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ABSTRACT
Federated learning is a recent development in the machine learning
area that allows a system of devices to train on one or more tasks
without sharing their data to a single location or device. However,
this framework still requires a centralized server to consolidate
individual models into one synchronously or have inefficient or
frail peer-to-peer communication, which are potential bottlenecks
for the use of federated learning. In this paper, we propose a novel
method of asynchronous decentralized federated lifelong learning
(ADFLL) method that inherits the merits of federated learning and
can train on multiple tasks simultaneously without the need for a
central node or synchronous training, or less-than-desirable peer-
to-peer communication. Thus, overcoming the potential drawbacks
of conventional federated learning. We demonstrate excellent per-
formance on the brain tumor segmentation (BRATS) dataset for
localizing the left ventricle on multiple image sequences and im-
age orientation. Our framework allows agents to achieve the best
performance with a mean distance error of 7.81, better than the
conventional central aggregation agent’s mean distance error of
11.78, and significantly (p=0.01) better than a conventional lifelong
reinforcement learning (LL) agent with a distance error of 15.17
after eight rounds of training. In addition, all ADFLL agents have
better performance than a conventional reinforcement learning
(RL) agent with no LL implementation. In conclusion, we developed
an ADFLL framework with excellent performance and speed-up
compared to conventional LL agents.
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1 INTRODUCTION
Medical imaging,MRI (Magnetic Resonance Imaging), PET (Positron
Emission Tomography), CT (Computerized Tomography), X-ray,
and Ultrasound, play a critical role in the diagnosis, prognosis, and
preventative care of patients. The use of machine learning meth-
ods in medical imaging, such as classification, segmentation, noise
reduction, and landmark localization, has been used in different
completing complicated environments and settings [4, 8, 13, 14, 20].
However, these methods are usually done on single tasks, without
the ability to generalize to other tasks. They often require a full
dataset on a device for training, which may cause privacy concerns
about patient data and computational constraints for the device
specifications [24].

To address these challenges, Federated Learning (FL) has emerged
as a promising approach that enables multiple agents to collabo-
ratively train a model without sharing their data [1]. A federated
learning system aims to protect data privacy and reduce computa-
tional costs at the local agent level by distributing the computation
to multiple agents to train the model on their local data and sharing
only the model updates with a central server. Federated learning
implementations have shown promising results in various medical
applications [6, 18, 23]. However, federated learning frameworks
often rely on synchronized learning schedules, meaning all partic-
ipating agents start training at the same time. They also require
agents to have the same architecture in order for the central server
to aggregate the model weights. Data and agent heterogeneity in-
fluence the training speed which greatly reduces the efficiency and
challenges the robustness of these approaches [16]. Additionally,
Federated learning approaches cannot perform Lifelong Learning
(LL), which is an important aspect of machine learning applied to
medical imaging. Works have shown the ability to improve accu-
racy, have excellent performance on multiple tasks, and generalize
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[7]. With medical imaging tasks involving constant and rapid al-
tering in imaging environments, such as new imaging sequences
or abnormal patient conditions, a federated learning framework
that is trained in an older environment may not perform well when
evaluated in an unseen environment. One way to address this is-
sue is to train the model again on the new dataset. However, new
environment data can potentially be scarce, and this approach may
lead to catastrophic forgetting, where the model loses its ability
to operate effectively in the older environment. Federated lifelong
learning implementations such as Huang et. al. exist [5] in the
medical field, but it is limited by their ring-type structure, which
means the communication delay can potentially be very high due
to irresponsive or failed agents that bottleneck the entire system.

To address all the limitations mentioned above, we propose an
asynchronous decentralized federated lifelong learning (ADFLL)
approach to landmark localization in medical imaging. This frame-
work leverages Federated learning’s ability to protect data privacy
and reduce computational constraints, while also permitting data
and agent heterogeneity to be in the system. This framework does
not require a central node, and can together lifelong learn multiple
tasks without catastrophic forgetting. We provide a flexible, effi-
cient, and robust framework that can be deployed in real-world ap-
plications. This paper presents experimental results demonstrating
the efficacy of our framework on the 2017 brain tumor segmenta-
tion (BraTS) dataset consisting of 8 different image environments
and imaging sequences, highlighting its potential to revolution-
ize landmark localization in the medical imaging field while also
maintaining data privacy and reducing computational costs.

Figure 1: Illustration of the 8 task-environment pairs. The
red boxes indicate the true landmark location of the top left
ventricle. The yellow box is a predicted location from ADFLL
agents during their training progressions

2 EXPERIMENT AND RESULT
2.1 Dataset and Experimental Setup
2.1.1 Clinical Data. For evaluation of our ADFLL framework, we
utilized the 2017 brain tumor segmentation (BraTS) dataset [10].
This dataset consisted of 285 patients and included pre-contrast T1-
weight, post-contrast T1-weighted, T2-weighted, and Fluid Attenu-
ated Inversion Recovery (FLAIR) sequences in the axial orientation.
From this dataset, we randomly sampled a subset of 100 patients to
use as our experiment dataset. 60 patients have high-grade glioma

Figure 2: Illustration of the 4-agent decentralized federated
lifelong learning framework of our experiment.

(HGG) and 40 patients have low-grade glioma (LGG). We split the
100 patients into two parts 80:20, 80 were used for training and
20 for evaluation, with the training set consisting of 48 HGG and
32 LGG tumors, and the test set consisting of 12 HGG and 8 LGG
tumors. We reconstructed the dataset to include all three imaging
orientations (coronal, sagittal, and axial). As a result, we obtained
a total of twenty-four imaging environments with combinations
of two pathologies, 4 imaging sequences, and 3 image orientations.
The top left ventricle was chosen as the task for this experiment,
and 8 task-environment pairs were sampled as shown in Fig. 1.

2.1.2 Functionality Experimental Setup. Every agent implements
a multi-task lifelong reinforcement learning algorithm for localiz-
ing landmarks across the human anatomy. The federated lifelong
learning component is implemented by integrating experience re-
play buffers from previous experiences shared by agents across the
network for training. There are four agents in this experimental
system: we implemented two on an NVIDIA DGX-1 each with an
NVIDIA V100 and two on Google Cloud each with an NVIDIA T4.
The topology of the system is shown in Fig. 2. The two agents A1,
and A2 on Google Cloud have their individual hubs H1 and H2. The
two agents A3, and A4 on the DGX-1 are connected to the third hub
H3 with a total of three hubs for 4 agents. Since the GPUs on DGX-1
are much more powerful than the GPUs on Google Cloud, A3 and
A4 will run significantly faster than A1 and A2. We also imple-
mented asynchronous learning, meaning when the agent finishes
training on a task, as long as there are new ERBs that they have
not learned from, they will start a new round and learn from those
ERBs. Each agent will also get a different image training dataset
each round. This process is continued until all four agents complete
three rounds of training, guaranteeing all 8 sampled tasks for this
experiment will be learned by the system.

All-knowing agent and partially-knowing agent: To better
compare our framework with non-lifelong learning ones, we ran
two different deep reinforcement learning agents. Agent X is the
all-knowing agent, with all 8 datasets available to it at the start
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Table 1: Comparison of distance error between our agents (Agent 1-4) after round 3, all-knowing deep reinforcement learning
agent (Agent X) after round 1, partially-knowing deep reinforcement learning agent (Agent Y) after round 1, and traditional
lifelong deep reinforcement learning agent (Agent M) after round 8.

of training for the functionality experiment and 24 datasets for
the ablation study. It trained on the available data for one round.
Agent Y is the partially-knowing agent, which only has access to
one dataset and can therefore only train for one round.

Traditional lifelong deep reinforcement learning agent: To
better compare our framework with the traditional lifelong learn-
ing framework, we ran an Agent M that has access to the dataset
sequentially and is therefore trained for eight rounds to account
for learning eight different environments for the functionality ex-
periment and two rounds for the ablation study.

Experimental Metric: The performance metric was set as the
terminal Euclidean distance between the agent’s prediction and the
target landmark. We performed paired t-tests to compare the perfor-
mance of the decentralized federated lifelong learning framework
with the traditional lifelong learning framework and all-knowing
deep reinforcement learning agent and partial-knowing deep rein-
forcement learning agent. The p-value for statistical significance
was set to 𝑝 ≤ 0.05.

2.1.3 Ablation Study. We conducted two simulation experiments
to evaluate the scalability, flexibility and robustness of our frame-
work.We initialized the same type of the agents in both experiments
as in the functionality experiment. For both experiments, we eval-
uated the average performance of all the agents for the task of
localizing the top left ventricle across all 24 imaging environments.
Additionally, since it is prohibitively expensive to experiment on 24
different machines, these systems were simulated on the NVIDIA
DGX-1, with a synchronous training protocol.

Addition of agents experiment: We initialized a system with
four agents, as previously described in the functionality experiment.
We subsequently increased the number of agents in the system from

4 to 16 agents over the progression of 4 rounds (4,8,12,16). We fur-
ther simulated a communication dropout of 75% to account for
network communication issues in the real world leading informa-
tion loss while transmitting ERBs across agents. The goal of this
experiment was to demonstrate how newer agents joining the sys-
tem at different points in time can take advantage of the available
within the system to learn the collective knowledge available in
the system within just one round.

Deletion of agents experiment: In the deletion experiment,
we gradually decreased The number of agents in the system from
24 to 1 agent over the progression of 5 rounds (24,12,6,3,1). The
communication for this experiment was also simulated with a 75%
dropout. The goal of this experiment was to demonstrate how the
proposed ADFLL system preserves the collective knowledge in a
lifelong learning manner across all the tasks even as the agents
contributing the knowledge leave the system.

2.2 Results
We conducted a functionality experiment based on 8 sub-task-
environment pairs: Axial HGG t1ce, Sagittal HGG t1ce, Coronal
HGG t1ce, Axial HGG flair, Sagittal LGG flair, Coronal LGG flair,
Coronal LGG t2, Sagittal LGG t1. We sampled one image from each
task to test the performance of our model and baseline models.
Each round the four federated lifelong learning will receive a new
task. They will begin the next round when there is also ERB to
train from. Since the agents’ training speeds are very different, A1
and A2 will finish their tasks slower, allowing them to learn from
more ERBs at once. As shown in Table 1, after three rounds of
training, A2 was able to achieve a mean distance error of 7.81 on
all 8 tasks, compared to the all-knowing agent’s 11.78 (p=0.22), but
significantly lower compared to partially-knowing agent’s 54.58
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(p<0.001), and the traditional lifelong learning agent’s 15.17 (p=0.01)
after eight rounds of training. Since this is a real-world experiment,
other agents trained faster than A2, meaning that they did not have
all the ERBs available to them when they started their last round
of training, resulting in their performances being worse than A2.
The possible reasons for Agent 1 to have lower performance than
Agent X and Agent M can be because it did not have all ERBs or the
training was stuck at a local minimum. This can be easily solved
by sharing the model parameters of the latest agent. Note that the
all-knowing agent and the partially-knowing agent only train for 1
round for this experiment because they have no lifelong learning
capability.

Compared to the All-knowing agent shown in 3, our framework
is able to achieve an excellent performance boost. Compared to the
traditional lifelong learning agent, our framework is able to achieve
a significant performance boost and an outstanding speedup.

In our two ablation studies, our framework showed scalability of
up to 24 agents, robustness against network dropout, and flexibility
in system topology. As shown in Figure 4, we see that the average
Euclidean distance error across all agents decreases as more agents
are added to the system, with an average Euclidean distance error of
16.89 at the end of 4 rounds. As shown in Figure 5, we also see that
the average Euclidean distance error across all agents decreases,
while half of the agents are deleted every round, resulting in an
average Euclidean distance error of 8.55 after 5 rounds. This shows
that the knowledge agents learned, captured in ERBs are not lost
when agents are removed from the system. And when agents are
being added, the new agents can catch up to existing agents in
one round. Moreover, the 75% dropout rate that is applied to every
round of both experiments shows the robustness of our framework
against network failures, a major bottleneck for federated learning
frameworks.

3 CONCLUSION
Previous works have explored the application of federated learning
to the medical field [12, 19, 22]. They have shown decentralized
federated learning system setups, each demonstrating good per-
formance in their experiment tasks. But because of their system
topology implementation, one node failure can potentially collapse
the entire system. Moreover, the learning tasks examined were lim-
ited, binary classifications or MNIST dataset classification, resulting
in limited potential applications. Additionally, their implementa-
tion offers a synchronous training procedure, which means in a
real application scenario, users of their framework will have to
coordinate the training process.

Asynchronous federated learning has also been explored in other
areas [3]. They offer the ability to deal with nodes with different
computational power but lack the decentralization that allows the
system to be more flexible.

Asynchronous decentralized federated learning has also been
explored [5, 9]. However, they are still limited in their system im-
plementation. The cost of removing a central node is a quadratic
complexity communication scheme in that every node communi-
cates with every node.

We have demonstrated a privacy-aware, asynchronous decen-
tralized federated learning system with robust and efficient sys-
tem topology. We have demonstrated excellent performance on
landmark localization tasks on the BraTS image dataset. Our frame-
work performs better than all-knowing deep reinforcement learning
agents and traditional lifelong learning agents. Moreover, in our
ablation study, our framework demonstrated excellent scalability,
flexibility, and robustness. In the future, we will optimize our ap-
proach, expand the system further, and increase computational
efficiency.
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A RESEARCH METHOD
A.1 Deep Reinforcement Learning
We created a deep reinforcement learning framework that utilizes
the deep Q-network (DQN) algorithm, which is depicted in Figure
6. The 3D DQN model we used in this paper was adapted from
existing works [2, 11, 15, 21]. The environment was represented
by a 3D imaging volume with x, y, and z dimensions. The agent
was represented by a 3-dimensional bounding box with six possible
actions: moving in the positive or negative in the x, y, or z axis. The
state was defined by the current location (or a chain of locations)
of the agent, each represented by a 3-dimensional bounding box.
The reward was calculated by the change in distance to the target
landmark location before and after the agent takes an action. The
agent’s exploration within the environment generated state-action-
reward-resulting state [𝑠, 𝑎, 𝑟, 𝑠′] tuples, which were recorded in
the experience replay buffer (ERB) over multiple episodes. The
information contained in the ERBs are non-sensitive information,
as the action and reward are numbers regarding the DRL model,
and the state and resulting states are small fractions of the total 3D
image, roughly 0.3%.

A.2 Lifelong Learning
We implemented lifelong learning using selective experience replay
[17]. The goal of selective experience replay is to avoid catastrophic
forgetting by focusing on selected experiences from previous tasks.
Additionally, this technique is agnostic to the model being used
and enables the sharing of experiences across different models. To
achieve lifelong learning, we utilized a selective experience replay
buffer that collects a sequence of experience samples throughout
the model’s training process. In order to learn a generalized repre-
sentation of both current and past tasks, the model selects a batch
of experiences from both the ERB of its current task and from the
replay buffers of previous tasks during training.

A.3 Asynchronous Decentralized Federated
Lifelong Learning

We developed the Asynchronous Decentralized Federated lifelong
Learning (ADFLL) by constructing a network of lifelong deep re-
inforcement learning agents. Each agent shares their database of
personal experiences with each other to facilitate learning from
each other experiences. More specifically, once an agent finishes
training with a dataset and an ERB, the resulting experience from
the training is shared with the network. Furthermore, we modi-
fied the training setup for each agent to sample experiences from
the current dataset ERB, the agent’s personal experiences and the
incoming experiences from other agents, as shown in Fig. 6. As a
result, every agent in the network can learn from each other’s expe-
riences, thereby integrating federated lifelong learning capability.

In a naive setup, every agent would communicate their experi-
ences with every other agent in the network. However, such an
all-to-all communication setup is highly inefficient and not scalable
as it would require a large amount of communication bandwidth. To
address this issue, we implemented a homogeneous distributed data-
base system as illustrated in Fig. 6. As shown in Fig. 6, our network
consists of a predefined set of hub nodes that act as communication
hubs for spatially adjacent nodes in the network. Subsequently,
every agent in the network exclusively communicates with their
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Figure 7: Snapshot of the shared database maintained by the
hub nodes

nearest hub node at the end of each personal training round. The ex-
perience sharing between an agent and a hub node is bidirectional.
Finally, every hub node maintains a shared experience database
on the network as shown in Fig. 7. The hub nodes periodically
communicate with each other to synchronize their databases. The
agents in the system are not required to have standardized training

speed or start training at the same time. The hub will regulate and
preserve the experiences in the system and agents in the system can
train on different tasks. An example of this system is demonstrated
in Fig. 6.

The advantage of our system setup is that it is robust against
node or hub failures. When a node fails, the only loss is the training
information from that node, and when a hub fails, the loss is the
ERBs it contains but other hubs do not. Moreover, the communica-
tion complexity is linear with respect to the number of nodes, each
node only needs to communicate with its respective hub, and hubs
sync periodically. Compared to other federated learning systems,
centralized or not, they either are prone to system-wide failure
caused by a node failure, or sacrifice communication complexity to
prevent system-wide failures.
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