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Abstract

Behavior constrained policy optimization has been demonstrated to be a successful
paradigm for tackling Offline Reinforcement Learning. By exploiting historical
transitions, a policy is trained to maximize a learned value function while con-
strained by the behavior policy to avoid a significant distributional shift. In this
paper, we propose our closed-form policy improvement (CFPI) operators. We
make a novel observation that the behavior constraint naturally motivates the use
of first-order Taylor approximation, leading to a linear approximation of the policy
objective. Additionally, as practical datasets are usually collected by heterogeneous
policies, we model the behavior policies as a Gaussian Mixture and overcome the
induced optimization difficulties by leveraging the LogSumExp’s lower bound
and Jensen’s Inequality, giving rise to a CFPI operator. We instantiate offline RL
algorithms with our novel operators and empirically demonstrate their effectiveness
over state-of-the-art algorithms on the standard D4RL benchmark.

1 Introduction

Deploying Reinforcement Learning (RL) (Sutton & Barto, 2018) in the real world is hindered by its
massive demand for online data. In domains such as robotics (Cabi et al., 2019) and autonomous
driving (Sallab et al., 2017), rolling out a premature policy is prohibitively costly and unsafe. To
address this issue, offline RL (a.k.a batch RL) (Levine et al., 2020; Lange et al., 2012) has been
proposed to learn a policy directly from historical data without environment interaction. However,
learning competent policies from a static dataset is challenging. Prior studies have shown that learning
a policy without constraining its deviation from the data-generating policies suffers from significant
extrapolation errors, leading to training divergence (Fujimoto et al., 2019; Kumar et al., 2019).

Current literature has demonstrated two successful paradigms for managing the trade-off between pol-
icy improvement and limiting the distributional shift from the behavior policies. Under the actor-critic
framework (Konda & Tsitsiklis, 1999), behavior constrained policy optimization (BCPO) (Fujimoto
et al., 2019; Kumar et al., 2019; Fujimoto & Gu, 2021; Wu et al., 2019; Brandfonbrener et al., 2021;
Ghasemipour et al., 2021) explicitly regularizes the divergence between learned and behavior policies,
while conservative methods (Kumar et al., 2020b; Bai et al., 2022; Yu et al., 2020, 2021) penalize the
value estimate for out-of-distribution (OOD) actions to avoid overestimation error. However, most
existing model-free offline RL algorithms still require learning off-policy value functions and a target
policy through stochastic gradient descent (SGD). Off-policy learning with non-linear function ap-
proximators and temporal difference learning (Sutton & Barto, 2018) is notoriously unstable (Kumar
et al., 2020a; Mnih et al., 2015; Henderson et al., 2018; Konda & Tsitsiklis, 1999; Watkins & Dayan,
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1992) due to the existence of the deadly-triad (Sutton & Barto, 2018; Van Hasselt et al., 2018). The
performance can exhibit significant variance across different random seeds (Islam et al., 2017). In
offline settings, learning becomes even more problematic as environment interaction is restricted,
thus preventing the learning from corrective feedback (Kumar et al., 2020a). Consequently, training
stability poses a major challenge. Although some current approaches (Brandfonbrener et al., 2021)
avoids learning an off-policy value function, they still require learning a policy via SGD.

Can we mitigate the issue of learning instability by leveraging optimization techniques? In this
paper, we approach this issue from the policy learning perspective, aiming to design a stable policy
improvement operator. We take a closer look at the BCPO paradigm and make a novel observa-
tion that the requirement of limited distributional shift motivates the use of the first-order Taylor
approximation (Callahan, 2010), leading to a linear approximation of the policy objective that is
accurate in a sufficiently small neighborhood of the behavior action. Based on this crucial insight, we
construct our policy improvement operators that return closed-form solutions by carefully designing
a tractable behavior constraint. When modeling the behavior policies as a Single Gaussian, our
policy improvement operator deterministically shifts the behavior policy towards a value improving
direction derived by solving a Quadratically Constrained Linear Program (QCLP) in closed form.
Therefore, our method only requires learning the underlying behavior policies of a given dataset with
supervised learning, avoiding the training instability from policy improvement.

Furthermore, we note that practical datasets are likely to be collected by heterogeneous policies,
which may give rise to a multimodal behavior action distribution. In this scenario, a Single Gaussian
will fail to capture the entire picture of the underlying distribution, limiting the potential of policy
improvement. While modeling the behavior as a Gaussian Mixture provides better expressiveness,
it incurs extra optimization difficulties due to the non-concavity of its log-likelihood function. We
tackle this issue by leveraging the LogSumExp’s lower bound and Jensen’s inequality, leading to
a closed-form policy improvement (CFPI) operator compatible with a multimodal behavior policy.
Empirically, we demonstrate the effectiveness of Gaussian Mixture over the conventional Single
Gaussian when the underlying distribution comes from hetereogenous policies.

In this paper, we empirically demonstrate that our CFPI operators can instantiate successful offline
RL algorithms in a one-step or iterative fashion. Moreover, our methods can also be leveraged to
improve a policy learned by the other algorithms. In summary, our main contributions are threefold:

• CFPI operators compatible with single mode and multimodal behavior policies.

• An empirical demonstration of the benefit to model the behavior policy as a Gaussian
Mixture in model-free offline RL. To the best of our knowledge, we are the first to do this.

• One-step and iterative instantiations of our algorithm, which outperform state-of-the-art
(SOTA) algorithms on the standard D4RL benchmark (Fu et al., 2020).

2 Preliminaries

Reinforcement Learning. RL aims to maximize returns in a Markov Decision Process (MDP)
(Sutton & Barto, 2018)M = (S,A, R, T, ρ0, γ), with state space S , action space A, reward function
R, transition function T , initial state distribution ρ0, and discount factor γ ∈ [0, 1). At each time step
t, the agent starts from a state st ∈ S, selects an action at ∼ π(·|st) from its policy π, transitions to
a new state st+1 ∼ T (·|st, at), and receives reward rt := R(st, at). The goal of an RL agent is to
learn an optimal policy π∗ that maximizes the expected discounted cumulative reward Eπ[

∑∞
t=0 γ

trt]
without access to the ground truth R and T . We define the action value function associated with π by
Qπ(s, a) = Eπ[

∑∞
t=0 γ

trt|s0 = s, a0 = a]. The RL objective can then be reformulated as

π∗ = argmax
π

J(π) := Es∈ρ0,a∈π(·|s)[Q
π(s, a)] (1)

In this paper, we consider offline RL settings, where we assume restricted access to the MDPM, and
a previously collected dataset D with N transition tuples {(sit, ait, rit)}Ni=1. We denote the underlying
policy that generates D as πβ , which may or may not be a mixture of individual policies.

Behavior Constrained Policy Optimization. One of the critical challenges in offline RL is that
the learned Q function tends to assign spuriously high values to OOD actions due to extrapolation
error, which is well documented in previous literature (Fujimoto et al., 2019; Kumar et al., 2019).

2



Behavior Constrained Policy Optimization (BCPO) methods (Fujimoto et al., 2019; Kumar et al.,
2019; Fujimoto & Gu, 2021; Wu et al., 2019; Brandfonbrener et al., 2021) explicitly constrain the
action selection of the learned policy to stay close to the behavior policy πβ , resulting in a policy
improvement step that can be generally summarized by the optimization problem below:

max
π

Es∼D
[
Eã∼π(·|s) [Q (s, ã)]− αD (π(· | s), πβ(· | s))

]
, (2)

where D(·, ·) is a divergence function that calculates the divergence between two action distributions,
and α is a hyper-parameter controlling the strength of regularization. Consequently, the policy is
optimized to maximize the Q-value while staying close to the behavior distribution.

Different algorithms may choose different D(·, ·) (e.g., KL Divergence (Wu et al., 2019; Jaques et al.,
2019), MSE (Fujimoto & Gu, 2021) and MMD (Kumar et al., 2019)). However, to the best of our
knowledge, all existing methods tackle this optimization via SGD. In this paper, we take advantage
of the regularization and solve the problem in closed form.

3 Closed-Form Policy Improvement

In this section, we introduce our policy improvement operators that map the behavior policy to a
higher-valued policy, which is accomplished by solving a linearly approximated BCPO. We show that
modeling the behavior policy as a Single Gaussian transforms the approximated BCPO into a QCLP
and thus can be solved in closed-form (Sec. 3.1). Given that practical datasets are usually collected
by heterogeneous policies, we generalize the results by modeling the behavior policies as a Gaussian
Mixture to facilitate expressiveness and overcome the incurred optimization difficulties by leveraging
the LogSumExp’s lower bound (LB) and Jensen’s Inequality (Sec. 3.2). We close this section by
presenting an offline RL paradigm that leverages our policy improvement operators (Sec. 3.3).

3.1 Approximated behavior constrained optimization

We aim to design a learning-free policy improvement operator to avoid learning instability in offline
settings. We observe that optimizing towards BCPO’s policy objective (2) induces a policy that admits
limited deviation from the behavior policy. Consequently, it will only query the Q-value within the
neighborhood of the behavior action during training, which naturally motivates the employment of
the first-order Taylor approximation to derive the following linear approximation of the Q function

Q̄(s, a; aβ) = (a− aβ)
T [∇aQ(s, a)]a=aβ

+Q(s, aβ)

= aT [∇aQ(s, a)]a=aβ
+ const.

(3)

By Taylor’s theorem (Callahan, 2010), Q̄(s, a; aβ) only provides an accurate linear approximation of
Q(s, a) in a sufficiently small neighborhood of aβ . Therefore, the choice of aβ is critical.

Recognizing (2) as a Lagrangian and with the linear approximation (3), we propose to solve the
following surrogate problem of (2) given any state s:

max
π

E
ã∼π

[
ãT [∇aQ(s, a)]a=aβ

]
, s.t. D (π(· | s), πβ(· | s)) ≤ δ. (4)

Note that it is not necessary for D(·, ·) to be a (mathematically defined) divergence measure since
any generic D(·, ·) that can constrain the deviation of π’s action from πβ can be considered.

Single Gaussian Behavior Policy. In general, (4) does not always have a closed-form solution. We
analyze a special case where πβ = N (µβ ,Σβ) is a Gaussian policy, π = µ is a deterministic policy,
and D(·, ·) is a negative log-likelihood function. In this scenario, a reasonable choice of µ should
concentrate around µβ to limit distributional shift. Therefore, we set aβ = µβ and the optimization
problem (4) becomes the following:

max
µ

µT [∇aQ(s, a)]a=µβ
, s.t. − log πβ(µ|s) ≤ δ (5)

We now show that (5) has a closed-form solution and defers the proof the Appendix A.1.
Proposition 3.1. The optimization problem (5) has a closed-form solution that is given by

µsg(τ) = µβ +

√
2 log τ Σβ [∇aQ(s, a)]a=µβ√

[∇aQ(s, a)]
T
a=µβ

Σβ [∇aQ(s, a)]a=µβ

, where δ =
1

2
log det(2πΣβ) + log τ

(6)
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Although we still have to tune τ as tuning α in (2) for conventional BCPO methods, we have a
transparent interpretation of τ ’s effect on the action selection thanks to the tractability of (5). Due to
the KKT conditions (Boyd et al., 2004), (6) always returns an action µsg with the following property

− log πβ(µ|s) = δ = − log
1

τ
πβ(µβ |s) ⇐⇒ πβ(µsg|s) =

1

τ
πβ(µβ |s) (7)

While setting τ = 1 will always return the mean of πβ , a large τ might send µsg out of the support of
πβ , breaking the accuracy guarantee of the first-order Taylor approximation.

3.2 Gaussian Mixture as a more expressive model

Performing policy improvement with (6) enjoys favorable computational efficiency and avoids the
potential instability caused by SGD. However, its tractability relies on the Single Gaussian assumption
of the behavior policy πβ . In practice, the historical datasets are usually collected by heterogeneous
policies with different levels of expertise. A Single Gaussian may fail to capture the whole picture of
the underlying distribution, motivating the use of a Gaussian Mixture to represent πβ .

πβ =

N∑
i=1

λiN (µi,Σi),

N∑
i=1

λi = 1 (8)

However, directly plugging the Gaussian Mixture πβ into (5) breaks its tractability, resulting in a
non-convex optimization below

max
µ

µT [∇aQ(s, a)]a=aβ
,

s.t. log

N∑
i=1

(
λi det(2πΣi)

− 1
2 exp

(
−1

2
(µ− µi)

TΣ−1
i (µ− µi)

))
≥ −δ

(9)

We are confronted with two major challenges to solve the optimization problem (9). First, it is
unclear how to choose a proper aβ while we need to ensure that the solution µ lies within a small
neighborhood of aβ . Second, the constraint of (9) does not admit a convex form, posing non-trivial
optimization difficulties. We leverage the lemma below to tackle the non-convexity of the constraint.

Lemma 3.1. log
∑N

i=1 λi exp(xi) admits the following inequality:

1. (LogSumExp’s LB) log
∑N

i=1 λi exp(xi) ≥ maxi {xi + log λi}

2. (Jensen’s Inequality) log
∑N

i=1 λi exp(xi) ≥
∑N

i=1 λixi

Next, we show that applying each inequality in Lemma 3.1 to the constraint of (9) respectively
resolves the intractability and leads to natural choices of aβ .
Proposition 3.2. By applying the first inequality of Lemma 3.1 to the constraint of (9), we can derive
an optimization problem that lower bounds (9)

max
µ

µT [∇aQ(s, a)]a=aβ
,

s.t. max
i

{
−1

2
(µ− µi)

TΣ−1
i (µ− µi)−

1

2
log det(2πΣi) + log λi

}
≥ −δ,

(10)

and the closed-form solution to (10) is given by

µlse(τ) = argmax
µ̄i(δ)

µ̄T
i [∇aQ(s, a)]a=µi

, s.t. δ = min
i
{1
2
log det(2πΣi)− log λi}+ log τ

where µ̄i(δ) = µi +

√
2(δ + log λi)− log det(2πΣi)

[∇aQ(s, a)]
T
a=µi

Σi [∇aQ(s, a)]a=µi

Σi [∇aQ(s, a)]a=µi

(11)

Proposition 3.3. By applying the second inequality of Lemma 3.1 to the constraint of (9), we can
derive an optimization problem that lower bounds (9)

max
µ

µT [∇aQ(s, a)]a=aβ
, s.t.

N∑
i=1

λi

(
−1

2
log det(2πΣi)−

1

2
(µ− µi)

TΣ−1
i (µ− µi)

)
≥ −δ (12)
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Figure 1: Apply Lemma 3.1 to Gaussian Mixture’s log probability log πβ at different scenarios. (L)
log πβ has multiple modes. LogSumExp’s LB preserves multimodality. (M) log πβ reduces to Single
Gaussian. Jensen’s inequality becomes equality. (R) log πβ is similar to a uniform distribution.

and the closed-form solution to (12) is given by

µjensen(τ) = µ+

√√√√2 log τ −
∑N

i=1 λiµT
i Σ

−1
i µi + µ̄TΣ

−1
µ̄

[∇aQ(s, a)]Ta=µ̄Σ[∇aQ(s, a)]a=µ̄

Σ[∇aQ(s, a)]a=µ̄,

where Σ =

(
N∑
i=1

λiΣ
−1
i

)−1

, µ̄ = Σ

(
N∑
i=1

λiΣ
−1
i µi

)
, δ = log τ +

1

2

N∑
i=1

λi log det(2πΣi)

(13)

We defer the detailed proof of Proposition 3.2 and Proposition 3.3 as well as how we choose aβ for
each optimization problem to Appendix A.2 and A.3, respectively.

Indeed, these two optimization problems have their own assets and liabilities. When πβ exhibits an
obvious multimodality as is shown in Fig. 1 (L), the lower bound of log πβ constructed by Jensen’s
Inequality cannot capture different modes due to its concavity, losing the advantage of modeling πβ

as a Gaussian Mixture. In this case, the optimization problem (10) can serve as a reasonable surrogate
problem of (9), as LogSumExp’s LB still preserves the multimodality of log πβ .

When πβ is reduced to a Single Gaussian, the approximation with the Jensen’s Inequality becomes
equality as is shown in Fig. 1 (M). Thus µjensen returned by (13) exactly solves the optimization
problem (9). However, in this case, the tightness of LogSumExp’s LB largely depends on the weights
λi=1...N . If each Gaussian component is distributed and weighted identically, the lower bound will
be logN lower than the actual value. Moreover, there also exists the scenario (Fig. 1 (R)) when both
(10) and (12) can serve as reasonable surrogates to the original problem (9).

Fortunately, we can combine the best of both worlds and design a policy improvement operator
accounting for all the above scenarios. As both Proposition 3.2 and 3.3 have closed-form solutions,
the operator returns a policy that selects the higher-valued action from µlse and µjensen

µmg(τ) = argmaxµQ(s, µ), s.t. µ ∈ {µlse(τ), µjensen(τ)} (14)

3.3 Algorithm template

We have derived two CFPI operators that map the behavior policy to a higher-valued policy. When
the behavior policy πβ is a Single Gaussian, ISG(πβ , Q; τ) returns a policy with action selected by
(6). When πβ is a Gaussian Mixture, IMG(πβ , Q; τ) returns a policy with action selected by (14). We
note that our methods can also work with a non-Gaussian πβ . Appendix D provides the derivations
for the corresponding CFPI operators when πβ is modeled as both a deterministic policy and VAE.
Algorithm 1 shows that our CFPI operators enable the design of a general offline RL template that
can yield one-step, multi-step and iterative methods, where E is a general policy evaluation operator
that returns a value function Q̂t. When setting T = 0, we obtain our one-step method. We defer the
discussion on multi-step and iterative methods to the Appendix C.

While the design of our CFPI operators is motivated from the behavior constraint, we highlight that
they are compatible with general baseline policies πb besides πβ . Sec. 5.2 and Appendix G.7 show
that our CFPI operators can improve policies learned by IQL and CQL (Kumar et al., 2020b).

3.4 Theoretical guarantees for closed-form policy improvement

At a high level, Algorithm 1 follows the approximate policy iteration (API) (Perkins & Precup,
2002) by iterating over the policy evaluation (E step, Line 4) and policy improvement (I step, Line
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Algorithm 1 Offline RL with closed-form policy improvement operators (CFPI)

Input: Dataset D, baseline policy π̂b, value function Q̂−1, HP τ

1: Warm start Q̂0 = SARSA(Q̂−1,D) with the SARSA-style algorithm (Sutton & Barto, 2018)
2: Get one-step policy π̂1 = I(π̂b, Q̂0; τ)
3: for t = 1 . . . T do
4: Policy evaluation: Q̂t = E(Q̂t−1, π̂t,D)
5: Get policy: π̂t+1 = I(π̂b, Q̂t; τ) (concrete choices of I includes IMG and ISG)
6: end for

5). Therefore, to verify E provides the improvement, we need to first show policy evaluation Q̂t is
accurate. We employ the Fitted Q-Iteration (Sutton & Barto, 2018) to perform policy evaluation,
which is known to be statistically efficient (e.g. (Chen & Jiang, 2019)) under the mild condition for
the function approximation class. Next, for the performance gap between J(π̂t+1)− J(π̂t), we apply
the standard performance difference lemma (Kakade & Langford, 2002; Kakade, 2003).
Theorem 3.1. [Safe Policy Improvement] Assume the state and action spaces are discrete.2 Let π̂1

be the policy obtained after the CFPI update (Line 2 of Algorithm 1). Then with probability 1− δ,

J(π̂1)− J(π̂β) ≥
1

1− γ
Es∼dπ̂1

[
Q̄π̂β (s, π̂1(s))− Q̄π̂β (s, π̂β(s))

]
− 2

1− γ
Es∼dπ̂1Ea∼π̂1(·|s)

[
Cγ,δ√
D(s, a)

+ CCFPI(s, a)

]
:= ζ.

For multi-step T iterative update, we similarly have with probability 1− δ,

J(π̂T )− J(π̂β) =

T∑
t=1

J(π̂t)− J(π̂t−1) ≥
T∑

t=1

ζ(t),

where D(s, a) denotes number of samples at s, a, Cγ,δ denotes the learning coefficient of SARSA and
CCFPI(s, a) denotes the first-order approximation error from (3). We defer detailed derivation and
the expression of Cγ,δ, ζ

(t) and CCFPI(s, a) in Appendix A.4. When a = aβ , CCFPI(s, a) = 0.

By Theorem 3.1, π̂1 is a ζ-safe improved policy. The ζ safeness consists of two parts: CCFPI is
caused by the first-order approximation, and the Cγ,δ/

√
D(s, a) term is incurred by the SARSA

update. Similarly, π̂T is a
∑T

t=1 ζ
(t)-safe improved policy.

4 Related Work

Our methods belong and are motivated by the successful BCPO paradigm, which imposes constraints
as in (2) to prevent from selecting OOD actions. Algorithms from this paradigm may apply different
divergence functions, e.g., KL-divergence (Wu et al., 2019; Jaques et al., 2019), MMD (Kumar et al.,
2019) or the MSE (Fujimoto & Gu, 2021). All these methods perform policy improvement via SGD.
Instead, we perform CFPI by solving a linear approximation of (2). Another line of research enforces
the behavior constraint via parameterization. BCQ (Fujimoto et al., 2019) learns a generative model
as the behavior policy and a Q function to select the action from a set of perturbed behavior actions.
Ghasemipour et al. (2021) further show that the perturbation model can be discarded.

The design of our CFPI operators is inspired by the SOTA online RL algorithm OAC (Ciosek et al.,
2019). It treats the evaluation policy as the baseline πb and obtains an optimistic exploration policy
by solving a similar optimization problem as (5). We extend the result to accommodate a multi-modal
πb and overcome the optimization difficulties by leveraging Lemma 3.1. In Appendix H, we further
draw connections with prior works that leveraged the Taylor expansion approach to RL.

Recently, one-step (Kostrikov et al., 2021; Brandfonbrener et al., 2021) algorithms have achieved
great success. Instead of iteratively performing policy improvement and evaluation, these methods

2Note here we assume the discreteness only for the purpose of analysis. For the more general cases, please
refer to Appendix A.4. In Theorem 3.1, µπ

h(s, a|s0, a0) := Pπ(sh = s, ah = a, |s0 = s, a0 = a).
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Table 1: Comparison between our one-step policy and SOTA methods on the Gym-MuJoCo domain
of D4RL. Our method uses the same τ for all datasets except Hopper-M-E (detailed in Appendix F.1).
We report the mean and standard deviation of our method’s performance across 10 seeds. Each seed
contains an individual training process and evaluates the policy for 100 episodes. We use Cheetah for
HalfCheetah, M for Medium, E for Expert, and R for Replay. We bold the best results for each task.

Dataset SG-BC MG-BC DT TT OnestepRL TD3+BC CQL IQL Our IMG(π̂β , Q̂0)

Cheetah-M-v2 40.6 40.6 42.6 46.9 55.6 48.3 44.0 47.4 52.1± 0.3
Hopper-M-v2 53.7 53.9 67.6 61.1 83.3 59.3 58.5 66.2 86.8± 4.0
Walker2d-M-v2 71.9 70.0 74.0 79.8 85.6 83.7 72.5 78.3 88.3± 1.6

Cheetah-M-R-v2 34.9 33.0 36.6 41.9 42.4 44.6 45.5 44.2 44.5± 0.4
Hopper-M-R-v2 12.4 21.2 82.7 91.5 71.0 60.9 95.0 94.7 93.6± 7.9
Walker2d-M-R-v2 22.9 22.8 66.6 82.6 71.6 81.8 77.2 73.8 78.2± 5.6

Cheetah-M-E-v2 46.6 51.7 86.8 95.0 93.5 90.7 91.6 86.7 97.3± 1.8
Hopper-M-E-v2 53.9 69.2 107.6 101.9 102.1 98.0 105.4 91.5 104.2± 5.1
Walker2d-M-E-v2 92.3 93.2 108.1 110.0 110.9 110.1 108.8 109.6 111.9± 0.3

Total 429.1 455.6 672.6 710.1 716.0 677.4 698.5 692.4 757.0± 27.0

Table 2: Comparison between our Iterative IMG and SOTA methods on the AntMaze domain. We
report the mean and standard deviation across 5 seeds for our method with each seed evaluating for
100 episodes. The performance for all baselines is directly reported from the IQL paper. Our Iterative
IMG outperforms all baselines on 5 out of 6 tasks and obtains the best overall performance.

Dataset BC DT Onestep RL TD3+BC CQL IQL Iterative IMG

antmaze-u-v0 54.6 59.2 64.3 78.6 74.0 87.5 90.2± 3.9
antmaze-u-d-v0 45.6 49.3 60.7 71.4 84.0 62.2 58.6± 15.2
antmaze-m-p-v0 0.0 0.0 0.3 10.6 61.2 71.2 75.2± 6.9
antmaze-m-d-v0 0.0 0.7 0.0 3.0 53.7 70.0 72.2± 7.3
antmaze-l-p-v0 0.0 0.0 0.0 0.2 15.8 39.6 51.4± 7.7
antmaze-l-d-v0 0.0 1.0 0.0 0.0 14.9 47.5 52.4± 10.9

Total 100.2 112.2 125.3 163.8 303.6 378.0 400.0± 52.0

only learn a Q function via SARSA without bootstrapping from OOD action value. These methods
further apply an policy improvement operator (Wu et al., 2019; Peng et al., 2019) to extract a policy.
We also instantiate a one-step algorithm with our CFPI operator and evaluate on standard benchmarks.

5 Experiments

Our experiments aim to demonstrate the effectiveness of our CFPI operators. Firstly, on the standard
offline RL benchmark D4RL (Fu et al., 2020), we show that instantiating offline RL algorithms with
our CFPI operators in both one-step and iterative manners outperforms SOTA methods (Sec. 5.1).
Secondly, we show that our CFPI operator can improve a policy learned by other algorithms (Sec.
5.2). Ablation studies in Sec. 5.3 further shows our superiority over the other policy improvement
operators and demonstrate the benefit of modeling the behavior policy as a Gaussian Mixture.

5.1 Comparison with SOTA offline RL algorithms

We instantiate a one-step offline RL algorithm from Algorithm 1 with our policy improvement operator
IMG. We learned a Gaussian Mixture baseline policy π̂β via behavior cloning. We employed the
IQN (Dabney et al., 2018a) architecture to model the Q value network for its better generalizability, as
we need to estimate out-of-buffer Q(s, a) during policy deployment. We trained the Q̂0 with SARSA
algorithm (Sutton & Barto, 2018; Parisotto et al., 2015). Appendix F.1 includes detailed training
procedures of π̂β and Q̂0 with full HP settings. We obtain our one-step policy as IMG(π̂β , Q̂0; τ).

We evaluate our one-step algorithm on the D4RL benchmark focusing on the Gym-MuJoCo domain,
which contains locomotion tasks with dense rewards. Table 1 compares our one-step algorithm
with SOTA methods, including the other one-step actor-critic methods IQL (Kostrikov et al., 2021),
OneStepRL (Brandfonbrener et al., 2021), BCPO method TD3+BC (Fujimoto & Gu, 2021), con-
servative method CQL (Kumar et al., 2020b), and trajectory optimization methods DT (Chen et al.,
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2021), TT (Janner et al., 2021). We also include the performance of two behavior policies SG-BC
and MG-BC modeled with Single Gaussian and Gaussian Mixture, respectively. We directly report
results for IQL, BCQ, TD3+BC, CQL, and DT from the IQL paper, and TT’s result from its own
paper. Note that OneStepRL instantiates three different algorithms. We only report its (Rev. KL Reg)
result because this algorithm follows the BCPO paradigm and achieves the best overall performance.
We highlight that OnesteRL reports the results by tuning the HP for each dataset.

Results in Table 1 demonstrate that our one-step algorithm outperforms the other algorithms by a
significant margin without training a policy to maximize its Q-value through SGD. We note that we
use the same τ for all datasets except Hopper-M-E. In Sec. 5.3, we will perform ablation studies and
provide a fair comparison between our CFPI operators and the other policy improvement operators.

We further instantiate an iterative algorithm with IMG and evaluate its effectiveness on the challenging
AntMaze domain of D4RL. The 6 tasks from AntMaze are more challenging due to their sparse-
reward nature and lack of optimal trajectories in the static datasets. Table 2 compares our Iterative
IMG with SOTA algorithms on the AntMaze domain. Our method uses the same set of HP for all
6 tasks, outperforming all baselines on 5 out of 6 tasks and obtaining the best overall performance.
Appendix C.1 presents additional details with pseudo-codes and training curves.

5.2 Improvement over a learned policy

Table 3: Our ISG(πIQL, QIQL) improves over the pol-
icy πIQL learned by IQL on AntMaze. We report the
mean and standard deviation 10 seeds. Each seed
evaluates for 100 episodes.

Dataset πIQL (train) πIQL (1M) ISG(πIQL, QIQL)

antmaze-u-v0 87.4± 3.2 83.6± 3.2 85.1± 5.3
antmaze-u-d-v0 59.0± 5.7 55.8± 7.9 55.0± 9.1

antmaze-m-p-v0 71.1± 5.43 64.2± 13.2 75.5± 6.1
antmaze-m-d-v0 70.0± 6.16 66.8± 9.4 79.9± 3.8

antmaze-l-p-v0 34.4± 6.04 35.6± 7.0 37.7± 7.7
antmaze-l-d-v0 39.8± 9.09 38.8± 7.1 40.1± 5.6

Total 361.7± 35.6 344.7± 47.8 373.3± 37.5

In this section, we show that our CFPI opera-
tor ISG can further improve the performance
of a Single Gaussian policy πIQL learned by
IQL (Kostrikov et al., 2021) on the AntMaze
domain. We first obtain the IQL policy
πIQL and QIQL by training for 1M gradient
steps using the PyTorch Implementation from
RLkit (Berkeley). We emphasize that we fol-
low the authors’ exact training and evaluation
protocols and include all training curves in Ap-
pendix G.6. Interestingly, while the running
average of the evaluation results during the
course of training matches the reported results
in the IQL paper, Table 3 shows that the evalu-
ation of the final 1M-step policy πIQL does not
match the reported performance on all 6 tasks, echoing the training instability we are trying to
resolve with our CFPI operators. This demonstrates how drastically performance can fluctuate
across just dozens of epochs. Thanks to the tractability of ISG, we directly obtain an improved
policy ISG(πIQL, QIQL; τ) that achieves better overall performance than both πIQL (train) and (1M),
as shown in Table 3. We tune the HP τ using a small set of seeds for each task following the practice
of (Brandfonbrener et al., 2021; Fu et al., 2020) and include more details in Appendix F.2 and G.6.

5.3 Ablation studies

We first provide a fair comparison with the other policy improvement operators, demonstrating the
effectiveness of solving the approximated BCPO (4) and modeling the behavior policy as a Gaussian
Mixture. Additionally, we examine the sensitivity on τ , ablate the number of Gaussian components,
and discuss the limitation by ablating the Q network in Appendix G.2, G.3, G.4, respectively.

Effectiveness of our CFPI operators. In Table 4, we compare our CFPI operators with two policy
improvement operators, namely, Easy BCQ (EBCQ) and Rev. KL Reg from OneStepRL (Brand-
fonbrener et al., 2021). EBCQ doe not require training either, returning a policy by selecting an
action that maximizes a learned Q̂ from Nbcq actions randomly sampled from the behavior policy
π̂β . Rev. KL Reg sets D(·, ·) in (2) as the reverse KL divergence and solves the problem via SGD,
with α controlling the regularization strength. We omit the comparison with the other learning-based
operator Exp. Weight, as Rev. KL Reg achieves the best overall performance in OneStepRL.

For all methods, we present results with π̂β modeled by Single Gaussian (SG-) and Gaussian Mixture
(MG-). To ensure a fair comparison, we employ the same Q̂0 and π̂β modeled and learned in the
same way as in Sec. 5.1 for all methods. Moreover, we tune Nbcq for EBCQ, α for Rev. KL Reg, and
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Table 4: Ablation studies of our Method on the Gym-MuJoCo domain. Again we report the mean
and std of 10 seeds, each seed evaluates for 100 episodes.

Dataset SG-EBCQ MG-EBCQ SG-Rev. KL Reg MG-Rev. KL Reg ISG IMG

Cheetah-M-v2 53.3± 0.2 51.5± 0.2 47.1± 0.2 47.0± 0.2 51.1± 0.1 52.1± 0.3
Hopper-M-v2 86.8± 5.2 82.5± 1.9 70.3± 7.0 76.3± 6.9 75.6± 3.7 86.8± 4.0
Walker2d-M-v2 85.2± 5.1 85.2± 2.1 82.4± 1.0 82.8± 1.8 88.1± 1.1 88.3± 1.6

Cheetah-M-R-v2 43.5± 0.6 43.0± 0.3 44.3± 0.4 44.4± 0.5 42.8± 0.4 44.5± 0.4
Hopper-M-R-v2 88.5± 12.2 83.6± 10.3 99.7± 1.0 99.4± 2.1 87.7± 8.7 93.6± 7.9
Walker2d-M-R-v2 75.4± 4.6 73.1± 5.2 63.6± 28.5 69.7± 30.9 71.3± 4.4 78.2± 5.6

Cheetah-M-E-v2 81.8± 5.4 84.5± 4.6 78.9± 9.8 65.0± 10.1 91.1± 3.1 97.3± 1.8
Hopper-M-E-v2 40.0± 5.8 56.1± 6.2 76.6± 18.3 79.4± 32.6 70.3± 8.9 73.0± 10.5
Walker2d-M-E-v2 111.1± 1.8 111.1± 1.0 106.7± 4.1 107.1± 4.0 111.1± 1.1 111.9± 0.3

Total 665.5± 41.0 670.6± 31.9 669.7± 70.3 671.2± 89.1 688.9± 31.6 725.8± 32.4

Figure 2: Aggregate metrics (Agarwal et al., 2021) with 95% CIs based on results reported in Table 4.
The CIs are estimated using the percentile bootstrap with stratified sampling. Higher median, IQM,
and mean scores, and lower Optimality Gap correspond to better performance. Our IMG outperforms
baselines by a significant margin based on all four metrics. Appendix E includes additional details.

τ for our methods. Each method uses the same set of HP for all datasets. As a result, the Hopper-M-E
performance of IMG reported in Table 4 is different from Table 1. Appendix F.1 includes further
details on the HP tuning and corresponding experiment results in Table 9, 10, 11 and 12.

As is shown in Table 4 and Fig. 2, our IMG clearly outperforms all baselines by a significant margin.
The learning-based method Rev. KL Reg exhibits a substantial amount of variance, again echoing the
training instability we are trying to resolve. Moreover, our CFPI operators outperform their EBCQ
counterparts, demonstrating the effectiveness of solving the approximated BCPO.

Effectiveness of Gaussian Mixture. As the three M-E datasets are collected by an expert and
medium policy, we should recover an expert performance as long as we can 1) capture the two modes
of the action distribution 2) and always select action from the expert mode. In other words, we can
leverage the Q̂0 learned by SARSA to select actions from the mean of each Gaussian component,
resulting in a mode selection algorithm (MG-MS) that selects its action by

µmode = argmaxµ̂i
Q̂0(s, µ̂i), s.t. {µ̂i|λ̂i > ξ}, where

∑
i=1:N

λ̂iN (µ̂i, Σ̂i) = π̂β , (15)

ξ is set to filter out trivial components. Our MG-MS achieves an expert performance on Hopper-M-E
(104.2 ± 5.1) and Walker2d-M-E (104.1 ± 6.7), and matches SOTA algorithms in Cheetah-M-E
(91.3± 2.1). Appendix G.1 includes the full results of MG-MS on the Gym MuJoCo domain.

6 Conclusion and Limitations

Motivated by the behavior constraint in the BCPO paradigm, we propose CFPI operators that
perform policy improvement by solving an approximated BCPO in closed form. As practical datasets
are usually generated by heterogeneous policies, we use the Gaussian Mixture to model the data-
generating policies and overcome extra optimization difficulties by leveraging the LogSumExp’s LB
and Jensen’s Inequality. We instantiate a one-step offline RL algorithm with our CFPI operator and
show that it can outperform SOTA algorithms on the Gym-MuJoCo domain of the D4RL benchmark.

Our CFPI operators avoid the training instability incurred by policy improvement through SGD.
However, our method still requires learning a good Q function. Specifically, our operators rely on
the gradient information provided by the Q, and its accuracy largely impacts the effectiveness of our
policy improvement. Therefore, one promising future direction for this work is to investigate ways to
robustify the policy improvement given a noisy Q.
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Reproducibility Statement

We include our codes in the supplementary material.
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Appendix

Outline of the Appendix

In this Appendix, we organize the content in the following ways:

• Appendix A presents the missing proofs for Proposition 3.1, 3.2, 3.3 and Theorem 3.1 in the
main paper.

• Appendix B justify one HP setting for Equation 14.
• Appendix C discusses how to instantiate multi-step and iterative algorithms from our

algorithm template Algorithm 1.
• Appendix D provides the derivation of a new CFPI operator that can work with both

deterministic and VAE policy.
• Appendix E conducted a reliable evaluation to demonstrate the statistical significance of our

methods and address statistical uncertainty.
• Appendix F gives experiment details, HP settings and corresponding experiment results.
• Appendix G provides additional ablation studies and experiment results.
• Appendix H includes additional related work and discusses the relationship between our

method and prior literature that leverage the Taylor expansion approach.

Our experiments are conducted on various types of 8GPUs machines. Different machines may have
different GPU types, such as NVIDIA GA100 and TU102. Training a behavior policy for 500K
gradient steps takes around 40 minutes, while training a Q network for 500K gradient steps takes
around 50 minutes.

14



A Proofs and Theoretical Results

A.1 Proof of Proposition 3.1

Proposition 3.1. The optimization problem (5) has a closed-form solution that is given by

µsg(τ) = µβ +

√
2 log τ Σβ [∇aQ(s, a)]a=µβ√

[∇aQ(s, a)]
T
a=µβ

Σβ [∇aQ(s, a)]a=µβ

, where δ =
1

2
log det(2πΣβ) + log τ

(16)

Proof. The optimization problem (5) can be converted into the QCLP

max
µ

µT [∇aQ(s, a)]a=µβ
, s.t.

1

2
(µ− µβ)

TΣ−1
β (µ− µβ) ≤ δ − 1

2
log det(2πΣβ) (17)

Following a similar procedure as is in OAC (Ciosek et al., 2019), we first derive the Lagrangian
below:

L = µT [∇aQ(s, a)]a=µβ
− η

(
1

2
(µ− µβ)

TΣ−1
β (µ− µβ)− δ +

1

2
log det(2πΣβ)

)
(18)

Taking the derivatives w.r.t µ, we get

∇µL = [∇aQ(s, a)]a=µβ
− ηΣ−1

β (µ− µβ) (19)

By setting ∇µL = 0, we get

µ = µβ +
1

η
Σβ [∇aQ(s, a)]a=µβ

(20)

To satisfy the the KKT conditions (Boyd et al., 2004), we have η > 0 and

(µ− µβ)
TΣ−1

β (µ− µβ) = 2δ − log det(2πΣβ) (21)

Finally with (20) and (21), we get

η =

√√√√ [∇aQ(s, a)]
T
a=µβ

Σβ [∇aQ(s, a)]a=µβ

2δ − log det(2πΣβ)
(22)

By setting δ = 1
2 log det(2πΣβ) + log τ and plugging (22) to (20), we obtain the final solution as

µsg(τ) = µβ +

√
2 log τ Σβ [∇aQ(s, a)]a=µβ√

[∇aQ(s, a)]
T
a=µβ

Σβ [∇aQ(s, a)]a=µβ

, (23)

which completes the proof.
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A.2 Proof of Proposition 3.2

Proposition 3.2. By applying the first inequality of Lemma 3.1 to the constraint of (9), we can derive
an optimization problem that lower bounds (9)

max
µ

µT [∇aQ(s, a)]a=aβ

s.t. max
i

{
−1

2
(µ− µi)

TΣ−1
i (µ− µi)−

1

2
log det(2πΣi) + log λi

}
≥ −δ,

(24)

and the closed-form solution to (10) is given by

µlse(τ) = argmax
µ̄i(δ)

µ̄T
i [∇aQ(s, a)]a=µi

, s.t. δ =
1

2
min
i
{log λi det(2πΣi)}+ log τ

where µ̄i(δ) = µi +

√
2(δ + log λi)− log det(2πΣi)

[∇aQ(s, a)]
T
a=µi

Σi [∇aQ(s, a)]a=µi

Σi [∇aQ(s, a)]a=µi

(25)

Proof. Recall that the Gaussian Mixture behavior policy is constructed by

πβ =

N∑
i=1

λiN (µi,Σi), (26)

We first divide the optimization problem (24) into N sub-problems, with each sub-problem i given by

max
µ

µT [∇aQ(s, a)]a=aβ

s.t. − 1

2
(µ− µi)

TΣ−1
i (µ− µi)−

1

2
log det(2πΣi) + log λi ≥ −δ,

(27)

which is equivalent to solving problem (5) for each Gaussian component with an additional constant
term log λi, and thus has a unique closed-form solution.

Define the maximizer for each sub-problem i as µ̄i(δ), though µ̄i(δ) does not always exist. Whenever
− 1

2 log det(2πΣi)+log λi < −δ, there will be no µ satisfying the constraint as 1
2 (µ−µi)

TΣ−1
i (µ−

µi) is always greater than 0. We thus set µ̄i(δ) to be None in this case. Next, we will show that there
does not exist any µ̆ /∈ {µ̄i(δ)|i = 1 . . . N}, s.t., µ̆ is the maximizer of (24). We can show this by
contradiction. Suppose there exists a µ̆ /∈ {µ̄i(δ)|i = 1 . . . N} maximizing (24), there exists at least
one j ∈ {1, . . . , N} s.t.

−1

2
(µ̆− µj)

TΣ−1
j (µ̆− µj)−

1

2
log det(2πΣj) + log λj ≥ −δ. (28)

Since µ̆ is the maximizer of (24), it should also be maximizer of the sub-problem j. However,
the maximizer for sub-problem j is given by µ̄j(δ) ̸= µ̆, contradicting with the fact that µ̆ is the
maximizer of the sub-problem j. Therefore, the optimal solution to (24) has to be given by

argmaxµ̄i
µ̄T
i [∇aQ(s, a)]a=aβ

where µ̄i ∈ {µ̄i(δ)|i = 1 . . . N} (29)

To solve each sub-problem i, it is natural to set aβ = µi, which reformulate the sub-problem i as
below

max
µ

µT [∇aQ(s, a)]a=µi

s.t.
1

2
(µ− µi)

TΣ−1
i (µ− µi) ≤ δ − 1

2
log det(2πΣi) + log λi,

(30)

Note that problem (30) is also a QCLP similar to the problem (5). Therefore, we can derive its
solution by following similar procedures as in Appendix A.1, resulting in

µ̄i(δ) = µi +

√
2(δ + log λi)− log det(2πΣi)

[∇aQ(s, a)]
T
a=µi

Σi [∇aQ(s, a)]a=µi

Σi [∇aQ(s, a)]a=µi
. (31)

We complete the proof by further setting δ = 1
2 mini {log λi det(2πΣi)}+ log τ .
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A.3 Proof of Proposition 3.3

Proposition 3.3. By applying the second inequality of Lemma 3.1 to the constraint of (9), we can
derive an optimization problem that lower bounds (9)

max
µ

µT [∇aQ(s, a)]a=aβ

s.t.
N∑
i=1

λi

(
−1

2
log det(2πΣi)−

1

2
(µ− µi)

TΣ−1
i (µ− µi)

)
≥ −δ

(32)

and the closed-form solution to (12) is given by

µjensen(τ) = µ̄+

√√√√2 log τ −
∑N

i=1 λiµT
i Σ

−1
i µi + µ̄TΣ

−1
µ̄

[∇aQ(s, a)]
T
a=µ̄Σ[∇aQ(s, a)]a=µ̄

Σ[∇aQ(s, a)]a=µ̄,

where Σ =

(
N∑
i=1

λiΣ
−1
i

)−1

, µ̄ = Σ

(
N∑
i=1

λiΣ
−1
i µi

)
, δ = log τ +

1

2

N∑
i=1

λi log det(2πΣi)

(33)

Proof. Note that problem (32) is also a QCLP. Before deciding the value of aβ , we first derive its
Lagrangian with a general aβ below

L = µT [∇aQ(s, a)]a=aβ
− η

(
N∑
i=1

λi

(
1

2
log det(2πΣi) +

1

2
(µ− µi)

TΣ−1
i (µ− µi)

)
− δ

)
(34)

Taking the derivatives w.r.t µ, we get

∇µL = [∇aQ(s, a)]a=aβ
− η

(
N∑
i=1

λi

(
Σ−1

i (µ− µi)
))

(35)

By setting ∇µL = 0, we get

µ =

(
N∑
i=1

λiΣ
−1
i

)−1( N∑
i=1

λiΣ
−1
i µi

)
+

1

η

(
N∑
i=1

λiΣ
−1
i

)
[∇aQ(s, a)]a=aβ

= µ̄+
1

η
Σ [∇aQ(s, a)]a=aβ

,

where Σ =

(
N∑
i=1

λiΣ
−1
i

)−1

, µ̄ = Σ

(
N∑
i=1

λiΣ
−1
i µi

)
,

(36)

Equation 36 shows that the final solution to the problem (32) will be a shift from the pseudo-mean µ̄.
Therefore, setting aβ = µ̄ becomes a natural choice.

Furthermore, by satisfying the KKT conditions, we have η > 0 and

N∑
i=1

λi (µ− µi)
T
Σ−1

i (µ− µi) = 2δ −
N∑
i=1

λi log det(2πΣi) (37)

Plugging (32) into (37) gives the equation below

N∑
i=1

λi

(
µ̄+

1

η
Σ [∇aQ(s, a)]a=µ̄ − µi

)T

Σ−1
i

(
µ̄+

1

η
Σ [∇aQ(s, a)]a=µ̄ − µi

)

= 2δ −
N∑
i=1

λi log det(2πΣi).

(38)
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The LHS of (38) can be reformulated as

N∑
i=1

λi

(
µ̄+

1

η
Σ [∇aQ(s, a)]a=µ̄ − µi

)T

Σ−1
i

(
µ̄+

1

η
Σ [∇aQ(s, a)]a=µ̄ − µi

)

=
1

η2

N∑
i=1

λi

(
Σ [∇aQ(s, a)]a=µ̄

)T
Σ−1

i

(
Σ [∇aQ(s, a)]a=µ̄

)
+

2

η

N∑
i=1

λi

(
Σ [∇aQ(s, a)]a=µ̄

)T
Σ−1

i

(
µ̄− µi

)
+

N∑
i=1

λi (µ̄− µi)
T
Σ−1

i (µ̄− µi)

. (39)

We note that the second line of (39)’s RHS can be reduced to

2

η

N∑
i=1

λi

(
Σ [∇aQ(s, a)]a=µ̄

)T
Σ−1

i

(
µ̄− µi

)
=

2

η

(
Σ [∇aQ(s, a)]a=µ̄

)T (( N∑
i=1

λiΣ
−1
i

)
µ̄−

N∑
i=1

λiΣ
−1
i µi

)

=
2

η

(
Σ [∇aQ(s, a)]a=µ̄

)T (
Σ

−1
µ̄− Σ

−1

(
Σ

N∑
i=1

λiΣ
−1
i µi

))

=
2

η

(
Σ [∇aQ(s, a)]a=µ̄

)T (
Σ

−1
µ̄− Σ

−1
µ̄
)

= 0

. (40)

Therefore, (39) can be further reformulated as

N∑
i=1

λi

(
µ̄+

1

η
Σ [∇aQ(s, a)]a=µ̄ − µi

)T

Σ−1
i

(
µ̄+

1

η
Σ [∇aQ(s, a)]a=µ̄ − µi

)

=
1

η2

N∑
i=1

λi

(
Σ [∇aQ(s, a)]a=µ̄

)T
Σ−1

i

(
Σ [∇aQ(s, a)]a=µ̄

)
+

N∑
i=1

λi (µ̄− µi)
T
Σ−1

i (µ̄− µi)

=
1

η2

(
Σ [∇aQ(s, a)]a=µ̄

)T ( N∑
i=1

λiΣ
−1
i

)(
Σ [∇aQ(s, a)]a=µ̄

)
+

N∑
i=1

λi (µ̄− µi)
T
Σ−1

i (µ̄− µi)

=
1

η2

(
Σ [∇aQ(s, a)]a=µ̄

)T
Σ

−1
(
Σ [∇aQ(s, a)]a=µ̄

)
+

N∑
i=1

λi (µ̄− µi)
T
Σ−1

i (µ̄− µi)

=
1

η2
[∇aQ(s, a)]

T
a=µ̄ Σ [∇aQ(s, a)]a=µ̄ +

N∑
i=1

λi (µ̄− µi)
T
Σ−1

i (µ̄− µi)

. (41)
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To this point, (38) can be reformulated as

1

η2
[∇aQ(s, a)]

T
a=µ̄ Σ [∇aQ(s, a)]a=µ̄ +

N∑
i=1

λi (µ̄− µi)
T
Σ−1

i (µ̄− µi)

= 2δ −
N∑
i=1

λi log det(2πΣi)

(42)

We can thus express η as below

η =

√√√√ [∇aQ(s, a)]
T
a=µ̄ Σ [∇aQ(s, a)]a=µ̄

2δ −
∑N

i=1 λi log det(2πΣi)−
∑N

i=1 λi (µ̄− µi)
T
Σ−1

i (µ̄− µi)
(43)

By setting δ = 1
2

∑N
i=1 λi log det(2πΣi) + log τ , we have

η =

√√√√ [∇aQ(s, a)]
T
a=µ̄ Σ [∇aQ(s, a)]a=µ̄

2 log τ −
∑N

i=1 λi (µ̄− µi)
T
Σ−1

i (µ̄− µi)

=

√√√√ [∇aQ(s, a)]
T
a=µ̄ Σ [∇aQ(s, a)]a=µ̄

2 log τ −
∑N

i=1 λiµ̄TΣ−1
i µ̄+ 2µ̄T

∑N
i=1 λiΣ

−1
i µi −

∑N
i=1 λiµT

i Σ
−1
i µi

=

√√√√ [∇aQ(s, a)]
T
a=µ̄ Σ [∇aQ(s, a)]a=µ̄

2 log τ −
∑N

i=1 µ̄
TΣ

−1
µ̄+ 2µ̄TΣ

−1
µ̄−

∑N
i=1 λiµT

i Σ
−1
i µi

=

√√√√ [∇aQ(s, a)]
T
a=µ̄ Σ [∇aQ(s, a)]a=µ̄

2 log τ + µ̄TΣ
−1

µ̄−
∑N

i=1 λiµT
i Σ

−1
i µi

. (44)

Finally, plugging (44) into (36), with aβ = µ̄, we have

µjensen(τ) = µ̄+

√√√√2 log τ −
∑N

i=1 λiµT
i Σ

−1
i µi + µ̄TΣ

−1
µ̄

[∇aQ(s, a)]
T
a=µ̄Σ[∇aQ(s, a)]a=µ̄

Σ[∇aQ(s, a)]a=µ̄, (45)

which completes the proof.
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A.4 Proof of Theorem 3.1

In this section we prove the safe policy improvement presented in Section 3.3. Algorithm 1 follows the
approximate policy iteration (API) (Perkins & Precup, 2002) by iterating over the policy evaluation
(E step, Line 4) and policy improvement (I step, Line 5). Therefore, to verify E provides the
improvement, we need to first show policy evaluation Q̂t is accurate. In particular, we focus on the
SARSA updates (Line 2), which is a form of on-policy Fitted Q-Iteration (Sutton & Barto, 2018).
Fortunately, it is known that FQI is statistically efficient (e.g. (Chen & Jiang, 2019)) under the mild
condition for the function approximation class. Its linear counterpart, least-square value iteration,
is also shown to be efficient for offline reinforcement learning (Jin et al., 2021; Yin et al., 2022).
Recently, (Zou et al., 2019) shows the finite sample convergence guarantee for SARSA under the
standard the mean square error loss.

Next, to show the performance improvement, we leverage the performance difference lemma to show
our algorithm achieves the desired goal.
Lemma A.1 (Performance Difference Lemma). For any policy π, π′, it holds that

J(π)− J(π′) =
1

1− γ
Es∼dπ

[
Ea∼π(·|s)A

π′
(s, a)

]
,

where Aπ(s, a) = Qπ(s, a)− V π(s) is the advantage function.

Similar to (Kumar et al., 2020b), we focus on the discrete case where the number of states |S| and
actions |A| are finite (note in the continuous case, the D(s, a) would be 0 for most locations, and thus
the bound becomes less interesting). The adaptation to the continuous space can leverage standard
techniques like state abstraction (Li et al., 2006) and covering arguments.

Next, we define the learning coefficient Cγ,δ of SARSA as

|Q̂π̂β (s, a)−Qπ̂β (s, a)| ≤ Cγ,δ√
D(s, a)

, ∀s, a ∈ S ×A.

Define the first-order approximation error as

Q̄π̂β (s, a) := (a− aβ)
T
[
∇aQ̂

π̂β (s, a)
]
a=aβ

+ Q̂π̂β (s, aβ),

then the approximation error is defined as:

CCFPI(s, a) := |Q̄π̂β (s, a)−Q̂π̂β (s, a)| =
∣∣∣∣(a− aβ)

T
[
∇aQ̂

π̂β (s, a)
]
a=aβ

+ Q̂π̂β (s, aβ)− Q̂π̂β (s, a)

∣∣∣∣ .
Under the constraint D (π(· | s), π̂β(· | s)) ≤ δ (4) (or equivalently action a is close to aβ), the
first-order approximation provides a good estimation for the Q̂πβ .
Theorem A.1 (Restatement of Theorem 3.1). Assume the state and action spaces are discrete. Let π̂1

be the policy obtained after the CFPI update (Line 2 of Algorithm 1). Then with probability 1− δ,

J(π̂1)− J(π̂β) ≥
1

1− γ
Es∼dπ̂1

[
Q̄π̂β (s, π̂1(s))− Q̄π̂β (s, π̂β(s))

]
− 2

1− γ
Es∼dπ̂1Ea∼π̂1(·|s)

[
Cγ,δ√
D(s, a)

+ CCFPI(s, a)

]
:= ζ.

For multi-step T iterative update, we similarly have with probability 1− δ,

J(π̂T )− J(π̂β) =

T∑
t=1

J(π̂t)− J(π̂t−1) ≥
T∑

t=1

ζ(t),

where D(s, a) denotes number of samples at s, a, the learning coefficient of SARSA is defined

as Cγ,δ = maxs0,a0

√
2 ln(12SA/δ) ·

√∑∞
h=0

∑
s,a γ

2h · µπ̂β

h (s, a|s0, a0)2 Var [V π̂β (s′) | s, a],
and CCFPI(s, a) denotes the error from the first-order approximation (3), (4) using CFPI, i.e.

CCFPI(s, a) :=

∣∣∣∣(a− aβ)
T
[
∇aQ̂

π̂β (s, a)
]
a=aβ

+ Q̂π̂β (s, aβ)− Q̂π̂β (s, a)

∣∣∣∣. When a = aβ ,

CCFPI(s, a) = 0.

20



proof of Theorem 3.1. We focus on the first update, which is from π̂b to π̂1. According to the
Sarsa update, we have |Q̂π̂β (s, a) − Qπ̂β (s, a)| ≤ Cγ,δ√

D(s,a)
, ∀s, a ∈ S × A with probability

1 − δ and this is due to previous on-policy evaluation result (e.g. (Zou et al., 2019)). Also denote
π̂1 := argmaxπ Q̄

π̂β .

By Lemma A.1,

J(π̂1)− J(π̂β) =
1

1− γ
Es∼dπ̂1

[
Ea∼π̂1(·|s)A

π̂β (s, a)
]

=
1

1− γ
Es∼dπ̂1

[
Ea∼π̂1(·|s)[Q

π̂β (s, a)− V π̂β (s)]
]

=
1

1− γ
Es∼dπ̂1

[
Ea∼π̂1(·|s)[Q

π̂β (s, a)−Qπ̂β (s, π̂β(s))]
]

≥ 1

1− γ
Es∼dπ̂1

[
Ea∼π̂1(·|s)[Q̂

π̂β (s, a)− Q̂π̂β (s, π̂β(s))]
]
− 2

1− γ
Es∼dπ̂1Ea∼π̂1(·|s)

[
Cγ,δ√
D(s, a)

]

≥ 1

1− γ
Es∼dπ̂1

[
Q̄π̂β (s, π̂1(s))− Q̄π̂β (s, π̂β(s))

]
− 2

1− γ
Es∼dπ̂1Ea∼π̂1(·|s)

[
Cγ,δ√
D(s, a)

+ CCFPI(s, a)

]
:=ζ(1)

where the first inequality uses |Q̂π̂β (s, a) − Qπ̂β (s, a)| ≤ Cγ,δ√
D(s,a)

and the last inequality uses

π̂1 := argmaxπ Q̄
π̂β . Here

Cγ,δ = max
s0,a0

√
2 ln(12SA/δ) ·

√√√√ ∞∑
h=0

∑
s,a

γ2h · µπ̂β

h (s, a|s0, a0)Var [V π̂β (s′) | s, a]

Similarly, if the number of iteration t > 1, then Denote

C
(t)
γ,δ := max

s0,a0

√
2 ln(12SA/δ) ·

√√√√ ∞∑
h=0

∑
s,a

γ2h ·
µπ̂t

h (s, a|s0, a0)2

µ
π̂t−1

h (s, a|s0, a0)
Var [V π̂t (s′) | s, a],

then we have with probability 1− δ, by the Corollary 1 of Duan et al. (2020), the OPE estimation
follows

|Q̂π̂β (s, a)−Qπ̂β (s, a)| ≤
C

(t)
γ,δ√
D(s, a)

and

J(π̂t)− J(π̂t−1) ≥
1

1− γ
Es∼dπ̂t

[
Q̄π̂t−1(s, π̂t(s))− Q̄π̂t−1(s, π̂t−1(s))

]
− 2

1− γ
Es∼dπ̂tEa∼π̂t(·|s)

[
C

(t)
γ,δ√
D(s, a)

+ CCFPI(s, a)

]
:= ζ(t),

then for multi-step iterative algorithm, by a union bound, we have with probability 1− δ

J(π̂T )− J(π̂β) =

T∑
t=1

J(π̂t)− J(π̂t−1) ≥
T∑

t=1

ζ(t).

On the learning coefficient of SARSA. The learning of SARSA is known to be statistically efficient
from existing off-policy evaluation (OPE) literature, for instance (Duan et al., 2020; Yin & Wang,
2020). This is due to the on-policy SARSA scheme is just a special case of OPE task by choosing
π = π̂β .
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Concretely, we can translate the finite sample error bound in Corollary 1 of (Duan et al., 2020) to the
infinite horizon discounted setting as: for any initial state,action s0, a0, with probability 1− δ,

|Q̂π̂β (s0, a0)−Qπ̂β (s0, a0)| ≤
1√

D(s0, a0)

√
2 ln(12/δ)·

√√√√ ∞∑
h=0

∑
s,a

γ2h · µπ̂β

h (s, a|s0, a0)Var [V π̂β (s′) | s, a]

Note the original statement in (Duan et al., 2020) is for vπ̂β − v̂π̂β , here we conduct the version for
Q̂π̂β −Qπ̂β instead and this can be readily obtained by fixing the initial state action s0, a0 for vπ . As
a result, by a union bound (over S, A) it is valid to define

Cγ,δ = max
s0,a0

√
2 ln(12SA/δ) ·

√√√√ ∞∑
h=0

∑
s,a

γ2h · µπ̂β

h (s, a|s0, a0)Var [V π̂β (s′) | s, a]

and this makes sure the statistical guarantee in Theorem 3.1 follows through.

Similarly, for the multi-step case, the OPE estimator hold with the corresponding coefficient

C
(t)
γ,δ := max

s0,a0

√
2 ln(12SA/δ) ·

√√√√ ∞∑
h=0

∑
s,a

γ2h ·
µπ̂t

h (s, a|s0, a0)2

µ
π̂t−1

h (s, a|s0, a0)
Var [V π̂t (s′) | s, a].

Lastly, even the assumption on the state-action space to be finite is not essential for Theorem 3.1
since, for more general function approximations, recent literature for OPE (Zhang et al., 2022) shows
SARSA update in Algorithm 1 is still statistically efficient.
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B Detailed Procedures to obtain Equation 14

We first highlight that we set the HP δ differently for Proposition 3.2 and 3.3. With the same τ , we
generate the two different δ for the two different settings. Specifically,

δlse(τ) = log τ +min
i

{
1

2
log det(2πΣi)− log λi

}
, (Proposition 3.2)

δjensen(τ) = log τ +
1

2

N∑
i=1

λi log det(2πΣi), (Proposition 3.3)
(46)

We next provide intuition for the design choices (46). Recall that the Gaussian Mixture behavior
policy is constructed by

πβ =

N∑
i=1

λiN (µi,Σi). (47)

With the mixture weights λi=1...N , we define the scaled probability π̆i(a) of the i-th Gaussian
component evaluated at a

π̆i(µi) = λiπi(a) = λi det(2πΣi)
− 1

2 exp{−1

2
(a− µi)

TΣ−1
i (a− µi)}, (48)

where πi(a) = N (a;µi,Σi) denotes the probability of the i-th Gaussian component evaluated at a.
Therefore, we can have log π̆i(µi) = log λi − 1

2 log det(2πΣi), which implies that

δlse(τ) = log τ +min
i

{
1

2
log det(2πΣi)− log λi

}
= −

(
max

i

{
log λi −

1

2
log det(2πΣi)

}
− log τ

)
= −max

i

{
log

1

τ
π̆i(µi)

}
.

. (49)

By setting δlse(τ) in this way, µ̄j = µ̄j(δlse(τ)) will satisfy the following condition whenever µ̄j is a
valid solution to the sub-problem j (27) due to the KKT conditions, ∀j ∈ {1, . . . , N}.

− 1

2
(µ̄j − µj)

TΣ−1
j (µ̄j − µj)−

1

2
log det(2πΣj) + log λj = −δlse(τ)

⇐⇒ log π̆j(µ̄j) = max
i

{
log

1

τ
π̆i(µi)

}
⇐⇒ π̆j(µ̄j) =

1

τ
max

i
{π̆i(µi)}

(50)

To elaborate the design of δjensen(τ), we first recall that the constraint of problem (12) is given by
N∑
i=1

λi

(
−1

2
log det(2πΣi)−

1

2
(µ− µi)

TΣ−1
i (µ− µi)

)
≥ −δjensen(τ). (51)

Note that the LHS of (51) is a concave function w.r.t µ. Thus, we can obtain its maximum by setting
its derivatives (52) to zero

∇µ

(
N∑
i=1

λi

(
−1

2
log det(2πΣi)−

1

2
(µ− µi)

TΣ−1
i (µ− µi)

))

=−
N∑
i=1

λiΣ
−1
i (µ− µi) = −Σ

−1
µ+Σ

−1
µ̄

. (52)

Interestingly, we can find that the solution is given by µ = µ̄. Plugging µ = µ̄ into the LHS of (51),
we can obtain its maximum as below

− 1

2

N∑
i=1

λi log det(2πΣi)−
1

2

N∑
i=1

λi(µ̄− µi)
TΣ−1

i (µ̄− µi)

≤
N∑
i=1

λi

(
−1

2
log det(2πΣi)

)
=

N∑
i=1

λi log πi(µi)

(53)
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The inequality holds as the covariance matrix Σi is a positive semi-definite matrix for i ∈ {1 . . . N}.
Therefore, our choice of δjensen(τ) can be interpreted as

δjensen(τ) = log τ +
1

2

N∑
i=1

λi log det(2πΣi) = −(
N∑
i=1

λi log πi(µi)− log τ) (54)
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Algorithm 2 Iterative IMG

1: Input: Learned behavior policy π̂β , Q network parameters ϕ1, ϕ2, target Q network parameters
ϕtarg,1, ϕtarg,2, dataset D, parameter τ

2: repeat
3: Randomly sample a batch of transitions, B = {(s, a, r, s′, d)} from D
4: Compute target actions

a′(s′) = clip
(
IMG(π̂β , Q̂; τ)(s′) + clip(ϵ,−c, c), aLow, aHigh

)
,

where Q̂ = min(Qϕ1 , Qϕ2), and ϵ ∼ N (0, σ)

5: Compute targets

y(r, s′, d) = r + γ(1− d) min
i=1,2

Qϕtarg,i(s
′, a′(s′))

6: Update Q-functions by one step of gradient descent using

∇ϕi

1

|B|
∑

(s,a,r,s′,d)∈B

(Qϕi(s, a)− y(r, s′, d))
2 for i = 1, 2

7: Update target networks with

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1, 2

8: until convergence
9: Output: IMG(π̂β , Q̂; τ)

C Multi-step and iterative algorithms

By setting T > 0, we can derive multi-step and iterative algorithms. Thanks to the tractability of our
CFPI operators ISG and IMG, we can always perform the policy improvement step in-closed form.
Therefore, there is no significant gap between multi-step and iterative algorithms with our CFPI
operators. One can differentiate our multi-step and iterative algorithms by whether an algorithm
trains the policy evaluation step E(Q̂t−1, π̂t,D) to convergence or not.

As for the policy evaluation operator E , the fitted Q evaluation (Ernst et al., 2005; Le et al., 2019;
Fujimoto et al., 2022) with a target network (Mnih et al., 2015) has been demonstrated to be an
effective and successful paradigm to perform policy evaluation (Kumar et al., 2019; Fujimoto & Gu,
2021; Haarnoja et al., 2018; Lillicrap et al., 2015; Fujimoto et al., 2018) in deep (offline) RL. When
instantiating a multi-step or iterative algorithm from Algorithm 1, one can also consider the other
policy evaluation operators by incorporating more optimization techniques.

In the rest of this section, we will instantiate an iterative algorithm with our CFPI operators performing
the policy improvement step and evaluate its effectiveness on the challenging AntMaze domains.

C.1 Iterative algorithm with our CFPI operators

In Sec. 5.1, we instantiate an iterative algorithm Iterative IMG with our CFPI operator IMG. Algorithm
2 presents the corresponding pseudo-codes that learn a set of Q-function networks for simplicity.
Without loss of generality, we can easily generalize the algorithm to learn the action-value distribution
Z(s, a) as is defined in (57).

For each task, we learn a Gaussian Mixture behavior policy π̂β with behavior cloning. Similar to
Sec. 5.1, we employed the IQN (Dabney et al., 2018a) architecture to model the Q-value network for
its better generalizability. As our CFPI operator IMG returns a deterministic policy, we follow the
TD3 (Fujimoto et al., 2018) to perform policy smoothing by adding noise to the action a′(s′) in Line
4. After convergence, Algorithm 2 outputs an improved policy IMG(π̂β , Q̂; τ).

Table 5 compares our Iterative IMG with SOTA algorithms on the AntMaze domain. The performance
for all baseline methods is directly reported from the IQL paper (Kostrikov et al., 2021). Our method
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Table 5: Comparison between our iterative algorithm and SOTA methods on the AntMaze domain of
D4RL. We report the mean and standard deviation across 5 seeds for our methods. Our Iterative IMG
outperforms all baselines on 5 out of 6 tasks and obtaining the best overall performance, demonstrating
the effectiveness of our CFPI operator when instantiating an iterative algorithm. “u” stands for umaze,
“m” stands for medium, “l” stands for large, “p” stands for play, and “d” stands for diverse.

Dataset BC DT Onestep RL TD3+BC CQL IQL Iterative IMG

antmaze-u-v0 54.6 59.2 64.3 78.6 74.0 87.5 90.2± 3.9
antmaze-u-d-v0 45.6 49.3 60.7 71.4 84.0 62.2 58.6± 15.2
antmaze-m-p-v0 0.0 0.0 0.3 10.6 61.2 71.2 75.2± 6.9
antmaze-m-d-v0 0.0 0.7 0.0 3.0 53.7 70.0 72.2± 7.3
antmaze-l-p-v0 0.0 0.0 0.0 0.2 15.8 39.6 51.4± 7.7
antmaze-l-d-v0 0.0 1.0 0.0 0.0 14.9 47.5 52.4± 10.9

Total 100.2 112.2 125.3 163.8 303.6 378.0 400.0± 52.0

outperforms all baseline methods on on 5 out of 6 tasks and obtaining the best overall performance.
The training curves are shown in Fig. 3 with the HP settings detailed in Table 6. We did not
perform much HP tuning, and thus one should expect a performance improvement after conducting
fine-grained HP tuning.

Figure 3: Iterative IMG training results on AntMaze. Shaded area denotes one standard deviation.
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Hyperparameter Value

Shared HP Optimizer Adam (Kingma & Ba, 2014)
Normalize states False
activation function ReLU
Mini-batch size 256

Gaussian components (N ) 8
Number of gradient steps 500K
Policy architecture MLP

MG-BC Policy learning rate 1e-4
Policy hidden layers 3
Policy hidden dim 256
Threshold ξ in (15) 0.05

Number of gradient steps 1M
Critic architecture IQN (Dabney et al., 2018a)
Critic hidden dim 256
Critic hidden layers 3
Critic learning rate 3e-4

Iterative IMG Number of quantiles Nq 8
Number of cosine basis elements 64
Discount factor 0.99
Target update rate 5e-3
Target update period 1
log τ 1.5

Table 6: Hyperparameters for our Iterative IMG.

D CFPI beyond Gaussian policies

In the main paper, we mainly discuss the scenario when the behavior policy πβ is from the Gaussian
family and develop two CFPI operators. However, our methods can also work with a non-Gaussian
πβ . Next, we derive a new CFPI operator IDET that can work with deterministic πβ . We then show
that IDET can also be leveraged to improve a general stochastic policy πβ without knowing its actual
expression, as long as we can sample from it.

D.1 Deterministic behavior policy

When modeling both π = µ and πβ = µβ as deterministic policies, we can derive the following
BCPO from the problem (4) by setting D(·, ·) as the mean squared error.

max
µ

µT [∇aQ(s, a)]a=µβ
, s.t.

1

2
∥µ− µβ∥2 ≤ δ. (55)

Problem (55) has a similar form as the problem (17). We can thus obtain its closed-form solution
µ = µdet(δ) as below

µdet(δ) = µβ +

√
2δ

∥ [∇aQ(s, a)]a=µβ
∥
[∇aQ(s, a)]a=µβ

. (56)

Therefore, we can derive a new CFPI operator IDET(πβ , Q; δ) that returns a policy with action
selected by (56).

We further note that the problem (55) can be seen as a linear approximation of the objectives used in
TD3 + BC (Fujimoto & Gu, 2021).

D.2 Beyond deterministic behavior policy

Though we assume πβ to be a deterministic policy during the derivation of IDET, we can indeed
leverage IDET to tackle the more general case when we can only sample from πβ without knowing its
actual expression.
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Algorithm 3 Policy improvement of IDET with a stochastic πβ

Input: State s, stochastic policy πβ , value function Q̂, δ, number of candidate actions to sample M

1: Sample candidate actions {a1, . . . , aM} from πβ

2: Obtain the EBCQ policy πEBCQ with action selected by πEBCQ(s) = argmaxm=1...M Q̂(s, am)

3: Return IDET(πEBCQ, Q̂; δ) by calculating (56)

Table 7: IDET results on the Gym-MuJoCo domain. We report the mean and standard deviation 5
seeds and each seed evaluates for 100 episodes.

Dataset DET-BC VAE-BC VAE-EBCQ IDET with πdet IDET with πvae

Walker2d-Medium-v2 71.2± 2.0 70.6± 3.0 70.6± 3.4 79.5± 12.9 86.5± 6.3

Walker2d-Medium-Replay-v2 19.5± 12.6 19.4± 2.9 33.5± 7.3 57.1± 11.6 62.6± 7.1

Walker2d-Medium-Expert-v2 74.4± 0.4 74.9± 7.6 82.7± 11.9 111.2± 1.8 111.1± 0.9

Algorithm 3 details the procedures to perform the policy improvement step for a stochastic behavior
policy πβ . We first obtain its EBCQ policy πEBCQ in Line 1-2. As πEBCQ is deterministic, we further
plug it in IDET in Line 3 to return an improved policy.

D.3 Experiment results

To evaluate the performance of IDET, we first learn two behavior policies with two different models.
Specifically, we model πdet with a three-layer MLP that outputs a deterministic policy and πvae with
the Variational auto-encoder (VAE) (Kingma & Welling, 2013) from BCQ (Fujimoto et al., 2019).
Moreover, we reused the same value function Q̂0 as in Section 5.1. We present the results in Table 7.
DET-BC and VAE denote the performance of πdet and πvae, respectively. VAE-EBCQ denotes the
EBCQ performance of πvae with M = 50 candidate actions. Since πdet is deterministic, its EBCQ
performance is the same as DET-BC. As for our two methods, we set δ = 0.1 for all datasets. We can
observe that both our IDET with πdet and IDET with πvae largely improve over the baseline methods.
Moreover, IDET with πvae outperforms VAE-EBCQ by a significant margins on all three datasets,
demonstrating the effectiveness of our CFPI operator.

Indeed, our method benefits from an accurate and expressive behavior policy, as IDET with πvae
achieves a higher average performance compared to IDET with πdet, while maintaining a lower
standard deviation on all three datasets.

We also note that we did not spend too much effort optimizing the HP, e.g., the VAE architectures,
learning rates, and the value of τ .
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E Reliable evaluation to address the statistical uncertainty

Figure 4: Comparison between our methods and baselines using reliable evaluation methods proposed
in (Agarwal et al., 2021). We re-examine the results in Table 4 on the 9 tasks from the D4RL MuJoCo
Gym domain. Each metric is calculated with a 95% CI bootstrap based on 9 tasks and 10 seeds for
each task. Each seed further evaluates each method for 100 episodes. The interquartile mean (IQM)
discards the top and bottom 25% data points and calculates the mean across the remaining 50% runs.
The IQM is more robust as an estimator to outliers than the mean while maintaining less variance
than the median. Higher median, IQM, mean scores, and lower Optimality Gap correspond to better
performance. Our IMG outperforms the baseline methods by a significant margin based on all four
metrics.

Figure 5: Performance profiles (score distributions) for all methods on the 9 tasks from the D4RL
MuJoCo Gym domain. The average score is calculated by averaging all runs within one task. Each
task contains 10 seeds, and each seed evaluates for 100 episodes. Shaded area denotes 95% confidence
bands based on percentile bootstrap and stratified sampling (Agarwal et al., 2021). The η value where
the curves intersect with the dashed horizontal line y = 0.5 corresponds to the median, while the area
under the performance curves corresponds to the mean.

To demonstrate the superiority of our methods over the baselines and provide reliable evaluation
results, we follow the evaluation protocols proposed in (Agarwal et al., 2021) to re-examine the
results in Table 4. Specifically, we adopt the evaluation methods for all methods with Ntasks ×Nseeds
runs in total.

Moreover, we obtain the performance profile of each method, revealing its score distribution and
variability. In particular, the score distribution shows the fraction of runs above a certain threshold η
and is given by

F̂ (η) = F̂ (η;x1:Ntasks,1:Nseeds) =
1

Ntasks

Ntasks∑
m=1

1

Nseeds

Nseeds∑
n=1

1 [xm,n ≥ η]

Evaluation results in Fig. 4 and Fig. 5 demonstrate that our IMG outperforms the baseline methods
by a significant margin based on all four reliable metrics.
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F Hyper-parameter settings and training details

For all methods we proposed in Table 1, Table 3, and Table 4, we obtain the mean and standard
deviation of each method across 10 seeds. Each seed contains individual training process and
evaluates the policy for 100 episodes.

F.1 HP and training details for methods in Table 1 and Table 4

Table 8 includes the HP of methods evaluated on the Gym-MuJoCo domain. We use the
Adam (Kingma & Ba, 2014) optimizer for all learning algorithms and normalize the states in each
dataset following the practice of TD3+BC (Fujimoto & Gu, 2021). Note that our one-step offline RL
algorithms presented in Table 1 (Our IMG) and Table 4 (IMG, ISG, MG-EBCQ, SG-EBCQ, MG-MS)
require learning a behavior policy and the value function Q̂0. Therefore, we will first describe the
detailed procedures for learning Single Gaussian (SG-BC) and Gaussian Mixture (MG-BC) behavior
policies. We next describe our SARSA-style training procedures to estimate Q̂0. Finally, we will
present the details for each one-step algorithm.

Hyperparameter Value

Shared HP Optimizer Adam (Kingma & Ba, 2014)
Normalize states True
Policy architecture MLP
Policy learning rate 1e-4
Policy hidden layers 3
Policy hidden dim 256
Policy activation function ReLU
Threshold ξ in (15) 0.05

Gaussian components (N ) 4
Number of gradient steps 500K

MG-BC Mini-batch size 256

Number of gradient steps 500K
SG-BC Mini-batch size 512

Number of gradient steps Table 16
Critic architecture IQN (Dabney et al., 2018a)
Critic hidden dim 256
Critic hidden layers 3
Critic activation function ReLU

SARSA Number of quantiles Nq 8
Number of cosine basis elements 64
Discount factor 0.99
Target update rate 5e-3
Target update period 1

Our IMG (Table 1) log τ 0 for Hopper-M-E;
0.5 for the others

IMG & ISG(Table 4) log τ 0.5 for all tasks

MG-EBCQ Number of candidate actions Nbcq 5
SG-EBCQ Number of candidate actions Nbcq 10

MG-Rev. KL Reg α 3.0
& SG-Rev. KL Reg Number of gradient steps 100K

Table 8: Hyperparameters for our methods in Table 1 and Table 4.

MG-BC. We parameterize the policy as a 3-layer MLP, which outputs the tanh of a Gaussian
Mixture with N = 4 Gaussian components. For each Gaussian component, we learn the state-
dependent diagonal covariance matrix. While existing methods suggest learning Gaussian Mixture
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via expectation maximization (Jordan & Jacobs, 1994; Xu et al., 1994; Jin et al., 2016) or variational
Bayes (Bishop & Svensén, 2012), we empirically find that directly minimizing the negative log-
likelihood of actions sampled from the offline datasets achieves satisfactory performance, as is shown
in Table 1. We train the policy for 500K gradient steps. We emphasize that we do not aim to propose
a better algorithm for learning a Gaussian Mixture behavior policy. Instead, future work may use a
more advanced algorithm to capture the underlying behavior policy better.

SG-BC. We parameterize the policy as a 3-layer MLP, which outputs the tanh of a Single Gaussian
with the state-dependent diagonal covariance matrix (Fu et al., 2020; Haarnoja et al., 2018). We train
the policy for 500K gradient steps.

SARSA. We parameterize the value function with the IQN (Dabney et al., 2018a) architecture and
train it to model the distribution Zβ : S × A → Z of the behavior return via quantile regression,
where Z is the action-value distributional space (Ma et al., 2020) defined as

Z = {Z : S ×A →P(R) | E [|Z(s, a)|p] <∞,∀(s, a), p ≥ 1} . (57)

We define the CDF function of Zβ as FZβ (z) = Pr(Zβ < z), leading to the quantile func-
tion (Müller, 1997) F−1

Zβ (ρ) := inf{z ∈ R : ρ ≤ FZβ (z)} as the inverse CDF function, where ρ

denotes the quantile fraction. We further denote Zβ
ρ = F−1

Zβ (ρ) to ease the notation.

To obtain Zβ , we leverage the empirical distributional bellman operator T̂ β
D : Z → Z defined as

T̂ β
DZ(s, a) :

D
= r + γZ (s′, a′) | (s, a, r, s′, a′) ∼ D, (58)

where A :
D
= B implies the random variables A and B are governed by the same distribution. We

note that T̂ β
D helps to construct a Huber quantile regression loss (Dabney et al., 2018a; Ma et al.,

2020; Dabney et al., 2018b), and we can finally learn Zβ by minimizing the quantile regression loss
following a similar procedures as in (Ma et al., 2020).

To achieve the goal, we approximate Zβ by Nq quantile fractions {ρi ∈ [0, 1] | i = 0 . . . Nq} with
ρ0 = 0, ρNq = 1 and ρi < ρj ,∀i < j. We further denote ρ̂i = (ρi + ρi+1)/2, and use random
sampling (Dabney et al., 2018a) to generate the quantile fractions. By further parameterizing Zβ

ρ (s, a)

as Ẑβ
ρ (s, a; θ) with parameter θ, we can derive the loss function JZ(θ) as

JZ(θ) = E(s,a,r,s′,a′)∼D

Nq−1∑
i=0

Nq−1∑
j=0

(ρi+1 − ρi) lρ̂j
(δij)

 ,

where δij = δij (s, a, r, s
′, a′) = r + γZρ̂i

(
s′, a′; θ̄

)
− Zρ̂j

(s, a; θ)

and lρ (δij) = |ρ− I {δij < 0}| L (δij) , with L (δij) =
{

1
2δ

2
ij , if |δij | ≤ 1

|δij | − 1
2 , otherwise.

. (59)

θ̄ is the parameter of the target network (Lillicrap et al., 2015) given by the Polyak averaging of θ.
We refer interested readers to (Dabney et al., 2018a; Ma et al., 2020) for further details.

The training procedures above returns Ẑβ
ρ ,∀ρ ∈ [0, 1]. With the learned Ẑβ

ρ , our one-step methods
presented in Table 1 and Table 4 extract the value function by setting Q̂0 = Eρ[Ẑ

β
ρ ] = Q̂β as the

expectation of Ẑβ
ρ , which is equivalent to the conventional action-value function Q̂β . Specifically, we

use N = 32 fixed quantile fractions with ρi = i/N, i = 0 . . . N . Given a state-action pair (s, a), we
calculate Q̂0(s, a) = Q̂β(s, a) as

Q̂0(s, a) = Q̂β(s, a) =
1

N

N∑
i=1

Ẑβ
ρ̂i
(s, a), ρ̂i =

ρi + ρi−1

2
. (60)

Since our methods still need to query out-of-buffer action values during rollout, we employed the
conventional double Q-learning (Fujimoto et al., 2018) technique to prevent potential overestimation
without clipping. Specifically, we initialize Q̂1

0 and Q̂2
0 differently and train them to minimize (59).

With the learned Q̂1
0 and Q̂2

0, we set the value of Q̂0(s, a) as

Q̂0(s, a) = min
k=1,2

Q̂k
0(s, a) (61)
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Table 9: HP search for MG-EBCQ. We report the mean and std of 10 seeds, and each seed evaluates
for 100 episodes.

Dataset Nbcq = 2 Nbcq = 5 Nbcq = 10 Nbcq = 20 Nbcq = 50 Nbcq = 100

Cheetah-M-v2 47.2± 0.3 51.5± 0.2 53.3± 0.3 54.4± 0.3 55.3± 0.4 55.8± 0.4
Hopper-M-v2 63.3± 2.3 82.5± 1.9 88.3± 4.6 90.8± 6.9 92.1± 7.6 91.3± 9.4
Walker2d-M-v2 78.6± 1.4 85.2± 2.1 81.0± 6.3 73.4± 11.0 67.6± 14.8 62.7± 15.8

Cheetah-M-R-v2 38.8± 0.6 43.0± 0.3 44.2± 0.3 44.7± 0.5 44.8± 0.8 44.6± 0.8
Hopper-M-R-v2 58.4± 6.9 83.6± 10.3 82.8± 14.9 82.3± 15.9 77.5± 17.7 76.0± 16.7
Walker2d-M-R-v2 55.1± 3.4 73.1± 5.2 75.6± 5.3 77.6± 5.4 78.0± 5.6 78.5± 4.5

Cheetah-M-E-v2 75.2± 3.2 84.5± 4.6 82.7± 5.2 77.6± 7.3 73.4± 6.4 68.8± 5.9
Hopper-M-E-v2 73.6± 7.5 56.1± 6.2 44.9± 4.6 37.3± 3.6 29.8± 2.9 25.3± 3.3
Walker2d-M-E-v2 107.1± 1.8 111.1± 1.0 111.4± 1.5 111.4± 2.5 109.6± 4.0 107.2± 6.0
Total 597.2± 27.4 670.6± 31.9 664.1± 43.1 649.5± 53.5 628.0± 60.2 610.2± 62.9

Table 10: HP search for SG-EBCQ. We report the mean and std of 10 seeds, and each seed evaluates
for 100 episodes.

Dataset Nbcq = 2 Nbcq = 5 Nbcq = 10 Nbcq = 20 Nbcq = 50 Nbcq = 100

Cheetah-M-v2 47.1± 0.2 51.5± 0.1 53.3± 0.2 54.4± 0.3 55.3± 0.3 55.8± 0.4
Hopper-M-v2 60.7± 2.4 78.6± 4.0 86.8± 5.2 89.1± 7.7 89.8± 8.8 89.8± 9.8
Walker2d-M-v2 78.5± 2.8 86.9± 1.8 85.2± 5.1 81.5± 9.3 76.6± 11.8 72.4± 13.8

Cheetah-M-R-v2 37.8± 0.7 42.3± 0.6 43.5± 0.6 44.3± 0.7 44.1± 1.1 43.6± 0.9
Hopper-M-R-v2 58.7± 5.8 85.2± 9.0 88.5± 12.2 89.1± 11.7 83.9± 15.0 82.1± 16.1
Walker2d-M-R-v2 54.0± 7.2 72.2± 5.2 75.4± 4.6 77.7± 4.8 77.5± 5.8 74.9± 6.2

Cheetah-M-E-v2 71.8± 2.2 81.9± 4.8 81.8± 5.4 77.6± 6.9 71.5± 7.5 68.2± 6.5
Hopper-M-E-v2 66.4± 4.8 49.8± 6.2 40.0± 5.8 34.9± 6.2 29.0± 5.7 25.2± 4.8
Walker2d-M-E-v2 106.6± 1.6 111.0± 0.9 111.1± 1.8 110.0± 3.7 107.2± 7.8 106.0± 9.0
Total 581.6± 27.7 659.4± 32.7 665.5± 41.0 658.7± 51.3 634.7± 63.9 618.1± 67.5

for every (s, a) pair. Note that the double Q-learning technique is only used during policy evaluation.

As for deciding the number of gradient steps, we detail our procedures in Appendix G.5. And the
number of gradient steps for each dataset can be found in Table 16.

Our IMG (Table 1). Recall that our CFPI operator IMG(π̂β , Q̂0; τ) requires to learn a Gaussian
Mixture behavior policy π̂β and a value function Q̂0. We train π̂β and Q̂0 according to the procedures
listed in MG-BC and SARSA, respectively. By following the practice of (Brandfonbrener et al.,
2021; Fu et al., 2020), we perform a grid search on log τ ∈ {0, 0.5, 1.0, 1.5, 2.0} using 3 seeds. We
note that we manually reduce IMG to MG-MS when log τ = 0 by only considering the mean of each
non-trivial Gaussian component. Our results show that setting log τ = 0.5 achieves the best overall
performance while Hopper-M-E requires an extremely small log τ to perform well as is shown in
Appendix G.2. Therefore, we decide to set log τ = 0 for Hopper-M-E and log τ = 0.5 for the other 8
datasets. We then obtain the results for the other 7 seeds with these HP settings and report the results
on the 10 seeds in total.

IMG (Table 4) & ISG (Table 4). Different from the results in Table 1, we use the same log τ = 0.5 for
all datasets including Hopper-M-E to obtain the performance of IMG in Table 4. In this way, we aim
to understand the effectiveness of each component of our methods better. To fairly compare IMG and
ISG, we tune the τ for ISG in a similar way by performing a grid search on log τ ∈ {0.5, 1.0, 1.5, 2.0}
with 3 seeds and finally set log τ = 0.5 for all datasets. We then obtain the results for the other 7
seeds and report the results with 10 seeds in total.

MG-EBCQ & SG-EBCQ. We tune the number of candidate actions Nbcq from the same range
{2, 5, 10, 20, 50, 100} as is in (Brandfonbrener et al., 2021). For each Nbcq, we obtain its average
performance for all tasks across 10 seeds and select the best performing Nbcq for each method. We
separately tune the Nbcq for MG-EBCQ and SG-EBCQ. As a result, we set Nbcq = 5 for MG-EBCQ
and Nbcq = 10 for SG-EBCQ. Moreover, we highlight that MG-EBCQ (SG-EBCQ) uses the
same behavior policy and value function as is in IMG (ISG). We include the full hyper-parameter
search results in Table 9 and Table 10.
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Table 11: HP search for MG-Rev. KL Reg. We report the mean and std of 10 seeds, and each seed
evaluates for 100 episodes.

Dataset α = 0.03 α = 0.1 α = 0.3 α = 1.0 α = 3.0 α = 10.0

Cheetah-M-v2 58.3± 1.1 58.1± 1.2 55.6± 0.5 50.6± 0.3 47.0± 0.2 44.5± 0.2
Hopper-M-v2 14.4± 13.6 41.0± 31.0 89.4± 22.2 99.7± 1.1 76.3± 6.9 58.5± 4.0
Walker2d-M-v2 5.8± 4.8 18.4± 21.9 34.2± 27.3 82.2± 7.8 82.8± 1.8 76.9± 2.0

Cheetah-M-R-v2 46.7± 1.8 47.5± 1.6 48.1± 0.7 46.4± 0.6 44.4± 0.5 43.1± 0.4
Hopper-M-R-v2 70.9± 33.8 86.6± 26.3 103.1± 0.8 101.4± 1.1 99.4± 2.1 77.6± 17.2
Walker2d-M-R-v2 73.7± 28.8 65.4± 33.8 64.0± 39.9 65.4± 35.8 69.7± 30.9 57.7± 22.8

Cheetah-M-E-v2 0.4± 2.2 1.2± 1.9 4.0± 1.9 25.0± 6.3 65.0± 10.1 86.2± 7.1
Hopper-M-E-v2 2.6± 1.7 16.2± 7.9 22.5± 10.7 57.4± 23.6 79.4± 32.6 86.8± 15.7
Walker2d-M-E-v2 10.4± 15.3 25.5± 38.1 93.5± 34.5 109.8± 0.6 107.1± 4.0 97.4± 7.0
Total 283.2± 103.0 359.9± 163.5 514.3± 138.5 637.8± 77.2 671.2± 89.1 628.6± 76.4

Table 12: HP search for SG-Rev. KL Reg. We report the mean and std of 10 seeds, and each seed
evaluates for 100 episodes.

Dataset α = 0.03 α = 0.1 α = 0.3 α = 1.0 α = 3.0 α = 10.0

Cheetah-M-v2 58.6± 1.3 57.9± 0.8 55.2± 0.5 50.7± 0.5 47.1± 0.2 44.5± 0.3
Hopper-M-v2 18.7± 15.6 40.2± 24.7 83.2± 19.6 98.8± 2.0 70.3± 7.0 57.2± 4.6
Walker2d-M-v2 5.6± 3.5 26.2± 27.1 37.0± 27.6 83.3± 7.5 82.4± 1.0 77.1± 1.2

Cheetah-M-R-v2 46.1± 3.6 47.8± 1.3 47.8± 0.8 46.0± 0.5 44.3± 0.4 42.5± 0.6
Hopper-M-R-v2 77.4± 19.1 60.8± 27.7 92.0± 21.9 100.7± 1.0 99.7± 1.0 70.3± 19.2
Walker2d-M-R-v2 59.5± 31.3 72.7± 38.8 75.7± 30.4 75.1± 25.3 63.6± 28.5 59.7± 21.5

Cheetah-M-E-v2 1.1± 3.2 3.4± 3.4 7.1± 4.3 38.9± 18.4 78.9± 9.8 89.1± 4.0
Hopper-M-E-v2 5.5± 4.0 20.1± 8.6 24.8± 7.9 43.8± 23.6 76.6± 18.3 67.7± 30.6
Walker2d-M-E-v2 1.7± 3.7 13.4± 33.5 83.2± 37.5 109.9± 0.7 106.7± 4.1 96.8± 7.6
Total 274.0± 85.3 342.6± 165.9 505.9± 150.5 647.2± 79.5 669.7± 70.3 604.9± 89.5

MG-Rev. KL Reg & SG-Rev. KL Reg. We tune the regularization strength α from the same
range {0.03, 0.1, 0.3, 1.0, 3.0, 10.0} as is in (Brandfonbrener et al., 2021). For each α, we obtain its
average performance for all tasks across 10 seeds and select the best performing α for each method.
We separately tune the α for MG-Rev. KL Reg & SG-Rev. KL Reg, although α = 3.0 achieves the
best overall performance in both methods. Moreover, we highlight that MG-Rev. KL Reg (SG-Rev.
KL Reg) uses the same behavior policy and value function as is in IMG (ISG). We include the full
hyper-parameter search results in Table 11 and Table 12.
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F.2 HP and training details for methods in Table 3

Hyperparameter Value

Shared HP Normalize states False

Optimizer Adam (Kingma & Ba, 2014)
Number of gradient steps 1M
Mini-batch size 256
Policy learning rate 3e-4
Policy hidden dim 256
Policy hidden layers 2

IQL HP Policy activation function ReLU
Critic architecture MLP
Critic learning rate 3e-4
Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Target update rate 5e-3
Target update period 1
quantile 0.9
temperature 10.0

ISG(πIQL, QIQL) log τ selected from {0.1, 0.2, 2.0}

Table 13: Hyperparameters for methods in Table 3

Table 13 includes the HP for experiments in Sec. 5.2. The of IQL. We use the same HP for the IQL
training as is reported in the IQL paper. We obtain the IQL policy πIQL and QIQL by training for 1M
gradient steps using the PyTorch Implementation from RLkit (Berkeley), a widely used RL library.
We emphasize that we follow the authors’ exact training and evaluation protocol. We include the
training curves for all tasks from the AntMaze domain in Appendix G.6.

Note that IQL (Kostrikov et al., 2021) reported inconsistent offline experiment results on AntMaze in
its paper’s Table 1, Table 2, Table 5, and Table 6 3. We suspect that these results are obtained from
different sets of random seeds. In Appendix G.6, we present all these results in Table 17.

To obtain the performance for ISG(πIQL, QIQL), we follow the practice of (Brandfonbrener et al.,
2021; Fu et al., 2020) and perform a grid search on log τ ∈ {0.1, 0.2, 2.0} using 3 seeds for each
dataset. We then evaluate the best choice for each dataset by obtaining corresponding results on the
other 7 seeds. We finally report the results with 10 seeds in total.

3Link to the IQL paper. IQL’s Table 5 & 6 are presented in the supplementary material.
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G Additional Experiments

G.1 Complete experiment results for MG-MS

Table 14 provides the results of MG-MS on the 9 tasks from the MuJoCo Gym domain in compensa-
tion for the results in Sec. 5.3.

Table 14: Results of MG-MS on the MuJoCo Gym domain. We report the mean and standard
deviation across 10 seeds, and each seed evaluates for 100 episodes.

Dataset MG-MS (15)

Cheetah-M-v2 43.6± 0.2
Hopper-M-v2 55.3± 6.3
Walker2d-M-v2 73.6± 2.2

Cheetah-M-R-v2 42.4± 0.4
Hopper-M-R-v2 61.5± 15.1
Walker2d-M-R-v2 65.0± 10.4

Cheetah-M-E-v2 91.3± 2.1
Hopper-M-E-v2 104.2± 5.1
Walker2d-M-E-v2 104.1± 6.7

Total 641.1± 48.5
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G.2 Complete experiment results on the effect of the HP τ

Fig. 6 presents additional results in compensation for the results in Sec. 5.3. We note that Hopper-
Medium-Expert-v2 requires a much smaller log τ than the other tasks to perform well.

Figure 6: Performance of IMG with varying log τ . The other HP can be found in Table 8. Each
variant averages returns over 10 seeds, and each seed contains 100 evaluation episodes. The shaded
area denotes bootstrapped 95% CI.
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G.3 Ablation study on the number Gaussian components

In this section, we explore whether increasing the number of Gaussian components will result in
a performance boost. We use the same settings as in Table 1 except modeling π̂β with 8 Gaussian
instead of 4. We hypothesize the performance gain should most likely happen on the three Medium-
Replay datasets, as these datasets are collected by diverse policies. However, Table 15 shows that
simply increasing the number of Gaussian components from 4 to 8 hardly results in a performance
boost, as increasing the number of Gaussian components will induce extra optimization difficulties
during behavior cloning (Jin et al., 2016).

Table 15: Comparison between setting the number of Gaussian components to 4 and 8 for our IMG
on the three Medium-Replay datasets. We report the mean and standard deviation across 10 seeds,
and each seed evaluates for 100 episodes.

Dataset 4 components (Table 1) 8 components

Cheetah-M-R-v2 44.5± 0.4 44.3± 0.3
Hopper-M-R-v2 93.6± 7.9 90.6± 11.6
Walker2d-M-R-v2 78.2± 5.6 79.4± 4.5
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G.4 Modeling the value network with conventional MLP

Figure 7: Performance of IMG with varying ensemble sizes. Each variant averages returns over 8
seeds, and each seed contains 100 evaluation episode. Each Q-value network is modeled by a 3-layer
MLP. The shaded area denotes bootstrapped 95% CI.

Figure 8: Performance of IMG with varying ensemble sizes on Walker2d-Medium-Replay-v2. Each
variant aggregates returns over 8 seeds, and each seed evaluates for 100 episodes. Each Q-value
network is modeled by a 3-layer MLP. With lower ensemble size, the performance exhibits large
variance across different episodes.

Our experiments in Sec. 5.1 rely on learning a Q value function with the IQN (Dabney et al., 2018a)
architecture. In this section, we examine the effectiveness of our CFPI operator IMG when working
with an ensemble of conventional MLP Q-value networks with varying ensemble sizes M .

Each Q-value network Q̂MLP
θk

uses ReLU activation and is parameterized with θk, including 3 hidden
layers of width 256. We train each Q̂MLP

θk
by minimizing the bellman error below

L(θk) = E(s,a,r,s′,a′)∼D

[
r + γQ̂MLP(s′, a′; θ̄k)− Q̂MLP(s, a; θk)

]
, (62)
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where θ̄k is the parameter of a target network given by the Polyak averaging of θ. We set
Q̂MLP(s, a; θk) = Q̂MLP

θk
(s, a). We further note that Equation 61 can be reformulated as

Q̂0(s, a) = min
k=1,2

Q̂k
0(s, a) =

1

2
|Q̂1

0(s, a) + Q̂2
0(s, a)| −

1

2
|Q̂1

0(s, a)− Q̂2
0(s, a)|

= µ̂Q(s, a)− σ̂Q(s, a),

(63)

where µ̂Q and σ̂Q calculate the mean and standard deviation of Q value (Ciosek et al., 2019). In the
case with an ensemble of Q, we obtain Q̂0(s, a) by generalizing (63) as below

Q̂0(s, a) = µ̂MLP
Q −

√√√√ 1

M

M∑
k=1

(
Q̂MLP(s, a; θk)− µ̂MLP

Q

)2
,

where µ̂MLP
Q =

1

M

M∑
k=1

Q̂MLP(s, a; θk).

(64)

Other than the Q-value network, we applied the same setting as IMG in Table 4. Fig. 7 presents
the results with different ensemble sizes, showing that the performance generally increases with the
ensemble size. Such a phenomenon illustrates a limitation of our CFPI operator IMG, as it heavily
relies on accurate gradient information∇a[Q̂0(s, a)]a=aβ

.

A large ensemble of Q is more likely to provide accurate gradient information, thus leading to better
performance. In contrast, a small ensemble size provides noisy gradient information, resulting in
high variance across different rollout, as is shown in Fig. 8.
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G.5 How to decide the number of gradient steps for SARSA training?

Figure 9: Lval on each dataset from the Gym-MuJoCo domain. We can observe that the model overfits
to the training set when training for too may gradient steps. Each figure averages the validation loss
over 2 folds with the same training seed. The shaded area denotes one standard deviation.

Deciding the number of gradient steps is a non-trivial problem in offline RL. While we use a fixed
number of gradient steps for behavior cloning, we design a rigorous procedure to decide the gradient
steps for SARSA training, inspired by the success of k-fold validation.

In our preliminary experiments, we first train a Q̂β
all using all data from each dataset for 2M gradient

steps. We model the Q̂β
all(s, a) as a 3-layer MLP and train following Appendix G.4. By training in

this way, we treat Q̂β
all(s, a) as the ground truth Qβ(s, a) for all (s, a) sampled the dataset D. Next,

we randomly split the dataset with the ratio 95/5 to create the trainining set Dtrain validation set Dval.
We then train a new Q̂β the SARSA training on Dtrain. Therefore, we can define the validation loss as

Lval = E(s,a)∼Dval ||Q̂
β
all(s, a)− Q̂β(s, a)||2 (65)

Fig. 9 presents the Lval on each dataset from the Gym-MuJoCo domain. We can clearly observe that
Q̂β generally overfits the Dtrain when training for too many gradient steps. We evaluate over two folds
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Table 16: Gradient steps for the SARSA training

Dataset Gradient steps (K)

HalfCheetah-Medium-v2 200
Hopper-Medium-v2 400
Walker2d-Medium-v2 700

HalfCheetah-Medium-Replay-v2 1500
Hopper-Medium-Replay-v2 300
Walker2d-Medium-Replay-v2 1100

HalfCheetah-Medium-Expert-v2 400
Hopper-Medium-Expert-v2 400
Walker2d-Medium-Expert-v2 400

with one seed. Therefore, we can decide the gradient steps of each dataset for the SARSA training
according to the results in Fig. 9 as listed in Table 16.
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G.6 Our reproduced IQL training curves

We use the PyTorch (Paszke et al., 2019) Implementation of IQL from RLkit (Berkeley) to obtain its
policy πIQL and value function QIQL. We do not use the official implementation4 open-sourced by
the authors because our CFPI operators are also based on PyTorch. Fig. 10 presents our reproduced
training curves of IQL on the 6 datasets from the AntMaze domain.

We note that the IQL paper5 does not report consistent results in their paper for the offline experiment
performance on the AntMaze, as is shown in Table 17. We suspect that these results are obtained
from different sets of random seeds. Therefore, we can conclude that our reproduced results match
the results reported in the IQL paper. We believe our reproduction results of IQL are reasonable, even
if we do not use the official implementation open-sourced by the authors.

Figure 10: IQL offline training results on AntMaze. Shaded area denotes one standard deviation.

Table 17: Offline experiment results on AntMaze reported in different tables from the IQL paper

Dataset Table 1 & 6 Table 2 Table 5

antmaze-u-v0 87.5± 2.6 88.0 86.7
antmaze-u-d-v0 62.2± 13.8 67.0 75.0

antmaze-m-p-v0 71.2± 7.3 69.0 72.0
antmaze-m-d-v0 70.0± 10.9 71.8 68.3

antmaze-l-p-v0 39.6± 5.8 36.8 25.5
antmaze-l-d-v0 47.5± 9.5 42.2 42.6

Total 378.0± 49.9 374.8 370.1

4https://github.com/ikostrikov/implicit_q_learning
5Link to the IQL paper. IQL’s Table 5 & 6 are presented in the supplementary material.
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G.7 Improve the policy learned by CQL

In this section, we show that our CFPI operators can also improve the policy learned by CQL (Kumar
et al., 2020b) on the MuJoCo Gym Domain. We first obtain the CQL policy πCQL and QCQL by
training for 1M gradient steps using the official CQL implementation6. We obtain an improved policy
ISG(πCQL, QCQL; τ) that slightly outperforms πCQL overall, as shown in Table 18. For all 6 tasks, we
set log τ = 0.1.

Table 18: Improving the policy learned by IQL with our CFPI operator ISG

Dataset πCQL (1M) ISG(πCQL, QCQL)

HalfCheetah-Medium-v2 45.5± 0.3 47.1± 1.5
Hopper-Medium-v2 65.4± 3.5 70.1± 4.9
Walker2d-Medium-v2 81.4± 0.6 81.6± 1.1

HalfCheetah-Medium-Replay-v2 44.6± 0.5 45.9± 1.7
Hopper-Medium-Replay-v2 95.2± 2.0 94.6± 1.6
Walker2d-Medium-Replay-v2 80.1± 2.6 78.8± 3.2

Total 412.2± 9.4 418.2± 13.9

6https://github.com/aviralkumar2907/CQL
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H Additional related work

There has been a history of leveraging the Taylor expansion to construct efficient RL algorithms.
Kakade & Langford (2002) proposed the conservative policy iteration that optimizes a mixture of
policies towards its policy objective’s lower bound, which is constructed by performing first-order
Taylor expansion on the mixture coefficient. Later, SOTA deep RL algorithms TRPO (Schulman
et al., 2015) and PPO (Schulman et al., 2017) extend the results to work with trust region policy
constraints and learn a stochastic policy parameterized by a neural network. More recently, Tang
et al. (2020) developed a second-order Taylor expansion approach under similar online RL settings.

At a high level, both our works and previous methods propose to create a surrogate of the original
policy objective by leveraging the Taylor expansion approach. However, our motivation to use Taylor
expansion is fundamentally different from the previous works (Kakade & Langford, 2002; Schulman
et al., 2015, 2017; Tang et al., 2020), which leverage the Taylor expansion to construct a lower bound
of the policy objective so that optimizing towards the lower bound translates into guaranteed policy
improvement. However, these methods do not result in a closed-form solution to the policy and still
require iterative policy updates.

On the other hand, our method leverages the Taylor expansion to construct a linear approximation
of the policy objective, enabling the derivation of a closed-form solution to the policy improvement
step and thus avoiding performing policy improvement via SGD. We highlight that our closed-form
policy update cannot be possible without directly optimizing the parameter of the policy distribution.
In particular, the parameter should belong to the action space. We note that this is a significant
conceptual difference between our method and previous works.

Specifically, PDL (Kakade & Langford, 2002) parameterizes the mixture coefficient of a mixture
policy as θ. TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017) set θ as the parameter of
a neural network that outputs the parameters of a Gaussian distribution. In contrast, our methods learn
deterministic policy π(s) = Dirac(θ(s)) and directly optimize the parameter θ(s). We aim to learn a
greedy π by solving θ(s) = argmaxa Q(s, a). However, obtaining a greedy π in continuous control
is problematic (Silver et al., 2014). Given the requirement of limited distribution shift in the offline
RL, we thus leverage the first-order Taylor expansion to relax the problem into a more tractable form

θ(s) = argmax
a

Q̄(s, a; aβ), s.t. − log πβ(a|s) ≤ δ, (66)

where Q̄ is defined in Equation 3. By modeling πβ as a Single Gaussian or Gaussian Mixture, we
further transform the problem into a QCLP and thus derive the closed-form solution.

Finally, we note that both the trust region methods TRPO and PPO and our methods constrain the
divergence between the learned policy and behavior policy. However, the behavior policy always
remains unchanged in our offline RL settings. As TRPO and PPO are designed for the online RL
tasks, the updated policy will be used to collect new data and becomes the new behavior policy in
future training iteration.
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