k+1

. Query q is202

predicted to be OOS if ϕback(q) > t.203

4 Experiments and analysis204

4.1 Standard few-shot evaluation205

Our first set of experiments look at how well OOS detection methods (MinDist, LCBO, Background206

Detection, GROOS, and Centered GROOS) can identify OOS examples in the setting where the base207

model is trained and evaluated on few-shot splits drawn from the same dataset. That is, we partition208

the classes of the dataset between train and test. We focus on the datasets: CIFAR100 [11] (CC-BY209

4.0), CUB-200 [24] (CC0 1.0), and Omniglot [12] (MIT License).210

All models were trained for four days of wall clock time on a single Tesla P100 GPU for a total of211

between 250,000 and 500,000 training episodes in that time. All performances stabilized around the212
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CIFAR100 CUB-200 Omniglot

AUPR AUROC AUPR AUROC AUPR AUROC

MinDist 88.4±0.1 88.6±0.1 89.0±0.2 89.2±0.1 99.4±0.1 99.5±0.1

LCBO 83.2±0.4 84.7±0.4 85.8±0.4 87.6±0.3 99.2±0.1 99.3±0.1

Background (ours) 87.2±0.2 86.9±0.2 88.8±0.6 88.0±0.7 98.9±0.1 98.9±0.1

GROOS (ours) 90.1±0.2 90.2±0.3 90.9±0.6 90.6±0.7 99.6±0.1 99.5±0.1

Centered GROOS (ours) 88.9±0.8 88.4±0.7 89.6±0.2 89.5±0.1 99.5±0.1 99.5±0.1

Table 1: The area under the ROC curve (AUROC) and area under the precision-recall curve (AUPR)
for a range of few-shot OOS detection methods.

ImageNet CIFAR100 Omniglot Aircraft Textures Fruits

MinDist 95.0±0.1 80.1±0.5 85.5±0.6 59.4±0.2 72.7±0.6 95.3±0.4

LCBO 92.6±0.1 76.3±1.2 68.5±1.4 54.7±0.4 65.3±1.3 89.0±1.9

Background (ours) 93.6±0.1 77.5±0.7 58.6±1.7 58.4±0.3 71.8±0.7 89.8±0.9

GROOS (ours) 95.7±0.1 74.3±1.6 74.6±1.2 53.8±0.3 75.2±0.9 91.2±0.7

Centered GROOS (ours) 95.0±0.2 80.6±0.9 82.1±0.4 61.8±0.4 82.3±0.1 96.2±0.2

Table 2: The area under the ROC curve (AUROC) for a range of few-shot OOS detection methods
which were all trained on a few-shot training split of ImageNet and then evaluated on a range of
datasets.

lower end of that range. All models used a ResNet18 encoder with the final linear layer removed and213

were initialized with the standard ImageNet (CC-BY 4.0) pre-trained weights from Torchvision [17].214

We address the question of how performance differs for different sizes of encoder in Section A.1 of215

the Appendix. We used the Adam optimizer for training, with a learning rate of 1× 105, a weight216

decay factor of 5 × 10−5, and β values of 0.9 and 0.999. All results correspond to 5-shot, 5-way217

episodes, with 8 queries per support class and a total of 40 OOS images introduced per episode (that218

is, 50% of all images in the query were OOS). All images were resized to 224× 224 before being219

fed through the model. To evaluate each model, we sampled 1000 episodes from the corresponding220

few-shot test set. To complete the evaluation, we computed the area under precision recall curve221

(AUPR) and area under the ROC curve (AUROC) for each model with respect to the evaluation222

queries and multiplied these by 100.223

The result of these experiments can be found in Table 1. We bold all scores that are within 0.5 of the224

top model (in terms of both AUPR and AUROC), putting an ∗ on the top score for each column. As225

can be seen, in two of the three datasets used, GROOS outperforms other methods by at least 1.0226

both in terms of AUPR and AUROC. On Omniglot, MinDist, LCBO, GROOS, and Centered GROOS227

all do close to perfect. We include this last experiment to demonstrate that when a sufficiently strong228

encoder is used for a simpler dataset, then a range of OOS detection methods can do quite well.229

4.2 Generalization experiments230

We also ran experiments to evaluate how adaptable MinDist, LCBO, Background Detection, GROOS231

Detection, and Centered GROOS Detection were when a dataset from a previously unseen distribution232

was introduced at inference time. We chose to train our networks on a few-shot training split of233

ImageNet, as ImageNet has been shown to generally produce rich and flexible feature extractors [10,234

2], and then test on: the few-shot ImageNet testset, CIFAR100, Omniglot, Aircraft [16], Describable235

Textures [3], and Fruits 360 [18].1 All models used the same encoder, hyperparameters, and training236

scheme as that described in Section 4.1.237

1Aircraft is available exclusively for non-commercial research purposes, Describable Textures is available
for research purposes, and Fruits 360 is covered by CC BY-SA 4.0
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ImageNet CIFAR100 Omniglot Aircraft Textures Fruits

MinDist 95.0±0.1 79.4±0.5 86.3±0.6 59.3±0.2 73.8±0.7 95.5±0.3

LCBO 91.8±0.1 73.3±1.2 66.4±1.6 53.8±0.4 64.5±1.6 88.6±2.3

Background (ours) 93.7±0.1 77.1±0.7 76.6±0.6 58.3±0.3 70.1±0.6 92.8±0.4

GROOS (ours) 95.5±0.1 72.1±2.3 75.7±1.1 54.3±0.3 71.1±0.8 92.1±0.5

Centered GROOS (ours) 94.7±0.3 79.8±0.8 82.1±0.6 61.7±0.4 79.9±0.3 96.4±0.1

Table 3: The area under the precision recall curve (AUPR) for a range of few-shot OOS detection
methods which were all trained on a few-shot training split of ImageNet and then evaluated on a
range of test datasets.

Figure 2: Visualizations of the feature space of a ResNet50 encoder (left) trained without OOS
examples, (center) with OOS examples using a generic representation, (right) using a background
class.

We find that in this setting, performance is generally worse for all model types. This is not surprising238

since the models are essentially operating on out-of-distribution data at inference time. Aircraft is239

a particularly challenging dataset for models that have not seen the corresponding training set. A240

comparison of the error bars in Tables 2 and 3 on the one hand and Table 1 on the other illustrates241

that when operating on OOD data there is more variation between training runs. Nonetheless,242

Centered GROOS detection performs better than other methods on 4 out of the 5 OOD datasets,243

with the exception of Omniglot where MinDist does substantially better. On the in-distribution test244

set ImageNet test, GROOS achieves better performance than Centered GROOS, confirming our245

hypothesis that GROOS is better to use when inference data aligns with training data and Centered246

GROOS is better otherwise. Of all the datasets presented to the models in these tests, Omniglot is247

probably the most “unlike” ImageNet. We conjecture that for mildly OOD datasets such as CIFAR100,248

Aircraft, and Fruits, Centered GROOS tends to perform better, while for significantly OOD datasets249

such as Omniglot, the simpler MinDist model might be a better choice.250

4.3 Generic points: feature space geometry and decision boundaries251

In this section we analyze the geometry of the feature space induced by the use of a generic point252

to detect OOS examples (see Figure 2 for a low-dimensional visualization of this). Proofs for all253

propositions can be found in Section A.2.254

Recall that an affine hyperplane in Rd is a translation of a (d−1)-dimensional subspace. Alternatively,255

a non-zero vector v ∈ Rd and constant b ∈ R define an affine hyperplane via the expression256

H := {w ∈ Rd | 〈w, v〉 = b}. Note that any affine hyperplane H decomposes Rd into two open257

half-spaces: H+ := {w ∈ Rd | 〈w, v〉 > b} and H− := {w ∈ Rd | 〈w, v〉 < b}. For any two258

distinct points x1, x2 ∈ Rd, one gets a hyperplane Hx1,x2 defined by normal vector x1 − x2 and259

constant 1
2 (||x1||

2 − ||x2||2). In particular, when γ1 and γ2 are centroids for two classes, then Hγ1,γ2260

is the decision boundary of the associated 2-way ProtoNets model (or alternatively the Voronoi261

partition corresponding to two points).262

Let x be a point in Rd and let γ1, . . . , γk, γoos be a list of prototypes and generic point. Let Sk+1 be263

the symmetric group on (or permutations of) k + 1 elements. There is a trivial bijection between264

Sk+1 and total orderings of γ1, . . . , γk, γoos. In particular, for permutation σ ∈ Sk+1, we associate265
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σ with the order γσ(1) < γσ(2) < · · · < γσ(oos) where we write σ(i) = j to represent the value266

j ∈ {1, . . . , oos} that σ permutes i to (we use index oos and k + 1 interchangeably).267

Proposition 4.1. Let γ1, . . . , γk, γoos ∈ Rd be a finite list of prototypes and generic point. The set of268

hyperplanes corresponding to each pair of γ1, . . . , γk, γoos induce a decomposition of Rd into open269

(possibly empty) subsets (cells) Sσ , where σ ∈ Sk+1 and270

Sσ :=
{
x ∈ Rd | ||x− γσ(1)|| < · · · < ||x− γσ(oos)||

}
,

as well as a measure zero, closed subset B which is the union of all Hγi,γj for i, j ∈ {1, . . . , k, oos}.271

The decomposition described in Proposition 4.1 can be used to describe those regions of Rd that can272

lead to the correct classification of an encoded point in different versions of the ProtoNet problem. As273

we will see, these regions differ substantially between the classic ProtoNets problem and ProtoNets274

with generic point. We call a point x ∈ Rd, i-viable if encoding a class i query point q such that275

hθ(q) = x results in the correct prediction that q belongs to class i, if class i is represented in the276

support, or that q is OOS, if class i is not represented in the support. A point is called viable if it is277

i-viable for some i ∈ {1, . . . , k}. A set of points U is called i-viable if every point in U is i-viable278

and viable if every point in U is viable.279

• Standard ProtoNets: For a point belonging to class i to be predicted correctly, it must lie in a280

cell of the form Sσ with σ(1) = i. Note that outside of measure-zero set B, every point in Rd is281

i-viable for some i ∈ {1, . . . , k} since every cell Sσ consists of points closest to some centroid282

(i.e. σ(1) = j for some j ∈ {1, . . . , k}) and in the setting where OOS examples do not exist, a283

point belonging to class i is always classified correctly if it is closer to centroid γi than it is to any284

other centroid.285

• ProtoNets with generic point: For a point belonging to class i to be predicted correctly both when286

its prototype is present and also when it is not, it must satisfy inequality (1). This means that it287

must lie in a cell of the form Sσ with σ(1) = i and σ(2) = oos. Note that this condition means288

that even outside of B, there are non-viable regions of Rd. For example, if σ(2) 6= oos.289

We illustrate these differences in Figure 3 in the Appendix.290

Proposition 4.2. Let {1, . . . , k} be a set of classes and let γoos ∈ Rd be a generic point.291

1. In the standard ProtoNets problem, the set of i-viable points is always nonempty for each choice292

of distinct prototypes γ1, . . . , γk ∈ Rd and for all i ∈ {1, . . . , k}.293

2. In the ProtoNets with generic point problem, there are choices k and distinct γ1, . . . , γk, γoos ∈ Rd294

for which the i-viable region of Rd is the empty set for some i ∈ {1, . . . , k}. There are also295

choices of distinct γ1, . . . , γk, γoos such that there is a nonempty i-viable region for each i.296

Thus we see that the introduction of a generic points puts additional constraints on how a model can297

arrange prototypes in feature space, with some arrangements being not only non-optimal, but actually298

precluding correct predictions.299

Our final proposition shows that the radial pattern shown in Figure 2 actually represents general300

geometric structure induced by the generic point problem. For fixed γ1, . . . , γk, γoos ∈ Rd we call301

the region of Rd which consists of points that are closer to γoos than to any γ1, . . . , γk the OOS-core302

(note that as a corollary to Proposition 4.2.1 this always exists). We call two sets U, V ⊂ Rd adjacent303

if there is a point p ∈ Rd such that for any ε > 0, the open ball Bε(p) contains points from both U304

and V .305

Proposition 4.3. If γ1, . . . , γk, γoos ∈ Rd are a choice of distinct prototypes/generic point such that306

the set Pi of i-viable points is non-empty for i ∈ {1, . . . , k}, then Pi is adjacent to the OOS core.307

5 Conclusion308

In many situations, the ability to detect OOS examples is a necessary requirement for deployment of309

few-shot learning models. In this paper we showed that in the metric-based setting, GROOS and its310

variant Centered GROOS are two methods that begin to address this challenge. Despite the fact that311

our models, on average, outperformed existing approaches, we believe OOS detection is a challenge312

that deserves more attention within the few-shot community, since effective solutions will enable313

broader adoption of few-shot methods for real-world science and engineering applications.314
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CIFAR100 CUB-200 Omniglot

AUPR AUROC AUPR AUROC AUPR AUROC

MinDist 66.85 67.18 64.51 66.73 95.94 95.90

LCBO 75.15 75.89 68.98 71.96 98.98 99.10

Background (ours) 67.71 65.97 61.26 60.38 98.38 98.29

GROOS (ours) 74.15 74.95 67.27 66.55 98.81 98.77

Centered GROOS (ours) 70.36 71.41 65.34 65.38 98.65 98.62

Table 4: Results for the same set of experiments reported in Table 1 but using a 4-Conv encoder
rather than a ResNet18 encoder.

A Appendix382

A.1 Encoder size383

Given that much of the metric-based few-shot learning literature uses small encoders, in Figure 4 we384

include results for the “standard” few-shot experiments using a 4-Conv encoder (as in [21, 25]) rather385

than the ResNet18 encoder used in Section 4.1. Interestingly, we find that with a smaller encoder the386

LCBO method does significantly better relative to other approaches, indicating that learning decision387

boundaries for OOS detection may be a more effective strategy in either a lower dimensional feature388

space or for less rich encoders. In future work it would be interesting to investigate whether attaching389

a larger MLP helps LCBO scale to larger encoders. Of course, including more fully-connected layers390

quickly becomes expensive which would be a potential downside of this method.391

We also repeated the generalization experiments from Section 4.2 (which also used a ResNet18392

encoder) with a 4-Conv encoder and a ResNet50 encoder. We summarize our results in Figures 5393

and 6. The logic behind our choice to also test larger encoders in this setting stemmed from the394

observation that in tasks that require higher levels of generalization, large encoders can sometimes395

yield better results [8]. We find that larger encoders do tend to slightly improve performance in396

terms of AUROC and AUPR. With the exception of AUPR for the Aircraft dataset where MinDist397

performed slightly better than Centered GROOS when we used a ResNet50 encoder instead of a398

ResNet18 encoder, the top performing model on a dataset did not change based on whether one used399

a larger encoder. It is perhaps notable that the Aircraft dataset is also one of the few examples where400

model performance decreased when using a ResNet50 encoder rather than a ResNet18 encoder.401

Distinct from the pattern we observed in Figure 4, in this setting using a smaller encoder did not402

appear to result in much better performance for LCBO. With the exception of its performance on403

ImageNet itself, which does not require the same level of generalization, LCBO did not out-perform404

other methods on any of the datasets. We suspect that this arises from the fact that learning decision405

boundaries is not an approach that transfers well to significantly different datasets. Similar to the406

results from Section 4.2 we observe that the top models in terms of generalization were Centered407

GROOS and MinDist suggesting that centered generic points and raw distance are better able to408

capture “different-ness” across datasets. We also observe that in the smaller encoder setting, MinDist409

is more competitive with Centered GROOS.410

A.2 Proofs from Section 4.3411

Proof of Proposition 4.1. For any x ∈ Rd, either (1) there are at least two γi, γj for i, j ∈412

{1, . . . , k, oos} such that ||x − γi|| = ||x − γj || or (2) for all γi, γj either ||x − γi|| > ||x − γj ||413

or ||x − γi|| < ||x − γj ||. In the former case, x ∈ B since x belongs to Hγi,γj as this hyperplane414

consists precisely of those x′ such that ||x′ − γi|| = ||x′ − γj ||. In the latter case the set415

D =
{
||x− γi|| | i ∈ {1, . . . , k, oos}

}
consists of distinct real numbers. It is clear that these numbers can be ordered so that they are strictly416

increasing. Denote by σ the permutation from Sk+1 such that417

||x− γσ(1)|| < ||x− γσ(2)|| < · · · < ||x− γσ(oos)||.
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ImageNet CIFAR100 Omniglot Aircraft Textures Fruits

4-Conv encoder

MinDist 71.28 63.36 67.45 54.07 57.29 95.97

LCBO 75.51 60.36 58.68 52.49 58.16 87.35

Background (ours) 61.78 60.78 65.10 52.95 55.75 92.57

GROOS (ours) 75.99 59.22 61.44 53.59 59.44 90.88

Centered GROOS (ours) 61.78 64.80 67.03 54.87 61.77 94.80

ResNet50 encoder

MinDist 97.51 82.33 84.54 58.49 76.46 92.57

LCBO 95.66 79.54 73.93 55.72 74.48 90.72

Background (ours) 95.57 79.11 60.61 53.86 78.48 92.30

GROOS (ours) 97.76 79.17 78.55 53.38 80.60 94.19

Centered GROOS (ours) 96.96 84.20 81.36 59.07 84.17 96.40

Table 5: AUROC results for the same set of experiments reported on in Table 2 but using a 4-Conv
encoder (top) and ResNet50 encoder (bottom) rather than a ResNet18 encoder.

ImageNet CIFAR100 Omniglot Aircraft Textures Fruits

4-Conv encoder

MinDist 70.44 62.67 69.71∗ 53.84∗ 57.27 95.97∗

LCBO 74.50∗ 58.58 57.04 52.20 57.31 87.48

Background (ours) 60.67 59.07 61.99 52.39 55.75 91.66

GROOS (ours) 75.48 58.62 60.55 53.10 59.12 91.66

Centered GROOS (ours) 70.44 63.17∗ 64.04 53.73 59.46∗ 94.73

ResNet50 encoder

MinDist 97.63 81.41 85.62∗ 58.72∗ 78.77 91.66

LCBO 95.28 77.56 71.53 55.17 73.48 91.25

Background (ours) 95.63 79.26 77.26 57.87 77.09 95.08

GROOS (ours) 97.68∗ 77.16 79.53 54.63 76.87 94.51

Centered GROOS (ours) 96.75 83.27∗ 81.19 58.24 82.02∗ 96.48∗

Table 6: AUPR results for the same set of experiments reported on in Table 3 but using a 4-Conv
encoder (top) and ResNet50 encoder (bottom) rather than a ResNet18 encoder.
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Figure 3: Low dimensional illustrations of the feature space decision boundaries of the (left) standard
ProtoNet problem with three prototypes, (right) the ProtoNet problem with generic point. In each
region we label the ordering the closest prototypes/generic point. We box the labels of regions which
are viable.

Then x ∈ Sσ . This shows that the union of B and each set in {Sσ | σ ∈ Sk+1} is equal to Rd. Using418

the distance parametrization of each Sσ based on σ, it is also clear that B is disjoint from each Sσ419

and that furthermore, Sσ ∩ Sτ = ∅ when σ 6= τ .420

The fact that each Sσ is open, and B is closed and measure zero follows from elementary topol-421

ogy/measure theory.422

423

Proof of Proposition 4.2.424

1. If γ1, . . . , γk are distinct from each other, then for any i ∈ {1, . . . , k}, we can choose ε > 0425

sufficiently small such that for all points x ∈ Bε(γi) we have that ||x− γi|| < ||x− γj || for426

each j ∈ {1, . . . , k} with j 6= i. Observe that427

Bε(x) ⊆
⋃

σ∈Sk+1

σ(1)=i

Sσ,

that is, Bε(x) belongs to the i-viable region of Rd. Hence the i-viable region is non-empty.428

2. We give two examples, in the first there exists an element i ∈ {1, . . . , k} such that the429

i-viable region is empty. In the second, for each i ∈ {1, . . . , k}, the i-viable region is not430

empty. In both cases we leave it to the reader to verify the example.431

(a) Consider the case d = 2, k = 2, γoos = (1, 0), γ1 = (0, 0), and γ2 = (−1, 0). It can432

be checked that in this case the 2-viable region consists of those points that are both433

to the left of the line x = (0, 0) and to the right of the line x = ( 12 , 0). This set is of434

course empty.435

(b) Consider the case d = 2, k = 4, γoos = (0, 0), γ1 = (1, 0), γ2 = (0, 1), γ3 = (−1, 0),436

and γ4 = (0,−1). Elementary calculations show that the 1-viable region is nonzero437

and defined by the inequalities y > − 1
2 , y < 1

2 , and x > 1
2 . The 2, 3, and 4-viable438

regions can be obtained from the 1-viable region via symmetry transformations.439

440

13



To prove Proposition 4.3, we need to establish a couple short lemmas:441

Lemma A.1. Let γi and γj be distinct prototypes. If two points x and y satisfy the inequalities442

||x− γi|| < ||x− γj || and ||y − γi|| < ||y − γj ||,

then for any point z on the line segment ` connecting these two points,443

||z − γi|| < ||z − γj ||. (2)

If, instead,444

||x− γi|| = ||x− γj || and ||y − γi|| < ||y − γj ||,
the strict inequality (2) holds at every point on ` \ {x}.445

Proof. To prove the first part of the Lemma, notice that both x and y lie on the same side of the446

hyperplane Hγi,γj . Since a hyperplane splits Rd into two convex half-spaces, the entire segment `447

lies on a single side of this hyperplane and the result follows.448

The last statement is true since, if the segment does not lie entirely in the plane Hγi,γj , it can only449

intersect at a single point, x (note that ` could also lie entirely within Hγi,γj but we know that the450

other end point of `, y, is not in Hγi,γj ). Since x is the endpoint of the segment, the rest lies in one of451

the open half spaces, in this case, that whose points satisfy (2).452

Lemma A.2. Let the γi, γj be as in Lemma A.1, x a point in the i-viable region and γoos be a distinct453

generic representation. Let ` be the line segment between x and γoos and z be the point on ` where it454

intersects Hγoosγi . Then the line segment `′ from x to z is such that for any point w on this segment455

and for all j ∈ {1, . . . , k} with j 6= i,456

||w − γi|| < ||w − γoos|| < ||w − γj ||.

Similarly, if `′′ is the line segment from z to γoos, then all w on `′′ satisfy457

||w − γoos|| < ||w − γj ||

for all j ∈ {1, . . . , k} (including j = i).458

Proof. Notice that γoos and x satisfy the inequalities459

0 = ||γoos − γoos|| < ||γoos − γj || and ||x− γoos|| < ||x− γj ||

for any j ∈ {1, . . . , k} with j 6= i. Applying Lemma A.1, this implies that z, which lies on the line460

segment connecting x an γoos, satisfies461

||z − γoos|| < ||z − γj ||.

Since it lies on Hγoos,γi as well,462

||z − γi|| = ||z − γoos|| < ||z − γj ||. (3)

But since x satisfies463

||x− γi|| < ||x− γoos|| < ||x− γj ||,
two applications of Lemma A.1 yield that for any point w on `′,464

||w − γi|| < ||w − γoos|| < ||w − γj ||.

This proves the first statement.465

Next, returning to (3), we see that since466

0 = ||γoos − γoos|| < ||γoos − γj ||

for any j ∈ {1, . . . , k} (including i = j), then by Lemma A.1, for all w on `′′ we must have that467

||w − γoos|| < ||w − γj ||,

which proves the second statement.468

Using these lemmas, we can prove Proposition 4.3:469
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Proof. Let x be a point in the i-viable region of Rd and z be the point on the segment ` between x470

and γoos that lies on the hyperplane Hγi,γoos . Note that ` must cross this hyperplane since x lies on471

one side of Hγi,γoos , being closer to γi than to γoos, and γoos lies on the other.472

By Lemma A.2, all points w of ` on the same side of Hγi,γoos as x satisfy473

||w − γi|| < ||w − γoos|| < ||w − γj ||,

for all j ∈ {1, . . . , k} with j 6= i. All such points are i-viable. All points on ` on the same side of474

Hγi,γoos as γoos satisfy475

||w − γoos|| < ||w − γj ||
for all j ∈ {1, . . . , k} including j = i. It follows that these points are in the OOS-core. It is clear476

then that for any ε > 0, the ball Bε(z) contains both points from the i-viable region of Rd and the477

OOS-core. This proves the Proposition.478

479
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