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ABSTRACT

Recently, generative models have shown promising performance in anomaly de-
tection tasks. Specifically, autoencoders learn representations of high-dimensional
data, and their reconstruction ability can be used to assess whether a new in-
stance is likely to be anomalous. However, the primary challenge of unsuper-
vised anomaly detection (UAD) is in learning appropriate disentangled features
and avoiding information loss, while incorporating known sources of variation
to improve the reconstruction. In this paper, we propose a novel architecture of
generative autoencoder by combining the frameworks of β-VAE, conditional vari-
ational autoencoder (CVAE), and the principle of total correlation (TC). We show
that our architecture improves the disentanglement of latent features, optimizes
TC loss more efficiently, and improves the ability to detect anomalies in an unsu-
pervised manner with respect to high-dimensional instances, such as in imaging
datasets. Through both qualitative and quantitative experiments on several bench-
mark datasets, we demonstrate that our proposed method excels in terms of both
anomaly detection and capturing disentangled features. Our analysis underlines
the importance of learning disentangled features for UAD tasks.

1 INTRODUCTION

Unsupervised anomaly detection (UAD) has been a fertile ground for methodological research for
several decades. Recently, generative models, such as Variational Autoencoders (VAEs) (Kingma &
Welling, 2014) and Generative Adversarial Networks (GANs) (Goodfellow et al., 2020; Arjovsky
et al., 2017), have shown exceptional performance at UAD tasks. By learning the distribution of
normal data, generative models can naturally score new data as anomalous based on how well they
can be reconstructed. For a recent review of deep learning for anomaly detection, see Pang et al.
(2021).

In a complex task like UAD, disentanglement as a meta-prior encourages latent factors to be cap-
tured by different independent variables in the low-dimensional representation. This phenomenon
has been on disply in recent work that has used representation learning as a backbone for develop-
ing new VAE architectures. Some of the methods proposed new objective functions (Higgins et al.,
2017; Mathieu et al., 2019), efficient decomposition of the evidence lower bound (ELBO) (Chen
et al., 2018), partitioning of the latent space by adding a regularization term to the mutual infor-
mation function (Zhao et al., 2017), introducing disentanglement metrics (Kim & Mnih, 2018), and
penalizing total correlation (TC) loss (Gao et al., 2019). Penalized TC efficiently learns disentangled
features and minimizes the dependence across the dimension of the latent space. However, it often
leads to a loss of information, which leads to lower reconstruction quality. For example, methods
such as β-VAE, Disentangling by Factorising (FactorVAE) (Kim & Mnih, 2018), and Relevance
FactorVAE (RFVAE) (Kim et al., 2019) encourage more factorized representations with the cost of
either losing reconstruction quality or losing a considerable among of information about the data
and drop in disentanglement performance. To draw clear boundaries between an anomalous sample
and a normal sample, we must minimize information loss.

To address these limitations, we present Disentangled Conditional Variational Autoencoder (dC-
VAE). Our approach is based on multivariate mutual information theory. Our main contribution is
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a generative modeling architecture which learns disentangled representations of the data while min-
imizing the loss of information and thus maintaining good reconstruction capabilities. We achieve
this by modeling known sources of variation, in a similar fashion as Conditional VAE (Pol et al.,
2019).

Our paper is structured as follows. We first briefly discuss related methods (Section 2), draw connec-
tion between them, and present our proposed method dCVAE (Section 3). In Section 4, we discuss
our experimental design including competing methods, datasets, and model configuration. Finally,
experimental results are presented in Section 5, and Section 6 concludes this paper.

2 RELATED WORK

In this section, we discuss related work on autoencoders. We focus on two types of architecture: ex-
tensions of VAE enforcing disentanglement, and architectures based on mutual information theory.

2.1 β-VAE

β-VAE and its extensions proposed by (Higgins et al., 2017; Mathieu et al., 2019; Chen et al.,
2018) is an augmentation of the original VAE with learning constraints of β applied to the objective
function of the VAE. The idea of including such a hyper-parameter is to balance the latent channel
capacity and improve the reconstruction accuracy. As a result, β-VAE is capable of discovering the
disentangled latent factors and generating more realistic samples while retaining the small distance
between the actual and estimated distributions.

Recall the objective function of VAE proposed by Kingma & Welling (2014):

LVAE(θ, ϕ) = −Ez∼qϕ(z|x) log pθ(x | z) +DKL (qϕ(z | x)∥pθ(z)) . (1)

Here, pθ(x | z) is the probabilistic decoder, qϕ(z | x) is the recognition model, KLD is denoted by
DKL(qϕ(z | x)∥pθ(z | x)) parameterized by the weights (θ) and bias (ϕ) of inference and generative
models. As the incentive of β-VAE is to introduce the disentangling property, maximizing the
probability of generating original data, and minimizing the distance between them, a constant δ is
introduced in the objective VAE to formulate the approximate posterior distributions as below:

max
ϕ,θ

Ex∼X

[
Eqϕ(z|x) [log pθ(x | z)]

]
such that DKL (qϕ(z | x)||p(z)) < δ. (2)

Rewriting the Equation in Lagrangian form and using the KKT conditions, Higgins et al. (2017)
derive the following objective function:

LβV AE(θ, ϕ) = Eqϕ(z|x) [log pθ(x | z)]− βDKL (qϕ(z | x)∥p(z)) , (3)

Here, β is the regularization coefficient that enforces the constraints to limit the capacity of the latent
information z. When β = 1, we recover the original VAE. Increasing the value of β > 1 enforces
the constraints to capture disentanglement. However, Hoffman et al. (2017) argue that with an
implicit prior, optimizing the regularized ELBO is equivalent to performing variational expectation
maximization (EM).

2.2 FACTORVAE

Disentangling by Factorising or FactorVAE is another modification of β-VAE proposed by Kim
& Mnih (2018). FactorVAE emphasizes the trade-off between disentanglement and reconstruction
quality. The authors primarily focused on the objective function of the VAE and β-VAE. The authors
propose a new loss function to mitigate the loss of information that arise while penalizing both the
mutual information and the KLD to enforce disentangled latent factors.

According to Hoffman & Johnson (2016) and Makhzani & Frey (2017), the objective function of
β-VAE can be further extended into:

Epdata (x)[KL(q(z | x)∥p(z))] = I(x; z) +KL(q(z)∥p(z)), (4)
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Here, I(x; z) is the mutual information between x and z under the joint distribution pdata (x)q(z | x).
FactorVAE learns the second term of KL(q(z)∥p(z)) and resolved the aforementioned issues by
introducing total correlation penalty and density-ratio trick to approximate the distribution q̄(z)
generated by d samples from q(z). The loss function of the FactorVAE is as follows:

Eq(z|x(i))

[
log p

(
x(i) | z

)]
−KL

(
q
(
z | x(i)

)
∥p(z)

)
− γKL(q(z)∥q(z))

(5)

2.3 THE PRINCIPLE OF TOTAL CORRELATION EXPLANATION (COREX)

Gao et al. (2019) introduced CorEx to mitigate the problem of learning disentangled and inter-
pretable representations in a purely information-theoretic way. In general, for VAE, we assume
a generative model where x is a function of a latent variable z, and afterward maximize the log
likelihood of x. On the other hand, CorEx follows the reverse process where z is a stochas-
tic function of x parameterized by θ, i.e., pθ(z | x), and seek to estimate the joint distribution
pθ(x, z) = pθ(z | x)p(x). The underlying true data distribution maximizes the following objective:

L(θ;x) = TCθ(x; z)︸ ︷︷ ︸
informativeness

− TCθ(z)︸ ︷︷ ︸
(dis)entanglement

= TC(x)− TCθ(x | z)− TCθ(z).

(6)

Recall the definition of the total correlation (TC) in terms of entropy H (x) (Studenỳ & Vejnarová,
1998):

TC(x) =

d∑
i=1

H (xi)−H(x) = DKL

(
p(x)∥

d∏
i=1

p (xi)

)
. (7)

By non-negativity of TC, Equation 6 naturally forms variational lower bound TC(x) to the CorEx
objective, i.e., TC(x) ≥ L(θ; x) for any θ. Equation 6 can be rewritten in terms of mutual infor-
mation I(x : z) = H(x) − H(x | z) = H(z) − H(z | x). Further constraining the search space
pθ(z | x) to have the factorized form pθ(z | x) =

∏m
i=1 pθ(zi | x) and the mutual information terms

can be bounded by approximating the conditional distributions pθ(xj | z) and pθ(zj | x). Finally,
we can further rewrite and derive the lower bound for the objective function:

L(θ; x) =
d∑

i=1

Iθ (xi : z)−
m∑
i=1

Iθ (zi : x)

≥

(
d∑

i=1

H (xi)

)
+ Epθ(x,z)

log qϕ(x | z)︸ ︷︷ ︸
decoder


−DKL(pθ(z | x)︸ ︷︷ ︸

encoder

∥rα(z)).

(8)

2.4 TOTAL CORRELATION VARIATIONAL AUTOENCODER (β-TCVAE)

Chen et al. (2018) proposed disentanglement in their learned representations by adjusting the func-
tional structure of the ELBO objective. The authors argued that each dimension of a disentangled
representation should be able to represent a different factor of variation in the data and be changed
independently of the other dimensions. β-TCVAE modifies the originally proposed ELBO objective
by Higgins et al. (2017) forcing the algorithm to learn representations without explicitly making
restrictions or reduction to the latent space. Recall the ELBO objective function (Equation 3) of
β-VAE:
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LβV AE(θ, ϕ) = Eqϕ(z|x) [log pθ(x | z)]− βDKL (qϕ(z | x)∥p(z)) (9)

To introduce TC and disentanglement into the original β-VAE, Chen et al. decomposed the original
KLD into Index-Code MI, Total Correlation and Dimension-wise KL terms. Furthermore, in the
ELBO TC-Decomposition, each training samples are identified with a unique index n and a uniform
random variable that refers to the aggregated posterior as q(z) =

∑N
n=1 q(z | n)p(n) and can be

denoted as:

Ep(n)[KL(q(z | n)∥p(z))] = KL(q(z, n)∥q(z)p(n)) + KL

q(z)∥
∏
j

q (zj)


+
∑
j

KL (q (zj) ∥p (zj))
(10)

Finally, with a set of latent variables zj , with known factors vk, the authors introduced a disentan-
glement measuring metric called mutual information gap (MIG) and defined in terms of empirical
mutual information In (zj ; vk):

1

K

K∑
k=1

1

H (vk)

(
In
(
zj(k); vk

)
− max

j ̸=j(k)
In (zj ; vk)

)
(11)

Here, j(k) = argmaxj In (zj ; vk) and K is the number of known factors under vk.

3 DISENTANGLED CONDITIONAL VARIATIONAL AUTOENCODER (DCVAE)

Our approach builds on CorEx and models known sources of variation in the data, in a manner
similar to Conditional Variational Autoencoder (CVAE) Pol et al. (2019). In what follows, we will
represent this known source of variation using the variable C. In the experiment below, C is discrete
and represents the class of each image. Modifying Equation 6 to incorporate C, we get

L(θ;x, c) = TCθ(x | c)− TCθ(x | z, c)− TCθ(z | c). (12)

Recall that the first two terms measure the amount of correlation explained by z, and by maximiz-
ing it, we maximize the informativeness of the latent representation. The third term measures the
correlation between the components of z, and by minimizing it, we maximize the disentanglement
between the latent dimensions.

Using Mutual Information Theory (Studenỳ & Vejnarová, 1998), we can define the conditional
differential entropy of H(x) given c and interpret mutual information as a reduction in uncertainty
after conditioning:

I(x : z | c) = H(x | c) +H(z | c)−H(x, z | c)
I(x : z | c) = H(x | c)−H(x | z, c) = H(z | c)−H(z | x, c). (13)

We can now rewrite Equation 12 using derived mutual information theory from Equation 13:

L(θ;x, c) =
p∑

j=1

I (xj : z | c)−
d∑

j=1

I (zj : x | c) . (14)

Now, consider the KLD between pθ(x | z, c) and an approximating distribution qϕ(x | z, c). In
terms of expectations with respect to the joint distribution pθ(x, z | c), we can write:

−H(x | z, c) = E(log pθ(x | z, c)) ≥ E(log qϕ(x | z, c)). (15)
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Combing Equation 14 and 15 and assuming an approximating distribution rα(zj | c) for pθ(zj | c),
we obtain two inequalities:

I (xj : z | c) = H (xj | c)−H (xj | z, c) ≥ H (xj | c) + E(log qϕ(x | z, c)), (16)
I (zj : x | c) = DKL (pθ (zj | x, c) ∥rα (zj | c)) . (17)

Combining these bounds, we finally derive a lower bound for the objective function for dCVAE:

L(θ;x, c) ≥
p∑

j=1

H (xj | c) + E (log qϕ(x | z, c))−
d∑

j=1

DKL

(
p(zj |x,c)∥r(zj |c)

)
. (18)

Equation 18 illustrates the lower bound objective function of dCVAE where qϕ(x | z, c) is the
generative model or decoder and pθ (zj | x, c) is the recognition model or encoder.

4 EXPERIMENTS

In the experiments below, we compare our dCVAE method to five baseline methods: VAE, CVAE,
β-VAE, Factor-VAE, and RFVAE. The first two methods were selected as well-known baselines that
do not explicitly enforce disentanglement; on the other hand, the latter three methods seek to achieve
a disentangled representation of the data.

4.1 DATASETS

We evaluate dCVAE and other baseline models on the following four datasets. Three datasets
(MNIST (Deng, 2012), Fashion-MNIST (Xiao et al., 2017), KMNIST (Clanuwat et al., 2018)) are
trained for UAD. The fourth dataset (EMNIST (Cohen et al., 2017)) is used for testing on a real-
world dataset to assess overall performance. A more detailed description of these datasets follows:

• MNIST and Fashion-MNIST (FMNIST) Firstly, we apply all models to two benchmark
datasets, MNIST and Fashion-MNIST, for a fair comparison with other baseline methods.
We used 10 classes with 60000 and 10000 training and testing samples for both datasets
with 28× 28× 1 pixels channel.

• KMNIST Secondly, we applied the same training process to another complex dataset,
Kuzushiji-MNIST or KMNIST. KMNIST is a drop-in replacement for the MNIST dataset,
a Japanese cursive writing style. KMNIST contains similar 10 classes with 60000 and
10000 training and testing samples with 28× 28× 1 pixels channel.

• EMNIST Finally, all models are tested on the Extending MNIST or EMNIST Dataset.
Using all 62 classes (digit 0-9, letters uppercase A-Z and lowercase a-z) with 700000 and
80000 training and testing samples with 28 × 28 × 1 pixels channels. The dataset was
processed from NIST Special Database 19 Grother (1995) and contained handwritten digits
and characters collected from over 500 writers.

4.2 RECONSTRUCTION ERROR AND ANOMALY SCORE

Leveraging methods for the discriminator as the anomaly score and drawing separation between
normal and anomalous data is challenging for the divergent architectures of autoencoders. De-
pending on the task the architecture is trained for, the discriminator varies greatly. In general, the
UAD methods utilize reconstruction error (Baur et al., 2018), distribution-based error (Goldstein &
Uchida, 2016), and density-based error (Kiran et al., 2018) scores to distinguish normal and anoma-
lous data. Formally, for each input x, a test input x̂l is considered to be anomalous if reconstruction
error or Anomaly score(A) is greater than the minimum threshold value and denoted as follows:

A(x̂) = ∥x−D(G(x̂))∥2. (19)
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4.3 PERFORMANCE METRICS

One of the challenges of measuring the performance of disentanglement is to apply appropriate
metrics based on the nature of the dataset, not of latent factors or dimensions in the latent space.
Therefore, considering the different model architectures and datasets, we first measure the perfor-
mance using Numerical AUC Score, reconstruction error (A), and negative ELBO score (E). These
metrics provide a quantifiable method of accuracy, while also measuring the disentanglement among
the latent factors.

We also measure performance qualitatively by visualizing the latent space and the 2D-manifold.
Both allow us to visualize the orthogonality between latent features and demonstrate the accuracy
of the models to handle reduced latent variables and the ability to reconstruct samples.

4.4 MODEL CONFIGURATION

A fixed set of hyper-parameters are chosen to formulate a similar platform for all models and identify
the computational cost and reproducibility of the models. Although baseline models that we chose,
β-VAE, FactorVAE, RFVAE are highly sensitive to hyper-parameters tuning, the hyper-parameters
throughout the experiment are kept consistent to observe how the models perform under similar
values. A minimal 50 epochs are used to train the datasets. For MNIST, FMNIST, and KMNIST
the batch size is kept to 64, with primary and secondary learning rates as α = 10−5 and α = 10−3

respectively. However, for the EMNIST dataset, the batch size increased to 128, and learning rates
as α = 10−6 and α = 10−5.

5 RESULTS AND DISCUSSION

In this section, we evaluate the results of dCVAE and other baseline methods on the downstream
task of anomaly detection. A considerable volume of results was produced from our exhaustive
evaluation. However, accounting for limitations of space here, we elected to focus on the results
from EMNIST and KMNIST datasets in the main text. The remaining results (MNIST and FMNIST)
are presented as Supplementary Material.

We show the results of our evaluation in three stages: firstly, using sample reconstruction and the
negative ELBO score (E) with reconstruction error A, we evaluate and compare the disentanglement
ability of dCVAE with baseline architectures. Secondly, we use the UMAP algorithm (Sainburg
et al., 2021) to reduce dimensions and visualize both latent representation, as well as interpolation
of the 2D-manifold to distinguish the TC by comparing information loss and effects of modeling
known sources of variation. Finally, we present AUC scores and training time to summarize the
overall accuracy of the experimented methods.

We evaluate the quality of disentanglement by considering explicit separation of A between normal
and anomalous data and minimization of E . A better disentanglement is achieved when:

(a) A higher reconstruction error A for anomalous sample and lower reconstruction error A for
normal sample is obtained and

(b) E is minimized by enforcing regularization that either minimizes the negative ELBO decompo-
sition DKL

(
p(zj |x,c)∥r(zj |c)

)
or regularizes the approximate posterior qϕ(z | x).

A clear boundary in terms of learning efficient disentanglement between dCVAE and baseline meth-
ods can be observed from both EMNIST (Figure 1) and KMNIST (Figure 2) reconstruction. The first
row corresponds to anomalous reconstruction and the second row shows normal sample reconstruc-
tion. Both E and A score suggests that dCVAE captures more independent factors and identifies
anomalous and normal samples efficiently. This observation strongly justifies one of our primary
claims, namely that dCVAE incorporates the disentanglement learning through enforcing TC and
restrict independent latent variables to prioritize the minimization of the divergence. The other
disentanglement methods presented here either only emphasize TC (indicated by the dependence
between random variables) or introduce β (weighing the prior enforcement term), which limits the
ability to learn randomness in a case when the hyperparameters are not tuned for certain dimensions.
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(a) E = -235
A = 0.97

(b) E = -248
A = 0.90

(c) E = -245
A = 0.91

(d) E = -246
A = 0.91

(e) E = -244
A = 0.92

(f) E = -246
A = 0.92

(g) E = -171
A = 0.33

(h) E = -199
A = 0.48

(i) E = -180
A = 0.53

(j) E = -185
A = 0.52

(k) E = -195
A = 0.57

(l) E = -190
A = 0.55

Figure 1: Reconstruction for digit zero (0) and the capital letter O. Here, E refers to Negative
ELBO score and A is the reconstruction error or anomaly score. Only dCVAE and FactorVAE
show steady improvement for both types of reconstruction. All the other methods misclassify the
samples. Moreover, we can observe higher reconstruction error and ELBO scores compared to
MNIST (Figure A1) and FMNIST (Figure A2).

(a) E = -251
A = 0.98

(b) E = -281
A = 0.90

(c) E = -279
A = 0.98

(d) E =-266
A = 0.97

(e) E = -277
A = 0.97

(f) E = -270
A = 0.96

(g) E = -188
A = 0.28

(h) E = -211
A = 0.47

(i) E = -185
A = 0.41

(j) E = -201
A = 0.57

(k) E = -183
A = 0.41

(l) E = -170
A = 0.38

Figure 2: In KMNIST dataset, without dCVAE, all other methods fail to classify both anomalous and
normal samples. Reconstruction scores suggest FactorVAE, VAE almost fail to distinguish normal
and anomalous observations. Since the stroke of the samples are similar in this dataset, methods
that only emphasize disentanglement or empirical approximation lose more information in latent
variable resulting in false anomaly detection.

The second observation is drawn using latent representation (Figure 3) and 2D-manifold embeddings
(Figure 4 and 5). Through this experiment, we observe the effect of modeling using a known source
of variation (i.e. introducing conditional variable C into the objective function) and minimizing
information loss through multivariate mutual information theory (i.e. decomposition of TC). We
can observe clear similarities between KLD loss and modeling with known score of variance in a
reduced latent space. Due to enforced divergence loss, the plot of VAE and β-VAE are noticeably
different from other architectures. Feature space is more compact for VAE, β-VAE, and we can
see the cluster of the different classes are not well separated. However, conditioning the generative
function (encoder) of CVAE and dCVAE provides the leverage to construct higher feature space
and retain more accurate information in 2D-manifold (EMNIST, Figure 4; and KMNIST, Figure 5).
Furthermore, TC reduces the correlation among disentanglement degrees when a specific feature is
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learned (shape, strokes, color, boundaries). Such classes can be observed to cluster together and the
other gets scattered with higher feature space (Figure 3). Compared to other methods, it is evident
that dCVAE maintain consistent latent space and create separate clusters more accurately. This
indicates that more disentangled variables are captured, and they retain more information through
conditioning the generative model by minimizing the ELBO DKL

(
p(zj |x,c)∥r(zj |c)

)
.

(a) EMNIST

(b) KMNIST

Figure 3: Latent Representation of EMNIST and KMNIST

(a) dCVAE (b) VAE (c) CVAE (d) FactorVAE (e) β-VAE (f) RFVAE

Figure 4: Manifold Embeddings (EMNIST)

(a) dCVAE (b) VAE (c) CVAE (d) FactorVAE (e) β-VAE (f) RFVAE

Figure 5: Manifold Embeddings (KMNIST)
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Finally, Table 1 illustrates the results of model evaluation through AUC score and training time.
dCVAE outperforms other methods in terms of AUC score. However, for larger divergent datasets
like KMNIST and EMNIST, VAE shows lower training time compared to dCVAE. Since VAE only
optimizes the negative log-likelihood, reconstruction loss and prior enforcement term, the training
takes fewer latent variables to regularize, resulting in less training time. Nevertheless, compared to
methods that incorporate TC (e.g. FactorVAE and RFVAE) or a constraint on the posterior (β-VAE),
our proposed dCVAE scales to all larger datasets with higher classification accuracy.

Table 1: Evaluation metrics score

Model MNIST FMNIST EMNIST KMNIST

AUC
Training

Time (min)
AUC

Training

Time (min)
AUC

Training

Time (min)
AUC

Training

Time (min)
dCVAE 88.31 37 88.63 44 78.98 102 61.02 95

VAE 88.21 37 84.12 39 67.23 92 51.13 78
CVAE 87.57 43 83.31 48 66.01 117 42.35 104

FactorVAE 87.11 53 82.78 50 62.91 138 49.23 117
β-VAE 85.31 51 82.31 53 65.12 123 50.01 119
RFVAE 85.31 55 81.11 57 55.03 130 49.51 132

The only trade-offs in our proposed method seem to occur when minimizing the negative ELBO
loss. In certain conditions, dCVAE reaches a lower reconstruction loss (anomalous sample) yet
minimizes the negative ELBO score (Figure 3, 4). In general, negative ELBO loss should illustrate
symmetrical change with reconstruction error. Such inconsistency could lead to a significant drop
in the classification accuracy, thus leading to a false anomaly detection result.

6 CONCLUSION

In this research, we present a novel generative variational model dCVAE, to improve the unsuper-
vised anomaly detection task through disentanglement learning, TC loss, and minimizing trade-offs
between reconstruction loss and reconstruction quality. Introducing a conditional variable to miti-
gate the loss of information effectively captures more disentangled features and produces more ac-
curate reconstructions. Such architecture could be used in a wider range of applications, including
generating controlled image synthesis, efficient molecular design and generation, source separation
for bio-signals and images, and conditional text generation. Future research direction includes inves-
tigating in the gap between the posterior and the prior distribution, resolving the trade-offs between
loss function and reconstruction, and inspect dCVAE using different disentanglement metrics.

REPRODUCIBILITY STATEMENT

In this research, we carefully considered reproducibility in designing and conducting all experi-
ments. In our supplemental texts, we have attached our source code. The experiments are designed
independently to make the results reproducible. Image reconstruction and generation, 2D-Manifold
embeddings, training time, and ELBO score calculation are performed separately from other down-
stream tasks like classification accuracy, reconstruction error, and latent representation. Further-
more, we used both TensorFlow and PyTorch frameworks to remove package dependencies. To
remove the library dependencies and installation issues, virtual environment and package require-
ment files are also added. Finally, to make the results more accessible, we also provided randomly
generated images with supplementary texts.
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A APPENDIX

Since we couldn’t accommodate all results in our main paper, in this section we present results
produced from MNIST and FMNIST datasets. The results are categorized into three sections: Re-
constructions (A.1), Latent Representation (A.2), and 2D-Manifold embeddings (A.3).

A.1 RECONSTRUCTION

(a) E = -152,
A = 0.88

(b) E = -181,
A = 0.71

(c) E = -170,
A = 0.75

(d) E = -166,
A = 0.78

(e) E = -176,
A = 0.76

(f) E = -178,
A = 0.81

(g) E = -106,
A = 0.23

(h) E = -140,
A = 0.48

(i) E = -136,
A = 0.32

(j) E = -132,
A = 0.32

(k) E = -126,
A = 0.30

(l) E -131,
A = 0.31

Figure A1: The reconstruction from the MNIST dataset shows similar negative ELBO and recon-
struction error (A) values for CVAE, β-VAE, and RFVAE. our proposed model dCVAE performs
best in terms of both reconstructing anomalous observation (first row) and normal observation (sec-
ond row). We can observe a trade-off in FactorVAE with respect to β-VAE and RFVAE. FactorVAE
performs better in reconstructing the anomalous observation whether as the β-VAE shows good per-
formance in normal observations.

(a) E = -187
A = 0.94

(b) E = -198
A = 0.79

(c) E = -192
A = 0.82

(d) E = -221
A = 0.90

(e) E = -231
A = 0.85

(f) E = -229
A = 0.92

(g) E = -151
A = 0.12

(h) E = -170
A = 0.37

(i) E = -162
A = 0.40

(j) E = -165
A = 0.41

(k) E = -155
A = 0.38

(l) E = -162
A = 0.42

Figure A2: Similar to the MNIST dataset, the FMNIST illustrates similar trade-offs among Factor-
VAE, RFVAE, and β-VAE. However, for some samples, β-VAE mis-classifies the closely matched
classes. dCVAE constrains the blurry reconstruction by enforcing conditions in the prior.

12



Under review as a conference paper at ICLR 2023

A.2 LATENT SPACE VISUALIZATION

Figure A3: Latent Space Representation (MNIST)

Figure A4: Latent Space Representation (FMNIST)
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A.3 LATENT MANIFOLD

(a) dCVAE (b) VAE (c) CVAE (d) FactorVAE (e) β-VAE (f) RFVAE

Figure A5: Latent Embeddings (MNIST)

(a) dCVAE (b) VAE (c) CVAE (d) FactorVAE (e) β-VAE (f) RFVAE

Figure A6: Latent Embeddings (FMNIST)
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A.4 RANDOM GENERATION
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