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ABSTRACT

The large communication and computation overhead of federated learning (FL)
is one of the main challenges facing its practical deployment over resource-
constrained clients and systems. In this work, SpaFL: a communication-efficient FL
framework is proposed to optimize both personalized model parameters and sparse
model structures with low computational overhead. In SpaFL, a trainable threshold
is defined for each neuron/filter to prune its connected parameters. Both model
parameters and thresholds are jointly optimized to enable the automatic sparsifica-
tion of the models while recovering prematurely pruned parameters during training.
To reduce communication costs, only thresholds are communicated between a
server and clients instead of parameters, thereby enabling the clients to learn how
to prune. Further, global thresholds are used to update model parameters by extract-
ing aggregated parameter importance. The convergence of SpaFL is analyzed, and
the results provide new insights into the tradeoff between computation costs and
learning performance. Experimental results show that SpaFL improves accuracy
while requiring much less communication and computing resources compared to
both dense and sparse personalized baselines.

1 INTRODUCTION

Federated learning (FL) is a distributed machine learning framework in which clients collaborate
to train a machine learning (ML) model without sharing private data [1]. In FL, clients perform
multiple epochs of local training using their own datasets and communicate model updates with a
server. Different from a standard centralized setting, FL systems are typically deployed on edge
devices such as mobile or Internet of Things (IoT) devices, which have limited computing and
communication resources. However, current ML models are typically too large and complex to
be trained and deployed for inference by edge devices. Moreover, large model sizes can induce
significant FL communication costs on both devices and communication networks. Hence, the
practical deployment of FL over resource-constrained devices and systems requires optimized
computation and communication costs for both edge devices and communication networks. This has
motivated lines of research focused on reducing communication overhead in FL [2, 3, 4], training
sparse neural networks in FL [5, 6, 7, 8, 9], and optimizing model architectures to find a compact
model for inference [10, 11, 12]. The works in [2, 3, 4] proposed training algorithms such as
quantization, gradient compression, and transmitting the subset of models in order to reduce the
communication costs of FL. However, the associated computational overhead of these existing
algorithms remains high since devices have to train a dense model. In [5, 6, 7, 8, 9], FL algorithms
in which devices train and communicate sparse models are proposed. However, the computation
and communication overhead can still be large if model sparsity is not high. Moreover, the model
performance often becomes low for high model sparsity. Furthermore, the FL approaches of [10, 11,
12] can significantly increase computation resource usage by training multiple models for resource-
constrained devices. Clearly, despite a surge of literature on sparsity in FL, there is still a need to
develop new FL algorithms that can obtain sparse models with optimized communication efficiency
and low computational overhead to operate on resource-constrained devices while maintaining model
performance with high sparsity.

The main contribution of this paper is to propose SpaFL: a communication-efficient FL framework
for optimizing sparse models with low computational overhead by performing model pruning through
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trainable thresholds. SpaFL communicates only the thresholds so as to learn how to prune and
significantly save communication costs. Here, a trainable threshold is defined for each neuron/filter
and is used to prune its connected parameters based on magnitude. Both parameters and thresholds
are jointly optimized to enable the automatic sparsification of models while recovering prematurely
pruned parameters during training. Therefore, SpaFL reduces computational overhead on resource
constrained devices with minimal performance loss. To further save communication costs, only
thresholds are communicated between clients and a server. Hence, clients can learn how to prune
their model from global thresholds. Since parameters are not communicated, the clients’ parameters
and sparse model structures will remain personalized while only global thresholds are shared. We
show that global thresholds can capture the aggregated parameter importance of clients. We further
update the clients’ model parameters by extracting aggregated parameter importance from global
thresholds to improve performance. We analyze the convergence of thresholds while shedding light
on the tradeoff between computational overhead and performance. We summarize our contributions
as follows:

• We propose a new communication-efficient FL framework called SpaFL, in which clients op-
timize their personalized model parameters and sparse model structures with low computing
costs through trainable thresholds.

• We show how SpaFL can significantly reduce communication overhead for both clients and
the server by only exchanging thresholds, the number of which is less than two orders of
magnitude smaller than the number of model parameters.

• We prove the convergence of thresholds. Moreover, the impact of thresholds on the model
performance is theoretically and experimentally analyzed.

• Experimental results demonstrate the performance, computation costs, and communication
efficiency of SpaFL compared with both dense and sparse baselines. For instance, the results
show that SpaFL uses only 2.87% of communication and 14.7% of computation resources
compared to a dense baseline FedAvg while improving accuracy. Additionally, SpaFL
improves accuracy by 2.13% compared to a sparse personalized baseline while consuming
only 25.55% of this baseline’s communication resources, and only 14.67% of its computing
resources.

2 BACKGROUND AND STATE-OF-ART

2.1 PERSONALIZED FL

Personalized FL is a field of FL whose goal is to produce personalized models for each client
to cope with the data heterogeneity. Personalization can be done via multiple methods such as
layer personalization [2, 13, 14], regularization term [15, 16], fine-tuning [17, 18], and knowledge
distillation [19, 20]. Although personalization can effectively tackle non-iid datasets, it requires extra
computation [15, 17, 18, 19, 20] for resource-constrained clients, and its communication overhead
can also be high due to large model sizes. As such, computation and communication costs are still
one of the major challenges for personalized FL. This has motivated a line of research in training
sparse personalized models [7, 9, 21, 22, 23, 24] by allowing clients to locally prune a global model
during training.

2.2 TRAINING AND FINDING SPARSE MODELS IN FL

To reduce the computation and communication overhead of complex ML models during training, the
idea of embedding FL algorithms with pruning has recently emerged. In [5, 6, 7, 8, 9, 21, 22, 23, 24,
25, 26, 27], the clients train sparse models and only communicate sparse model parameters to reduce
computation and communication overhead. To improve the aggregation phase with sparse models,
the works in [5, 8, 21] perform averaging only between overlapping parameters to avoid information
dilution by excluding zero value parameters. The work in [6] obtained a sparse model by selecting
a particular client to prune an initial dense model and then performed training in a similar way to
FedAvg. In [25], the authors presented binary masks adjustment strategy to improve the performance
of sparse models and communication efficiency. The work in [26] progressively pruned a dense model
for sparsification and analyzed its convergence. Similarly, in the FL solutions of [9, 21], the clients
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Figure 1: Illustration of SpaFL framework that performs model pruning through thresholds. Only the
thresholds are communicated between the server and clients.

train and communicate personalized sparse local models while iteratively pruning a dense model. In
[7, 22], the clients optimized personalized sparse models by exchanging lottery tickets [28] at every
communication round. The work in [24] obtained personalized sparse models by l1 norms constraints
and the correlation between local and global models. The FL framework of [23] allows clients to
train personalized sparse models in a decentralized setting without a central server. Although these
works adopted sparse models during training, if models are not sparse enough, the computation
and communication costs can remain high due to the large model sizes. Moreover, trained models
often have a poor performance at high sparsity. In [29, 30], binary masks are communicated and
optimized by training auxiliary variables while freezing model parameters. However, the work in
[29] approximated binarization step using a sigmoid function during forward propagation. In [30],
the downlink communication costs remained the same as that of FedAvg. In [10, 11, 31], clients
perform neural-architecture-search by training multiple models to find optimized and sparse models
to improve computational and memory efficiency at inference phase. However, in practice, clients
often have limited resources to support the computationally intensive architecture search process.
Therefore, most prior works either required extensive computational resources to find sparse models,
or achieved a poor performance for high model sparsity. Different from prior works, in the proposed
SpaFL framework, we do not incur more computational resources to find sparse models nor do we
jeopardize the performance for sparsification.

3 SPAFL ALGORITHM

In this section, we first formulate our FL problem and present SpaFL to solve the proposed problem
with low computation and communication costs.

3.1 PROBLEM FORMULATION

We now formulate our main problem. We aim to optimize each client’s model parameters and sparse
model structures jointly in a personalized FL setting. This can be formulated as the following bi-level
optimization problem:

min
p1,...,pN

N∑
k=1

Fk(w
∗
k ⊙ pk;w

∗
k),

s.t. w∗
k = argmin

w
Fk(w ⊙ pk;pk),

Fk(w ⊙ pk;pk) =
1

Dk

Dk∑
i=1

L(w ⊙ pk; {xi, yi}) (1)

where pk ∈ Rd is a binary mask corresponding to a personalized sparse model structure of client
k, Fk(·) is a empirical risk associated with local data of client k, L is a loss function, Dk is the
number of data samples, {x, y} is an input-label pair, wk captures the model parameters, and ⊙
is the Hadamard product. If the element of pk is zero, then the corresponding parameter of wk
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will be pruned. Our goal is to obtain the optimal wk and pk for each client in order to reduce the
computation and communication overhead during training while being robust to the data heterogeneity
among clients. However, solving (1) is not trivial because wk and pk are highly correlated [11].
Moreover, personalization and model sparsification should be achieved in a resource-efficient manner
because most clients (e.g., mobile or IoT devices) and communication systems do not have enough
computation and communication resources.

3.2 ALGORITHM OVERVIEW

We now describe the proposed algorithm, SpaFL, that can solve (1) while maintaining communication-
efficiency with low computational cost. In SpaFL, every client jointly optimizes its personalized
sparse model structure and model parameters with trainable thresholds, which can be used to prune
the model parameters. To save communication resources, only thresholds will be aggregated at a
server to generate global thresholds for the next round. Here, global thresholds can represent the
aggregated parameter importance of clients. Hence, at the beginning of each round, every client
extracts the aggregated parameter importance from the global thresholds so as to update its model
parameters. The overall algorithm is illustrated in Fig 1. and summarized in Algorithm 1.

3.2.1 PRUNING WITH TRAINABLE THRESHOLDS

To optimize the binary mask pk in (1), inspired from [32], we define a trainable threshold for each
neuron in fully-connected layers or for each filter in convolutional layers. The neural network
of client k will consist of L layers as {W 1

k, . . . ,W
L
k }. For parameters W l

k ∈ Rnl
out×nl

in in a
fully-connected layer l, we define trainable thresholds τ l ∈ Rnl

out . If it is a convolutional layer
W l

k ∈ Rnl
out×clin×kl×hl

, where clin is the number of input channels and kl × hl are the kernel sizes,
we can change W l

k as W l
k ∈ Rnl

out×nl
in with nl

in = clin × kl × hl. Similarly, we can define the
corresponding thresholds τ l ∈ Rnl

out . Then, for each client k, we define a set of total thresholds
τ = {τ 1, . . . , τL}. Note that the number of these additional thresholds will be at most 1% of the
number of model parameters d. Moreover, to further improve the communication efficiency, only
these thresholds will be communicated between clients and the server.

We prune a parameter if its magnitude is smaller than its connected neuron/filter’s threshold. Then,
we can obtain a binary mask pl

k for W l
k, as follows

plk,ij = S(|wl
k,ij | − τ li ), 1 ≤ i ≤ nl

out, 1 ≤ j ≤ nl
in, (2)

where S(·) is a unit step function. Hence, we can obtain the binary masks {p1
k, . . . ,p

L
k } by performing

(2) at each layer. To facilitate the pruning, we constrain the parameters and thresholds to be within
[−1, 1] and [0, 1], respectively [32]. For simplicity, we unroll {W 1

k, . . . ,W
L
k } and {p1

k, . . . ,p
L
k } to

wk ∈ Rd and pk ∈ Rd, respectively as done in [33].

3.2.2 LOCAL TRAINING FOR PARAMETERS AND THRESHOLDS

At each round, a server samples a set of clients St such that |St| = K for local training. For
given global thresholds τ (t) at round t, client k ∈ St generates a binary mask pk(t; τ (t)) using (2).
Subsequently, it obtains the sparse model w̃k(t) = wk(t)⊙ pk(t; τ (t)). To improve communication
efficiency, each client performs E epochs with pk(t; τ (t)). In particular, for E > 1, client k ∈ St
performs E − 1 epochs to its sparse model using mini-batch stochastic gradient as follows:

we+1
k (t)← we

k(t)− η(t)gk(w̃
e
k(t))⊙ pk(t; τ (t)), 0 ≤ e < E − 1, w̃0

k(t) = w̃k(t), (3)

where gk(w̃
e
k(t)) = ∇w̃e

k
Fk(w̃

e
k(t), τ (t); ξ

e
k(t)) with a mini-batch ξ and η(t) is a learning rate for

the model parameters. During E − 1 epochs, the model parameters can adapt to the new binary
mask pk(t; τ (t)), which is generated using the current global thresholds τ (t), by recovering from
pruning-induced noise [34]. Then, in the last epoch e = E − 1, client k updates the received global
thresholds τ (t) via backpropagation. Client k first calculates the following sparsity regularization

term R(t) =
∑L

l=1

∑nl
out

i=1 exp(−τi). Then, the loss function at the last epoch e = E − 1 will be:

Fτ ,k(t) = Fk(w̃
E−1
k (t), τ (t); ξE−1

k (t)) + αR(t), (4)
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where 0 ≤ α ≤ 1 is the coefficient that controls R(t). From (4), we can give thresholds τ (t)
performance feedback on the current sparse model while also progressively increasing τ (t) through
the sparsity regularization term R(t) [32]. Hence, prematurely pruned parameters can be recovered
since thresholds and parameters are jointly updated while progressively enforcing sparsity. From (4),
client k then updates the received global thresholds τ (t) via backpropagation as follows

τ lk,i(t)← τ li (t)− η(t)hl
k,i(w̃

E−1
k (t)) + αη(t)τ li (t), 1 ≤ l ≤ L, 1 ≤ i ≤ nl

out, (5)

where

hl
k,i(w̃

E−1
k (t)) = −

nl
in∑

j=1

{gk(w̃
E−1
k (t))}lijw

E−1,l
k,ij (t). (6)

For simplicity, we can vectorize (5) as follows:

τ k(t)=τ (t)−η(t)hk(w̃
E−1
k (t))+α exp(−τ (t)), ||hk(w̃

E−1
k (t))||2=

L∑
l=1

nl
out∑

i=1

||hl
k,i(w̃

E−1
k (t))||2,

(7)

where hk(w̃
E−1
k (t)) = ∇τFk(w̃

E−1
k (t), τ (t); ξE−1

k (t)). When we calculate the gradients of thresh-
olds τ (t), we use the identity straight-through estimator [35] to approximate the gradient of the step
functions in (2).

From (6), we can see that threshold τ lk,i corresponds to the importance of its connected parameters
wl

k,ij , 1 ≤ j ≤ nl
in, in the sparse model w̃k(t). This is because the importance of a parameter wl

ij
can be estimated by [36]

F (w, τ )− F (w, τ ;wl
ij = 0) ≈ g(w)lijw

l
ij , (8)

where F (w, τ ;wl
ij = 0) is the loss function when wl

ij is masked and the approximation is obtained
from the first Taylor expansion at wl

ij = 0. Therefore, if connected parameters were important, the
sign of (8) of those parameters will be negative, and the corresponding threshold will decrease as
in (6). Otherwise, the threshold will be increased to enforce sparsity. Hence, prematurely pruned
parameters will be automatically recovered via a joint optimization of τ and w.

3.2.3 COMMUNICATION-EFFICIENT THRESHOLDS TRANSMISSION AND AGGREGATION

After local training, each client k ∈ St, transmits the updated thresholds τ k(t) to the server. Here, the
communication overhead will be less than one percent of that of transmitting the entire parameters.
Subsequently, the server aggregates the received thresholds and generates new global thresholds for
the next round, i.e.,

τ (t+ 1) =
1

K

∑
k∈St

τ k(t). (9)

Since thresholds represent the importance of the connected parameters at each neuron/filter, clients
can learn how to prune their parameters from the global thresholds. Moreover, the difference between
two consecutive global thresholds ∆τ (t) = τ (t + 1) − τ (t) captures the history of aggregated
parameter importance, which can be further used to improve model performance. For instance, from
(8), if ∆τ li (t) < 0, then the parameters connected to threshold i in layer l were globally important. If
∆τ li (t) ≥ 0, then the connected parameters were globally less important. Hence, from ∆τ (t), clients
can deduce which parameter is globally important or not and further update their model parameters.
After generating new global thresholds τ (t+ 1), the server broadcasts τ (t+ 1) to client k ∈ N , and
then clients calculate ∆τ (t) = τ (t+ 1)− τ (t).

3.2.4 EXTRACTING PARAMETER IMPORTANCE FROM GLOBAL THRESHOLDS

We now present how clients can update their model parameters from ∆τ (t). For given ∆τ (t), we
need to decide on the: 1) update direction and 2) update amount. Clients can know the update
direction of parameters by considering ∆τ (t) and the dominant sign of parameters connected to
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Algorithm 1: SpaFL
Input: Total number of clients N ; Total communication rounds T ; Local number of epochs E
Output: Personalized models w̃k

1 The server initializes τ (0) and w(0) and broadcasts them to every client ;
2 for t = 0 to T − 1 do
3 Server randomly samples St;
4 for Client k ∈ St do
5 Generate a binary mask pk(t; τ (t)) and prune the current model w̃k(t) = wk(t)⊙ pk(t; τ (t));
6 for e = 0 to E − 1 do
7 if e < E − 1 then
8 Update we

k(t)← w̃e
k(t)− η(t)gk(w̃

e
k(t))⊙ pk(t; τ (t))

9 else if e == E − 1 then
10 Update τ (t) using (5)

11 Transmit the updated threshold τ k(t) to the server

12 Generate a new global threshold τ (t+ 1) using (9)
13 for Client k ∈ N do
14 Receive τ (t+ 1) from the server and calculate ∆τ (t);
15 Update the current local model using ∆τ (t) with (12);

each threshold. For simplicity, assume that each parameter has a threshold. Then, the gradient of the
thresholds in (6) can be rewritten as follows:

hk(w̃
E−1
k (t)) = −gk(w̃

E−1
k (t))wk(t). (10)

The gradient of the loss Fk(w̃k(t), τ (t)) with respect to the whole parameters wk(t) is given by

∂Fk(w̃k(t), τ (t))

∂wk(t)
= gk(w̃k(t))|wk(t)|. (11)

From (10) and (11), the gradient direction of a parameter w is opposite of that of its connected
threshold if w > 0. Otherwise, both the threshold and the parameter have the same gradient direction.
Hence, we can deduce the following: If w > 0, the gradient direction of w and the sign of ∆τ
will have the same sign; otherwise, the gradient direction of w and the sign of ∆τ are opposite.
Since in SpaFL each threshold has multiple connected parameters, we decide the update direction
of connected parameters by finding the dominant sign among them. To this end, we simply add the
connected parameters of each threshold. For instance, consider threshold i in layer l of client k, if∑nl

in
j=1 w

l
k,ij(t) > 0, then the gradient direction of the connected parameters will be the same as the

sign of ∆τ li (t). Otherwise, it is the opposite of the sign of ∆τ li (t). Thus, the update direction can
be simply expressed with a XOR operation between the sign of ∆τ li (t) and the sign of connected
parameters sum. Next, we decide how much a parameter should be updated. From (10) and (11),
we can see that a threshold and a parameter have the same magnitude for their gradients. Hence,
we simply divide ∆τ li (t) by the number of connected parameters nl

in. We finally provide the update
equation using ∆τ (t) as follows

wl
k,ij(t+ 1) = wl

k,ij(t) +
1

nl
in
∆τ li (t) XOR

sign

 nl
in∑

j=1

wl
k,ij(t)

 , sign(∆τ li (t))

 , (12)

where sign(·) is a sign function. This parameter update corresponds to line 7 in Algorithm 1. Note
that this additional parameter update is not computationally intensive because it happens only once
before local training. We also provide the number of used FLOPs during training with inclusion of
this operation in Section 5.

4 THEORETICAL ANALYSIS OF SPAFL

We now present our analysis on the convergence of thresholds under the following commonly adopted
assumptions [37].
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Assumption 1. (smoothness) Fk(·) is M -smooth for τ and client k, ∀k

Fk(w, τ ′) ≤ Fk(w, τ ) + ⟨∇τFk(w, τ ), τ ′ − τ ⟩+ M

2
||τ ′ − τ ||2, ∀τ . (13)

Assumption 2. (Unbiased stochastic gradient) The stochastic gradient hk is an unbiased estimator
of the gradient ∇τFk, respectively, for client k, ∀k, such that

Ehk(wk) = ∇τFk(wk, τ ) (14)

Then, we can derive the convergence of thresholds in the following theorem.

Theorem 1. For γ(t) = η(t)(1− α(1−Mη(t))
2 ) and the largest number of parameters connected to a

neuron or filter nmax
in > 0 in a given model, we have

1

NT

T−1∑
t=0

E||
N∑

k=1

∇τFk(w̃
E−1
k (t), τ (t))||2≤

T−1∑
t=0

N∑
k=1

E||∇τFk(w̃
E−1
k (t), τ (t))−∇τk

Fk(w̃
E−1
k (t), τ k(t))||2

MNTγ(t)

+
T−1∑
t=0

2αη(t)

Tγ(t)
{1−Mη(t)(1− α)} || exp(−τ (t))||2

+

T−1∑
t=0

N∑
k=1

M2η(t)2nmax
in

NTγ(t)
EFk(w̃

E−1
k (t), τ (t))

+

T−1∑
t=0

N∑
k=1

E||τ (t)− τ k(t)||2

NTγ(t)
. (15)

Proof is provided in the Supplementary document.

From (6), thresholds τ (t) are updated using parameter gradients gk(t), k ∈ St. We can expect
that the thresholds will converge when parameters wk,∀k, converge. We can see that the sparsity
regularizer coefficient α impacts convergence. As α increases, we can quickly enforce more sparsity
to the model. However, a very large α will damage the performance as γ(t) decreases in (??). We can
also observed that the convergence depends on the difference between the received global thresholds
τ (t) and the updated thresholds τ k(t). Hence, a very large change to the global thresholds will lead
to a significantly different binary mask in the next round. Then, local training can be unstable as
parameters have to adapt to the new mask. Therefore, from Theorem 1, we can capture the tradeoff
between the computing cost and the learning performance in terms of α.

5 EXPERIMENTS

We now present experimental results to demonstrate the performance, computation costs and commu-
nication efficiency of SpaFL. Implementation details are provided in the Supplementary document.

5.1 EXPERIMENTS CONFIGURATION

We conduct experiments on three image classification datasets: FMNIST [38], CIFAR-10, and
CIFAR-100 [39] datasets. To distribute datasets in a non-iid fashion, we use Dirichlet (0.2) for
FMNIST and Dirichlet (0.1) for CIFAR-10 and CIFAR-100 datasets as done in [40] with N = 100
clients. We set the total communication round T = 500. At each round, we randomly sample
K = 10 clients. Unless stated otherwise, we average all the results over at least 10 different random
seeds. We also calculate the best accuracy by averaging each client’s performance on its test dataset.
For FMNIST dataset, we use the Lenet-5-Caffe and LSTM models. For the Lenet model, we set
η(t) = 0.001, E = 3, α = 0.002, and a batch size to be 64. For the LSTM model, we use two
LSTM layers with hidden size of 128, η(t) = 0.01, E = 3, α = 0.0003 and a batch size of 16. For
CIFAR-10 dataset, we use a convolutional neural network (CNN) model with seven layers used in
[41] with η(t) = 0.01, E = 3, α = 7.5 × 10−5, and a batch size of 16. We adopt the ResNet-8
model [42] for CIFAR-100 dataset with η(t) = 0.1, E = 2, α = 0.01, and a batch size of 64. The
learning rate of CIFAR-100 is decayed by 0.991 at each communication round.
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FMNIST CIFAR10 CIFAR100
Algorithms Acc Comm FLOPs Acc Comm FLOPs Acc Comm FLOPs

(Gbit) (e+11) (Gbit) (e+12) (Gbit) (e+11)
SpaFL 90.31±0.35 1.0208 2.7210 73.85±2.80 2.4956 1.5901 38.80±1.10 0.7674 2.8424
FedAvg 88.78±0.20 133.8 6.2044 61.33±0.15 258.36 7.4729 26.46±0.10 26.784 19.380

LG-FedAvg 89.42±0.57 1.6 6.2044 67.43±1.73 5.6524 7.4729 36.67±0.38 2.7353 19.380
PruneFL 86.72±0.17 70.195 5.3443 57.19±0.24 131.23 4.5851 22.04±0.12 11.477 13.555

Sub-FedAvg 89.29±0.69 108.46 3.2947 70.05±1.88 198.52 3.5914 31.05±1.12 25.382 14.137
LotteryFL 89.15±0.62 70.195 3.0515 66.82±0.11 204.09 3.9700 28.90±0.22 21.680 14.712
FedDST 84.46±0.14 74.461 2.8890 60.18±0.03 139.19 3.4373 22.26±0.13 13.276 8.843
FedSpa 89.30± 0.20 55.256 5.2510 67.63± 0.05 129.31 4.2978 36.32 ±0.03 10.203 9.275
FedPM 63.18± 1.74 66.554 2.1240 52.05± 0.06 133.19 2.7880 16.96 ± 0.10 13.320 5.528

Table 1: Performance of SpaFL and other baselines along with their used communication costs
(Comm) and computation (FLOPs) resources during whole training.

Algorithms Acc Comm (Gbit) FLOPs (e+10) Model Density
SpaFL 89.98±0.5 2.1554 1.0264 4.83%
FedAvg 88.11±2.7 40.366 4.1059 100%

LG-FedAvg 89.35±0.1 6.6113 4.1059 100%

Table 2: Performance of SpaFL and other baselines along with their used communication costs
(Comm) and computation (FLOPs) resources during whole training with the LSTM model.

5.2 BASELINES

We compare SpaFL with seven state of the art baselines that include both dense and sparse FL
algorithms. In FedAVG [1], every client trains a global dense model and communicates whole
model parameters. LG-FedAvg [2] is a dense personalized FL algorithm, where clients learn local
representations and share only small global layers for communication efficiency. PruneFL [6] learns
a global sparse model after pruning a dense model at a particular client for initialization. Sub-FedAvg
[9] is a scheme that learns a personalized sparse model for each client and iteratively performs pruning
using validation dataset during training. LotteryFL [7] optimizes personalized sparse models by
communicating lottery tickets of clients at every round. In FedDST [5], clients learn a global sparse
model and a global binary mask while communicating only their sparse model parameters and binary
masks. FedSpa [24] trains personalized sparse models for clients while maintaining fixed model
density during training. FedPM [30] trains and communicates a binary mask while freezing model
parameters. For the sparse FL baselines, the target sparsity is set to 0.5 following the configurations
in [5, 6, 7, 9, 24].

5.3 MAIN RESULTS

In Table 1 and Fig. 2, we present the averaged accuracy, communication costs, number of FLOPs
during training, and convergence rate for each algorithm. We consider all uplink and downlink
communications to calculate the communication cost of each algorithm. We also provide the details
of the FLOPs measure in the Supplementary document. We average the model densities of SpaFL
when a model achieved the best accuracy during training. From these results, we observe that SpaFL
outperforms all baselines while using the least amount of communication costs and number of FLOPs
except FMNIST dataset. The achieved model densities are 5.36%, 7.57%, and 7.38%, for FMNIST,
CIFAR-10, and CIFAR-100, respectively. We also observe that SpaFL uses less resources and
performs better than Sub-FedAvg and LotteryFL, which also personalize both model parameters and
sparse model structures. Although FedPM reduced uplink communication costs by communicating
only binary masks, its downlink cost is the same as FedAvg. In SpaFL, since the clients and the server
only exchange thresholds, we can significantly reduce the communication costs compared to baselines
that exchange the subset of model parameters such as LG-FedAvg, Sub-FedAvg, LotteryFL, PruneFL,
and FedDST. Hence, SpaFL can efficiently improve model performance with small computation and
communication costs. In Table 2, we also compare the performance and resource usage of SpaFL
with baselines that considered LSTM models in their work. In Fig. 2, we show the convergence rate
of each algorithm. We can see that the accuracy of SpaFL decreases and then keeps increasing. The
initial accuracy drop is from pruning while global thresholds are not trained enough. As thresholds
keep being trained and communicated, clients learn how to prune their model, thereby gradually
improving the performance even at high model sparsity.

In Fig. 3, we show the change of model density of SpaFL during training with a different sparsity
coefficient α. From Fig. 3, we can observe that the model density fluctuates at its low value. This is
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(a) Learning curve on FMNIST (b) Learning curve on CIFAR-10 (c) Learning curve on CIFAR-100

Figure 2: Learning curves on FMNIST, CIFAR-10, and CIFAR-100

(a) Density change on FMNIST (b) Density change on CIFAR-10 (c) Density change on CIFAR-100

Figure 3: Model density with different α
Datasets α Acc FLOPs Model density

FMNIST
0.0003 90.31±0.35 2.7210 e+11 5.36%
0.0005 89.70±0.21 0.9024 e+11 4.64%
0.001 89.35±0.1 0.1344 e+11 4.54%

CIFAR-10
7.5×10−5 73.85±2.80 1.5901 e+12 7.57%

0.00015 73.60±2.60 0.9416 e+12 6.66%
0.0005 73.00±1.45 0.4401 e+12 5.88%

CIFAR-100
0.0003 38.80±1.10 2.8424 e+11 7.38%
0.00075 36.68±0.12 1.8556 e+11 3.32%
0.001 36.31±0.52 1.4628 e+11 2.87%

Table 3: Performance, communication costs (Comm) and computation (FLOPs) resources of SpaFL
with different α.
because we are jointly optimizing both model parameters and thresholds. Hence, prematurely pruned
parameters will be recovered during training. In Fig. 3 and Table 3, we observe the tradeoff between
model performance and computational costs. As α increases, we can quickly enforce sparsity to the
model. However, the performance can be low if we set α to be very large. This is because binary
masks can change too quickly, thereby making training unstable. Therefore, Fig. 3 also corroborates
our theoretical analysis in Theorem 1.

6 CONCLUSION

In this paper, we have developed a communication-efficient FL framework SpaFL that allows clients
to optimize both personalized model parameters and sparse structures with low computational costs.
We have reduced computational overhead by performing pruning through trainable thresholds. To
further reduce communication costs, we have communicated only thresholds between clients and a
server. We have also presented the parameter update method that can extract parameter importance
from global thresholds. Furthermore, we have provided theoretical insights on the convergence of
thresholds and experimental results to demonstrate the resource-efficiency of SpaFL.
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A SUPPLEMENTARY DOCUMENT

A.1 EXPERIMENTS

A.1.1 IMPLEMENTATION DETAIL

We run all experiments on NVIDIA A100 GPUs with PyTorch. In Table 4, we provide detailed
information of model architectures for each dataset. For the FMNIST dataset, we use the Lenet-5-
Caffe model, which is Caffe variant of Lenet-5, and the LSTM model with two LSTM layers. The
Lenet model has 430500 of model parameters and 580 of trainable thresholds. The LSTM model has
210944 of model parameters and 2048 of trainable thresholds. For the CIFAR-10 dataset, we use a
CNN model of seven layers used in [41]. It has 807366 of model parameters and 1418 of trainable
thresholds. The ResNet-8 model [42] is adopted for the CIFAR-100 dataset with 84187 of model
parameters and 436 of thresholds. We use a stochastic gradient optimizer with momentum of 0.9. For
FMNIST with the Lenet model, we use η(t) = 0.001, E = 3, a batch size of 64, and α = 0.002. We
set η(t) = 0.01, E = 3, a batch size of 16, and α = 0.0003 for the LSTM model. For CIFAR-10,
we use η(t) = 0.01, E = 3, a batch size of 16, and α = 7.5 × 10−5. For CIFAR-100, we use
η(t) = 0.1, E = 2 decayed by 0.991 at each communication round, a batch size of 64, and α = 0.01.
All trainable thresholds are initialized to zero. We noticed that too large sparsity coefficient α can
dominate the training loss, resulting in masking whole parameters in a certain layer. Following the
implementation of [32], if a certain layer’s density becomes less than 1%, the corresponding trainable
thresholds will be reset to zero to avoid masking whole parameters.
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Table 4: Model architectures used in our experiments

FMNIST CIFAR-10 CIFAR-100

Conv

(5, 5, out = 20, stride = 1)
Maxpool2d

(5, 5, out = 50, stride = 1)
Maxpool2d

(5, 5, out = 64, stride = 1)
(5, 5, out = 64, stride = 1)

Maxpool2d
(5, 5, out = 128 stride = 1)
(5, 5, out = 128, stride = 1)

Maxpool2d

(3, 3, out = 16, stride = 1)
(3, 3, out = 16, stride = 1)
(3, 3, out = 16, stride = 1)
(3, 3, out = 32, stride = 1)
(3, 3, out = 32, stride = 1)
(3, 3, out = 64, stride = 1)
(3, 3, out = 64, stride = 1)

FC (800, 500)
(500, 10)

(512, 128)
(128, 128)
(128, 100)

(64, 100)

A.1.2 MORE DETAILS ABOUT BASELINES

We compare SpaFL with seven baselines that include both dense and sparse FL algorithms. In
FedAvg [1], every client trains a global dense model and communicates whole model parameters. We
used the equal weighted average for the model aggregation. LG-FedAvg [2] is a dense personalized
FL algorithm, where clients learn local representations and share only small global layers for
communication efficiency. We communicated the last layer and the last three layers of the FMNIST
and CIFAR10/100 models, respectively, for communication efficiency. For the LSTM mdoel, we
communicated the last fully-connected layer and weights of the output gate. PruneFL [6] learns a
global sparse model after pruning a dense model at a particular client for initialization. We randomly
chose a client to perform initial pruning, and set the mask readjustment period as 50 communication
rounds. Sub-FedAvg [9] is a scheme that learns a personalized sparse model for each client. Every
client iteratively prunes its model using the validation dataset during training. We set the pruning
ratio as 20% for each pruning process. LotteryFL [7] optimizes personalized sparse models by
communicating lottery tickets of clients at every round. Each client prunes its model using the
validation dataset during training and resets unpruned parameters to their initial values. We set the
pruning ratio as 20% for each pruning process. In FedDST [5], clients learn a global sparse model
and a global binary mask while communicating only their sparse model parameters and binary masks.
At every predefined communication round, each client performs mask readjustment by pruning and
reallocating a certain portion of parameters. We set the readjustment period as 15 and the reallocating
ratio as 0.01. FedSpa [24] trains personalized sparse models for clients while maintaining fixed
model density during training. The initial pruning rate is set to be 0.5 and decayed using cosine
annealing. FedPM [30] optimizes a binary mask while freezing model parameters. Clients only
transmit their arithmetically coded binary masks to the server, and the server broadcasts real-valued
probability masks to the clients. We use Adam optimizer with learning rate of 0.1 as done in [30]. For
all the sparse FL baselines, the target sparsity is set to 0.5 following the configurations in [6, 7, 9, 5].
We provide the learning rates of the baselines in the following table.

Algorithm FMNIST CIFAR-10 CIFAR-100
FedAvg η(t) = 0.001 η(t) = 0.01 η(t) = 0.1

Sub-FedAvg η(t) = 0.001 η(t) = 0.001 η(t) = 0.2
LG-FedAvg η(t) = 0.001 η(t) = 0.005 η(t) = 0.0015

PruneFL η(t) = 0.01 η(t) = 0.001 η(t) = 0.05
LotteryFL η(t) = 0.001 η(t) = 0.005 η(t) = 0.01
FedDST η(t) = 0.001 η(t) = 0.01 η(t) = 0.01
FedSpa η(t) = 0.001 η(t) = 0.01 η(t) = 0.1
FedPM η(t) = 0.15 η(t) = 0.1 η(t) = 0.1

Table 5: learning rates used by the baselines
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A.2 PROOF OF THEOREM 1

We next present the detailed proof of Theorem 1. To facilitate the proof, we first restate the update
rule of thresholds and used assumptions in the main paper. In SpaFL, thresholds τ (t) are updated as
follows

τ k(t)=τ (t)−η(t)hk(w̃
E−1
k (t))+α exp(−τ (t)), ||hk(w̃

E−1
k (t))||2=

L∑
l=1

nl
out∑

i=1

||hl
k,i(w̃

E−1
k (t))||2.

(16)

We then prove Theorem 1 under the following commonly adopted assumption [37].

Assumption 3. (smoothness) Fk(·) is M -smooth for τ and client k, ∀k

Fk(w, τ ′) ≤ Fk(w, τ ) + ⟨∇τFk(w, τ ), τ ′ − τ ⟩+ M

2
||τ ′ − τ ||2, ∀τ . (17)

Assumption 4. (Unbiased stochastic gradient) The stochastic gradient hk is an unbiased estimator
of the gradient ∇τFk, respectively, for client k, ∀k, such that

Ehk(wk) = ∇τFk(wk, τ ). (18)

We first consider the case in which global thresholds converge. We have the following update rule for
global thresholds as

τ (t+ 1) =
1

K

∑
k∈St

τ k(t) = τ (t)− 1

K
η(t)

∑
k∈St

hk(w̃
E−1
k (t)) + αη(t) exp(−τ (t)). (19)

We take the expectation over the randomness in client scheduling and stochastic gradients as follows

Eτ (t+ 1) = τ (t)− η(t)

K
E
∑
k∈St

hk(w̃
E−1
k (t)) + αη(t) exp(−τ (t)).

= τ (t)− η(t)

N
E

N∑
k=1

∇τFk(w̃
E−1
k (t), τ (t)) + αη(t) exp(−τ (t)). (20)

Hence, clearly τ will eventually converge if 1
NE||

∑N
k=1∇τFk(w̃

E−1
k (t), τ (t))||2 converges. We

next show that this conditional statement holds in our SpaFL framework.

From the M -smoothness of the loss function in Assumption 3, we have

Fk(w̃
E−1
k (t), τ k(t))≤Fk(w̃

E−1
k (t), τ (t))+⟨∇τFk(w̃

E−1
k (t), τ (t)), τ k(t)−τ (t)⟩+

M

2
||τ k(t)−τ (t)||2

(21)

To facilitate the analysis, we first derive τ k(t)− τ (t) as below

τ k(t)− τ (t) = −η(t)hk(w̃
E−1
k (t)) + αη(t) exp(−τ (t)). (22)

Then, we can change (21) as follows

Fk(w̃
E−1
k (t), τ k(t)) ≤ Fk(w̃

E−1
k (t), τ (t)) + ⟨∇τFk(w̃

E−1
k (t), τ (t)),−η(t)hk(w̃

E−1
k (t))⟩

+ ⟨∇τF (w̃E−1
k (t), τ (t)), αη(t) exp(−τ (t))⟩

+
Mη(t)2

2
||hk(w̃

E−1
k (t))− αη(t) exp(−τ (t))||2. (23)
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We next take the expectation to the above inequality and use Assumption 4 as below

EFk(w̃
E−1
k (t), τ k(t))≤EFk(w̃

E−1
k (t), τ (t))+⟨∇τFk(w̃

E−1
k (t), τ (t)),−η(t)∇τFk(w̃

E−1
k (t), τ (t))⟩

+ ⟨∇τFk(w̃
E−1
k (t), τ (t)), αη(t) exp(−τ (t))⟩

+
Mη(t)2

2
E||hk(w̃

E−1
k (t))− α exp(−τ (t))||2

= EFk(w̃
E−1
k (t), τ (t))− η(t)||∇τFk(w̃

E−1
k (t), τ (t))||2

+ αη(t)(1−Mη(t))⟨∇τFk(w̃
E−1
k (t), τ(t)), exp(−τ (t))⟩︸ ︷︷ ︸

A

+
Mη(t)2

2
E||hk(w̃

E−1
k (t))||2︸ ︷︷ ︸

B

+
Mα2η(t)2

2
|| exp(−τ (t))||2. (24)

We first bound A using ⟨a, b⟩ ≤ ||a||2+||b||2
2 as below

A ≤ αη(t)(1−Mη(t))

2

[
||∇τFk(w̃

E−1
k (t), τ (t))||2 + || exp(−τ (t))||2

]
. (25)

We now further bound B using (16) as

B =
Mη(t)2

2
E

L∑
l=1

nl
out∑

i=1

||
nl

in∑
j=1

{gk(w̃
E−1
k (t))}lijw

E−1,l
k,ij (t)||2

≤ Mη(t)2

2
E

L∑
l=1

nl
out∑

i=1

nl
in

nl
in∑

j=1

||{gk(w̃
E−1
k (t))}lijw

E−1,l
k,ij (t)||2

≤ Mη(t)2nmax
in

2
E

L∑
l=1

nl
out∑

i=1

nl
in∑

j=1

||{gk(w̃
E−1
k (t))}lijw

E−1,l
k,ij (t)||2

(a)

≤ Mη(t)2nmax
in

2
E

L∑
l=1

nl
out∑

i=1

nl
in∑

j=1

||{gk(w̃
E−1
k (t))}lij ||2

=
Mη(t)2nmax

in

2
E||gk(w̃

E−1
k (t))||2 ≤M2η(t)2nmax

in Fk(w̃
E−1
k , τ (t)), (26)

where nmax
in is the largest number of parameters connected to a neuron or filter in a given model,

(a) is from |w| ≤ 1 in Section 3.2.1, and the last inequality is from the M -smoothness of Fk. By
combining A and B with taking expectation, we have

EFk(w̃
E−1
k (t), τk(t)) ≤ EFk(w̃

E−1
k (t), τ(t))−η(t)

{
1− α(1−Mη(t))

2

}
||∇τFk(w̃

E−1
k (t), τ (t))||2

+
αη(t)(1−Mη(t)(1−α))

2
||exp(−τ (t))||2 +M2η(t)2nmax

in EFk(w̃
E−1
k , τ (t))

(27)

By arranging the above inequality, we have

||∇τF (w̃E−1
k (t), τ (t))||2 ≤ 1

γ(t)

EFk(w̃
E−1
k (t), τ(t))− EFk(w̃

E−1
k (t), τk(t))︸ ︷︷ ︸

(A)


+
αη(t)

γ(t)
{1−Mη(t)(1−α)} || exp(−τ (t))||2+M2η(t)2nmax

in

γ(t)
EFk(w̃

E−1
k , τ (t)),

(28)
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where γ(t) = η(t)(1 − α(1−Mη(t))
2 ). We now further bound (A) in (28). From Assumption 3, we

have the following

(A) ≤ ⟨∇τFk(w̃
E−1
k (t), τ (t)), τ (t)− τ k(t)⟩+

1

2M
||∇τFk(w̃

E−1
k (t), τ (t))−∇τk

Fk(w̃
E−1
k (t), τ k(t))||2

≤ γ(t)

2
||∇τFk(w̃

E−1
k (t), τ (t))||2 + 1

2γ(t)
||τ (t)− τ k(t)||2

+
1

2M
||∇τFk(w̃

E−1
k (t), τ (t))−∇τk

Fk(w̃
E−1
k (t), τ k(t))||2. (29)

Based on (29), we can bound (28) as below

||∇τF (w̃E−1
k (t), τ (t))||2 ≤ 1

Mγ(t)
E||Fk(∇τ (t)w̃

E−1
k (t), τ(t))−∇τk(t)Fk(w̃

E−1
k (t), τk(t))||2

+
2αη(t)

γ(t)
{1−Mη(t)(1−α)} || exp(−τ (t))||2+ 2M2η(t)2nmax

in

γ(t)
EFk(w̃

E−1
k , τ (t))

+
||τ (t)− τ k(t)||2

γ(t)2
. (30)

From (30), we can bound the averaged aggregated gradients with respect to thresholds as below

1

N
E||

N∑
k=1

∇τF (w̃E−1
k (t), τ (t))||2 ≤ 1

N

N∑
k=1

E||∇τF (w̃E−1
k (t), τ (t))||2

≤ 1

NMγ(t)

(
N∑

k=1

E||Fk(∇τ (t)w̃
E−1
k (t), τ(t))−∇τk(t)Fk(w̃

E−1
k (t), τk(t))||2

)

+
2αη(t)

γ(t)
{1−Mη(t)(1− α)} || exp(−τ (t))||2

+
1

N

N∑
k=1

2M2η(t)2nmax
in

γ(t)
EFk(w̃

E−1
k , τ (t)) +

1

N

N∑
k=1

E||τ (t)− τ k(t)||2

γ(t)2
.

(31)

By summing the above inequality from t = 0 to t = T − 1, we can obtain the result of Theorem 1.

A.2.1 BOUNDING THE LOSS FUNCTION

In Theorem 1, we have the loss function Fk, which is not assumed to be bounded in our analysis.
Although loss functions can generally be a large value, we constrained model parameters w and
thresholds τ to be within [−1, 1] and [0, 1], respectively. Therefore, if input-output pairs x, y are
drawn from some bounded domain, the loss function Fk can be obviously bounded by a finite real
value. However, since inputs can be sampled from unbounded domain, we provide Corollary below
to mitigate this issue.
Corollary 1. Assume that there exists G ≥ 0 such that E||gk(wk)||2 ≤ G2,∀k. For γ(t) =

η(t)(1− α(1−Mη(t))
2 ) and the largest number of parameters connected to a neuron or filter nmax

in > 0
in a given model, we have

1

NT

T−1∑
t=0

E||
N∑

k=1

∇τFk(w̃
E−1
k (t), τ (t))||2≤

T−1∑
t=0

N∑
k=1

E||∇τFk(w̃
E−1
k (t), τ (t))−∇τk

Fk(w̃
E−1
k (t), τ k(t))||2

MNTγ(t)

+

T−1∑
t=0

2αη(t)

Tγ(t)
{1−Mη(t)(1− α)} || exp(−τ (t))||2

+

T−1∑
t=0

M2η(t)2nmax
in

2Tγ(t)
G2 +

T−1∑
t=0

N∑
k=1

E||τ (t)− τ k(t)||2

NTγ(t)
.

(32)
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Proof. We start from bounding the term B in eq. (24) as follows

B =
Mη(t)2

2
E

L∑
l=1

nl
out∑

i=1

||
nl

in∑
j=1

{gk(w̃
E−1
k (t))}lijw

E−1,l
k,ij (t)||2

≤ Mη(t)2

2
E

L∑
l=1

nl
out∑

i=1

nl
in

nl
in∑

j=1

||{gk(w̃
E−1
k (t))}lijw

E−1,l
k,ij (t)||2

≤ Mη(t)2nmax
in

2
E

L∑
l=1

nl
out∑

i=1

nl
in∑

j=1

||{gk(w̃
E−1
k (t))}lijw

E−1,l
k,ij (t)||2

(a)

≤ Mη(t)2nmax
in

2
E

L∑
l=1

nl
out∑

i=1

nl
in∑

j=1

||{gk(w̃
E−1
k (t))}lij ||2

=
Mη(t)2nmax

in

2
E||gk(w̃

E−1
k (t))||2 ≤ Mη(t)2nmax

in

2
G2. (33)

By following eq. (30) and (31), we can derive the convergence bound.

A.3 COMMUNICATION COSTS MEASURE

We calculate the communication cost of SpaFL considering both uplink and downlink communica-
tions. At each round t, sampled clients transmit their updated thresholds to the server. Hence, the
uplink communication costs can be given by

CommUp = K × τ num × 32 [bits], (34)

where τ num is the number of thresholds of a given model. In downlink, the server broadcasts the
updated global threshold to every client. Hence, the downlink communication costs can be given as
below

Commdown = N × τ num × 32 [bits]. (35)

Therefore, total communication costs can be given by T × (CommUp + Commdown).

A.4 FLOPS MEASURE

We calculate the number of FLOPs during training using the framework introduced in [43]. We
consider a convolutional layer with an input tensor X ∈ RN×C×X×Y , parameter tensor W ∈
RF×C×R×S , and output tensor O ∈ RN×F×H×W . Here, the input tensor X consists of N number
of samples, each of which has X×Y dimension. The parameter tensor W has F filters of C channels
with kernel size R× S. The output tensor O will have F output channels with dimension H ×W
for N samples. During forward propagation, a filter in W performs convolution operation with
the input tensor X to produce a single value in the output tensor O. Hence, we can approximate
the number of FLOPs as N × (C × R × S) × F ×H ×W . Since we use a sparse model during
forward propagation, the number of FLOPs can be reduced to ρ×N × (C ×R× S)×F ×H ×W ,
where ρ = ||p||0

||W ||0 is the density of the parameter matrix W . For the backpropagation, we calculate
input gradient and parameter gradient. We can calculate the number of FLOPs for the input gradient
by convolving the output gradient with the parameter matrix W . Hence, it can approximated to
N×(F×R×S)×C×X×Y . Since we used a sparse model during the forward propagation, this can
be reduced to ρ×N × (F ×R×S)×C×X×Y . For the parameter gradient, we can calculate it by
convolving the input activation with the output gradient. Therefore, this can be approximately given
by (N ×X × Y )×F ×C ×R× S. Here, we did not block the gradients of input activations. Thus,
the FLOPs during the backward propagation can be given by (1+ρ)(N ×F ×R×S×C×X×Y ).
Hence, the computational overhead of backpropagation is approximately (1 + ρ) times that of the
forward propagation.
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For a fully connected layer with input tensor X ∈ RN×X and parameter tensor W ∈ RX×Y , the input
tensor X is multiplied with W during the forward propagation. Hence, with the density of W , we can
calculate the number of FLOPs for the forward propagation as ρ×N ×X × Y . In backpropagation,
we can obtain the gradient of loss by calculating the input gradient and parameter gradient in a similar
manner with convolutional layers. Hence, the number of FLOPs during backpropagation can by given
by (1 + ρ)×N ×X × Y .

For an LSTM layer with input size I and hidden size D, we can derive the number of FLOPs
of the forward propagation as 4(I × D × ρ1 + D × D × ρ2), where ρ1 and ρ2 corresponds to
the density of the corresponding weight matrices [44]. Note that an LSTM layer usually has
three gates and one memory cell. We approximated the number of FLOPs of backpropagation as
(1 + ρ1+ρ2

2 )× (I ×D × ρ1 +D ×D × ρ2) as done in linear and convolutional layers previously.

The number of FLOPs for model parameter update will be the same as the number of model parameters
d. For, thresholds update, it can be given by ||τ ||0 + d because we perform multiplication and addition
using the connected parameters of each threshold. We also consider the number of FLOPs to perform
line 7 in Algorithm 1 for updating the local models from global thresholds. Every client first has to
decide update directions by doing summation of connected parameters at each neuron/filter (sum
operation). Then, they update their local models using the received global thresholds (sum and
multiply operations). This corresponds to 1.5×d FLOPs, where d is the number of model parameters.
Then, the total number of FLOPs during one local epoch at round t can be approximately given by

FLOP(t) =
L∑

l=1

(2 + ρl(t))N × (Cl ×Rl × Sl)× Fl ×Hl ×Wl × 1{layer l == conv}

+ (2 + ρl(t))×N ×Xl × Yl × 1{layer l == fc}+ 3.5d+ ||τ ||0. (36)

A.5 CHANGE OF MODEL SPARSITY ACROSS CLIENTS WITH DIFFERENT α ON FMNIST AND
CIFAR-10/100

Here, we present the distribution of model sparsity across clients with different α on FMNIST and
CIFAR-100 datasets.

A.5.1 CHANGE OF MODEL SPARSITY ACROSS CLIENTS WITH DIFFERENT α ON FMNIST

Figure 4: Model sparsity across clients with different α

A.5.2 CHANGE OF MODEL SPARSITY ACROSS CLIENTS WITH DIFFERENT α ON CIFAR-10

A.5.3 CHANGE OF MODEL SPARSITY ACROSS CLIENTS WITH DIFFERENT α ON CIFAR-100

From Figs. 4, 5 and 6, we can observe that every model of clients becomes sparser as α increases
clients. We can also see that clients show different model sparsity due to the heterogeneity in data
distribution.

A.6 SPAFL WITH STRUCTURED SPARSITY

SpaFL can be readily extended to perform structured pruning. Specifically, we can prune entire
parameters connected to a filter/neuron. In SpaFL, we defined a threshold for each filter/neuron
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Figure 5: Model sparsity across clients with different α

Figure 6: Model sparsity across clients with different α

and pruned each connected parameter if its magnitude is smaller than that of the threshold. This
approach leads to unstructured sparsity. We can endow SpaFL with structured sparsity by calculating
the average magnitude of all parameters connected to their filter/neuron and pruning all of them
if their average magnitude is smaller than their threshold. Hence, SpaFL can be extended to do
filter/neuron-wise pruning. We provide the performance of SpaFL with structured sparsity below.

Algorithm FMNIST CIFAR-10 CIFAR-100
Structured SpaFL 90.31±0.34 73.85±2.80 38.80±1.10

Sub-FedAvg 89.29±0.69 70.05±1.88 31.05±1.12
LotteryFL 89.15±0.62 66.82±0.11 28.90±0.22

Table 6: Performance of SpaFL with structured sparsity and baselines with unstructured sparsity.

The achieved model densities are 50.6%, 50%, and 49.3% for FMNIST, CIFAR-10, and CIFAR-
100, respectively. The target density of the baselines is set to be 50%. Since it is well known that
filter/neuron-wise pruning is less flexible than unstructured pruning, the results show accuracy loss
compared to the original SpaFL. However, we can see that the structured SpaFL still outperforms
unstructured baselines at the same model density 50%.

A.7 CHOICE OF SPARSITY REGULARIZER

In this subsection, we investigate the impact of different sparsity regulaizer R(t) for updating

thresholds used in (4). We chose R(t) =
∑L

l=1

∑nl
out

i=1 exp(−τi) because an exponential function
goes to zero asymptotically as thresholds increase. This is reasonable because it can penalize low
thresholds without making them become extremely large. We can also use a similar regularizer that
can give penalty for low thresholds without encouraging them to become a too large value. For
example, a regularizer R′(t) = 1

||τ (t)+0.1 satisfies such property. Below, we provide an empirical
comparison between SpaFL and the baseline that uses R′(t) in Table 7.

For the regularizer R(t), the achieved model densities are 5.36%,7.57% and 7.38% for FMNIST,
CIFAR-10, and CIFAR-100, respectively. Meanwhile, with R′(t), the model densities are 4.85%,
5.60%, and 8.01% for FMNIST, CIFAR-10, and CIFAR-100, respectively. We can see that both
regularizers work well with SpaFL. Hence, SpaFL is compatible with any regularizers that can
penalize the magnitude of thresholds asymptotically.
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Algorithm FMNIST CIFAR-10 CIFAR-100
SpaFL 90.31±0.34 73.85±2.80 38.80±1.10

Baseline 89.82± 0.25 73.62± 3.42 38.73± 0.53

Table 7: Comparison between two sparsity regularizaers.

A.8 IMPACT OF EXTRACTING PARAMETER IMPORTANCE

The main purpose of Section 3.2.4 is to update the model parameters by extracting the aggregated
importance from global thresholds. By investigating the difference between two consecutive global
thresholds and parameters, clients can deduce which parameters are globally important. Although
clients perform their training using the received global thresholds as described in Section 3.2.2, this
additional update provides meaningful performance gains. We provide an empirical comparison
between SpaFL and the baseline that does not use the update in 3.2.4 in Table. 8.

Algorithm FMNIST CIFAR-10 CIFAR-100
SpaFL 90.31±0.34 73.85±2.80 38.80±1.10

Baseline 90.02±0.30 72.92±2.15 38.06±0.80

Table 8: Impact of extracting parameter importance from global thresholds

From Table. 8, we can see that the update in Section 3.2.4. can provide a clear improvement compared
to the baseline by utilizing the aggregated parameter importance from global thresholds.

A.9 SPAFL WITH UNAVAILABLE CLIENTS

Clients may not always be able to receive global thresholds due to their constrained resources. To
demonstrate that SpaFL is also compatible with intermittent availability, we did comparison between
SpaFL and a baseline where only a small subset of clients can receive the server update. This baseline
can capture the unavailability of some clients who cannot participate in the training at a given time.
Below, we provide an empirical comparison between SpaFL and the baseline with the scheduling
size of 10.

Algorithm FMNIST CIFAR-10 CIFAR-100
SpaFL 90.31±0.34 73.85±2.80 38.80±1.10

Baseline 90.24±0.08 73.45±3.19 38.65±0.43

Table 9: Comparison between SpaFL and the scenario with unavailable clients

For SpaFL, the communications costs are 1.0208 Gbit, 2.4956 Gbit, and 0.7674 Gbit, for FMNIST,
CIFAR-10, and CIFAR-100, respectively. For the baseline, the communications costs are 0.1856
Gbit, 0.4357 Gbit, and 0.1395 Gbit, for FMNIST, CIFAR-10, and CIFAR-100, respectively. We can
see that the performance loss of the baseline is very small. Moreover, the baseline used only 20%
of the communication costs used by SpaFL. Therefore, this result demonstrates the compatibility of
SpaFL with a scenario where only a subset of clients is available and receives the server update.
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A.10 SPAFL WITH RESNET-18

We train ResNet-18 on CIFAR-100 distributed over N = 100 clients in a non-iid fashion following
Dirichlet (0.1) for 1000 rounds. The initial learning rate was 0.01 and decayed to 0.0001 by
multiplying 0.993 at each round. We set α = 0.0005, E = 2,K = 10, and the bath size of 64.

Algorithm Acc FLOP(e+13) Comm (Gbit)
SpaFL 44.35±0.39 4.5288 8.448

Baseline 36.50±0.42 16.626 3570.9

Table 10: SpaFL with ResNet-18 on CIFAR-100.

From Table 10, we can see that SpaFL still works well using significantly less computing and
communication resources compared to FedAvg.
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