
Under review as a conference paper at ICLR 2021

SPECTRALLY SIMILAR GRAPH POOLING

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of learning compositional hierarchies of graphs. Even
though structural characteristics of graphs can be learned by Graph Neural Net-
works (GNNs), it is difficult to find an overall compositional hierarchy using such
flat operators. In this paper, we propose a new graph pooling algorithm, Spectrally
Similar Graph Pooling (SSGPool), to learn hierarchical representations of graphs.
The main idea of the proposed SSGPool algorithm is to learn a coarsening matrix
which maps nodes from an original graph to a smaller number of nodes in a coars-
ened graph. The coarsening matrix is trained to coarsen the nodes based on their
feature vectors while keeping the spectral characteristics of the original graph in
the coarsened one. Experiments on various graph benchmarks show the advantage
of our method compared to strong baselines. To further investigate the effective-
ness of our proposed method, we evaluate our approach on a real-world problem,
image retrieval with visual scene graphs. Quantitative and qualitative analyses on
the retrieval problem confirm that the proposed method efficiently captures the
hierarchical semantic structure of scene graphs.

1 INTRODUCTION

By virtue of the recent progress on graph neural networks (GNNs) (Gori et al., 2005; Scarselli et al.,
2008; Bruna et al., 2013; Kipf & Welling, 2016; Gilmer et al., 2017; Veličković et al., 2018), various
types of data including structural data can be dealt with using neural network algorithms. While
conventional neural network algorithms, such as convolutional neural networks and recurrent neural
networks, take regular structured inputs (images with grid pixel structure and sound signals with
Markovian temporal dependencies), GNNs have been recently suggested as a method for extending
the scope of the inputs to graphs having irregular structures, such as molecular data, knowledge
graphs, social networks and visual scene graphs. Most GNNs attempt to implicitly reflect the struc-
tural information through node (graph) representations. In other words, GNNs assign feature vec-
tors to each node and update the node features by transforming and aggregating information from
the neighborhoods. Even though structural characteristics can be learned by applying these mes-
sage passing steps repeatedly, it is difficult to find an overall compositional hierarchy using such flat
operators.

Recent work has proposed using pooling methods such as CNNs in order to discover hierarchi-
cal structures between nodes in GNNs (Vinyals et al., 2015; Ying et al., 2018; Zhang et al., 2018;
Lee et al., 2019; Gao & Ji, 2019; Diehl, 2019; Ma et al., 2019). These studies are divided into
two categories depending on what information is mainly used for the pooling operator: structure-
based approaches and feature-based approaches. Structure-based approaches learn node features
with GNNs, however, the original graph is coarsened by deterministic graph clustering algorithms
based on graph theory. Therefore, the resultant coarsened graph reflects the topology of the original
graph, but the node features are not used during coarsening. Also the deterministic clustering meth-
ods are not end-to-end trainable. On the other hand, feature-based approaches learn to assign nodes
in the original graph to the nodes in the coarsened graph based on the node feature vector. Even
though these approaches can be trained in an end-to-end manner, it is hard to maintain the topology
information of the original graph.

In this paper, we propose a new graph pooling method, Spectrally Similar Graph Pooling (SSGPool),
which makes use of both node features and structural information between the nodes (Figure 1).
The main idea of SSGPool is to learn a coarsening matrix which maps nodes from an original
graph to a smaller number of nodes in a coarsened graph. The coarsening matrix is trained to

1

Under review as a conference paper at ICLR 2021

Figure 1: An illustrative example of compositional hierarchy in a visual scene graph. (a) is an
original image and (b) is a hierarchical structure of visual scene graph for the image.

coarsen the nodes based on correlations between their feature vectors while maintaining the topology
information using spectral characteristics of the original graph. To utilize the node feature vectors,
SSGPool basically builds upon conventional GNN algorithms. In addition, structural similarities
between two different sized graphs are defined in order to be used as a regularizer during training.
By having structural similarities act as a regularizer, SGGPool binds nodes having similar feature
vectors while keeping the spectral characteristics of the original graphs in an end-to-end manner.

Experiments on various graph benchmarks show the advantage of our method compared to strong
baselines. To further investigate the effectiveness of our proposed method, we evaluate our approach
on a real-world problem, image retrieval with visual scene graphs. Quantitative and qualitative anal-
yses on the retrieval problem confirm that the proposed method efficiently captures the hierarchical
semantic structures of scene graphs.

The remainder of the paper is organized as follows. In Section 2, we review related work about
the graph pooling algorithms. Next, we introduce notations about the graphs, GNN algorithms and
spectral similarity between graphs as preliminaries. After that, the proposed SSGPool method is
explained in detail and experimental results on various datasets, comparing our proposed algorithm
with other well-known graph pooling algorithms are presented.

2 RELATED WORK

Pooling operations in graph neural networks (GNNs) can scale down the size of inputs and enlarge
the receptive fields, thus giving rise to better generalization and performance. In this section, we
review several recent methods for graph pooling coupled with GNNs. Graph pooling methods can
be grouped into the following two categories: structure-based pooling and feature-based pooling.

2.1 STRUCTURE-BASED POOLING

Including earlier works of neural networks on graph, several proposed GNNs perform pooling with
existing graph clustering algorithm. These methods learn the representations of graphs in 2-steps:
First these pooling methods build hierarchical structures using a graph clustering algorithm. Next,
they learn embeddings of nodes in each layer based on GNN modules. Bruna et al. (2013) built a
hierarchy of the graph with agglomerative clustering. Defferrard et al. (2016) and Fey et al. (2018)
used the Graclus algorithm (Dhillon et al., 2007) which computes graph clustering without eigen-
vectors. Simonovsky & Komodakis (2017) constructed the graph hierarchies through a combined
use of spectral polarity and Kron reduction. More recently, Ma et al. (2019) proposed EigenPool,
which used spectral graph clustering methods to produce a coarsened graph. These methods leverage
topological information from graphs in order to produce coarsened graph. However these methods
do not use node features which have useful information for learning representations of graphs. Fur-
thermore, as the existing graph clustering algorithms are not differentiable, they are incapable of
learning in an end-to-end fashion.

2

Under review as a conference paper at ICLR 2021

2.2 FEATURE-BASED POOLING

In contrast to structure-based pooling, several end-to-end trainable pooling methods are proposed.
Ying et al. (2018) proposed a differentiable graph pooling module (DiffPool) to softly assign nodes
to a set of clusters using neural networks, forming fully connected coarsened graphs through a
dense cluster assignment matrix. Gao & Ji (2019) and Lee et al. (2019) devised a top-K node
selection-based pooling method (gPool and SAGPool) to form an induced subgraph for the next
layer. Although it is efficient, this method loses the completeness of the graph structure information.
In addition, Vinyals et al. (2015) proposed Set2Set, the global pooling operation by aggregating
information through RNNs. Zhang et al. (2018) proposed SortPool which pools graphs according
to the feature map values that are sorted in descending order. Diehl (2019) designed a pooling
operation by contracting the edges (EdgePool). The contracting scores are calculated by features
from the two incident nodes. These approaches learn hierarchical structures from node features with
differentiable parameters. However, they tend not to reflect the topology information of the graph
for pooling.

3 PRELIMINARIES

3.1 GRAPH NOTATIONS

A graph G is denoted as a pair (V, E) with V = {v1, ..., vN} the set of nodes (vertices), and E ∈
V × V the set of edges. Each node vi is associated with a feature vector xi ∈ Rf . To make
notation more compact, the set of node feature vectors of graph G is denoted as a matrix X =
[x1, x2, ..., xN]> ∈ RN×f . Also, a graph has a N -by-N weighted adjacency matrix A where Ai,j

represents the weight of the edge between vi and vj and a degree matrix D, a diagonal matrix which
contains information about the degree of each node — that is, the sum of edge weights attached to
each node. As usual, we denote the combinatorial Laplacian L of graph G with L = D −A and let
λk and µk be the k-th (smallest) eigenvalue and corresponding eigenvector of L respectively.

3.2 GRAPH NEURAL NETWORKS

Due to an ever increasing interest in combining deep learning and structured approaches, various
graph-based neural networks have been proposed over the years. Based on spectral graph the-
ory (Chung & Graham, 1997), approaches which convert graphs to the spectral domain and ap-
ply convolution kernels of the graphs have been proposed (Bruna et al., 2013; Henaff et al., 2015;
Kipf & Welling, 2016). Gilmer et al. (2017) suggested the message passing framework, which en-
compasses a number of previous neural models for graphs under a differentiable message passing
interpretation. Xu et al. (2018) analyzed the representation power of various GNN architectures and
proposed Graph Isomorphism Networks (GIN), where representational power is equal to the power
of the Weisfeiler-Lehman test.

In this paper, we use a simple form of a message passing function similar to GIN.

M(A,X) = (X +D−
1
2AD−

1
2X)Wm (1)

where Wm ∈ Rf×f . After that, we define a single GNNs layer as follows:

GNN(A,X) = [σ (M2 (A, σ (M1 (A,X)))) ;σ (M1 (A,X))]Wg (2)

where M1 and M2 are message passing layer, σ is an activation function, [X;Y] denotes row-wise
concatenation of two matrix and Wg ∈ R2f×f ′

is a learnable parameter for GNN(A,X). In the rest
of the paper, we use GNN(A,X) in Equation equation 2 as a base GNNs module.1

3.3 SPECTRAL SIMILARITY BETWEEN GRAPHS

Spectral graph theory has been considered as a powerful way to describe structural characteristics
of graphs. Therefore, structural similarity between two graphs can be clearly defined by comparing
the spectral properties of graphs.

1It is just for fair comparison with stable performances for all models. It is a non-critical choice and it can
be substituted by any GNN architectures.

3

Under review as a conference paper at ICLR 2021

Figure 2: The architecture of SSGPool layer combined with graph neural networks. The SSGPool
learns coarsening matrices P to minimize task-specific loss while retaining spectral similarity. To
represent the spectral similarity, we use the Fiedler vector of graph Laplacian.

For two graphs having the same number of nodes, Spielman & Srivastava (2011) and Spielman &
Teng (2011) proposed spectral similarity to determine how closely a graph Gs approximates a G:

∀f ∈ RN , (1− ε)f>Lf ≤ f>Lsf ≤ (1 + ε)f>Lf (3)

where L is a Laplacian matrix of a graphG. If the equation holds, we can say thatGs is an ε-spectral
approximation of G.

For the graph coarsening problem which has different number of nodes between the original graphs
and coarsened graphs, Loukas & Vandergheynst (2018) generalized it by restricting to first K-
eigenspace: the restricted spectral similarity (RSS). If there is a mapping matrix P ∈ RN×n be-
tween original vertex set V = {v1, ..., vN} and the coarsened vertex set Vc = {v′1, ..., v′n}, then RSS
is defined as follows:

Restricted Spectral Similarity (RSS). Suppose that there exist an integer K and positive constant
εk, such that for every k ≤ K,

(1− εk)u>k Luk ≤ u>k L̃uk ≤ (1 + εk)u>k Luk, L̃ = P∓LcP
+, Lc = P>LP (4)

where uk is k-th eigenvector of L, P+ and P∓ are pseudo-inverse of P and its transpose, and L̃ is
Laplacian matrix of lifted (reverse of coarsening) graph of Gc from Rn back to RN . Then, the GC

is said to satisfy the restricted spectral similarity property with the RSS constants {εk}Kk=1.

4 SPECTRALLY SIMILAR GRAPH POOLING

We suggest a new graph pooling algorithm which learns coarsening matrix to construct adjacency
matrix and node feature matrix of upper layers while keeping spectral characteristics of original
graphs. The main idea is to keep the spectral information by maximizing the similarity between the
Fiedler vector of original graphs and its coarsened ones. As two vectors are on different dimensional
spaces, the vector of the coarsened graph is lifted back to the original space using the inverse of the
coarsening matrix. In order to make the whole process end-to-end trainable, we define the coarsen-
ing matrix and derive the easy inversion of the coarsening matrix. Figure 2 shows the architecture
of proposed method.

4.1 GRAPH COARSENING

The coarsening can be expressed with a surjective map (i.e., many-to-one) ϕ : VN → Vn between
the original vertex set VN and the smaller vertex set Vn. Then, graph coarsening can be defined via
a coarsening matrix:

4

Under review as a conference paper at ICLR 2021

Definition 1 (Coarsening matrix). Matrix P ∈ {0, 1}N×n is a coarsening matrix with regard to
graph G if and only if it satisfies the condition that it is a surjective mapping of the vertex set,
meaning that if P (i, r) = 1 then P (i, r′) = 0 for every r′ 6= r.

Similar to Loukas (2019), the expensive pseudo-inverse computation for P can be substituted by
simple transposition and re-scaling:

Proposition 1 (Easy inversion). The pseudo-inverse of a coarsening matrix P is given by P+ =
Q−2P>, where Q ∈ Rn×n is a diagonal matrix with Q(r, r) = ||P (:, r)||2.

4.2 POOLING WITH COARSENING MATRIX

Suppose we have the learned coarsening matrix at l-th layer, Pl ∈ RNl×Nl+1 . With Pl, SSGPool
layer coarsens the graph, generating a new coarsened adjacency matrixAl+1 and a new node feature
matrix Xl+1.

Most previous coarsening based pooling approaches such as Ying et al. (2018) and Ma et al. (2019)
used a quadratic form of the adjacency matrix to obtain new coarsened adjacency matrix, Al+1 =
P>l AlPl. Instead, we use the Laplacian matrix Ll to obtain a new coarsened adjacency matrixAl+1:

Ll+1 = P>l LlPl, Al+1 = Dl+1 − Ll+1 (5)
where Dl+1 is a degree matrix obtained by leaving only diagonal terms of Ll+1.

Utilizing Ll instead of Al has two noteworthy benefits. First, the obtained coarsened adjacency ma-
trix is not diagonal-dominant: the coarsened graph obtained from the quadratic form ofA has signif-
icantly stronger self-loops than any other connections, and these self-loops might hamper the mes-
sage passing of GNNs. Second, our coarsening is consistent with regard to the Laplacian form: the
Laplacian matrix of the coarsened graph retains spectral properties as is desired, e.g., the nullspace
of L is preserved both by coarsening and lifting because Pl1Nl+1

= 1Nl+1
and P+

l 1Nl
= 1Nl

.

Further, the new node feature matrix of the next layer Xl+1 is obtained as follows:
Zl = GNNl,embed(Al, Xl)

Xl+1 = P+
l,softZl (6)

where Psoft is softmax output of P , which will be covered in the next section. It is worthwhile to
note that while most of previous methods use the form of transpose of Psoft so that features of upper
nodes are obtained by sum of the original nodes (sum pooling), we use pseudoinverse of Psoft to
weighted average the node features (average pooling) to get features of supernodes. As the number
of nodes in each cluster can be vary, our method can stabilize the learning.

4.3 LEARNING THE COARSENING MATRIX

We describe how SSGPool generates the coarsening matrix at the l-th layer, Pl ∈ RNl×Nl+1 . For
convenience, we drop the notation of layer l and denote pi = P (i, :). According to Definition 1, pi

can be defined as a categorical random variable with probabilities πi1, πi2, ..., πin, where n is the
number of nodes in the coarsened graph.

It is straightforward to sample from pi, but we cannot backpropagate gradients though the sampling
since the variables are discrete. A recently popular approach to handle this difficulty is to sample
from a continuous approximation of the discrete distribution (Maddison et al., 2016; Jang et al.,
2017), and use the reparameterization trick to get (biased) gradients from this approximation. In this
work, we simply borrow the gradient trick of Straight-Through Gumbel-Softmax estimator (Jang
et al., 2017) to ensure end-to-end training. The probability π is estimated via the GNN module
followed by softmax function:

Π = Psoft = softmax (GNNpool(A,X)) (7)
Finally, the pi can be drawn by one-hot of the argmax on the softmax output:

pi = one hot

(
arg max

j
[πij]

)
(8)

Although the original ST-Gumbel trick utilizes samples drawn from g ∼ Gumbel(0, 1) to give
stochasticity, we drop this sampling procedure and choose the max j only with the probability π.

5

Under review as a conference paper at ICLR 2021

4.4 SPECTRAL SIMILARITY OF GRAPHS AS REGULARIZATION

In this section, we propose the spectral regularizer for a graph pooling, which enforces coarsen-
ing matrices to keep coarsened graph spectrally similar to the original graph. To start with, the
relationship between the original graph and the final coarsened graph is expressed in compact form:

Lf = P∗L0P
>
∗ , L̃0 = P+

∗ LfP
∓
∗ (9)

where Lf and L0 are Laplacian matrices of the final coarsened graph and the original graph, P∗ =
Pf · · · P0 and P+

∗ = P+
0 · · · P

+
f . By virtue of Proposition 1, the pseudo-inverse of Pl can be

calculated in linear time.

In spectral graph theory, the second smallest eigenvector of graph Laplacian, also known as Fiedler
vector, entails the overall topology information of graphs, as it is the function that maps adjacent
nodes with similar values: The larger difference between values of nodes has the farther topological
distance between nodes is.

The Fiedler vector u of the original graph can be coarsened and lifted given a coarsening matrix P∗:

uc = P+
∗ u, ũ = P∗uc (10)

where ũ is a vector that has been sequentially coarsened and lifted from Fiedler vector vector u
given the matrix P∗. Then, the ũ is the best approximation of u given P∗, because the P∗P+

∗ is the
projection matrix with a smaller rank (See the proof of Proposition 1). Therefore, as the distance
between ũ and u gets closer, the original graph and coarsened graph become more similar to each
other in terms of global structure. Finally, we propose the spectral regularizer term based on cosine
similarity:

LTotal = LTask + λ ·
(

1− u>ũ

|u| · |ũ|

)
(11)

where LTask is task-specific loss term and λ is a hyperparameter for the regularization term.

Connection to Restricted Spectral Similarity (RSS). Followed by Loukas (2019), The RSS can
be re-formulated through the following induced semi-norm:

||u||L =
√
u>Lu, ||uc||Lc

=
√
u>c Lcuc, where uc = P+

∗ u

(1− ε)||uc||L ≤ ||uc||Lc
≤ (1 + ε)||u||L (12)

Then, we can obtain an upper bound of difference between semi-norms of the original graph and the
coarsened graph with a triangular inequality.

||u− ũ||L
||u||L

≥ | ||u||L − ||uc||Lc
|

||u||L
, where ũ = P∗uc (13)

Therefore, reducing the distance between u and ũ with our regularization term makes the original
graph and coarsened graph to be spectrally similar.

5 EXPERIMENTS

In this section, we highlight the advantages of SSGPool compared to other competitive graph pooling
algorithms with various graph benchmark datasets. Also, we apply our method to a real-world
problem, image retrieval with visual scene graphs. For the experiments, we use five competitive
baselines recently proposed for differentiable graph pooling. All the experimental details including
baseline models, benchmarks and implementation details are in Appendix B.

5.1 GRAPH CLASSIFICATIONS TASK WITH GRAPH BENCHMARK DATASETS

We evaluate SSGPool on a variety of graph datasets from benchmarks commonly used for graph
classification tasks. To examine the general ability of our model, four datasets are selected according
to their amount of data and graph size: MUTAG (Debnath et al., 1991), ENZYME (Borgwardt et al.,
2005), PROTEINS (Feragen et al., 2013) and NCI1 (Shervashidze et al., 2011).

6

Under review as a conference paper at ICLR 2021

Table 1: Average accuracy and standard deviation for graph benchmarks are presented. The Diff-
Pool* denotes DiffPool with additional losses originally proposed in Ying et al. (2018). Also,
SSGPool-NoReg indicates the SSGPool without regularization. We highlight the best results (bold)
and second best results (blue).

Model MUTAG ENZYME PROTEINS NCI1

GNN w/o Pooling .746±.007 .301±.023 .726±.007 .733±.005
SortPool (Zhang et al., 2018) .832±.016 .277±.020 .730±.012 .734±.011
gPool (Gao & Ji, 2019) .732±.018 .303±.019 .734±.006 .721±.004
SAGPool (Lee et al., 2019) .803±.015 .326±.028 .730±.006 .738±.009
EdgePool (Diehl et al., 2019) .770±.033 .329±.025 .731±.004 .751±.006
DiffPool* (Ying et al., 2018) .853±.019 .283±.043 .756±.009 .743±.009

SSGPool-NoReg .846±.015 .369±.021 .745±.006 .752±.005
SSGPool .852±.009 .382±.012 .750±.005 .753±.010

Table 1 shows overall results for graph benchmarks compared to other state-of-the-art graph pooling
methods. The average and standard deviation are obtained from 10 times of 10-fold cross valida-
tions test. First of all, we highlight that the proposed regularization term significantly improves
performance across all datasets. This implies that preserving global structures while simultaneously
pooling graphs has a substantial impact on graph representation learning.

We observed that, for ENZYME and NCI datasets, the SSGPool showed best performance. Even
though the SSGPool achieves second best performance in MUTAG and PROTEINS datasets, it
shows very competitive results compared to other methods. Also, it is worthwhile to note that the se-
lected four datasets have distinct statistics in terms of the number of data and graph size. As a result,
all comparative models show considerably different performance depending on the datasets. For ex-
ample, The DiffPool shows best performance at MUTAG and PROTEINS but for the ENZYME and
NCI1, it achieves degraded scores. However, the proposed method consistently showed good perfor-
mance across all datasets. We also report the results for benchmarks with varying hyperparameters
(e.g., the number of pooling layer, pooling ratio and existence of regularizer) in Appendix C.

5.2 IMAGE RETRIEVAL TASK WITH VISUAL SCENE GRAPH

Table 2: The results of image retrieval in
terms of NDCG. Higher the NDCG score is,
better the performance.

NDCG
Model 5 10 20 30 40 50

ResNet152 .720 .728 .742 .756 .771 .786
GNNs .785 .799 .820 .836 .845 .862
SAGPool .789 .803 .824 .839 .852 .865
DiffPool .790 .805 .825 .840 .853 .865

SSGPool .796 .810 .830 .844 .857 .869

To see more intuitive interpretation of the pooling,
we apply SSGPool to perform image retrieval via
visual scene graph matching. A visual scene graph,
initially proposed in Johnson et al. (2015), represents
contents of an image in the form of a graph consist-
ing of three kinds of components: objects, their at-
tributes, and relationships between two objects.

Visual scene graphs can be used to build an image-
to-image retrieval system (Gordo & Larlus, 2017),
which returns a list of images sorted by relevance
with respect to an image query. In an image retrieval
system based on a visual scene graph, the relevance
measure is defined as a degree of matching between
visual scene graphs. The matching between two vi-
sual scene graphs can be evaluated by computing their cosine similarity between embedded visual
scene graphs, either annotated by a human or algorithmically generated, into a fixed-length vector.

To train and evaluate the image retrieval system, we need a ground truth measure of image relevance.
Following prior work (Gordo & Larlus, 2017) which demonstrates that the similarity between image
captions is highly correlated to the human rating of image relevance, we utilize caption similarity as
a proxy metric during our experiment. We use S-BERT (Reimers & Gurevych, 2019), a transformer
pretrained to generate sentence embeddings, to compute the similarity between captions. A proxy
relevance measure between two images is obtained by first computing S-BERT representations of
the captions and then obtaining the cosine similarity between them. With the proxy relevance score

7

Under review as a conference paper at ICLR 2021

Figure 3: Left : An original image corresponding to the scene graphs on the right. Right : Pooling
results on each graph in each layer. Same color of nodes are meant to be mapped to the same
coarsened node in the pooled layer. Since DiffPool coarsens the graph with soft assignment matrix,
we selected a top-1 coarsened node for each original node for visualization. The grey colored nodes
in layer-2 are left-over coarsened nodes that were not chosen as top-1 by any original nodes. Some
significant node labels are specified to demonstrate different properties between the methods.

defined, Normalized Discounted Cumulative Gain (NDCG) is used to measure the performance of
retrieval.

The proxy relevance score also provides supervision for learning graph representation. In every iter-
ation, a batch of training image pairs (and corresponding visual scene graph pairs) are sampled, and
the squared error between the cosine similarity of embeddings in each pair and their proxy relevance
score is minimized. To obtain both captions and scene-graphs for images, we use 48,220 images
which belongs to both MS COCO dataset (Lin et al., 2014) and Visual Genome (VG) dataset (Kr-
ishna et al., 2017). Following the Stanford split (Xu et al., 2017), we manually split the VG-COCO
dataset with 36,601 train, 1,000 validation and 5,000 test images. We use ResNet152 (Simonyan &
Zisserman, 2014), GNNs without pooling, DiffPool and SAGPool are chosen as comparative base-
lines. Table 2 shows the performance on the image retrieval task. Among the overall models, the
SSGPool achieves the best results over all NDCG scores.

To compare the learned hierarchical structure among the graph pooling methods, we visualize the
coarsening results of each model (Figure 3). As shown in the first column, SSGPool coarsens the
graph by reflecting the structural information well. Due to this characteristic, the trees and their at-
tributes (leaf-green) are coarsened to a single node, and deer eating grass and zebra are coarsened to
another node. Furthermore, it can be seen that our method successfully maintains the overall topo-
logical structure of the original graph in the upper layer. In the case of DiffPool taking the coarsen-
ing form like our method, however, nodes with similar features tend to be coarsened together. Also,
as DiffPool has a dense coarsening matrix, the upper layer graph cannot reflect the original graph
structure and has the form of a fully connected graph. Lastly, the SAGPool constitutes hierarchies by
selecting important nodes. We can see that it selects important nodes (e.g., eating, deer, zebra) but
loses considerable amounts of other peripheral information. Additionally, SAGPool’s upper layer
graph loses structural information from the original graph due to it is masking out all other nodes
not selected. We attach more examples of qualitative results in Appendix D.

6 CONCLUSIONS

In this paper, we proposed the end-to-end graph pooling method, Spectrally Similar Graph Pooling.
In contrast to previous work, our method learns compositional hierarchies while preserving the
global structure of the graph. The proposed method shows competitive results not only in graph
benchmarks datasets, but in real-world problem such as image retrieval with visual scene graphs.
We also show that our proposed method learns meaningful hierarchical structures.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Fan RK Chung and Fan Chung Graham. Spectral graph theory. American Mathematical Soc., 1997.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Cor-
win Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro com-
pounds. correlation with molecular orbital energies and hydrophobicity. Journal of medicinal
chemistry, 34(2):786–797, 1991.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016.

Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors a
multilevel approach. IEEE transactions on pattern analysis and machine intelligence, 29(11):
1944–1957, 2007.

Frederik Diehl. Edge contraction pooling for graph neural networks. arXiv preprint
arXiv:1905.10990, 2019.

Frederik Diehl, Thomas Brunner, Michael Truong Le, and Alois Knoll. Towards graph pooling by
edge contraction. In ICML 2019 Workshop on Learning and Reasoning with Graph-Structured
Data, 2019.

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt. Scal-
able kernels for graphs with continuous attributes. In Advances in neural information processing
systems, pp. 216–224, 2013.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn: Fast geomet-
ric deep learning with continuous b-spline kernels. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 869–877, 2018.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In International Conference on Machine Learning,
pp. 2083–2092, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 1263–1272. JMLR. org, 2017.

Albert Gordo and Diane Larlus. Beyond instance-level image retrieval: Leveraging captions to learn
a global visual representation for semantic retrieval. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 6589–6598, 2017.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pp. 729–734. IEEE, 2005.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163, 2015.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumble-softmax. In
International Conference on Learning Representations (ICLR 2017), 2017.

Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael Bernstein, and
Li Fei-Fei. Image retrieval using scene graphs. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 3668–3678, 2015.

9

Under review as a conference paper at ICLR 2021

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language
and vision using crowdsourced dense image annotations. International Journal of Computer
Vision, 123(1):32–73, 2017.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International Confer-
ence on Machine Learning, pp. 3734–3743, 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learning
Research, 20(116):1–42, 2019.

Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with smaller
graphs. In International Conference on Machine Learning, pp. 3243–3252, 2018.

Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. Graph convolutional networks with
eigenpooling. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 723–731, 2019.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(77):2539–
2561, 2011.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neu-
ral networks on graphs. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3693–3702, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6):1913–1926, 2011.

Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on
Computing, 40(4):981–1025, 2011.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
arXiv preprint arXiv:1511.06391, 2015.

Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. Scene graph generation by iterative
message passing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 5410–5419, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

10

Under review as a conference paper at ICLR 2021

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hi-
erarchical graph representation learning with differentiable pooling. In Advances in Neural Infor-
mation Processing Systems, pp. 4800–4810, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

11

