
Under review as a conference paper at ICLR 2024

DATA GEOMETRY DEPENDENT BOUNDS ON NETWORK
WIDTHS IN DEEP RELU NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

While existing theoretical and empirical findings in neural networks indicate that
complex datasets often necessitate expansive network architectures for optimal
classification, there remains a gap in precisely determining the specific network
structure required for complete dataset classification. This paper addresses this
gap by establishing bounds on ReLU network widths based on the geometric
characteristics of the dataset. Specifically, we propose neural network architectures
suitable for scenarios where the dataset can be effectively separated by a collection
of polytopes. We also provide both theoretical and empirical evidences that gradient
descent converges to the proposed network configurations. Lastly, we propose an
algorithm that finds such a polytope cover for the given dataset, which empirically
demonstrates that every class of MNIST, Fashion-MNIST, and CIFAR10 can be
distinguished by at most three polytopes.

1 INTRODUCTION

To understand the high performance of deep neural networks (DNNs), there have been numerous
studies investigating their capacity, generalization, memorization, and universal approximation
property (UAP). Since Cybenko (1989) first proved UAP of two-layer neural network on a compact
set, UAP of DNNs has been extensively investigated in various settings. The minimal depths and
widths of deep ReLU networks to have UAP have been studied (Hornik, 1991; Park et al., 2020).
Furthermore, the number of parameters required to memorize given arbitrary points was also studied
(Yun et al., 2019; Bubeck et al., 2020). Investigating the complexity of neural networks in terms of
the number of linear partitions (Serra et al., 2018; Hanin & Rolnick, 2019) or the bound on the Betti
numbers (Bianchini & Scarselli, 2014) is another way of studying the representation power of the
neural networks. These fundamental results on neural networks help us to understand the relationship
between approximation power and neural network architectures.

On the other hand, the effect of training dataset characteristics on the training network architectures
in terms of UAP has not been explicitly solved. For instance, for the swiss roll dataset given in
Figure 1(a), what is the required depth and width to perfectly classify this dataset? While this is a

(a) (b) (c)

Figure 1: What type of neural network architecture is capable of effectively classifying the Swiss
roll dataset depicted in (a)? By establishing a set of covering polytopes to enclose one class, as
illustrated in (b), our result demonstrates that a three-layer ReLU network with the architecture
2

σ→ 24
σ→ 4 → 1 can successfully achieve this classification task, as exemplified in (c).

1

Under review as a conference paper at ICLR 2024

practical question for training neural networks, existing theoretical results on UAP (Hornik, 1991;
Park et al., 2020) only provide trivial lower bounds (depth 2 and width 3, in this case). While
empirical observations suggest that increasing both depth and width can eventually lead to success,
there is no theoretical insight available to predict this outcome.

In this paper, we address this problem with the geometric perspective on deep ReLU networks in terms
of the convex polytope structure. This was inspired from many recent geometric results on DNNs
(Black et al., 2022; Grigsby & Lindsey, 2022; Berzins, 2023; Huchette et al., 2023). Specifically,
we provide lower and upper bounds of network depth and widths in terms of its polytope cover to
completely classify the given data class. For example, our result in Theorem 3.4 clarifies that the
swiss roll dataset in Figure 1 can be classified by a three-layer ReLU network with 28 neurons.

Theoretically, our goal is to delve into the following fundamental approximation problem: for a given
topological space X representing the dataset and ε > 0, what is an upper bound on the widths of a
neural network N such that N (x) = 1 for x ∈ X , and it vanishes outside the ε neighborhood of X?
To answer this fundamental question, we explicitly construct a neural network based on a polytope
cover of the given data manifold X , which relies on the geometric characteristics.

Our contributions can be summarized as follows.

• For a convex polytope X ⊂ Rd, we develop a three-layer ReLU network that can approxi-
mate the indicator function of X under a given ε error. We provide upper and lower bounds
of width in terms of the number of faces of the convex polytope (Proposition 3.2). We
propose the concept of polytope-basis cover (Definition 3.3) and we refine our result for a
four-layer ReLU network when X has a polytope-basis cover (Theorem 3.4).

• Applying our results, we derive upper bounds of network widths when X is a simplicial
complex, or can be covered by a difference of polytopes-shaped holes (Theorem 3.5 and
3.6). Our terms depend on the dimension d, and the number of facets, or the Betti numbers
of X . This result describe how the bounds vary according to geometric complexity of X .

• For the cross-entropy and the squared loss, under specific assumptions on the dataset and
initialization conditions, we prove the existence of a discrete path that strictly decreases
to the zero loss (Theorem 4.3). This suggests that our proposed neural networks can be
achieved by gradient descent method, which is also verified by experiments.

• In a practical application of our theoretical findings, we propose a method to investigate
the geometric characteristics of the given dataset by training a two-layer ReLU network
(Proposition 3.7). The empirical results show that every class in MNIST, Fashion-MNIST,
and CIFAR10 datasets can be separated by at most three convex polytopes, which reveals
simple geometric characteristics of the real datasets (Table 1 in Appendix E).

2 RELATED WORK

Geometrical approach for deep ReLU networks. Various geometric approaches have been
employed to investigate the approximation capabilities of deep ReLU networks. For instance, Hanin
& Rolnick (2019) introduced the concept of bent hyperplanes in the input space, measuring its
complexity both theoretically and empirically. This approach has found applications in diverse
research areas, including the analysis of decision regions (Beise et al., 2021; Grigsby & Lindsey,
2022; Black et al., 2022) and the characterization of linear regions within ReLU networks (Rolnick &
Kording, 2020).

In recent years, there has been a growing interest in investigating polytope structures induced by
deep ReLU networks (Fawzi et al., 2018; Xu et al., 2021; Vincent & Schwager, 2022; Black et al.,
2022; Haase et al., 2023; Liu et al., 2023; Fan et al., 2023; Huchette et al., 2023; Vallin et al.,
2023). Fawzi et al. (2018) focused on analyzing the geometrical features of the decision boundary of
trained networks. Similarly, Masden (2022) introduced algorithms capable of extracting the polytope
structure inherent in networks and deriving topological properties of the decision boundary. Carlsson
(2019) and Vallin et al. (2023) considered the pre-image of ReLU networks, characterizing the
geometric shapes of the decision boundary to gain an understanding of the polytope partitions of
deep ReLU networks.

2

Under review as a conference paper at ICLR 2024

However, there has been limited exploration into how neural networks can be explicitly constructed to
classify a given dataset, as depicted in Figure 1. In this work, we address the problem of approximating
the indicator function defined on polytopes in terms of network architecture. Indeed, approximating
the indicator function is generally more difficult than just designing a classifier. This is because
if a neural network can effectively approximate the indicator function on a given dataset class, it
inherently possesses the capability to classify X from other classes, but it does not hold in the reverse
direction. We also mention that approximating the indicator function is a sufficient condition to
achieve UAP (Proposition C.1, Theorem C.5). Therefore, we employ a similar argument on arranging
bent hyperplanes to derive bounds on network widths dependent on the geometric features of the given
dataset to approximate the indicator function. This approach can be viewed as a converse method for
studying the approximation ability of neural networks, a topic that has not been extensively explored.

Dataset geometry and neural networks. Several studies have explored the relationship between
the geometric features of datasets and neural network training, often assuming low-dimensional
properties of the data manifold (Buchanan et al., 2020; Wang et al., 2021; Chen et al., 2022; Tiwari
& Konidaris, 2022). For example, Buchanan et al. (2020) and Wang et al. (2021) addressed the
task of distinguishing between two curves, investigating the convergence speed and generalization
concerning the geometric features of the dataset. Similarly, for low-dimensional data manifolds,
Tiwari & Konidaris (2022) examined the effects of data geometry on the complexity of trained
neural networks by measuring the distance to the manifold. In a similar vein, Dirksen et al. (2022)
considered the separation problem with random ReLU networks, and provided a lower bound of
widths in terms of geometric property of datasets. It is worth noting that they proposed a concept
of mutual covering of data points, akin to our polytope covering on each class. Additionally, there
are many empirical studies that also support the implicit relationship between network architecture
and geometric complexity or topological structure of the data manifold (Fawzi et al., 2018; Kim
et al., 2020; Cohen et al., 2020; Birdal et al., 2021; Barannikov et al., 2021a;b; Magai & Ayzenberg,
2022; Tiwari & Konidaris, 2022). However, still there exists a gap in the literature when it comes to
explicitly constructing a neural network that precisely fits the given data manifold. This paper aims
to bridge this gap by exploring the explicit relationship between data geometry and neural network
architecture, focusing on the polytope structure induced by ReLU.

3 DATA-GEOMETRY AND NEURAL NETWORK ARCHITECTURE

3.1 PRELIMINARIES

Notation. Throughout the paper, we denote scalars by lowercase letters and vectors by boldface
lowercase letters. For a positive integer m, [m] represents the set {1, 2, · · · ,m}. The ReLU
activation function is denoted by σ(x) := ReLU(x) = max{0, x}, and it is applied to a vector
coordinate-wisely. The sigmoid activation function is denoted as SIG(x) = 1

1+e−x . The max pooling
operation is represented as MAX : Rd → R, which returns the maximum component of the input
vector. The ε neighborhood of a topological space X ⊂ Rd is defined by Bε(X) := {x ∈ Rd :
miny∈X ∥x− y∥2 < ε}. For a topological space X , the indicator function over X is denoted by

1{X}(x) :=

{
1, if x ∈ X ,

0, otherwise.

Network architectures. To denote the neural network architectures (depth and hidden layer widths),
we use the following notation. A k-layer neural network N : Rd → R with hidden layer widths
d1, d2, · · · , dk−1 and activation functions ACT1,ACT2, · · · ,ACTk is represented by d

ACT1→ d1
ACT2→

d2
ACT3→ · · · ACTk−1→ dk−1

ACTk→ 1. When the activation function is the identity, we add nothing on the
arrow. In this paper, the terminology architecture refers the structure of the neural network, which
means the depth and the width of hidden layers. For example, d σ→ l → 1 denotes a two-layer ReLU
network with l neurons, presented by

N (x) = v0 +

l∑
k=1

vkσ(w
⊤
k x+ bk). (1)

3

Under review as a conference paper at ICLR 2024

(a) (b) (c) (d)

Figure 2: The fundamental idea of our work. (a) A convex polytope enclosed by l hyperplanes
can be decomposed by l small pyramids. (b) A is a topological space X ⊂ Rd is given. (c) A
collection of polytopes C = {P1, P2, P3, Q1, Q2, Q3, Q4} is a polytope-basis cover of X . (d) A
feasible architecture on X with margin ε, described by the polytope-basis cover presented in (c). The
constructive proof in Theorem 3.4 further exhibits the role of neurons in hidden layers: hyperplanes,
convex polytopes, and union of polytopes.

The architecture of networks is often referred to as A. We further introduce a novel terminology on
network architectures: a feasible architecture of networks on a topological space X .
Definition 3.1. Let X ⊂ Rd be a topological space and ε > 0 be a given margin. A neural network
architecture A is called a feasible architecture on X with margin ε if there exists a neural network
with the architecture A such that N (Rd) ⊂ [0, 1] and

N (x) = 1 if x ∈ X ,

N (x) = 0 if x ̸∈ Bε(X).

If this property can hold on every ε > 0, then we simply say that A is a feasible architecture on X .

In other words, it refers to the architecture of neural networks that can approximates the indicator
function on the given manifold X , and be vanished for inputs farther than ε from X 1. The objective of
this paper is to investigate the relationship between feasible architectures and geometrical complexity
of the dataset.

3.2 MAIN THEORETICAL FINDINGS

Let X ⊂ Rd be a convex polytope with l faces. Our first goal is to derive the upper and lower bounds
of widths of a ReLU neural network to be a feasible architecture on X . Applying piecewise linearity
of ReLU networks and volume formula of convex polytopes, the following proposition provides
upper and lower bounds of network widths to be a feasible architecture on X .

Proposition 3.2. Let X ⊂ Rd be a convex polytope enclosed by l hyperplanes. Then d
σ→ l

σ→ 1 is a
feasible architecture on X with minimal depth. Conversely, if d σ→ d1

σ→ d2
σ→ · · · σ→ dk

σ→ 1 is a
feasible architecture on X , then

d1 ·
k∏

j=2

(2dj + 1) ≥


⌈
l
2

⌉
+ (d− 2), if l ≥ 2d+ 1,

2d− 1, if l = 2d− 1, 2d,

d+ 1, if l < 2d− 1.

This lower bound is optimal when k = 1 and d = 2.

Proof sketch. We briefly introduce the main idea here. Let C be the enclosing convex polytope,
where A1, · · · , Al are enclosing hyperplanes. Let x be a point in C. Since C is convex, it can be
decomposed to l pyramids whose common apex is x (see Figure 2(a)). Then, the volume (in Lebesgue
sense) of X is equal with the sum of l pyramids. Mathematically, it becomes

Vold(C) =
1

d

l∑
i=1

Vold−1(Ai)σ(w
⊤
i x+ bi)

1Furthermore, it is worth noting that the result concerning the approximation of the indicator function directly
leads to the UAP result, as outlined in Theorem C.5).

4

Under review as a conference paper at ICLR 2024

where wi is a unit vector of the hyperplane Ai, and Vold denotes the (d − 1)-dimensional
volume. From this equation, we define a two-layer ReLU network N (x) := Vold(C) −
1
d

∑l
i=1 Vold−1(Ai)σ(w

⊤
i x + bi). Then N (x) has a constant output in C, and we can prove

that d σ→ l
σ→ 1 is a feasible architecture on the polytope, by adjusting some coefficients of N . The

detail proof can be found in Appendix B.1.

The proof of Proposition 3.2 suggests how ReLU networks can approximate the indicator function on
a convex polytope. Building upon this proposition, we extend our findings to arbitrary topological
spaces, specifically those that can be tightly covered by a collection of polytopes. To facilitate this
extension, we introduce an additional terminology.
Definition 3.3. For a given topological space X ⊂ Rd and ε > 0, a finite collection of polytopes
C := {P1, · · · , PnP

, Q1, · · · , QnQ
} is called a polytope-basis cover of X with margin ε if the set

difference D :=
⋃

i∈[nP] Pi −
⋃

j∈[nQ] Qj satisfies X ⊂ D ⊂ Bε(X).

A polytope-basis cover of X is an approximation of manifold X within the margin ε, consisting of
convex polytopes, using set operations union and difference. Figure 2(d) shows one example of a
polytope-basis cover of X given in Figure 2(c). Then, we can provide a feasible architecture on X in
terms of its polytope-basis cover, using the upper bound proposed in Proposition 3.2.
Theorem 3.4. For a given topological space X ⊂ Rd and ε > 0, let C =
{P1, · · · , PnP

, Q1, · · · , QnQ
} be a polytope-basis cover of X with margin ε. Let l denote the

total number of faces of the convex polytopes in C. Then, d σ→ l
σ→ (nP +nQ)

σ→ 2
σ→ 1 is a feasible

architecture on X with margin ε.

The proof can be found in Section B.2 in Appendix. One of the important contributions of Theorem 3.4
is that its construction exhibits the exact role of each neuron in the hidden layers. See a polytope-basis
cover represented in Figure 2(c). Each neuron in the first hidden layer represents a hyperplane in
the input space Rd, where each neuron in the second hidden layer represents a convex polytope (Pi

or Qj) in C that is formed by connected neurons in the first layer. Similarly, two neurons in the
third hidden layer represent two groups of polytopes that constitutes the polytope-basis cover. This
geometric insight offers an interpretation for the concept of high-level polytopes introduced by Xu
et al. (2021).

On the other hand, a simplicial m-complex is a type of simplicial complex where the highest
dimension of any simplex equals m. For a given simplicial complex K, a facet of K is a maximal
simplex which does not serve as a face of any larger simplex. Here, the Betti number is a key metric
used in TDA to denote the number of k-dimensional ‘holes’ in a data distribution, which are frequently
employed to study the topological characteristics of topological spaces. With these definitions in
mind, in the following Theorem 3.5, we first derive a feasible architecture on a simplicial complex
X . Specifically, Theorem 3.5 provides a general network architecture depends on the geometric
structure of the dataset X , especially, on a polytope-basis cover of it. In essence, if there exists
prior information on the dataset geometry, this theorem establishes an upper bound on the necessary
width and depth of feasible architectures. This result can be further tailored for datasets with specific
structures, such as a simplicial complex.
Theorem 3.5. Let X ⊂ Rd be a simplicial m-complex consists of k facets, and let kj be the number
of j-dimensional facets of X . Then, d σ→ d1

σ→ k
MAX→ 1 is a feasible architecture on X , where d1 is

bounded by

d1 ≤ min

k(d+ 1)−(d− 1)

⌊
d−1
2 ⌋∑

j=0

kj
2

, (d+ 1)

∑
j≤ d

2

(
kj

j + 2

d− j
+

j + 2

j + 1

)
+
∑
j> d

2

kj


. (2)

The proof of this theorem can be found in Section B.3. Theorem 3.5 reveals that the width d1 is
bounded by in terms of the dimension m and the number of facets k of the provided simplicial
complex. Looking at this from a topological perspective, it is generally intuitive that a smaller number
of facets suggests a simpler structure of the simplicial complex. This notion is mathematically
expressed in (2), which suggests that when m is fixed, the first maximum value in (2) results in
d1 ≲ k

2 (d+3), which magnifies as k increases. Similarly, when m < d
2 and k is fixed, the summation

5

Under review as a conference paper at ICLR 2024

in the second maximum value in (2) reduces to d1 ≲ (d+1)
(
km+2
d−m + 2

)
, which rapidly diminishes

as m decreases. This analysis demonstrates that a smaller dimension m demands smaller widths,
which aligns with the intuition that a low-dimensional manifold could be approximated with fewer
neurons.

The result in Theorem 3.4 can be also leveraged to ascertain a neural network architecture with width
bounds defined in terms of the Betti numbers. Recall that the theorem offers an upper bound on
widths when X can be depicted as a difference between groups of convex sets. Expanding on this,
when X contains ‘convex-shaped holes,’ we can derive a bound of network architecture in relation to
its Betti numbers. This concept is further explained in the following theorem.
Theorem 3.6. Let X be a topological space obtained by removing some disjoint prism-shaped convex
polytopes from a convex polytope. Let l be the maximum number of faces of these polytopes. Let βk

be the k-th Betti number of X . Then,

d
σ→

(
l + 2(β0 − 1) +

d∑
k=1

(l − 2(d− k − 1))βk

)
σ→

(
d∑

k=0

βk

)
σ→ 2

σ→ 1 (3)

is a feasible architecture on X . Conversely, for any such X , suppose d σ→ d1
σ→ d2

σ→ · · · σ→ dk
f→ 1

is a feasible architecture on X where the last activation function f is either σ or SIG. Then, the
network widths should satisfy

k∑
i=1

k∏
j=i

dj ≥ 2

d∑
k=0

βk − 2. (4)

The proof is written in Appendix B.4. Theorem 3.6 introduces upper and lower bounds on network
widths in terms of the Betti numbers of X , connecting the topological characteristics of a dataset with
upper bounds on network widths. We also show in Proposition C.4 that topological property alone
cannot determine the feasible architecture , which demonstrates the significance of Theorem 3.6.
Note that the result in Proposition C.4 also implies that the geometrical assumptions in the theorem is
indispensable.

Interestingly, the sum of Betti numbers
∑d

k=0 βk in (3), which appears in the third layer, is often
called the topological complexity of X . This quantity is recognized as a measure of the complexity
of a given topological space (Bianchini & Scarselli, 2014; Naitzat et al., 2020). This value has
connections with other fields: for example, it has some lower and upper bounds from Morse theory
(Milnor et al., 1963) and Gromov’s Betti number Theorem (Gromov, 1981). On the other hand,
the lower bound on widths shows that the sum of product of widths should be greater than the sum
of Betti numbers. It also verifies that the contribution of the width in deeper layers holds greater
significance compared to previous layers. This is the first result of completely characterizing neural
network architecture having UAP in terms of topological dataset characteristics.

Lastly, we also point out that our findings in this section can be easily extended to other neural
network architectures. In Appendix A, we broaden our results to encompass deep ReLU networks
(Corollary A.1) and sigmoid activation function (Corollary A.2).

3.3 ANALYZING GEOMETRIC STRUCTURE OF REAL DATASET

So far, we have demonstrated how feasible architecture on X can be reduced from the geometric
characteristics of X . In this section, we explore the reverse scenario: given a neural network that
achieves zero error on a finite dataset D, can we extract geometric information about D? Below, we
address this question by presenting a method to analyze dataset geometry through a trained neural
network. This method involves establishing a polytope-basis cover of the real dataset, which was
assumed to be provided in Section 3.
Proposition 3.7. Let N be a two-layer ReLU network with l neurons defined by (1), where the second
layer weights are all positive, i.e., vk > 0 for all k ∈ [l]. Then,

1. the classification region R := {x ∈ Rd | N (x) < 0} is a convex polytope. Specifically, the
subset S := {x ∈ Rd | N (x) = v0} is a convex polytope with l faces.

6

Under review as a conference paper at ICLR 2024

(a) (b)

Figure 3: Assumptions for the dataset and the network initialization. (a) Dataset D and a convex
polytope C satisfy the Assumption 4.2. (b) One example of network initialization satisfying Assump-
tion 4.2. The red line displays the decision boundary ({x | N (x) = 0}).

2. Let T be a three-layer ReLU network defined by

T (x) := min{ N1(x), · · · ,Nm(x) }. (5)

where each Ni is a two-layer network defined above, therefore, has positive second layer
weights. Then, the classification region {x ∈ Rd | T (x) < 0} is a union of polytopes.

The proof and the numerical results with real data with more detailed explanation can be found in
Section E in Appendix. The results demonstrate that each class in MNIST, Fashion-MNIST, and
CIFAR10 can be separated by at most three convex polytopes with only a few faces (Table 1).

4 CONVERGENCE ON THE PROPOSED NETWORKS

In this section, we investigate whether gradient descent can converge to the networks that are induced
by the theory in the previous section. Specifically, we focus on the two-layer ReLU networks which
are the basic building blocks of the constructions. Let N be a two-layer ReLU neural network defined
in (1), where Θ := {v0} ∪ {vk,wk, bk}k∈[l] denotes the set of parameters of N . The mean squared
error (MSE) loss and binary cross entropy (BCE) loss are defined by

LMSE(Θ) :=
1

2n

n∑
i=1

(
N (xi)− yi

)2
, (6)

LBCE(Θ) := − 1

n

n∑
i=1

(
yi SIG ◦ N (xi) + (1− yi)(1− SIG ◦ N (xi))

)
. (7)

We now employ a notion of ‘polyhedrally separable’ dataset from learning theory (Astorino &
Gaudioso, 2002; Manwani & Sastry, 2010; Kantchelian et al., 2014), which is an extension of
‘linearly separability’ and refers to a dataset whose classes can be separated by a convex polytope
(Figure 3).
Definition 4.1. Let D = {(xi, yi)}ni=1 be the given dataset where xi ∈ Rd and yi ∈ {0, 1}. We
call that the dataset D is polyhedrally separable by C if there exists a convex polytope C such that
xi ∈ C if and only if yi = 1 for all i ∈ [n].

We further introduce two notations. First, for a convex polytope C composed of l faces, we denote its
k-th face by ∂Ck. Similarly, ∂2Ck denotes the boundary of ∂Ck, which refers to the ‘edge’ part of C.
Second, for a set A ⊂ Rd, we denote #(A) := |{xi | xi ∈ A}| as the number of data points xi ∈ D
in the set A. We further need the following assumption, on the dataset D and network initialization.

Assumption 4.2 (Dataset and initialization assumption). Suppose the dataset D is polyhedrally
separable by a convex polytope C, which consists of l faces and strictly contains the origin point. Let
δ > 0 be the minimum distance between xi and ∂C, and lk be the distance between ∂Ck and the
origin point. Then, there exist constants ρ,R > 0 such that for any k ∈ [l] and δ < r < R,

#
(
B2r(∂

2Ck)
)
≤ ρ #

(
Br−δ(∂Ck)

)
. (8)

7

Under review as a conference paper at ICLR 2024

Furthermore, the parameters {(wk, bk, vk)}k∈[l] of a two-layer ReLU network N defined in (1) are
initialized such that wk are normal to ∂Ck with outward direction, and satisfying

lk −R < lk +
v0

vk ∥wk∥
< − bk

∥wk∥
< lk. (9)

The dataset assumption (8) suggests that the data points in the set Br(∂C) for small r are predomi-
nantly located in close proximity to the faces of the polytope C, rather than its corners (Figure 3(a)).
The network initialization assumption implies that every neuron (wk, bk) of N is initialized near
∂Ck as described in Figure 3(b). With these assumptions, we can provide a discrete path that strictly
decrease the loss value to zero.
Theorem 4.3. Suppose the dataset D and the two-layer network (1) satisfy Assumption 4.2. Then,

1. for the MSE loss defined in (6), suppose v0 is initialized such that

ρ

1− ρ

4lρR2

δ2
< v0 < 1. (10)

Then, with step size η < min
{

2
δ ,

2
lR , 4ρl

(1−ρ)R

}
, there exists a discrete path that the loss

value (6) strictly decreases to zero.

2. For the BCE loss defined in (7), suppose v0 is initialized such that

0 < v0 < log

(
(1− ρ)δ

4ρR
− 1

)
. (11)

Then, with step size η < min
{
1, 4ρR

(1−ρ)δ2

}
, there exists a discrete path that the loss value

(7) strictly decreases to zero.

The proof of this theorem can be found in Appendix B.5. Theorem 4.3 asserts that both for MSE loss
and BCE loss functions, the loss landscape has no local minima in this initialization region. In other
words, stochastic (noisy) gradient descent is believed to converge to the global minimum, which
has zero error on the dataset D. This result might be understood by identifying the data distribution
condition and initialization condition (Assumption 4.2) such that gradient method can converge. In
the next section, we empirically verify that gradient descent method indeed converges to the networks
we have proposed (Figure 4).

5 EXPERIMENTS

We consider two illustrative topological spaces X1 and X2 depicted in Figure 4(a) and (d). X1 can be
understood as a simplicial 2-complex in R2 comprised of two triangles. The second space X2 is a
hexagon with a pentagonal hole, which has a simple polyope-basis cover itself. We undertake both
MSE loss (6) and BCE loss (7) functions. For the BCE loss, we follow the architecture with sigmoid
activation proposed in Corollary A.2, to ensure trainability.

For the first dataset X1, Theorem 3.5 and Corollary A.2 suggest that 2 σ→ 6
σ→ 2

MAX→ 1 and
2

σ→ 6
σ→ 2

SIG→ 1 are feasible architectures on X1. For a clearer visualization of weight vectors in
each layer, we plot the lines of vanishing points for each layer in blue (the 1st hidden layer), red (the
2nd hidden layer), and the grayscale filling color denotes the output range of the trained network.
Moreover, the weight vectors in the first layer encapsulate the two triangles, reflecting the geometrical
shape of X1. Similarly, for the second dataset X2, Theorem 3.4 suggests that 2 σ→ 11

σ→ 2
σ→ 2

σ→ 1

and 2
σ→ 11

σ→ 2
SIG→ 1 are feasible architectures. More specifically, the eleven neurons in the first

layer align with the eleven hyperplanes which are boundaries of the outer hexagon and the inner
pentagon, as two neurons in the second hidden layer correspond to the two polygons.

These experimental results verify Theorem 4.3 that the networks proposed in Section 3 can indeed
be reached to the global minima by gradient descent with either MSE or BCE loss, under suitable
initialization position. We provide further convergence results with various initialization conditions
in Figure 10, which shows that the suitable initialization position is necessary to achieve the global
convergence.

8

Under review as a conference paper at ICLR 2024

(a) (b) (c)

(d) (e) (f)

Figure 4: Experimental verification of convergence of gradient descent. (a) and (d) exhibit the shape
of two data spaces, which are ‘two triangles’ and ‘a hexagon with a pentagon hole’. (b) and (e)
show the converged networks by gradient descent under the MSE loss, where (c) and (f) show the
results under the BCE loss. The first layer (blue) and second layer (red) represent the hyperplane and
polytopes, respectively. These results verify that gradient descent indeed converges to the networks
we proposed in Section 3.

6 CONCLUSION

While many previous studies have individually delved into aspects such as the polytope structure of
DNNs, the geometric properties of deep ReLU networks, and the bounds on network architecture
required for universal approximation, they have often overlooked the interconnections between these
properties. In this paper, we have sought to bridge this gap by presenting bounds on network widths
that are dependent on the geometric characteristics of the data. Specifically, we established both lower
and upper bounds on the widths of shallow networks necessary to approximate the indicator function
of a polytope X . Furthermore, we extended these findings to cases where X has a polytope-basis
cover, and obtained a feasible architecture whose widths are determined by the geometric feature of
the cover. Similar results were deduced for simplicial m-complexes or polytopes with specific shapes
of holes, elucidating how the width bound varies according to the complexity of dataset. We also
demonstrated both theoretically and empirically that gradient descent can converge to the networks
that are induced by our theory, confirming that our theory has practical meanings. Lastly, we applied
our findings to investigate geometric shape of real-wordl datasets by training a two-layer network,
concluding that they have simple polytope-basis covers.

Limitations and future work. One limitation of our work is the assumption of known geometric
information about the given datasets, which is often unavailable for real-world datasets. In Section
3.3, detailed in Appendix E, we propose a method to discover a polytope basis-cover for real datasets
by training two-layer ReLU networks. However, the optimality of the obtained polytope-basis cover
has not been verified, which we leave as a potential avenue for future research.

Reproducibility. We note that all our theoretical results are proven in Appendix B. For the detailed
experimental setup information, please refer to Appendix D.

9

Under review as a conference paper at ICLR 2024

REFERENCES

A Astorino and M Gaudioso. Polyhedral separability through successive lp. Journal of Optimization
theory and applications, 112(2):265–293, 2002.

Serguei Barannikov, Ilya Trofimov, Nikita Balabin, and Evgeny Burnaev. Representation topol-
ogy divergence: A method for comparing neural network representations. arXiv preprint
arXiv:2201.00058, 2021a.

Serguei Barannikov, Ilya Trofimov, Grigorii Sotnikov, Ekaterina Trimbach, Alexander Korotin,
Alexander Filippov, and Evgeny Burnaev. Manifold topology divergence: a framework for
comparing data manifolds. Advances in Neural Information Processing Systems, 34:7294–7305,
2021b.

Hans-Peter Beise, Steve Dias Da Cruz, and Udo Schröder. On decision regions of narrow deep neural
networks. Neural Networks, 140:121–129, 2021.

Arturs Berzins. Polyhedral complex extraction from relu networks using edge subdivision. arXiv
preprint arXiv:2306.07212, 2023.

Monica Bianchini and Franco Scarselli. On the complexity of neural network classifiers: A compari-
son between shallow and deep architectures. IEEE transactions on neural networks and learning
systems, 25(8):1553–1565, 2014.

Tolga Birdal, Aaron Lou, Leonidas J Guibas, and Umut Simsekli. Intrinsic dimension, persistent
homology and generalization in neural networks. Advances in Neural Information Processing
Systems, 34:6776–6789, 2021.

Sid Black, Lee Sharkey, Leo Grinsztajn, Eric Winsor, Dan Braun, Jacob Merizian, Kip Parker,
Carlos Ramón Guevara, Beren Millidge, Gabriel Alfour, et al. Interpreting neural networks through
the polytope lens. arXiv preprint arXiv:2211.12312, 2022.

Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, and Dan Mikulincer. Network size and size of
the weights in memorization with two-layers neural networks. Advances in Neural Information
Processing Systems, 33:4977–4986, 2020.

Sam Buchanan, Dar Gilboa, and John Wright. Deep networks and the multiple manifold problem.
arXiv preprint arXiv:2008.11245, 2020.

Stefan Carlsson. Geometry of deep convolutional networks. arXiv preprint arXiv:1905.08922, 2019.

Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. Nonparametric regression on low-
dimensional manifolds using deep relu networks: Function approximation and statistical recovery.
Information and Inference: A Journal of the IMA, 11(4):1203–1253, 2022.

Uri Cohen, SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Separability and geometry of
object manifolds in deep neural networks. Nature communications, 11(1):746, 2020.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Sjoerd Dirksen, Martin Genzel, Laurent Jacques, and Alexander Stollenwerk. The separation capacity
of random neural networks. The Journal of Machine Learning Research, 23(1):13924–13970,
2022.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous
models: Layers are automatically balanced. Advances in neural information processing systems,
31, 2018.

Feng-Lei Fan, Wei Huang, Xiangru Zhong, Lecheng Ruan, Tieyong Zeng, Huan Xiong, and Fei
Wang. Deep relu networks have surprisingly simple polytopes. arXiv preprint arXiv:2305.09145,
2023.

10

Under review as a conference paper at ICLR 2024

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, and Stefano Soatto. Empirical
study of the topology and geometry of deep networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3762–3770, 2018.

J Elisenda Grigsby and Kathryn Lindsey. On transversality of bent hyperplane arrangements and
the topological expressiveness of relu neural networks. SIAM Journal on Applied Algebra and
Geometry, 6(2):216–242, 2022.

Michael Gromov. Curvature, diameter and betti numbers. Commentarii Mathematici Helvetici, 56:
179–195, 1981.

Christian Haase, Christoph Hertrich, and Georg Loho. Lower bounds on the depth of integral relu
neural networks via lattice polytopes. arXiv preprint arXiv:2302.12553, 2023.

Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns.
Advances in neural information processing systems, 32, 2019.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):
251–257, 1991.

Joey Huchette, Gonzalo Muñoz, Thiago Serra, and Calvin Tsay. When deep learning meets polyhedral
theory: A survey. arXiv preprint arXiv:2305.00241, 2023.

Alex Kantchelian, Michael C Tschantz, Ling Huang, Peter L Bartlett, Anthony D Joseph, and J Doug
Tygar. Large-margin convex polytope machine. Advances in Neural Information Processing
Systems, 27, 2014.

Kwangho Kim, Jisu Kim, Manzil Zaheer, Joon Kim, Frédéric Chazal, and Larry Wasserman. Pllay:
Efficient topological layer based on persistent landscapes. Advances in Neural Information
Processing Systems, 33:15965–15977, 2020.

Yajing Liu, Christina M Cole, Chris Peterson, and Michael Kirby. Relu neural networks, polyhedral
decompositions, and persistent homolog. arXiv preprint arXiv:2306.17418, 2023.

Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying relu and initialization: Theory
and numerical examples. arXiv preprint arXiv:1903.06733, 2019.

German Magai and Anton Ayzenberg. Topology and geometry of data manifold in deep learning.
arXiv preprint arXiv:2204.08624, 2022.

Naresh Manwani and PS Sastry. Learning polyhedral classifiers using logistic function. In Proceed-
ings of 2nd Asian Conference on Machine Learning, pp. 17–30. JMLR Workshop and Conference
Proceedings, 2010.

Marissa Masden. Algorithmic determination of the combinatorial structure of the linear regions of
relu neural networks. arXiv preprint arXiv:2207.07696, 2022.

John Willard Milnor, Michael Spivak, Robert Wells, and Robert Wells. Morse theory. Princeton
university press, 1963.

Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. Topology of deep neural networks. The
Journal of Machine Learning Research, 21(1):7503–7542, 2020.

Sejun Park, Chulhee Yun, Jaeho Lee, and Jinwoo Shin. Minimum width for universal approximation.
arXiv preprint arXiv:2006.08859, 2020.

David Rolnick and Konrad Kording. Reverse-engineering deep relu networks. In International
Conference on Machine Learning, pp. 8178–8187. PMLR, 2020.

Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill New York, 1976.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear
regions of deep neural networks. In International Conference on Machine Learning, pp. 4558–4566.
PMLR, 2018.

11

Under review as a conference paper at ICLR 2024

Matus Telgarsky. Representation benefits of deep feedforward networks. arXiv preprint
arXiv:1509.08101, 2015.

Saket Tiwari and George Konidaris. Effects of data geometry in early deep learning. arXiv preprint
arXiv:2301.00008, 2022.

Jonatan Vallin, Karl Larsson, and Mats G Larson. The geometric structure of fully-connected
relu-layers. arXiv preprint arXiv:2310.03482, 2023.

Joseph A Vincent and Mac Schwager. Reachable polyhedral marching (rpm): An exact analysis tool
for deep-learned control systems. arXiv preprint arXiv:2210.08339, 2022.

Tingran Wang, Sam Buchanan, Dar Gilboa, and John Wright. Deep networks provably classify data
on curves. Advances in neural information processing systems, 34:28940–28953, 2021.

Shaojie Xu, Joel Vaughan, Jie Chen, Aijun Zhang, and Agus Sudjianto. Traversing the local polytopes
of relu neural networks. In The AAAI-22 Workshop on Adversarial Machine Learning and Beyond,
2021.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small relu networks are powerful memorizers: a tight
analysis of memorization capacity. Advances in Neural Information Processing Systems, 32, 2019.

12

Under review as a conference paper at ICLR 2024

A EXTENSION TO DEEP RELU NETWORKS AND CROSS ENTROPY LOSS

In Section 3, we presented a variety of three or four-layer neural networks which are feasible
architecture on X . In this section, due to its unique structure, we extend our discussion to other
neural network architectures. In the following two corollaries, we show the MAX activation or ReLU
activation can be substituted by ReLU or SIG, respectively.

Interestingly, the principle outlined in Proposition 3.2 enables us to replace the MAX operation in
Theorem 3.5 with an additional ReLU layer. This revelation lays the groundwork for the following
corollary, which directly stems from Theorem 3.5

Corollary A.1 (ReLU networks). The three-layer neural network in Theorem 3.5 can be changed to
a four-layer ReLU network with the architecture d

σ→ d1
σ→ k

σ→ 1 → 1.

Proof. Recall the three-layer neural network proposed in Theorem 3.5, which is d σ→ d1
σ→ k

MAX→ 1.
Let a1, · · · , ak be the input of the last layer, thus the output of the second layer. Since a1, · · · , ak ∈
[0, 1] from the construction, we get MAX(a1, · · · , ak) = 1− σ(1− a1 − · · · − ak). This completes
the proof.

We now turn our attention to neural networks trained under binary cross entropy (BCE) loss defined
in (7). For a single pair of data x and its corresponding label y, the BCE loss is defined as ℓ(x, y) :=
y log(N (x))+(1−y) log(1−N (x)). Hence, during training, the output of the neural network must
neither be zero nor exceed 1. This requirement is the primary reason classifiers utilize the sigmoid
activation function SIG(x) := 1

1+e−x .

In light of this, we extend our findings to accommodate a network that employs the sigmoid activation
in the final layer. This adjustment can be readily achieved using our previous results, as detailed in
Corollary A.1. Notably, this expansion does not necessitate extra layers, unlike in Corollary A.1. The
outcome is presented in the subsequent corollary.

Corollary A.2 (Sigmoid networks). Let N be the neural network proposed in one of Proposition 3.2,
Theorem 3.4, Theorem 3.5, or Theorem 3.6. Then, the last activation function of N can be replaced
by SIG.

Proof. The proof is similar with the proof of Corollary A.1. If the last layer has MAX activation
(Theorem 3.5), then for the inputs a1, a2, · · · , ak, replace MAX(a1, · · · , ak) to SIG(M(−1 + a1 +
a2 + · · ·+ ak)) with sufficiently large M > 0. If the last layer has ReLU activation (Theorem 3.4,
Theorem 3.6, and Proposition 3.2), then just change the last output from σ(a) to Ma with sufficiently
large M > 0. It is easy to verify that these substitutions satisfy the desired property.

B PROOFS

B.1 PROOF OF PROPOSITION 3.2.

The proof of Proposition 3.2 is divided into two parts. Firstly, we first prove the upper bound by
constructing the desired neural network. Secondly, we show the lower bound of widths.

B.1.1 THE UPPER BOUND IN PROPOSITION 3.2.

For the given convex polytope X , let h1, · · · , hl be its l hyperplanes enclosing C. Let wi be the unit
normal vector of the i-th hyperplane hi oriented inside C (Figure 2(a)). Then the equation of the i-th
hyperplane hi is given by hi : {x | w⊤

i x+ bi = 0} for some bi ∈ R. Let Ai be the intersection of
the hyperplane hi and C, which is a face of the polytope C. Let x be any point strictly contained in
C. Since wi is a unit normal vector, w⊤

i x+ bi refers the distance between the hyperplane hi and the
point x. Therefore, the d-dimensional Lebesgue measure of C is computed by

µd(C) =
1

d

l∑
i=1

(w⊤
i x+ bi) · µd−1(Ai) (12)

13

Under review as a conference paper at ICLR 2024

where µd−1 and µd refer the (d− 1) and d-dimensional Lebesgue measures, respectively. Note that
(12) comes from the volume formula of a convex polytope, which states that the volume is the sum of
volume of l pyramids. Then LHS of (12) is constant, which does not depend on the choice of x ∈ Rd.
Now, we define a two-layer ReLU network T with the architecture d

σ→ l → 1 by

T (x) := 1 +M

(
µd(C)−

l∑
i=1

1

d
µd−1(Ai) · σ(w⊤

i x+ bi)

)
(13)

where M > 0 is a constant would be determined later. Note that we have T (x) = 1 for x ∈ C from
the construction. However, considering the negative sign, it is worth noting that the equation (12)
also holds for x ̸∈ C. In particular, for x ̸∈ C, (13) deduces

T (x) = 1 +M

(
µd(C)−

l∑
i=1

1

d
µd−1(Ai) · σ(w⊤

i x+ bi)

)

= 1 +M

µd(C)−
l∑

i=1

1

d
µd−1(Ai) · (w⊤

i x+ bi) +
∑

{i : w⊤
i x+bi<0}

1

d
µd−1(Ai) · (w⊤

i x+ bi)


= 1 +M

∑
{i : w⊤

i x+bi<0}

1

d
µd−1(Ai) · (w⊤

i x+ bi)

< 1.

Therefore, we conclude that

T (x) = 1 if x ∈ C,

T (x) < 1 otherwise.

Lastly, we determine the constant M in T to satisfy the remained property. For the given ε > 0,
consider the closure of complement of the ε

2 -neighborhood of C; D :=
(
Bε/2(C)

)c
. Then the

previsous result shows that

1

M
(T (x)− 1) = µd(C)−

l∑
i=1

1

d
µd−1(Ai) · σ(w⊤

i x+ bi) (14)

is bounded above by 0. Furthermore, (14) is continuous piecewise linear, and has the maximum 0
if and only if x ∈ C. Since D is closed and (14) is strictly bounded above by 0 on D, (14) has the
finite maximum m < 0 on D.

1

M
(T (x)− 1) ≤ m < 0 for x ∈ D.

Now, choose M to satisfy M > − 1
m . Then if x ̸∈ Bε(C), we have x ∈ D, thus

T (x) = 1 +M

(
µd(C)−

l∑
i=1

1

d
µd−1(Ai) · σ(w⊤

i x+ bi)

)
≤ 1 +M ·m
< 0.

Therefore, we have constructed a two-layer ReLU network T with the structure d σ→ l → 1 such that

T (x) = 1 if x ∈ C,

T (x) < 1 if x ∈ Cc,

T (x) < 0 if x ̸∈ Bε(C).

This completes the proof on the upper bound. Lastly, the minimality of depth is proved in Proposition
C.2, which shows that a network with architecture d

σ→ d1 → 1 cannot be a feasible architecture on
X for any value d1. □

14

Under review as a conference paper at ICLR 2024

(a) (b) (c)

Figure 5: Proof of Proposition 3.2. (a) Given a hexagon which is approximated by 3 hyperplanes
given with blue lines and 1 polytope in the second layer given with red hexagon. (b) Given a heptagon
which is approximated by 4 hyperplanes given with blue lines and 1 polytope in the second layer given
with red heptagon. (c) Hexagon has been extended to the 3-dimensional polytope by incrementing
the number of faces by 2 with some potential first layer neurons (blue hyperplanes).

B.1.2 THE LOWER BOUND IN PROPOSITION 3.2.

Before proving the lower bound, we introduce a definition on refraction points. Let N (x) :=

σ(v0 +
∑d1

i=1 viσ(w
⊤
i x+ bi)) be a two-layer network with architecture d

σ→ d1
σ→ 1. Then the set

of refraction point is defined by

{x ∈ Rd | N (x) = 0 and w⊤
i x+ bi = 0 for some i ∈ [l].}

In other words, it is the point where the boundary of a linear partition is ‘refracted’.

Lower bound for d = 2 using only refraction points for k = 1. Assume that we are given a convex
l-gon to approximate. Considering the fact that we can approximate the neural network arbitrarily
close, we can see that the approximated second layer, i.e. neural network should have at least l
refraction points in order to get the shape of polygon. However, if we look from the perspective
of first layer neurons, each line has at most 2 intersection with l-gon and it implies that each first
layer neuron (or line) can contribute at most 2 meaningful refraction points for the next layer. If we
combine above two results, we can obtain that there should be at least

⌈
l
2

⌉
number of neurons in the

first layer, in other words d1 ≥
⌈
l
2

⌉
. For example, Figure 5(a) and (b) demonstrates the refraction

points along with potential first layer hyperplanes (blue lines) and converged polytope at the second
layer (red n-gon) for hexagon and heptagon, respectively.

Proof of the optimality when d = 2 for k = 1. First of all, we should note that on R2, any two
convex l-gon’s can be approximated by the same neural network (same d1 value) considering the fact
that we can find an approximator for each given error value ϵ. It implies that we can take optimal
possible number of neurons in the first layer, which we will denote by f(l) for any given convex
l-gon. Let’s prove that f(l) = ⌈ l

2⌉ for l ≥ 5 along with f(3) = f(4) = 3. The cases l = 3, 4 should
be handled separately, because we trivially need at least d+1 = 3 hyperplanes for any shape (Lemma
C.3), so we start the base case from l ≥ 5 for d = 2.

According to the Lemma C.3, it is appearent that for any l, the inequality f(l) ≥ 3 should hold trivially.
But if we consider the Figure 5(a), we can observe that one can approximate any hexagon with 3
hyperplanes. Apparently, for any pentagon, quadrilateral, and triangle, we can find a corresponding
hexagon to include it as a subfigure and rest of the additional vertices of this hexagon can be shrinked
to be almost non-exist. It implies that, same number of hyperplanes approximating hexagon can also
approximate the polygons with l ≤ 5. This final result yields that f(l) ≤ 3 for l ≤ 6. If we combine
these two findings we can get a nice optimality at the fundamental cases, in other words f(l) = 3 for
l ∈ {3, 4, 5, 6}.

Now, assume the contrary that f(l) ≤ ⌈ l
2⌉ − 1, then it is apparent that there is at least one neuron

which contributes to the refraction point of at least 2 vertices (i.e. exactly 2 vertices considering
previous discussion). Now, if we remove the chosen neuron and the associated 2 vertices and their
edges, then the resulting (l − 2)-gon will be approximated by f(l)− 1 number of neurons, which
implies that f(l)− 1 ≥ f(l− 2). Proceeding with the same argument, we can arrive at the conclusion
that f(5) or f(6) ≤ 2; however, we have already proven that f(5) and f(6) are indeed 3. So, the
contradiction at the base case yields the result that f(l) ≥ ⌈ l

2⌉.

15

Under review as a conference paper at ICLR 2024

For the base cases n = 5, 6, we have already demonstrated that f(5) = f(6) = 3. Now, take any
l-gon which has been approximated well with f(l) = ⌈ l

2⌉ neurons. Let’s add two new vertices to
form a new convex polygon with (l + 2) vertices, where the newly added vertices are not adjacent.
Then if we add one new neuron which is the line passing through those two points, we can observe
that if given f(l) number of neurons approximate l-gon, then f(l) + 1 can approximate (l + 2)-gon
by triggering 2 new refraction points. This inductive argument f(l + 2) ≤ f(l) + 1 yields the result
that if we start from f(5) = f(6) = 3, we can reach a conclusion that f(l) ≤ ⌈ l

2⌉. However, we
have already shown f(l) ≥ ⌈ l

2⌉ in the proof above. Therefore, the result follows immediately that
the optimal number of neurons in the first hidden layer to approximate any convex polygon with l
vertices is ⌈ l

2⌉ for l ≥ 5 and f(3) = f(4) = 3. □

Lower bound for arbitrary dimension d for k = 1. Now we will apply simple induction on
the dimensionality to prove the general case for lower bound on the number of first hidden layer
neurons. Essentially, we will construct a d-dimensional object for d ≥ 2 such that, one needs at least
d1 ≥ ⌈ l

2⌉ + (d − 2) number of neurons (hyperplanes) to approximate the convex polytope with l
faces. We will proceed with an inductive argument,we have already provided a proof for the base
case of d = 2 that d1 ≥ ⌈ l

2⌉.

Inductive step. Suppose that we have a d-dimensional convex polytope M with m number of vertices
and l number of faces such that the following inequality should hold: d1 ≥ ⌈ l

2⌉ + (d − 2). Let’s
consider the object on (d+1)-dimensional space by adding new entry at the end of each coordinate, i.e.
any point (p1, p2, ..., pd) on the object will be replaced by the point (p1, p2, ..., pd, 0). Then consider
the new shape M1 formed by considering the extension of convex polytope M on (d+1)-dimensional
space with all the points from {p = (p1, p2, ..., pd, x) | ∀x = [0, 1] and (p1, p2, ..., pd) ∈ M}. Then
M1 will lie on (d+ 1)-dimensional space and it will have 2m vertices and (l + 2) number of faces,
of which l will be determined by the extensions of faces of polytope M along with two faces from
M and its duplicate M ′. We can also observe the inductive incrementing idea through the Figure
5(c), in which polytope M at d = 2 with 6 faces has been extended to the 3-dimensional polytope
with 6+2=8 faces.

If we take a closer look at this construction, we can observe that if we take the intersection of
each hyperplane from d1 neurons designed for the approximation of M1 and polytope M , then
those intersections will be hyperplane for d-dimensional polytope M . It implies that in order to
approximate l faces of new polytope, the intersections themselves should approximate the l faces of
M . Furthermore, other than those l faces formed by faces of previous polytope M , we should also
consider the other 2 faces, namely M and its duplicate. Those two parallel hyperplanes will require
additional 2 neurons to trigger new refraction points for their approximation. Therefore, there should
be at least d1 ≥ ⌈ l

2⌉+ (d− 2) + 2 number of neurons, in which right-hand-side can be equivalently
written as ⌈ l

2⌉+ d = ⌈ l+2
2 ⌉+ (d+ 1− 2). So, we were able to prove that to have a neural network

of the form d
σ→ d1

σ→ 1 to approximate the convex polytopes with l faces arbitrarily close, then
universally the value of d1 should at least ⌈ l

2⌉+ (d− 2).

The result can be also stated that for all l ≥ 2d+ 1 one can find a d-dimensional convex polytope
with l faces such that the minimum required number neurons in the first hidden layer is at least
⌈ l
2⌉+(d− 2). For l = 2d− 1 and l = 2d, the lower bound becomes d1 ≥ 2d− 1 as we have already

described that f(3) = f(4) = 3. The lower bound on l comes from the fact that the construction has
an inductive fashion to create a new object from previous one by adding 2 new faces in each step.
For the rest of the values of number of faces l, i.e. l < 2d− 1, one can consider the trivial bound of
d+ 1. More strongly, in case of 2-dimensional space, the statement has been proven for all convex
polygons that optimal value is indeed d1 = ⌈ l

2⌉.

Generalization to arbitrary dimension d and depth k. In the context of manifold representations
shaped as convex polytopes with varying depths, we employ an inductive approach to establish lower
bounds. Leveraging prior findings on two-layer neural networks, we derive insights applicable to
arbitrary dimensions d. For any given hyperplane in this setting, a maximum of two distinct refraction
points can be identified, a premise that underpins our assumption that each second-layer neuron
constitutes a polytope comprised of faces, with no more than twice the number of hyperplanes as the
first layer. This result has also been used in the proof of Theorem 3.6 and we can observe the trend
from the Figure 7(c).

16

Under review as a conference paper at ICLR 2024

We transform the general case by considering the facets of second or higher-layer neurons as first-
layer neurons (hyperplanes), which represent potential refraction points. This transformation allows
us to reduce the problem to a two-layer network by decreasing the depth while augmenting the
number of hyperplanes in the first layer. More precisely, for a given feasible architecture of the
form d

σ→ d1
σ→ d2

σ→ · · · σ→ dk
σ→ 1, each of d2 number of second layer neurons can contribute

at most 2d1 hyperplanes along with the d1 hyperplanes in the first layer, which implies total of
d1 + 2d1d2 = d1(2d2 + 1) hyperplanes. In other words, we can transform the above network to
another network d

σ→ d1(2d2 + 1)
σ→ d3

σ→ · · · σ→ dk
σ→ 1 by reducing the depth by 1. By applying

the similar process as above, we assert that initial architecture can be effectively transformed into a
more robust architecture, d σ→ d1(2d2 + 1)(2d3 + 1) . . . (2dk + 1)

σ→ 1.

Consequently, we can generalize lower bounds for convex polytope representations of varying depths,
drawing on the insights gained from our two-layer formulation. The ultimate result yields a powerful
lower bound as

d1 ·
k∏

j=2

(2dj + 1) ≥


⌈
l
2

⌉
+ (d− 2), if l ≥ 2d+ 1,

2d− 1, if l = 2d− 1, 2d,

d+ 1, if l < 2d− 1.

Moreover, the above result is particularly optimal for the case of convex polygons in two dimensions,
where d = 2 and k = 1, as previously discussed. □

B.2 PROOF OF THEOREM 3.4

By Proposition 3.2, for each set A ∈ C = {P1, · · · , PnP
, Q1, · · · , QnQ

}, we can construct a two-
layer ReLU network TA with the architecture d

σ→ lA
σ→ 1 such that TA(x) = 1 for x ∈ A and

TA(x) = 0 for x ̸∈ Bε(A), where lA denotes the number of faces of A. Let ai := TPi
for i ∈ [nP]

and bj := TQj
for j ∈ [nQ]. Define the two neurons in the third hidden layer by

a := σ(1− a1 − · · · − anP
) and b := σ(1− b1 − · · · − bnQ

).

Then, defining the last layer by σ(b− a), we obtain the desired network N which has the architecture
d

σ→ l
σ→ (nP + nQ)

σ→ 2
σ→ 1. □

B.3 PROOF OF THEOREM 3.5

Let X1, X2, · · · , Xk be the k facets of X . For each facet Xi, we can construct a two-layer ReLU
network Ti such that Ti(x) = 1 for x ∈ Xi and Ti(x) < 0 for x ̸∈ Bε(Xi) by Lemma C.3. Then
Proposition 3.2 gives a neural network N with the architecture d σ→ d1

σ→ k
MAX→ 1 with d1 ≤ k(d+1),

such that N can approximate 1{X} arbitrarily close. The remaining goal is to reduce the width of the
first layer.

From the construction, we recall that d1 ≤ k(d + 1) comes from the fact where each simplex Xi

is covered by a d-simplex which has (d + 1) hyperplanes. Now consider two m-simplices in Rd.
If 2m + 2 ≤ d + 1, then we can connect all points of the two m-simplices in Rd, and it becomes
a (2m + 2)-simplex ∆2m+2. Now construct a d-simplex ∆d+1 by choosing (d + 1) − (2m + 2)
points in Bε(∆

2m+2), whose base is this (2m + 2)-simplex. Then, by adding two distinguishing
hyperplanes at last, we totally consume (d+ 3) hyperplanes to separate two m-simplices.

Now we apply this argument to each pair of two simplices. The above argument shows that two
m-simplices separately covered by 2(d+ 1) hyperplanes can be re-covered by (d+ 3) hyperplanes
if m ≤

⌊
d−1
2

⌋
, which reduces (d− 1) number of hyperplanes. In other words, we can save (d− 1)

hyperplanes for each pair of two m-simplices whenever m ≤
⌊
d−1
2

⌋
. This provides one improved

upper bound of d1:

d1 ≤ k(d+ 1)− (d− 1)

1
2

⌊ d−1
2 ⌋∑

j=0

kj

 . (15)

17

Under review as a conference paper at ICLR 2024

(a) (b) (c)

Figure 6: Proof of upper bounds in Theorem 3.6. (a) Some examples of high dimensional prisms. (b)
X is a topological space satisfying the assumption in Theorem 3.6. (b) The removed high dimensional
prisms from X ′ are displayed. Theorem 3.6 demonstrates that 3 σ→ 34

σ→ 7
σ→ 2

σ→ 1 is a feasible
architecture on X .

Now, we consider another pairing. For 0 ≤ j ≤ m, X has kj j-simplex facets. Since each j-simplex

has (j+1) points, in particular, a d-simplex consists of (d+1)-points. Therefore, all points in
⌊
d+1
j+1

⌋
many j-simplices can be contained in one d-simplex. In this case, these j-simplices can be covered
by adding

⌊
d+1
j+1

⌋
hyperplanes more. Thus if we have kj many j-simplices, then the required number

of hyperplanes to separately encapsulate the j-simplices is less than or equal to

#(the number of d-simplices) ·#(the required number of hyperplanes in each d-simplex)

=

 kj⌊
d+1
j+1

⌋
+ 1

 ·
(
d+ 1 +

⌊
d+ 1

j + 1

⌋)

≤
(
kj

j + 1

d− j
+ 1

)
·
(
d+ 1 +

d+ 1

j + 1

)
< (d+ 1)

(
j + 2

j + 1

)(
kj

j + 1

d− j
+ 1

)
= (d+ 1)

(
kj

j + 2

d− j
+

j + 2

j + 1

)
(16)

where the inequality is reduced from the property of the floor function: a− 1 < ⌊a⌋ ≤ a < ⌊a⌋+ 1
for any a ∈ R. Then another upper bound of d1 is obtained by applying (16) for all j ≤ m. However,
further note that (16) is greater than the known upper bound k(d + 1) if j > d

2 ; the sharing of
covering simplex is impossible in this case. Therefore, the upper bound of d1 is given by

d1 ≤ (d+ 1)
∑
j≤ d

2

(
kj

j + 2

d− j
+

j + 2

j + 1

)
+ (d+ 1)

∑
j> d

2

kj

= (d+ 1)

∑
j≤ d

2

(
kj

j + 2

d− j
+

j + 2

j + 1

)
+
∑
j> d

2

kj

 (17)

To sum up, from (15) and (17), we get the desired result

d1 ≤ min

k(d+ 1)− (d− 1)

1
2

⌊ d−1
2 ⌋∑

j=0

kj

 , (d+ 1)

∑
j≤ d

2

(
kj

j + 2

d− j
+

j + 2

j + 1

)
+
∑
j> d

2

kj


 .

□

B.4 PROOF OF THEOREM 3.6.

The proof consists of two parts: we prove the upper bound first, and second, we show the lower
bound.

18

Under review as a conference paper at ICLR 2024

(a) (b) (c) (d)

Figure 7: Proof of lower bounds in Theorem 3.6. (a) Consider a topological space X whose holes
intersect with a straight line ℓ. (b) d1 neurons in the first hidden layer of N (blue color) have at most d1
intersection points with ℓ. (c) A neuron in the second layer (red color) has at most d1 + 1 intersection
points with ℓ. (d) Similarly, a neuron in the third layer (green color) has at most d2(d1 + 1) + 1
intersection points with ℓ.

B.4.1 THE UPPER BOUND IN THEOREM 3.6.

We establish a terminology about the shape of prisms. A prism in R3 consists of a ‘base’ and ‘height’
dimensions, and we generalize it to high dimensional prisms. We define a k-dimensional prism in
Rd as a topological space homeomorphic to K × Rd−k, where K ⊂ Rk is a compact set which is
the ‘base’ of the prism. Roughly speaking, an 1-dimensional prism is a thick ‘hyperplane’ in Rd,
(d−1)-dimensional prism is a long ’rod,’ and a d-dimensional prism is just a hypercube [0, 1]d (Figure
6(a)). Then, for k = 1, 2, · · · , d, removing a k-dimensional prism from X generates a k-dimensional
hole, which increases βk−1.

Now, we prove the theorem. Since X can be described of union and difference of
∑d−1

k=0 βk convex
polytopes, applying Theorem 3.4 provides

d
σ→ d1

σ→

(
d−1∑
k=0

βk

)
σ→ 2

σ→ 1

is one upper bound of architecture of neural network, where

d1 ≤ l + l ·

(
d−1∑
k=0

βk − 1

)

= l

(
d−1∑
k=0

βk

)
.

For 1 ≤ k < d, βk means the number of k-dimensional holes in X , which was made by punching
out a k-dimensional prism. Since k-dimensional prisms have 2k faces that penetrate X , we can
reduce 2(d− k − 1) number of hyperplanes that cover the hole. When k = 0, it is easy to check that
2(β0 − 1) hyperplanes are required to separate β0 connected components. For example, Figure 6(c)
shows this process for a topological space given in Figure 6(b). Then, the required total number of
hyperplanes is bounded by

d1 ≤ l + 2(β0 − 1) +

d−1∑
k=1

(l − 2(d− k − 1))βk

which completes the proof. □

B.4.2 THE LOWER BOUND IN THEOREM 3.6.

Suppose the given architecture d
σ→ d1

σ→ d2
σ→ · · · σ→ dk

f→ 1 is a universally feasible architecture
on any topological space X satisfying the assumptions stated in Theorem 3.6. Then, it is enough to
consider the ‘worst’ case of dataset to prove a lower bound. We will use the same idea in the proof
of Proposition C.4. Specifically, for the given Betti numbers βk, we consider a topological space X
such that every ‘hole’ intersects with a straight line, say ℓ. Since each hole intersects with ℓ at least
two points, we conclude that N has at least 2

∑d
k=0 βk piecewise linear regions on ℓ (Figure 7(a)).

Now we introduce one terminology: from the piecewise linearity of deep ReLU networks, we define
a linear partition region to be a maximum connected component where the network is affine on. Note

19

Under review as a conference paper at ICLR 2024

also that the boundary of each linear partition region is non-differentiable points of N in Rd, which
are vanished points of some hidden layers.

We establish the proof by computing the upper bounds of number of linear partition regions on the
straight line ℓ made by N . For d1 neurons in the first hidden layer, the set of vanishing points are
d1 hyperplanes in Rd, thus it can intersect with ℓ at most d1 times (Figure 7(b)). Then, consider the
vanishing points of the second hidden layer. These points form a bent hyperplane in Rd, which is
refracted on the intersection with a vanishing hyperplane of the first layer (Figure 7(c)). Therefore, a
vanishing hyperplane of the second hidden layer can intersect with ℓ at most (d1 + 1) times for each
neuron. This concludes that the number of vanishing hyperplanes of the second hidden layers can
intersect with ℓ at most d2(d1 + 1) times. By the same arguments, after the third layer, the number of
maximum partitions on ℓ is bounded by d3(d2(d1 + 1) + 1) + 1 (Figure 7(d)), and so on. Then, for

the given architecture d
σ→ d1

σ→ d2
σ→ · · · σ→ dk

f→ 1, the number of linear partition regions on ℓ is
bounded by

1+dk + dkdk−1 + dkdk−1dk−2 + · · ·+ dk · · · d1

= 1 +

k∑
i=1

k∏
j=i

dj .

Therefore, to approximate 1{X} arbitrarily close, we get

1 +

k∑
i=1

k∏
j=i

dj ≥ 2

d∑
k=0

βk − 1,

which completes the proof. □

B.5 PROOF OF THEOREM 4.3.

B.5.1 PROOF FOR MSE LOSS (6).

The proof is divided into several steps. First, for k ∈ [l], we define the following sets:

Ak := {x ∈ Rd | w⊤
k x+ bk > 0} (18)

Bk := {x ∈ Rd | w⊤
k x+ bk > 0 and w⊤

j x+ bj > 0 for j ̸= k} (19)

I.e., Ak is the region where k-th neuron is alive, and Bk is the region where only k-th neuron is alive
(see Figure 8(b,c)). Similarly, we define

A0 := {x ∈ Rd | w⊤
k x+ bk < 0}

which is the region where all neurons are dead, except the last bias term v0. Now, we define the
following values for every k ∈ [l]:

lk := the distance between O and ∂Ck,

sk := − bk
∥wk∥

, (20)

tk := − v0
vk ∥wk∥

, (21)

t := max
k∈[l]

{tk, δ}.

Then, the network initialization condition (9) gives

0 < tk < R,

0 < sk < lk < sk + tk.

In other words, sk is the distance between the origin point O and the hyperplane {w⊤
k x+ bk = 0}.

tk is the length of ‘height’ of the region Bk as depicted in Figure 8(c). To be familiar for these
notations, we demonstrate the output N in Figure 8(d) with respect to ∥wk∥.

20

Under review as a conference paper at ICLR 2024

(a) (b) (c) (d)

Figure 8: Proof of Theorem 4.3. (a) The given dataset D is polyhedrally separable by a black dashed
rectangle C. (b) Initialization of a two-layer ReLU network N . (c) For k ∈ [l], sets Ak and Bk

defined in (18) and (19) are illustrated. (d) A sideview of the function N with respect to ∥wk∥. sk
and tk are defined in (20) and (21). Note that the intersection point Pk is invariant after the update of
parameters.

It is clear that N (x) = v0 if x ∈ A0, and it linearly decreases to zero for x ∈ Bk. When xi ∈ Bk

satisfies x⊤
i

wk

∥wk∥ = sk + tk, N (xi) = 0. Now we are ready to prove the theorem.

For the previously defined sets Ak and Bk, the MSE loss (6) is computed by

LMSE =
1

2n

n∑
i=1

(N (xi)− yi)
2

=
1

2n

∑
xi∈A0

(N (xi)− yi)
2 +

1

2n

∑
xi∈∪kBk

(N (xi)− yi)
2 +

1

2n

∑
xi∈∪k(Ak\Bk)

(N (xi)− yi)
2

=: L1 + L2 + L3. (22)

Note that we omitted Θ notation, the set of all learnable parameters. We will observe the change
of these loss values with respect to one update of parameters. We add prime (′) for the updated
parameter. For the given step size η, we explicitly provide the update of parameters by

v0 → v′0 := v0 +∆v0,

sk → s′k := sk +∆sk,

tk → t′k := tk +∆tk

for all k ∈ [l], where

∆v0 :=

{
0 if #(∪k∈[l]Ak) > 0,

− 1
2 (v0 − 1)tη, otherwise,

(23)

∆sk :=

{
ηt2k

v0+ηtk
· lk−sk
lk+tk−sk

if #(Ak) > 0,

0 otherwise,
(24)

∆tk :=

{
∆sk − ηt2k

v0+ηtk
if #(Ak) > 0,

tk∆v0−ηt2k
v0+ηtk

otherwise.
(25)

Specifically, v0 is updated if and only if ∪k∈[l]Ak contains a data point, where sk and tk are updated
exclusively. The given update terms are proposed to have some invariant quantity. In Figure 8(d), we
set Pk to be the output value of N at lk, and update equations in (23)∼(25) are determined to keep
this value Pk. Furthermore, it satisfies that the change of the slope is exactly −η, i.e.,

∆

(
−v0
tk

)
:= − v0 +∆v0

tk +∆tk −∆sk
+

v0
tk

= −η.

Note also that v0 < 1 and sk < lk are increasing, where tk > 0 is decreasing.

In the subsequent steps, we examine the change of each loss value. The main idea of the proof is
computing lower bounds on the reduction of the loss value resulting from one-step update given by
(23)∼(25). It is divided into four steps.

21

Under review as a conference paper at ICLR 2024

STEP 1. First, we consider when #(∪k∈[l]Ak) = 0. In this case, since L2 = L3 = 0 from the
definition (22), it is enough to investigate the change of L1. Recall that

L1 :=
1

2n
#(A0)(v0 − 1)2.

By one-step update of parameters, it becomes L1 → L′
1 := L1 +∆L1. Then,

∆L1 = L′
1 − L1

=
1

2n

∑
xi∈A0

(v0 +∆v0 − 1)2 − 1

2n

∑
xi∈A0

(v0 − 1)2

=
1

2n
· (2v0 − 2 + ∆v0)∆v0 ·#(A0)

= −#(A0)

n
(1− v0)∆v0 +

#(A0)

2n
(∆v0)

2

= −#(A0)

2n
(1− v0)

2(tη − 1

4
t2η2)

< −#(A0)

2n
(1− v0)

2 · 1
2
tη.

Note that we use η < 2
t < 2

δ on the last inequality. Then, we get

L′
1 = L1 +∆L1

=

(
1 +

∆L1

L1

)
L1

<

(
1−

1
2n#(A0)(1− v0)

2 · 1
2 tη

1
2n#(A0)(1− v0)2

)
L1

=

(
1− 1

2
tη

)
L1

≤
(
1− 1

2
δη

)
L1 (26)

which states that L1 strictly decreases after the update.

STEP 2. Now, we consider when #(∪k∈[l]Ak) > 0. We investigate the second term in (22), defined
by

L2 :=
1

2n

∑
k∈[l]

∑
xi∈Bk

(N (xi)− yi)
2.

Recall that the update of parameters given in (23)∼(25) are chosen to keep Pk value and increasing
the absolute value of the slope −v0

tk
by η. Therefore, for any xi ∈ Bk, it N (xi) increases (or

decreases) if and only if xi ∈ Bk ∩ C (or xi ∈ Bk\C). Therefore, |N (xi) − yi| always strictly
decreases after the update, which implies that

∆L2 := L′
2 − L2 < 0. (27)

STEP 3. We observe the last term in (22) when #(∪k∈[l]Ak) > 0, which is the most technical part
in this proof. Recall that

L3 :=
1

2n

∑
xi∈∪k(Ak\Bk)

(N (xi)− yi)
2.

The goal of this step is showing that the absolute change of L3 is less than it of L2, i.e., |∆L3| < ∆L2.
The idea is based on the sparsity of the data distribution in Br(∂

2C); near the neighborhood of ‘edge’
parts of the polytope C.

Note that for each k ∈ [l], obviously we have (Ak\Bk) ⊂ Bt(∂
2Ck) from the linearity of N (see

Figure 8(c) and (d)). It is also worth noting that if tk ≤ δ, then L3 = 0 because there is no xi in
∪k∈[l](Ak\Bk), and we have nothing to do. Thus we mostly consider tk > δ cases.

22

Under review as a conference paper at ICLR 2024

Let N ′ be the network after the one-step update from N . The difference of output is ∆N (x) :=
N ′(x) − N (x). Recall that parameters v0, sk, tk follow the updated rule (23) ∼ (25) such that
network have a constant output on ∂Ck ∩Bk (Figure 8(c) and (d)). This implies that both networks
N and N ′ have fixed outputs for ∂Ck ∩Bk, and then the affine space connecting those fixed points
also has the fixed output which comes from the piecewise linearity of N .

STEP 3-1 First, we compute an upper bound of |∆L3|. Before we start, we adopt a terminology
‘linear partition’ which is widely used in many similar studies (Hanin & Rolnick, 2019). Since N (x)
is piecewise linear, we consider the input space partition in Ak\Bk where N is linear on. Observing
the ‘corner’ parts of the polytope C (see Figure 8(c) and (d)), each partition is intersection of some
neurons of N . Choose one partition P ⊂ Ak\Bk, and let JP ⊂ [l] be the index set of P that wj is
activated on P if and only if j ∈ JP , or namely, P =

⋂
j∈JP

Aj . Then obviously, the partition P is
contained in a ball with radius maxj∈JP

tj ≤ t < R. On the contrary, any partition P is contained in
tk-radius ball from ∂k for some k. Using this, we can disjointly separate the partitions to Qk such
that

1. Qk ⊂ (Ak\Bk)

2. Every P ∈ ∪k∈[l](Ak\Bk) is exactly contained in one of Qk.
3. Every P ∈ Qk can be bounded by a ball with radius tk.

Note that Qk is a collection of partitions, which can be empty. Using this, we decompose L3 by the
following way. This is just rearranging the terms in L3.

L3 =
1

2

∑
xi∈∪k∈[l](Ak\Bk)

(N (xi)− yi)
2

=
1

2

∑
k∈[l]

∑
xi∈Qk

(N (xi)− yi)
2

=:
1

2

∑
k∈[l]

L3,k.

Now, we bound the change of network output ∆N (xi) for xi ∈ P ∈ Qk.

|∆N (xi)| = |N (xi)−N ′(xi)|

≤

∣∣∣∣∣∣
∑
j∈JP

∆

(
−v0
tj

)
tk

∣∣∣∣∣∣
=
∑
j∈JP

ηR

≤ lRη.

Above inequalities come from the fact that, the change of linear value is bounded by product of the
change of slope and the maximum diameter of the set. Finally, for a k ∈ [l], we compute an upper
bound of the loss variation of L3,k.

|∆L3,k| =

∣∣∣∣∣∣ 12n
∑

xi∈(Ak\Bk)

(N (xi) + ∆N (xi)− yi)
2 − 1

2n

∑
xi∈(Ak\Bk)

(N (xi)− yi)
2

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
∑

xi∈(Ak\Bk)

(
N (xi)− yi +

1

2
∆N (xi)

)
·∆N (xi)

∣∣∣∣∣∣
≤ 1

n

∑
xi∈(Ak\Bk)

(
|N (xi)− yi| · |∆N (xi)|+

1

2
|∆N (xi)|2

)

≤ 1

n

∑
xi∈(Ak\Bk)

(
1 · |∆N (xi)|+

1

2
|∆N (xi)|2

)

23

Under review as a conference paper at ICLR 2024

≤ 1

n
#
(
Btk(∂

2Ck)
)
· (lRη +

1

2
l2R2η2)

≤ 2

n
#
(
Btk(∂

2Ck)
)
· lRη

≤ 2lRη

n
· ρ #(Btk(∂Ck)). (28)

Note that we used η < 2
lR to bound the quadratic term η2.

STEP 3-2. Now, we compute a similar bound for ∆L2. It can be decomposed to the sum on each Bk.

L2 =
1

2n

∑
k∈[l]

∑
xi∈Bk

(N (xi)− yi)
2

=:
∑
k∈[l]

L2,k.

We use the fact that each data point xi is far from ∂C at least δ. From the definition, we get
∆N (xi) > δη. Note that if tk < 2δ, then L3,k strictly decreases and we have nothing to do.
Otherwise, when tk > 2δ, we have R > 2δ and there is data far from δ distance from ∂Bk. For such
data point xi, we get

N (xi)− 0 = v0 −
v0
tk

(tk − δ)

= v0
δ

tk

>
v0δ

R

and

1−N (xi) = 1−
(
v0 −

v0
tk

(tk − δ)

)
= 1− v0

tk
δ

> 1− 1

2
v0

>
1

2
v0

>
v0δ

R
.

Therefore, we have shown that

min
sk+δ≤ ∥xi∥ ≤sk+tk−δ

|N (xi)− yi| ≥
v0δ

R
.

Now we induce the lower bound of ∆L2,k.

∆L2,k =
1

2n

∑
xi∈Bk

(
(N (xi) + ∆N (xi)− yi)

2 − (N (xi)− yi)
2
)

=
1

n

∑
xi∈Bk

(
N (xi)− yi +

1

2
∆N (xi)

)
·∆N (xi)

=
1

n

∑
xi∈Bk

(
−|(N (xi)− yi)| · |∆N (xi)|+

1

2
|∆N (xi)|2

)
≤ 1

n

∑
xi∈Bk

(
− min

δ≤ ∥xi∥−sk ≤tk−δ
|N (xi)− yi| · ηδ +

1

2
R2η2

)
≤ − 1

n
#
(
B tk

2 −δ
(∂Ck)− Btk(∂

2Ck)
)
·
(
v0δ

R
· δη − 1

2
R2η2

)

24

Under review as a conference paper at ICLR 2024

≤ − 1

n
(1− ρ)#(Btk(∂Ck)) ·

(
v0δ

2η

R
− 1

2
R2η2

)
<

1

n

(1− ρ)v0δ
2η

2R
#(Btk(∂Ck)). (29)

Note that Assumption 4.2 on dataset D is used to induce this inequality. Now, we compare (29) and
(28) with initialization condition (10) for v0. Then, we finally get

|∆L3,k| ≤
2lRηρ

n
#(Btk(∂Ck))

<
(1− ρ)v0δ

2

2nR
η ·#(Btk(∂Ck))

< −∆L2,k

for every k ∈ [l]. By summing up, we conclude |∆L3| < −∆L2 or,

∆L2 +∆L3 < 0. (30)

STEP 4. Finally, we combine all results in the previous steps. When #(∪k∈[l]Ak) > 0, only L2 and
L3 are changed, then one step update gives

L′ = L+∆L

= L1 + L2 + L3 +∆L1 +∆L2 +∆L3

< L1 + L2 + L3

from (27) and (30). Furthermore, since sk < lk increases and tk > 0 decreases, the updated
parameters satisfy the assumption (9) again. Using mathematical induction, we can repeat above
steps until #(∪k∈[l]Ak) = 0. After achieving #(∪k∈[l]Ak) = 0, we get L2 = L3 = 0 from their
definition (22). Then, the remained loss L1 exponentially decreases to zero because

L′ = L1 +∆L1

≤
(
1− 1

2
δη

)
L1

≤
(
1− 1

2
δη

)
L

from (26). This completes the proof. □

B.5.2 PROOF FOR BCE LOSS (7).

The proof idea is similar with the previous proof. We use the same definitions for Ak, Bk, sk, tk, lk,
and other notations. The BCE loss (7) is rearranged by

LBCE = − 1

n

n∑
i=1

(yi log SIG ◦ N (xi) + (1− yi) log(1− SIG ◦ N (xi)))

= − 1

n

∑
xi∈A0

log SIG ◦ N (xi)

− 1

n

∑
k∈[l]

∑
xi∈Bk

(yi log SIG ◦ N (xi) + (1− yi) log(1− SIG ◦ N (xi))) (31)

− 1

n

∑
k∈[l]

∑
xi∈(Ak\Bk)

(yi log SIG ◦ N (xi) + (1− yi) log(1− SIG ◦ N (xi)))

=: L1 + L2 + L3.

Before we start, we compute the derivative and its bound of some functions. For ζ ∈ R, define

f(ζ) := log SIG(ζ),

25

Under review as a conference paper at ICLR 2024

g(ζ) := log(1− SIG(ζ)).

Then their derivatives are given by

d

dζ
f(ζ) := 1− SIG(ζ),

d

dζ
g(ζ) := −SIG(ζ).

From the mean value theorem (MVT), we get

f(ζ +∆ζ) = f(ζ) + f ′(ζ)∆ζ +
1

2
f ′′(ζ̃)(∆ζ)2

≥ f(ζ) + (1− SIG(ζ))∆ζ − 1

2
(∆ζ)2

and

f(ζ +∆ζ)− f(ζ) = (1− SIG(ζ̃))∆ζ

≤ ∆ζ.

Now we defin the update of parameters. For k ∈ [l], the update of v0 is given by

∆v0 :=

{
0 if #(∪k∈[l]Ak) > 0,

(1− SIG(v0))η. otherwise
(32)

For ∆sk and ∆tk, we adopt the same update defined in (24) and (25). Namely, the update of
parameters preserves the value of N on lk and the change of slope is set to −η. We repeat the
analogous arguments in the previous proof.

STEP 1. Firstly, we consider the first loss term L1 in (31) when #(∪k∈[l]Ak) = 0. It is changed by

∆L1 = L′
1 − L1

= − 1

n

∑
xi∈A0

log SIG(v0 +∆v0) +
1

n

∑
xi∈A0

log SIG(v0)

= −#(A0)

n
(f(v0 +∆v0)− f(v0))

≤ −#(A0)

n

(
(1− SIG(v0))∆v0 −

1

2
(∆v0)

2

)
= −#(A0)

n

(
(1− SIG(v0))

2η − 1

2
(1− SIG(v0))

2η2
)

< −#(A0)

n

1

2
(1− SIG(v0))

2η.

Therefore, L1 strictly decreases. Note that we used η < 1 to bound the η2 term.

STEP 2. Secondly, we consider when #(∪k∈[l]Ak) > 0. As discussed in the previous subsection,
N (xi) strictly increases (or decreases) if and only if yi = 1 (or 0, respectively) because the slope
−v0

tk
changes −η. This shows that ∆L2 < 0.

STEP 3. Thirdly, we observe ∆L2 and |∆L3| when #(∪k∈[l]Ak) > 0. We compute a bound of ∆L3

first. For any k ∈ [l],

|∆L3| =
1

n

∣∣∣∣ ∑
xi∈(Ak\Bk)

yi(f(N (xi) + ∆N (xi))− f(N (xi)))

+ (1− yi)(g(N (xi) + ∆N (xi))− g(N (xi)))

∣∣∣∣
≤ 1

n

∑
xi∈(Ak\Bk)

∣∣∣(f(N (xi) + ∆N (xi))− f(N (xi)))
∣∣∣+ ∣∣∣(g(N (xi) + ∆N (xi))− g(N (xi)))

∣∣∣
26

Under review as a conference paper at ICLR 2024

<
1

n

∑
xi∈(Ak\Bk)

2|∆N (xi)|

<
2

n
#(Btk(∂

2Ck)) · max
xi∈(Ak\Bk)

|∆N (xi)|

<
2Rη

n
#(Btk(∂

2Ck)).

We obtain a similar bound for ∆L2,k. Let V0 := log
(

(1−ρ)δ
4ρR − 1

)
be the upper bound of initialization

of v0. Note also that SIG(V0) = 1− 4ρR
(1−ρ)δ and η < 1−SIG(v0)

δ . Then,

∆L2,k = − 1

n

∑
xi∈Bk

(
yi(f(N (xi) + ∆N (xi))− f(N (xi)))

+ (1− yi)(g(N (xi) + ∆N (xi))− g(N (xi)))

)
= − 1

n

∑
xi∈Bk,yi=1

(
(f(N (xi) + ∆N (xi))− f(N (xi)))

− 1

n

∑
xi∈Bk,yi=0

(g(N (xi) + ∆N (xi))− g(N (xi)))

)

< − 1

n

∑
xi∈Bk,yi=1

(
(1− SIG ◦ N (xi))∆N (xi)−

1

2
(∆N (xi))

2

)

− 1

n

∑
xi∈Bk,yi=0

(
−SIG ◦ N (xi) ·∆N (xi)−

1

2
(∆N (xi))

2

)

< − 1

n

∑
sk−lk+δ<hi<−δ

(
(1− SIG ◦ N (xi))∆N (xi)−

1

2
(∆N (xi))

2

)

− 1

n

∑
δ<hi<sk+tk−δ

(
−SIG ◦ N (xi) ·∆N (xi)−

1

2
(∆N (xi))

2

)

< − 1

n

∑
sk−lk+δ<hi<−δ

(
(1− SIG(V0))δη − 1

2
δ2η2

)

− 1

n

∑
δ<hi<sk+tk−δ

(
SIG(0) · δη − 1

2
δ2η2

)

< − 1

n
#
(
B tk

2 −δ
(∂Ck)− Btk(∂

2Ck)
)
·
(
(1− SIG(V0))δη − 1

2
δ2η2

)
< − 1

n
(1− ρ)# (Btk(∂Ck)) ·

1

2
(1− SIG(V0))δη.

Therefore,

|∆L3,k| <
2Rη

n
ρ #(Btk(∂Ck))

<
1

n
(1− ρ)# (Btk(∂Ck)) ·

1

2
(1− SIG(V0))δη

< −L2,k

and we get ∆L2 +∆L3 < 0.

STEP 4. Finally, we combine results in the previous steps. When #(∪k∈[l]Ak) > 0, v0 is bounded
by V0 and we get ∆L2 + ∆L3 < 0 from STEP 3. After update, since sk < lk increases and
tk > 0 decreases, the updated parameters satisfy Assumption 4.2 again. It is repeated with strictly

27

Under review as a conference paper at ICLR 2024

decreasing loss until reaching #(∪k∈[l]Ak) = 0. After that, v0 begins to strictly increase, which
strictly decreases all L1, L2, and L3. Further, the update equation 32 provides v0 goes to infinity.
Therefore, N (xi) → ∞ if and only if it label yi = 1, concludes LBCE converges to zero.

This completes the whole proof of Theorem 4.3. □

C ADDITIONAL PROPOSITIONS AND LEMMAS

Proposition C.1. Let X be a compact set in Rd. For arbitrary δ > 0 and p > 0, suppose there exists
a function fδ : Rd → R such that fδ(Rd) = [0, 1] and

fδ(x) = 1 if x ∈ X ,

fδ(x) = 0 if x ̸∈ Bδ(X).

Then, for arbitrary ε > 0, there exists a function N : Rd → R such that∥∥N (x)− 1{X}(x)
∥∥
Lp(Rd)

< ε. (33)

Proof. Let µ be the Lebesgue measure in Rd. First note that

lim
δ→0+

µ(Bδ(X)−X) = µ(X̄ \X) = 0.

Therefore, for a given ε, there exists δ > 0 such that

µ (Bδ(X)−X) < εp.

From the assumption, for such δ, there exists a function fδ : Rd → R that satisfies fδ(Rd) = [0, 1],
fδ(x) = 1 for x ∈ X , and fδ(x) = 0 if x ̸∈ Bδ(X). Now, define N := fδ . Then,∥∥N (x)− 1{X}(x)

∥∥p
Lp(Rd)

=

∫
Rd

|N (x)− 1{X}(x)|p dµ

=

∫
Bδ(X)

|N (x)− 1{X}(x)|p dµ

=

∫
Bδ(X)\X

|N (x)− 1{X}(x)|p dµ

≤ 1p · µ (Bδ(X)\X)

< εp.

Therefore, N is the desired function satisfying (33).

Proposition C.2. Let f∗ : Rd → R be a nonzero compactly supported function. Then for p ≥ 1 and
d ≥ 2, a network with the architecture d

σ→ d1 → 1 cannot approximate f∗ in Lp(Rd) under some
positive error, for any value d1.

Proof of Proposition C.2. We prove by contradiction: suppose two-layer ReLU networks are dense
in Lp(Rd). Then for a nonzero function f∗ and ε > 0, there exists a nonzero two-layer ReLU
network f =

∑k
i=1 viσ(w

⊤
i x+ bi) + b0 such that ∥f − f∗∥Lp(Rd) < ε. Without loss of generality,

we can assume that all vi,wi are nonzero, i.e., f has the minimal representation. Now, let K be a
compact (thus bounded) set that contains the support of f∗. Since f is piecewise linear and defined
on the unbounded domain Rd, we can choose an unbounded partition A ⊂ Rd such that f is linear
in A and A ∩Kc is unbounded. By re-ordering of indices if needed, there exists kA ∈ N such that
w⊤

i x+ bi ≥ 0 if and only if i ∈ [kA]. Then for x ∈ A, f(x) =
∑kA

i=1 vi(w
⊤
i x+ bi) + b0 and we

get

∥f − f∗∥pLp(Rd) =

∫
Rd

|f − f∗|pdµ

≥
∫
A∩Kc

|f − f∗|pdµ

28

Under review as a conference paper at ICLR 2024

≥
(

inf
x∈A∩Kc

|f(x)|p
)
· µ(A ∩Kc)

where µ(·) denotes the Lebesgue measure on Rd. Since K is compact and A is unbounded, µ(A ∩

Kc) = ∞ conclude that inf
x∈A∩Kc

|f(x)| = 0 for x ∈ A∩Kc. Since f(x) =
kA∑
i=1

vi(w
⊤
i x+ bi) + b0

is linear on A, we have
kA∑
i=1

viwi = 0 and b0 +

kA∑
i=1

vibi = 0. (34)

Now consider the adjacent unbounded partition B such that f is linear in B and B ∩ Kc is also
unbounded (such partition B can be chosen by a linear partition of f in Ac ∩ Kc). Through the
exactly same arguments, we obtain the similar conclusion with (34) on B.

kB∑
i=1

viwi = 0 and b0 +

kB∑
i=1

vibi = 0. (35)

However, since B is the adjacent partition of A, exactly one neuron (call v′,w′) is either activated or
deactivated in B. Comparing (34) and (35), we get either v′ = 0 or w′ = 0, which contradicts to the
minimality assumption. This completes the proof.

Lemma C.3. Let 0 ≤ m ≤ d be integers, and ∆m be an m-simplex in Rd. For a given ε > 0, there
exists a two-layer ReLU network T : Rd → R with the architecture d

σ→ (d+ 1) → 1 such that

T (x) = 1 if x ∈ ∆m,

T (x) ≤ 1 if x ∈ Bε(∆
m),

T (x) < 0 if x ̸∈ Bε(∆
m).

Furthermore, the minimal width of such two-layer ReLU networks with the architecture d
σ→ d1 → 1

is exactly d1 = d+ 1.

Proof. We prove the existence part first. For the given m-simplex ∆m, pick (d−m) distinct points
in Bε(∆

m). By connecting all these points with the points of ∆m, we obtain a d-simplex contained in
Bε(∆

m), which is a convex polytope. By Proposition 3.2, there exists a neural network T : Rd → R
with the architecture d

σ→ d1 → 1 that satisfies the desired properties.

Now, we prove the minimality part. For every ε > 0, suppose there exists a two-layer ReLU network
T (x) :=

∑d1

i=1 viσ(w
⊤
i x+ bi) + v0 with d1 ≤ d such that T (x) = 1 for x ∈ ∆m and T (x) < 0

for x ̸∈ Bε(∆
m). First, we claim that the set of weight vectors {w1, · · · ,wd1

} spans Rd. If the set
cannot span Rd, then there exists a nonzero vector u ∈ Rd − span < w1, · · · ,wd1 >. Then, from
T (x) = 1 for x ∈ ∆m, we get

T (x+ tu) =

d1∑
i=1

viσ(w
⊤
i (x+ tu) + bi) + v0

=

d1∑
i=1

viσ(w
⊤
i x+ bi) + v0

= T (x)

= 1

for any t ∈ R. This contradicts to the condition T (x) < 0 for x ̸∈ Bε(∆
m). Therefore, the set of

weight vectors must span Rd.

From the above claim, we further deduce that d1 ≥ d. Since we start with the assumption d1 ≤ d,
thus d1 = d. Then, we conclude that the set of weight vectors {w1, · · · ,wd1

} is a basis of Rd. Now,
we focus on the sign of v0. Suppose v0 ≥ 0. Define

A :=

d1⋂
i=1

{x | w⊤
i x+ bi < 0},

29

Under review as a conference paper at ICLR 2024

which is an unbounded set since the set {wi} is linearly independent. Then for x ∈ A, we get
T (x) = v0 ≥ 0. This contradicts to the assumption T (x) < 0 for all x ̸∈ Bε(∆

m). Therefore,
v0 < 0.

Lastly, we consider the sign of vi. Since T (x) = 1 > 0 for x ∈ ∆m and v0 < 0, there exists some
positive vi > 0, say, v1 > 0. Similar to the above argument, we define

B :=
{
x | v1w⊤

1 x+ b1 + v0 > 0
} d1⋂

i=2

{
x | w⊤

i x+ bi < 0
}
,

which is also nonempty and unbounded. Then, for x ∈ B, we have

T (x) =

d1∑
i=1

viσ(w
⊤
i x+ bi) + v0

= v1w
⊤
1 x+ b1 + v0

> 0.

Since B is unbounded, this implies that T (x) > 0 over the unbounded subset in Rd, which contradicts
to the condition T (x) < 0 for all x ̸∈ Bε(∆

m). This completes the whole proof, which shows that
the minimum width of two-layer ReLU network is exactly d+ 1.

Proposition C.4. Let X ⊂ Rd be a topological space and A be a neural network architecture that is
a feasible architecture on X . Then, there exists a topological space X ′ which is homeomorphic to X ,
but A is not a feasible architecture on X ′.

Proof. We use the similar technique introduced in Telgarsky (2015). Before we start, recall that a
network N with the architecture A is a piecewise linear function on Rd. Thus Rd can be partitioned
into finitely many regions, where N is linear on each region. Let M be the maximum number of such
regions, that networks with the architecture A can partition. I.e., any network with the architecture A
has linear regions at most M partitions in Rd.

Now, we consider a contractible topological space Y which has zig-zag shape as described in Figure
9(b), where the number of sawtooths is greater than M + 2. We define another topological space
X ′ := X#Y , where # denotes the connected sum. Note that we can glue Y to X preserving the
number of sawtooths in Y , because X is bounded. Then X ′ is homeomorphic to X since Y is
contractible.

Finally, we prove the proposition using contradiction. Suppose there exists a deep ReLU network
N ′ with the same architecture A, which can approximate 1{X ′} under the given error bound ε > 0.
Then, by the Y part in X ′, there exists a straight line ℓ that intersects X ′ more than M + 3 times.
Therefore, to approximate 1{X ′} sufficiently close, N ′ must have at least M + 1 linear regions on ℓ.
However, N ′ can have at most M linear regions in Rd from the definition of M . This contradiction
completes the proof.

Theorem C.5. Let dx, dy ∈ N and p ≥ 1. Then, the set of three-layer ReLU networks is dense in
Lp(Rdx , [0, 1]dy). Furthermore, let f : Rdx → [0, 1]dy be a compactly supported function whose
Lipschitz constant is L. Then, for any ε > 0, there exists a three-layer ReLU network N with the
architecture

dx
σ→ (2ndxdy)

σ→ (ndy) → dy

such that ∥N − f∥Lp(Rdx) < ε. Here, n = ε−dx
(
1 + (

√
dxL)

p
)dx/p

= O(ε−dx).

Proof. Fist we recall a result in real analysis: the set of compactly supported continuous functions is
dense in Lp(Rdx) for p ≥ 1 (Rudin et al., 1976, Theorem 3.14). Therefore, it is enough to prove the
second statement; which claims that any compactly supported Lipschitz function can be universally
approximated by three-layer ReLU networks.

We consider dy = 1 case first. Let f ∈ Rdx → [0, 1] be Lipschitz, and let L be its Lipschitz constant.
Without loss of generality, suppose the support of f is contained in [0, 1]dx . Let δ > 0 be the small

30

Under review as a conference paper at ICLR 2024

number which will be determined. Now we partition [0, 1]dx by regular dx-dimensional cubes with
length δ. Now, consider estimating the definite integral uses a Riemann sum over cubes. The total
number of cubes are n := (1δ)

dx , and we number these cubes by C1, C2, · · · , Cn. For each cube Ci,
by Proposition 3.2, we can define a two-layer ReLU network Ti with the architecture dx

σ→ 2dx → 1

such that Ti(x) = 1 in Ci and Ti(x) = 0 for x ̸∈ Br(Ci) with r := 1
2dx

δp+1

1+δp . Then for any xi ∈ Ci,
we get∫

Br(Ci)

|f − f(xi)Ti|p dµ =

∫
Ci

|f − f(xi)Ti|p dµ+

∫
Br(Ci)\Ci

|f − f(xi)Ti|p dµ

≤
∫
Ci

(
√

dxLδ)
p dµ+

∫
Br(Ci)\Ci

1p dµ

≤ (
√
dxLδ)

p · δdx +
[
(δ + 2r)dx − δdx

]
= (
√
dxL)

p · δdx+p +

[(
1 +

2r

δ

)dx

− 1

]
δdx

<
[
(
√
dxL)

p + 1
]
δdx+p.

Note that we use two inequalities, |f(x) − f(xi)| ≤ L
√
dxδ for x ∈ Ci and (1 + a)k < 1

1−ak

for 0 < a < 1
k . Then, the above equation implies the Lp distance between f and f(xi)Ti in Ci is

bounded by the above value. Now we define a three-layer neural network N by

N (x) :=

n∑
i=1

f(xi)Ti(x),

which is a Riemann sum over the n cubes partitions. Then N has the architecture dx
σ→ (2ndx)

σ→
n → 1 and satisfies ∫

Rdx

|f −N|pdµ =

∫
Br([0,1]dx)

|f −N|p dµ

<

n∑
i=1

∫
Br(Ci)

|f − f(xi)Ti|p dµ

≤
[
(
√

dxL)
p + 1

]
nδdx+p.

=
[
(
√

dxL)
p + 1

]
δp.

Therefore, take δ < ε(1+(
√
dxL)

p)−
1
p for given ε, we conclude that ∥f −N∥Lp([0,1]dx) < ε. From

this choice of δ, we get

n = δ−dx > ε−dx

(
1 + (

√
dxL)

p
)dx/p

= O(ε−dx).

If dy > 1, we can obtain the desired network by concatenating dy networks, thus the architecture is

dx
σ→ (2ndxdy)

σ→ (ndy) → dy.

Proposition C.6 (Theorem 2.1 in Du et al. (2018), two-layer version). Let N (x) := v0 +∑l
k=1 vkσ(w

⊤
k x + bk) be a two-layer ReLU network, and L = 1

n

∑n
i=1 ℓ(N (xi), yi) be the loss

function. Then, on the gradient flow, for all k ∈ [l], the quantity

v2k − ∥wk∥2 − b2k (36)

is invariant.

31

Under review as a conference paper at ICLR 2024

(a) (b) (c)

Figure 9: Proof of Proposition C.4. (a) X is a given topological space, and A is a feasible architec-
ture on X . (b) Y is a zig-zag shaped long band, which is a contractible space. There exists a straight
line ℓ such that Y and ℓ has sufficiently many intersection points, so that A cannot approximate Y . (c)
X ′ is the connected sum of X and Y , which is homeomorphic with X . However, A is not a feasible
architecture on X ′.

Proof. The proof is written in Du et al. (2018), and we provide here for completeness. The gradient
of each component is computed by

∂L

∂vk
=

1

n

n∑
i=1

∂ℓ

∂N (xi)
· σ(w⊤

k xi + bk),

∂L

∂wk
=

1

n

n∑
i=1

∂ℓ

∂N (xi)
· vk1{w⊤

k xi+bk>0}xi,

∂L

∂bk
=

1

n

n∑
i=1

∂ℓ

∂N (xi)
· vk1{w⊤

k xi+bk>0}.

Then, it is easy to check that

vk
∂L

∂vk
= w⊤

k (
∂L

∂wk
) + bk · ∂L

∂vk
.

Now, we differentiate (36). It gives

d

dt
(v2k − ∥wk∥2 − b2k) = 2vk

dvk
dt

− 2w⊤
k (

dwk

dt
)− 2bk

dbk
dt

= 2

(
−vk

∂L

∂vk
+w⊤

k (
∂L

∂wk
) + bk

∂L

∂bk

)
= 0

for all t. Therefore, (36) is constant.

D FURTHER EXPERIMENTAL RESULTS

In this section, we present additional experimental results that specifically investigate the effect
of initialization. We utilize the two datasets X1 and X2 described in Figure 4(a) and (d). Before
showcasing the result, it is woth mentioning that the random initialization strategy often leads to the
dying ReLU initialization issue (Lu et al., 2019), implying that the network has a constant output at
initialization. Therefore, we excluded such examples and exhibit some cases where gradient descent
converges. We experimented with multiple random initializations and manual initializations on neural
networks with the given architecture, and the convergence results are shown in Figure 10.

Generally, reaching the global minima (near zero loss) with gradient descent is challenging, under-
scoring the importance of the initialization condition (9). It is anticipated that the probability of
successful training increases with wider networks, as it offers more choices for selecting hyperplanes
and polytopes among the neurons. Additionally, it’s worth noting that the network parameters reach-
ing the global minima are not unique, as illustrated in the second row last column of Figure 10. We
leave these intriguing branches of research for future work.

32

Under review as a conference paper at ICLR 2024

Figure 10: Additional convergence results with MSE and BCE loss functions. The result shows that
gradient descent method converges to the global minimum under Assumption 4.2, as Theorem 4.3
provided. However, it may converge to a local minima when the above assumption is unsatisfied,
which asserts the importance of initialization conditions.

Detailed setup of experiments in Figure 4. All experiments were executed using Pytorch on a
GeForce GTX 1080 Ti. The training dataset was generated from 40× 40 = 1600 lattice points in
the [−20, 20]× [−20, 20] ⊂ R2 range, where each point was labeled ‘1’ if the point was in Xi, and

33

Under review as a conference paper at ICLR 2024

‘0’ otherwise. The optimization method employed was full-batch gradient descent, with learning
rates set at 0.005 for X1 (two triangles) and 0.001 for X2 (a hexagon with a pentagon hole). The
total number of epochs was flexibly determined for each experiment, ensuring a sufficient number to
achieve convergence.

E FINDING A POLYTOPE-BASIS COVER FOR REAL DATASET

Before delving into our results, we introduce a slight extension to the traditional notion of a convex
polytope. In this extension, a convex polytope is regarded as an intersection of hyperspaces, allowing
for the possibility of being unbounded.
Definition E.1. A set C ⊂ Rd is called a convex polytope with l faces if there exist wk ∈ Rd and

bk ∈ R for k ∈ [l] such that C =
l⋂

k=1

{x ∈ Rd | w⊤
k x+ bk ≤ 0}.

According to this definition, a convex polytope may have some unbounded sides. It is crucial to
emphasize that all the theoretical results presented in the main body of the paper remain applicable
under this generalized definition.

Now, we propose the method to probe the geometry of the given dataset by training a two-layer ReLU
network. Drawing inspiration from the constructive proof of Proposition 3.2, and the characterization
of decision boundaries depicted in Vallin et al. (2023), we leverage the convexity exhibited by the
two-layer ReLU network when the second layer weights vk have the same sign. This is formally
demonstrated in the following proposition. We use this proposition to find a polytope-basis cover in
real datasets.

Proof of Proposition 3.7. First, we prove that N is a convex function, since σ is convex and the
sum of convex functions is again convex (we use the positivity of vk’s here). Therefore, the region
R := {x | N (x) < 0} is convex. Further, since all vk > 0, x ∈ S if and only if w⊤

k x+ bk < 0 for
all k ∈ [l]. Then, S is a convex polytope with l faces by Definition E.1. The second statement is
induced from the fact that the minimum of convex functions is convex.

One challenge in applying this proposition arises from the fact that in most cases, a trained neural
network may have both positive and negative values for vk’s. To ensure that all vk are positive, we
leverage the balancedness property (Du et al. (2018, Theorem 2.1)), which is written in Proposition
C.6 for completeness. It states that the quantity v2k − ∥wk∥2 − b2k remains invariant on the gradient
flow, for all k ∈ [l]. Exploiting this identity, we initialize vk > (∥wk∥2 + b2k)

1/2 to ensure that all vk
remain positive throughout the training process.

For our experiments, we employ three datasets: MNIST, Fashion-MNIST, and CIFAR10. We consider
the binary classification distinguishing one class from all other classes, to obtain a polytope-basis
cover of the class. Furthermore, it is important to highlight that in Proposition 3.7, the region
classified as positive (x | N(x) > 0) may not exhibit convexity. Consequently, for each class, we
conducted training twice using different labels, 0 and 1, to assess the convexity of the complement
of each class. We represent the complement of a class as {class}c. We trained a two-layer ReLU
network (1) with increasing the width, to get 99.99% accuracy on the training set.

Our empirical results are summarized in Table 1. Each column in the table corresponds to a class in
the dataset, where row presents the type of the class. The values in the table denotes the number of
polytopes and their faces. Specifically, we use the notation a+ b to denote two polytopes with a and
b faces, respectively. For exmple, the value in the first row and the first column shows that the {0}
class images in MNIST dataset can be distinguished with other classes, by a single convex polytope
with 20 faces. On the other hand, the second row in the first column shows that the complement of
the class, namely {0}c := {1, 2, 3, 4, 5, 6, 7, 8, 9}, can be separated from {0} by a convex polytope
with only four faces, as illustrated in Figure 11(a). In general, our result shows that the complement
of each class has more simple polytope cover, than the class itself.

In the case of Fashion-MNIST, we encountered challenges in obtaining a single convex polytope
cover for certain classes. For these classes, we conducted additional training of another network
to acquire more polytopes, aiming to cover the misclassified data points. Given the small number

34

Under review as a conference paper at ICLR 2024

(a) (b)

Figure 11: Illustration of a polytope-basis cover in the real datasets. (a) Each class of MNIST can be
separated by a single convex polytope with less than 40 faces. Furthermore, the complement of each
class can be distinguished more simply - by a polytope with less than 8 faces. (b) Some classes in
Fashion-MNIST or CIFAR10 are covered by a union or difference of at most three polytopes.

class number
0 1 2 3 4 5 6 7 8 9

MNIST {class} 20 20 40 30 20 30 20 40 40 30

{class}c 4 7 4 7 4 4 3 5 7 7

Fashion-
MNIST

{class} 20+10 20 20+20 30+20 20+35 10+5 30+25 10+10 30 10+5

{class}c 10 20 40 10 40 10 40 10 10 10

CIFAR10 {class} 20+10 20 30+20+5 30+10 30+10+5 30+10+5 30+10 30+10+10 30+10 30+10

{class}c 30+10 20 30+30 30+10 40+10 20+5 30 10+10 30+10 20

Table 1: The number of polytopes and their faces of a polytope-basis cover of each class in MNIST,
Fashion-MNIST, and CIFAR10 datasets. The result show that each class in these datasets can be
separated by at most three polytopes with less than 40 faces.

of misclassified data points, we opted for a relatively small width for the second polytope. For
instance, the {0} class in Fashion-MNIST can be covered by the difference of two convex polytopes,
constituting a polytope-basis cover for the class. Figure 11(b) illustrates the case where the {0} class
(T-shirt images) is separated by the difference of two polytopes. However, each complement set can
be covered by a single convex polytope.

In the CIFAR10 dataset, we observed an increase in the number of polytopes, aligning with the
intuition that CIFAR10 has a more complex geometric structure compared to MNIST or Fashion-
MNIST. Despite this complexity, it is able to find a polytope-basis cover within three polytopes, each
with fewer than 50 faces.

In summary, our empirical verification demonstrates that each class in the MNIST, Fashion-MNIST,
and CIFAR10 datasets has a polytope-basis cover with at most three convex polytopes, each having
fewer than 40 faces. This observation highlights the simple geometry inherent in these real-world
datasets. Additionally, our results indicate that the complement of each class tends to have a simpler
polytope-basis cover than the class itself.

Lastly, it’s important to note that this doesn’t imply the convexity of the data manifold. Figure 12
illustrates that although each class can be separated by a convex polytope C, the data manifold itself
may not exhibit convexity.

Detail setup of experiments. We employed the BCE loss (7) to train a two-layer network. Moreover,
we set v0 in (1) to a fixed value of 1, treating it as a non-learnable parameter. The training process
was halted once 99.99% of the training data points were contained within the polytope, as confirmed
by checking the activation of ReLU neurons during training. When it was failed to find a single
polytope cover for some class, we trained another network to find the second polytope distinguishing
misclassified data from all other data points in different classses, and so on. As a result, we could
find at most three polytopes to distiguish each class. We normalized all datasets by their mean and
standard deviations.

35

Under review as a conference paper at ICLR 2024

Figure 12: The existence of convex polytope cover does not imply the convexity of the dataset
manifold.

36

	Introduction
	Related Work
	Data-geometry and neural network architecture
	Preliminaries
	Main Theoretical Findings
	Analyzing geometric structure of real dataset

	Convergence on the proposed networks
	Experiments
	Conclusion
	Extension to Deep ReLU Networks and Cross Entropy Loss
	Proofs
	Proof of Proposition 3.2.
	The upper bound in Proposition 3.2.
	The lower bound in Proposition 3.2.

	Proof of Theorem 3.4
	Proof of Theorem 3.5
	Proof of Theorem 3.6.
	The upper bound in Theorem 3.6.
	The lower bound in Theorem 3.6.

	Proof of Theorem 4.3.
	Proof for MSE loss function.
	Proof for BCE loss function.

	Additional Propositions and Lemmas
	Further experimental results
	Finding a polytope-basis cover for real dataset

