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Abstract

Labeled data for the task of Coreference Res-001
olution is a scarce resource, requiring signifi-002
cant human effort. While state-of-the-art coref-003
erence models rely on such data, we propose004
an approach that leverages an end-to-end neu-005
ral model in settings where labeled data is006
unavailable. Specifically, using weak super-007
vision, we transfer the linguistic knowledge008
encoded by Stanford’s rule-based coreference009
system to the end-to-end model, which jointly010
learns rich, contextualized span representa-011
tions and coreference chains. Our experiments012
on the English OntoNotes corpus demonstrate013
that our approach effectively benefits from the014
noisy coreference supervision, producing an015
improvement over Stanford’s rule-based sys-016
tem (+3.7 F1) and outperforming the previous017
best unsupervised model (+0.9 F1). Addition-018
ally, we validate the efficacy of our method on019
two other datasets: PreCo and Litbank (+2.5020
and +4 F1 on Stanford’s system, respectively).021

1 Introduction022

Coreference resolution is an important problem in023

language understanding. In the recent years, sig-024

nificant progress has been made on this task with025

coreference annotated corpora (Hovy et al., 2006)026

and deep neural network architectures (Wiseman027

et al., 2015; Clark and Manning, 2016a,b; Lee et al.,028

2017). Further gains have been obtained by lever-029

aging contextualized text encoders like ELMo (Lee030

et al., 2018), BERT, SpanBERT, and Longformer031

(Kantor and Globerson, 2019; Joshi et al., 2019,032

2020; Wu et al., 2020; Kirstain et al., 2021).033

The progress in supervised coreference resolu-034

tion has not been accompanied by analogous im-035

provements in unsupervised methods. The best036

performing work in this domain is the unsuper-037

vised mention-ranking systems proposed by Ma038

et al. (2016). Approaches that do not rely on gold039

annotation are highly desirable for this task, as040

coreference corpora are expensive to create. Ad- 041

dressing this issue, weak supervision has been used 042

for multilingual coreference resolution to automati- 043

cally obtain labels for languages with no annotated 044

datasets (Wallin and Nugues, 2017). 045

In this paper, we introduce a simple yet effec- 046

tive approach for unsupervised coreference resolu- 047

tion, which leverages an end-to-end span-ranking 048

coreference model (Lee et al., 2018) and contextu- 049

alized span representations. The end-to-end model 050

is trained with weak supervision from Stanford’s 051

coreference system (Lee et al., 2011), which, in 052

turn uses a set of linguistic rules for coreference. 053

Previous works have used Stanford system’s rules 054

as feature extractors (Fernandes et al., 2012; Wise- 055

man et al., 2015; Ma et al., 2016). However, our 056

approach uses Stanford’s rule-based sieves to pro- 057

duce noisy labels that are subsequently used to train 058

the neural end-to-end resolver. 059

The rationale behind the use of Stanford’s re- 060

solver for producing noisy labels lies in its ease 061

of use and its modular structure, which allows us 062

to interpret the value of the linguistic knowledge 063

encoded in the system. Linguists building a coref- 064

erence resolver in a new domain can encode their 065

prior knowledge via rules and improve the Stan- 066

ford system. Our approach would further boost the 067

resolver by incorporating pre-trained representa- 068

tions. Nevertheless, our framework can be applied 069

in combination with any method able to produce 070

informative coreference labels. 071

We assess our approach on three coreference 072

corpora: English OntoNotes (Pradhan et al., 2012), 073

PreCo (Chen et al., 2018), and Litbank (Bamman 074

et al., 2020). Our experiments show that the imper- 075

fect information contained in the noisy labels can 076

be effectively used to train the end-to-end model, 077

producing an improvement over Stanford’s system. 078

Experimenting with different pre-trained language 079

models, we observe that using BERT boosts the 080

performance of the end-to-end resolver. Results 081
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further improve by using SpanBERT (Joshi et al.,082

2020), which outperforms previous unsupervised083

models (Ma et al., 2016) on the English OntoNotes084

benchmark. We also evaluate the approach on two085

other coreference datasets: PreCo and Litbank, and086

show strong gains over the Stanford system. Fi-087

nally, we present a set of analyses that examine088

the information incorporated by weakly supervised089

training.090

2 Method091

Our approach relies on the c2f-coref end-to-end092

architecture proposed by Lee et al. (2018), and on093

the classic rule-based Stanford coreference system094

(Lee et al., 2011, 2013) for the CoNLL 2011 shared095

task (Pradhan et al., 2011).096

Overview of c2f-coref The end-to-end corefer-097

ence resolution system (Lee et al., 2017) uses a098

span-based neural model that learns a distribution099

P (·) over antecedents y for each span i. Spans100

are represented using fixed-length embeddings ob-101

tained via bidirectional LSTMs (Hochreiter and102

Schmidhuber, 1997) and taken as input by a pair-103

wise scoring function.104

Subsequent models revisited this approach: Lee105

et al. (2018) proposed the c2f-coref method, intro-106

ducing coarse-to-fine antecedent pruning and em-107

bedding representations from ELMo (Peters et al.,108

2018) at the input to the LSTMs. Later, Joshi et al.109

(2019) used BERT to represent spans, demonstrat-110

ing the power of pre-trained language models for111

coreference resolution. Most recently, Joshi et al.112

(2020) introduced SpanBERT and further improved113

the state of the art.114

Stanford’s Rule-based System Stanford’s sys-115

tem is a deterministic coreference resolver consist-116

ing of a set of sieves applied in a cascade fashion.117

Initially, the Mention Detection considers all noun118

phrases, pronouns, and named entity mentions as119

candidate mentions, then filters them according to a120

set of exclusion rules. Specifically, each identified121

mention is considered as a singleton cluster. Then,122

akin to agglomerative clustering, the clusters are123

sequentially processed by the sieves. Each sieve124

embodies a specific linguistic rule and builds on the125

result of the previous sieve by merging a mention126

into a partially-formed entity cluster, depending on127

whether it satisfies a set of constraints. The archi-128

tecture guarantees that high-precision constraints129

are given high priority (e.g., exact string match,130

head match), while rules with lower precision but 131

higher recall are applied later (e.g., the Pronominal 132

Coreference Sieve). We provide a description of 133

the most important sieves in Appendix A. 134

Weak Supervision using Linguistic Rules Al- 135

though Stanford’s sieve-based system is unsuper- 136

vised, it captures rich, task-specific coreference 137

information in English, and we hypothesize that 138

it could effectively serve as supervision for train- 139

ing the neural span-ranking model. By exploiting 140

contextualized span representations within the end- 141

to-end learning framework, the neural model can 142

exhibit stronger generalization capabilities. 143

Specifically, we employ Stanford’s system to 144

obtain cluster labels, representing a noisy (i.e., non- 145

gold) signal for both mention identification and 146

coreference. As in the supervised case, only clus- 147

tering information is observed. The training is car- 148

ried out by optimizing the marginal log-likelihood 149

of the antecedents ỹ implied by the noisy cluster 150

assignment: 151

log
N∏
i=1

∑
ỹ∈C(i)

P (ỹ) 152

where N is the total number of mentions in the 153
document and C(i) is the set of antecedents of span 154

i that are coreferent to i according to the cluster 155

assignment produced by Stanford’s system. 156

3 Experiments 157

We assess the proposed approach on three datasets: 158

the English OntoNotes v5.0 data from the CoNLL- 159

2012 shared task (Pradhan et al., 2012), PreCo 160

(Chen et al., 2018), and Litbank (Bamman et al., 161

2020). We evaluate the c2f-coref model combined 162

with different pre-trained language models (ELMo, 163

BERT, and SpanBERT). These results are com- 164

pared to the ones produced by Stanford’s system, 165

in order to show the efficacy of the noisy super- 166

vision. Moreover, we examine the performance 167

of our weakly-supervised approach in contrast to 168

two previous unsupervised models: Multigraph 169

(Martschat, 2013) and the EM-based ranking model 170

by Ma et al. (2016). 171

3.1 Experimental Setup 172

We use the original implementations of the ELMo- 173

based c2f-coref1 (Lee et al., 2018) and of the 174

BERT/SpanBERT-based models2 (Joshi et al., 175

1https://github.com/kentonl/e2e-coref
2https://github.com/mandarjoshi90/

coref
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MUC B3 CEAFφ4 CoNLL

P R F1 P R F1 P R F1 F1

Stanford (Lee et al., 2011) 64.3 65.2 64.7 49.2 56.8 52.7 52.5 46.6 49.4 55.6
Multigraph (Martschat, 2013) - - 65.4 - - 54.4 - - 50.2 56.7
Unsup. Ranking (Ma et al., 2016) - - 67.7 - - 55.9 - - 51.8 58.4

c2f-coref 65.7 68.0 66.9 50.9 59.4 54.8 52.9 49.1 50.9 57.5
BERT-base + c2f-coref 66.8 69.2 68.0 51.5 60.6 55.7 53.1 50.3 51.7 58.5
SpanBERT-base + c2f-coref 67.6 68.5 68.1 53.1 60.1 56.4 54.8 50.4 52.5 59.0
BERT-large + c2f-coref 67.2 69.7 68.5 52.3 61.2 56.4 54.0 51.0 52.5 59.1
SpanBERT-large + c2f-coref 67.4 69.8 68.6 52.4 61.8 56.7 54.1 51.4 52.7 59.3

Table 1: Results on the test set of the English CoNLL-2012 shared task3. The c2f-coref models were trained via
weak supervision. Scores for Multigraph and the Unsupervised Ranking model are reported in Ma et al. (2016).

2019), while using their original, respective hy-176

perparameters. We use the implementation of Stan-177

ford’s system provided with the Stanford CoreNLP178

suite (Manning et al., 2014). Further training de-179

tails are provided in Appendix B.180

We report precision, recall, and F1 for the stan-181

dard MUC (Vilain et al., 1995), B3 (Bagga and182

Baldwin, 1998), and CEAFφ4 (Luo, 2005) met-183

rics. We use the CoNLL F1 score (average F1 of184

the three metrics) as the main evaluation measure,185

which is common practice in coreference3.186

3.2 Results on OntoNotes187

Table 1 shows that the c2f-coref model trained188

with noisy supervision is able to produce a gain189

over Stanford’s system. The incremental improve-190

ment produced by the pre-trained language models191

highlights the importance of the representation of192

spans for this task, and suggests that the end-to-end193

model learns how to effectively exploit it from the194

noisy supervision. The version of the c2f-coref195

model augmented with SpanBERT-large achieves196

59.3 CoNLL F1, improving on the Unsupervised197

Ranking model (Ma et al., 2016) by 0.9 F1. In198

contrast with what was observed in the supervised199

realm (Joshi et al., 2019), the score increase pro-200

duced by BERT-base over ELMo (+1.0 F1) is larger201

than the gain yielded by the large versions of BERT202

and SpanBERT over their base counterparts (+0.6203

and +0.3 F1, respectively). This might be explained204

as an effect of the weak supervision, which is likely205

to reduce the marginal improvement produced by206

an increase in model complexity.207

3The metrics are computed using the most recent version
of the official CoNLL scorer (Pradhan et al., 2014)

3We observed a small discrepancy between the results
relative to Stanford’s system reported by Ma et al. (2016) and
the ones we obtained (~0.2 F1). Here we report the scores we
produce, which are the higher ones.

Dataset MUC B3 CEAFφ4 CoNLL

Stanford PC 59.7 49.7 45.2 51.5
SB-B + c2f PC 62.0 52.3 47.6 54.0

Stanford LB 65.8 41.6 26.8 44.7
SB-B + c2f LB 71.4 46.5 31.2 49.7

Table 2: Comparison between Stanford’s system and
the c2f-coref model based on SpanBERT-base (SB-B)
on PreCo (PC) and Litbank (LB). Results are expressed
in F1 score.

3.3 Results on PreCo and Litbank 208

An important feature of PreCo and Litbank is that 209

they contain annotations for singleton mentions, un- 210

like OntoNotes. However, both Stanford’s system 211

and the c2f-coref model present a recall-oriented 212

mention detection strategy, which tends to overes- 213

timate the number of proposed mentions, as sin- 214

gletons typically would be filtered out from the 215

response. Moreover, the training process of the 216

c2f-coref model does not take singleton mentions 217

into account. For this reasons, we adapt the eval- 218

uation on Litbank and PreCo to the OntoNotes 219

guidelines, which assert that predicted singleton 220

mentions should be ignored and non-coreferent 221

spans should be removed from the response. Ta- 222

ble 2 shows performance gains consistent with the 223

results on OntoNotes, with the weakly-supervised 224

c2f-coref model improving by 2.5 and 4 CoNLL 225

F1 on PreCo and Litbank, respectively. 226

4 Analysis 227

Performance on Different Types of Coreference 228

We investigate the capabilities of the weakly super- 229

vised end-to-end model in identifying the different 230

kinds of coreference links given by the combination 231

of three mention categories: proper, nominal, and 232

pronominal. We study the performance of the c2f- 233
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Link Type Stanford SB-L + c2f ∆ (%)

Nominal - Pronominal 35.7 38.9 +9.0
Nominal - Nominal 54.1 58.6 +8.3
Nominal - Proper 15.1 17.1 +13.2
Pronominal - Proper 60.2 60.4 +0.3
Pronominal - Pronominal 70.9 73.1 +3.1
Proper - Proper 80.8 82.8 +3.5

Table 3: Performance (F1 scores) on CoNLL-2012 de-
velopment set in terms of identification of coreference
links between different kinds of mentions.

Doc Length # of Docs Stanford SB-L + c2f ∆ (%)

0 - 64 17 52.1 49.6 -4.8
64 - 128 39 57.2 58.6 +2.4

128 - 256 74 56.2 60.9 +8.4
256 - 512 76 58.9 62.3 +5.8
512 - 768 73 56.5 59.6 +5.5

768 - 1152 52 53.3 56.3 +5.6
1152+ 12 47.0 50.7 +7.9

Table 4: Average CoNLL F1 on the OntoNotes develop-
ment split for sets of documents with different lengths
(expressed as number of tokens).

coref model based on SpanBERT-large in compari-234

son to Stanford’s system. The results are illustrated235

in Table 3. We observe a global improvement in all236

the considered types of links, with the most signifi-237

cant gains from links involving nominal mentions.238

This improvement is coherent with the observations239

of Durrett and Klein (2013): coreference decisions240

involving nominal mentions usually require richer241

semantic inference, which in our setting is provided242

by the contextualized span representations243

Impact of Document Length We compare the244

c2f-coref model to Stanford’s system on docu-245

ments of different lengths. As reported in Table 4,246

Stanford’s resolver performs better than the span-247

ranking system on particularly short documents.248

However, for all groups of documents longer than249

64 tokens, we observe a consistent improvement250

provided by the c2f-coref model. This could be ex-251

plained by the contextualized span representations,252

which were shown to be more informative when253

larger context is available (Beltagy et al., 2020).254

Using Different Linguistic Priors We study255

how the performance of our approach is impacted256

as we vary the complexity of the linguistic rules257

used for the weak supervision. We do this by train-258

ing the c2f-coref model on the noisy labels obtained259

using three different implementations of Stanford’s260

system: (1) 1-sieve, which considers only the261

Exact String Match rule; (2) 3-sieve, which con-262

sists of the three most effective sieves: Exact String263

Rule Implementation Stanford SB-B + c2f ∆ (%)

1-sieve 27.9 27.6 -1.1
3-sieve 53.5 56.2 +5.0
complete 57.0 60.0 +5.3

Table 5: CoNLL F1 scores on the OntoNotes develop-
ment set using different combinations of sieves.

Directly facing [him]1 was [the box of old]2 Mrs. Manson
Mingott, whose monstrous obesity had long since made
[it]2 impossible for [her]3 to attend the Opera...

Directly facing [him]1 was the box of [old Mrs. Manson
Mingott]2, whose monstrous obesity had long since made
it impossible for [her]2 to attend the Opera...

Table 6: Example predictions by Stanford’s system (up-
per row) and c2f-coref (lower row) on Litbank. [·]x rep-
resents a mention assigned to cluster x.

Match, Strict Head Match, and the Pronominal 264

Coreference sieve; and (3) complete, which im- 265

plements all ten sieves. Results in Table 5 show 266

that the improvement provided by the end-to-end 267

model increases as the noisy signal for the train- 268

ing becomes more accurate, suggesting that bet- 269

ter supervision helps the model benefit from the 270

knowledge-rich span representations. 271

Qualitative Analysis In order to better illustrate 272

how the end-to-end system profits from model- 273

ing choices unavailable to Stanford’s resolver (e.g., 274

contextualized representations), in Table 6 we pro- 275

vide instances of coreference clusters predicted by 276

the two models. The c2f-coref model, unlike Stan- 277

ford’s system, correctly identifies the valid mention 278

Mrs. Manson Mingott, links it to the appropriate 279

pronoun (her), and correctly neglects the expletive 280

pronoun it. This is perhaps because pre-trained 281

models are known to strongly encode syntax (Gold- 282

berg, 2019). We present additional examples of 283

predicted chains, along with additional analyses 284

on the impact of the amount of training data, in 285

Appendices C and D, respectively. 286

5 Conclusion 287

We presented an approach for coreference reso- 288

lution that, while being simple, effectively lever- 289

ages the end-to-end span-ranking model in settings 290

where labeled data is unavailable. Experimental re- 291

sults highlight the efficacy of the weak supervision 292

that the method is based upon, and showed perfor- 293

mance gains over previous unsupervised systems. 294

4



6 Ethical Considerations295

Since our approach is unsupervised and based on296

the coreference signal produced by Stanford’s de-297

terministic coreference system (Lee et al., 2011,298

2013), it is prone to echoing biases present in the299

linguistic rules embodied by Stanford’s resolver.300

Moreover, as most coreference resolvers, the ap-301

proach we presented is not designed for a partic-302

ular use case, but it is rather expected to be em-303

ployed within more complex NLP systems. Spe-304

cific domains in which these systems are applied305

(e.g., biomedical data, legal documents) might re-306

veal potential fairness shortcomings in the underly-307

ing Stanford’s sieve-based system. Depending on308

the setting of application (e.g., voice assistants or309

search engines), these possible defects could pro-310

duce undesirable outcomes. For instance, wrongly311

classifying two people as the same person is pos-312

sible to affect information extraction results (e.g.,313

search engines). Further studies on alternative do-314

mains are needed to assess these aspects.315

Contextual word embedding models such as316

ELMo (Peters et al., 2018), BERT (Devlin et al.,317

2019), and SpanBERT (Joshi et al., 2020) are pre-318

trained with self-supervised procedures on large319

portions of unlabeled text. These models are op-320

timized to capture statistical dependencies and321

might retain and amplify prejudices and stereotypes322

present in the training data (Kurita et al., 2019).323

Since the method we propose relies on such pre-324

trained models, it inevitably inherits possible biases325

that might affect its fairness.326
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A Stanford’s System544

The coreference method proposed by Stanford Uni-545

versity at the CoNLL 2011 shared task (Pradhan546

et al., 2011) is based on a succession of ten inde-547

pendent coreference models (or sieves), applied548

from highest to lowest precision. Here we report a549

short description of the three most effective sieves,550

according to Lee et al. (2013).551

Exact String Match: links two mentions only if552

they consist of the exact same text string;553

Strict Head Match: implements multiple con-554

straints that must all be matched in order to555

yield a link. First, the mention head word556

matches any head word of mentions in the557

antecedent cluster. Then, all the non-stop558

words4 in the cluster of the current mention to559

be solved are included in the set of non-stop560

words of the antecedent entity cluster. More-561

over, the mention’s modifiers (e.g., possessive562

and personal pronouns) must be all included563

in the modifiers of the antecedent candidate.564

Eventually, the two mentions cannot be in an565

i-within-i construct, (i.e., one must not be a566

child NP in the other’s NP constituent);567

Pronominal Coreference Sieve: links pronouns568

to their compatible antecedents enforcing569

agreement constraints on a set of attributes,570

such as gender, number, and animacy.571

B Implementation and Training Details572

As in previous unsupervised work (Ma et al., 2016),573

we use the version of the OntoNotes corpus in574

which the supplementary layers of annotation (e.g.,575

parse trees) were provided automatically using off-576

the-shelf tools. Using Stanford’s system, we ob-577

tained the noisy labels for the training and devel-578

opment sets of the CoNLL-2012 shared task data579

(2802 and 343 documents, respectively), for the580

PreCo training split (36620 documents), and for581

Litbank (100 documents). As common practice582

(Toshniwal et al., 2020), on Litbank we perform583

10-fold cross-validation, using sets of 80/10/10 doc-584

uments for train/development/test.585

We trained the models using a batch size of 1586

document. On the OntoNotes corpus, the ELMo-587

based c2f-coref model is trained for a maximum588

of 150 epochs and the BERT and SpanBERT-based589

4Stop words are, for instance, there, ltd., etc., ’s.

CoNLL F1

Stanford 57.0
c2f-coref 58.3
BERT-base + c2f-coref 59.1
SpanBERT-base + c2f-coref 60.0
BERT-large + c2f-coref 60.1
SpanBERT-large + c2f-coref 60.1

Table 7: CoNLL F1 scores computed on the develop-
ment set of the CoNLL-2012 shared task.

models for 20 epochs. On PreCo and Litbank, the 590

SpanBERT-based c2f-coref model is trained for a 591

maximum of 2 and 400 epochs, respectively. Dur- 592

ing training, BERT and SpanBERT are fine-tuned. 593

The validation sets used to monitor the training 594

are the development set of OntoNotes and Litbank 595

and a held-out portion of 500 documents from the 596

PreCo corpus. For all datasets, the validation met- 597

rics were computed with respect to the Stanford’s 598

system-produced noisy labels (i.e., no gold corefer- 599

ence information was used in this process). 600

We keep the hyperparameter configurations as in 601

Lee et al. (2018) and in Joshi et al. (2020). In par- 602

ticular, for each version of BERT and SpanBERT, 603

we use the combination of max_segment_len 604

and learning rates illustrated in table 8. 605

Training the c2f-coref model based on ELMo, 606

BERT-base and SpanBERT-base took ~6 hours on a 607

24GB Nvidia TITAN RTX, while the training of the 608

models based on the large versions of BERT and 609

SpanBERT required ~12 hours on a 32GB Nvidia 610

Tesla V100. 611

C Qualitative Examples 612

Table 9 displays additional examples of coreference 613

chain predictions. In the first example, the weakly- 614

supervised c2f-coref model shows an improved 615

response in terms of both mention identification 616

and cluster assignment, correctly establishing the 617

chains relative to Alice and book. In example 2, 618

Stanford’s system incorrectly links the pronoun her 619

to Mother, while the neural model rightly asso- 620

ciates it with the speaker (Beth). Similar improve- 621

ments are illustrated in sentences 3 and 4. Finally, 622

we report an example of an error propagated from 623

the noisy supervision (sentence 5). Note that sin- 624

gleton mentions were removed from the response 625

cluster, and the mentions that appear as singletons 626

in the reported examples are predicted as coreferent 627
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Model max_segment_len bert_learning_rate task_learning_rate

BERT-base + c2f-coref 128 10−5 2 ·10−4
SpanBERT-base + c2f-coref 384 2 ·10−5 10−4

BERT-large + c2f-coref 384 10−5 2 ·10−4
SpanBERT-large + c2f-coref 512 10−5 3 ·10−4

Table 8: Parameters used for the BERT/SpanBERT-based cef-coref models.
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Figure 1: Performance on a held-out set of 1000 PreCo
documents using the c2f-coref model as we vary the
number of training documents.

to mentions present in other portions of the text.628

D Varying the Amount of Training Data629

We assess the performance of the model on PreCo630

when the training is carried out on subsets of dif-631

ferent sizes (Fig. 1). We observe that the c2f-coref632

model requires only 100 weakly-annotated docu-633

ments to outperform Stanford’s system, indicating634

that the noisy signal is quickly incorporated by the635

model. Using more than 1000 documents does not636

seem to boost the score further. We suspect that637

this behavior might be caused by the homogeneity638

and the small vocabulary size of the documents of639

the PreCo dataset.640

E Results on the OntoNotes641

Development Set642

We additionally report in Table 7 the results ob-643

tained on the development set of the OntoNotes644

corpus for the five c2f-models.645
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1

[CHAPTER I. Down [the Rabbit-Hole Alice]2 ]1 was beginning to get very tired of sitting by
[[her]2 sister ]3 on the bank, and of having nothing to do: once or twice [she]2 had peeped into the
book [[her]2 sister ]3 was reading, but [it]1 had [no pictures or conversations in [it]1 ]4, ‘and what
is the use of a book,’ thought Alice ‘without [pictures or conversations]4?’

CHAPTER [I.]1 Down the Rabbit-Hole [Alice]2 was beginning to get very tired of sitting by [[her]2
sister ]3 on the bank, and of having nothing to do: once or twice [she]2 had peeped into the [book]4
[[her]2 sister ]3 was reading, but [it]4 had no pictures or conversations in [it]4, ‘and what is the use
of a book,’ thought [Alice]2 ‘without pictures or conversations?’

2

"[We]1’ve got [Father]2 and [Mother]3, and each other," said [Beth]4 contentedly from [her]3
corner.

"[We]1’ve got [Father]2 and [Mother]3, and each other," said [Beth]4 contentedly from [her]4
corner.

3

At [most terrestrial men]1 fancied there might be other men upon [Mars]2, perhaps inferior to
[themselves]3 and ready to welcome a missionary enterprise.

At [most terrestrial men]1 fancied there might be other men upon [Mars]2, perhaps inferior to
[themselves]1 and ready to welcome a missionary enterprise.

4

I persuaded [two]1 young neighbors to stop playing basketball and to help us get the tree into the
house and set [it]1 correctly in the stand.

I persuaded two young neighbors to stop playing basketball and to help us get [the tree]1 into the
house and set [it]1 correctly in the stand.

5
To prevent [this]1, humans on [Mars]2 have to wear special shoes to make [themselves]1 heavier.

To prevent [this]1, humans on [Mars]2 have to wear special shoes to make [themselves]1 heavier.

Table 9: Example predictions by Stanford’s system (upper sub-row) and c2f-coref (lower sub-row) on Litbank
(examples 1-3) and PreCo Dev (examples 4 and 5). [·]x represents a mention assigned to cluster x.
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