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Abstract

With the rise of pretrained models, fine-tuning has become increasingly important.
However, naive fine-tuning often does not eliminate a model’s sensitivity to spu-
rious cues. To understand and address this limitation, we study the geometry of
neural network loss landscapes through the lens of mode-connectivity. We tackle
two questions: 1) Are models trained on different distributions mode-connected? 2)
Can we fine tune a pre-trained model to switch modes? We define a notion of mech-
anistic similarity based on shared invariances and show linearly-connected modes
are mechanistically similar. We find naive fine-tuning yields linearly connected
solutions and hence is unable to induce relevant invariances. We also propose and
validate a method of “mechanistic fine-tuning” based on our gained insights.

1 Introduction

Figure 1: Mechanistic Lens on
Mode Connectivity. Consider
modes that rely on different fea-
tures (highlighted yellow) to make
their predictions. Are such mech-
anistically dissimilar modes con-
nected via paths of high accuracy?
Does difference in mechanisms af-
fect the simplicity of their paths?
And, can we exploit this connec-
tivity to switch between modes?

Deep neural networks (DNNs) suffer from various shortcomings
of robustness [1, 2, 3], often relying on spurious or shortcut cues
that do not generalize robustly but are “simpler” to learn [4, 5].
For ex., in vision tasks, models can exploit features such as back-
ground or texture to identify object categories; however, shape-
related features are likely to be more robust in practice [6, 7, 8].
Invariant prediction and related approaches [9] aim to produce
such robust models by accounting for the causal mechanisms
underlying the data generating process, hence inducing invari-
ance to such “spurious” features and learning ones that generalize
strongly [10]. Meanwhile, when trained on different data distribu-
tions, a model may end up learning different invariances. In this
work, we introduce the notion of mechanistic similarity to de-
scribe models that share invariances, but may otherwise differ in
their predictions. Our motivating question is whether fine-tuning
can alter a model’s learned invariances. Specifically, if a model
has learned to rely on spurious features in its training data, can we
get it to break that “bad habit” by fine-tuning it on some “clean”
data that does not contain such spurious features? We consider
this question through the lens of mode-connectivity [11, 12],
which argues relatively simple paths connect DNN minimizers via paths of high accuracy or low loss.

1.1 Preliminaries / Notations

Model: Consider a neural network f : X × Rd → Rn. The model’s output decision is denoted
ŷ(f(x, θ)) ∈ Y = {1, ...,K} for input x ∈ X ⊂ Rn and parameters θ ∈ Rd. The ground truth target
is denoted y ∈ Y . The model’s loss on a dataset D ∈ X × Y for parameter setting θ is denoted
as L(f(D; θ)). We denote a continuous path connecting two set of parameters θ1, θ2 as γθ1→θ2(t),
where γθ1→θ2(0) = θ1, and γθ1→θ2(1) = θ2. Mode-connectivity is formalized as follows.
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Definition 1. Mode-Connectivity (along a Path.) Assume modes θ1, θ2 achieve L(D; θ) < ϵ, for
some small value ϵ. We call θ1, θ2 mode-connected along γθ1→θ2(t) if moving along the path never
yields increase in loss, i.e., ∀ t ∈ [0, 1], L(f(D, γθ1→θ2(t))) < ϵ.

Prior works have found modes in modern neural networks’ landscapes to be connected via
relatively simple paths [11, 12, 13, 14]. We thus restrict our experiments to the following:
(i) Linear: γθ1→θ2(t) = tθ1+(1−t)θ2; (ii) Quadratic: γθ1→θ2(t) = t2θ1+2t(1−t)θm+(1−t)2θ2.
Here, θm denotes a set of parameters that is explicitly optimized to identify a quadratic path con-
necting the two modes θ1, θ2 (see App. B.4). We note that modes which do not appear to be linearly
connected can often be linearly connected via an appropriate permutation of neurons that preserves
the model’s functional nature (i.e., produces the same outputs) (see App. B.5) [15, 16, 17].

Data: We assume there is a latent space Z ⊂ Rm that instantiates a data-generating process (DGP)
G : Z → X × Y and induces the datapoint (x, y) as follows: (x, y) := G(z). X and Y are assumed
conditionally independent given Z, and define GX , GY as the components of G producing X and Y .
Similar to prior work on disentanglement [18, 19, 20, 21, 22] and nonlinear ICA [23, 24, 25, 26, 27],
we assume GX(.) has a valid inverse G−1

X : X → Z and the latent dimensions are statistically
independent, i.e., zi ∈ Zi ⊥ zj ∈ Zj , ∀ (i, j), i ̸= j. To empirically validate our claims, we need the
ability to intervene on spurious cues in the data and generate counterfactuals (see Def. 2). We thus
propose to use synthetic datasets with known spurious cues–e.g., CIFAR-10 with a located box cue;
see App. B.3 for details and visualizations.

2 Towards a Definition of Mechanistic Similarity

Figure 2: Summarizing Mechanistic Simi-
larity: We define mechanistic similarity of
two modes by assessing their response to
unit interventions on the data-generating pro-
cess, i.e., interventions on specific dimen-
sions of the latent vector z (e.g., background
and shape in the figure). Modes invariant to
the same set of interventions (denoted∼) are
termed mechanistically similar.

While a surprising result, it is unclear if connectiv-
ity emerges in modes that rely on different mecha-
nisms (e.g., shape vs. background; see Fig. 1). To
answer this, we must first design a notion of mechanis-
tic (dis)similarity. The intuition behind our definition
will be the following question: do models that succeed
in a similar manner, fail in a similar manner? We pro-
pose to assess failures by measuring a model’s response
to relevant data transformations: if two models use
similar mechanisms, they should respond similarly to
transformed inputs; by choosing transforms that encode
task-relevant vulnerabilities, we can make this defini-
tion operationally well-motivated. For ex., randomiz-
ing the synthetic cue in Fig. 5, we can assess whether
a model relies on the cue. This is analogous to the
use of visual illusions (invalid percepts) for designing
models of early visual processing in neuro-/cognitive-
science [28, 29]. We first define the following.

Definition 2. (Unit Interventions and Counterfactuals.) An isomorphism Aαi
i : Zi × Zi → Zi

defines a unit intervention on the ith dimension of the state z if it alters its value by adding a
predefined scalar αi. The isomorphism E : X × Rm → X defines a counterfactual if it alters
a datapoint x by changing its corresponding latent z = G−1

X (x) via a set of unit interventions
{A} := {Aαi

i }mi=1. Specifically, we have, E(x; Â) = GX ◦ Aαm
m ◦ · · · ◦ Aα1

1 ◦ G
−1
X (x).

Unit interventions on the data-generating process allow precise manipulation of a state z, while a
counterfactual maps the changed state into the observable data space. Due to independence of latent
dimensions, our definition of unit interventions easily composes and can model broader notions of
interventions [30]; combined with counterfactuals, unit interventions are thus sufficient to assess a
model’s response to general data transformations, as we show below.

Definition 3. (Invariance.) The model f(.; θ) is termed invariant to unit intervention Ai if counter-
factuals generated by Ai do not yield increase in loss, i.e., L(f(D; θ)) = Eα∈Zi

L(f(E(D;Aα
i ); θ)).

Lemma 1. (Exhaustiveness of Unit Interventions.) If f(.; θ) is invariant to unit interventions Ai

and Aj , it must be invariant to their composition; if it is not invariant to Ai or Aj , it cannot be
invariant to their composition. That is, unit interventions exhaustively characterize a model.
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Figure 3: Non-Linear Connectivity of Mechanistically Dissimilar Modes. We train ResNet-
18 models on our synthetic CIFAR-10 with box-cues and the original dataset (denoted θC, θNC,
respectively). Line colors denote proportion of dataset that has synthetic cues. Plot titles denote
train/test counterfactuals datasets, where either the cue is present (w/ Cue), absent (w/o Cue),
randomized (Rand. Cue), or the underlying image is randomized (Rand. Img). We find the two
modes can be connected via quadratic, but not linear, paths. Moreover, minimizers near θNC yield the
same performance upon randomization of the cue, while ones near θC lose performance substantially,
showing lack of shared invariances and mechanistic dissimilarity. See App. D for further results.

Essentially, the above lemma states that studying a model’s response to unit interventions is sufficient
to characterize it: if a model is invariant to a set of unit interventions, it must be invariant to their
composition; similarly, lack of invariance to a single unit intervention is sufficient to preclude
invariance to the composition of those interventions. The lemma thus allows us to define mechanistic
similarity of two modes as sharing of invariances to the same unit interventions.
Definition 4. (Mechanistic Similarity.) Consider a set of unit interventions {A} := {Aαi

i }, where
i ∈ [m]. For parameters θ, denote the subset of interventions the model is invariant to as I(θ) ⊂ {A}.
Then, f(.; θ1) and f(.; θ2) are said to be mechanistically similar if I(θ1) = I(θ2).

3 Relating Mechanistic Similarity and Mode Connectivity
We first present the following proposition which follows directly from the results by [31, 32, 33] and
answers the question: is it even possible for mechanistically dissimilar modes to be connected?
Proposition 1. (Mechanistically Dissimilar Modes are Connected.) Assume θ1, θ2 are two mechanis-
tically dissimilar modes of lossL(f(D; θ)) on a given datasetD. Given sufficient overparamterization,
there exists a continuous path that connects the two modes (in the sense of Def. 1).
That is, even if two modes use completely different mechanisms to fit a dataset D, as long as
they achieve zero loss on it, there will exist a continuous path that connects them. However, as
we mentioned before, beyond the surprising fact that modes in the landscape are connected at all,
the further intriguing result is that they are connected via relatively simple paths. We empirically
demonstrate that this property continues to hold for mechanistically dissimilar modes, provided
one uses non-linear connectivity paths. Specifically, we train VGG-13 and ResNet-18 models on
synthetic datasets and plot accuracy on counterfactual datasets (e.g., see Fig. 5 & App. D). We analyze
quadratic paths identified using without cue data, with cue data, linear path, and linear path after
permuting neurons to match in activations (see App. B.5). We see that we can identify quadratic,
but not linear, paths that connect mechanistically dissimilar modes in the sense of Def. 1. Thus,
mechanistic similarity affects the functional form of connectivity paths between modes. Moreover, we
see different points along the connectivity paths respond differently to counterfactuals, indicating lack
of mechanistic similarity along the path. Building on these results, we next argue that mechanistically
similar modes must be connected via linear paths and vice versa.
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Table 1: We train ResNet-18 models on our synthetic CIFAR-10 with box cues and fine-tune the
trained models using 2500 “clean” samples without cues. Test accuracy (%) on test counterfactuals
with no Cue (NC), with Cue (C), Randomized Cue (RC), and Randomized Image (RI) is reported.
We compare our method, Connectivity-Based Fine-Tuning (CBFT), against Fine-tuning with a
medium/small learning rate (FTM/S), LLR [34], and LPFT [35]. ∼ denotes invariance is desirable,
i.e., accuracy should be similar to that on NC; ↓ indicates lower accuracy is desirable; best results are
in bold. Unlike CBFT, we see all baselines yield large degradations in absence of cues and achieve
very high accuracy even when the underlying image is randomized. See App. B.3 for further results.

60% Cue data 70% Cue data 80% Cue data 90% Cue data

C-10 NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓

FTM 75.7 98.4 23.6 83.4 75.8 98.6 27.7 78.6 71.3 97.7 37.6 63.6 67.2 95.4 49.6 46.6
FTS 75.8 98.7 17.5 90.1 74.9 98.8 16.3 91.1 69.9 98.4 15.7 90.9 64.7 97.9 15.3 90.7
LLR 71.6 95.1 36.3 57.1 70.9 95.8 29.9 65.8 65.1 81.8 27.0 53.2 59.3 70.7 24.6 40.7
LPFT 70.6 88.1 21.0 70.7 69.6 87.3 18.7 72.5 64.4 63.8 18.8 48.0 59.7 56.6 19.8 37.8
CBFT 74.1 71.5 73.4 8.75 73.2 69.2 72.3 8.60 70.0 70.0 69.5 9.68 67.9 72.5 68.1 13.1

Conjecture 1. (Mechanistic Similarity Enforces Linear Connectivity.) If, up to permutations of
neurons, θ1, θ2 show linear connectivity on a dataset D, then they must be mechanistically similar. If
they cannot be connected linearly, the modes must be mechanistically dissimilar.
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Figure 4: Linear Connectivity and Mech-
anistic Similarity. We train ResNet-18 on
box cue CIFAR-10 (denoted θC) and fine-
tune on the without cue data (θFT) using dif-
ferent learning rates (LR). Plots show accu-
racy along linear paths (after permutation
matching); line colors indicate proportion of
dataset with cues; titles denote evaluation
data. We see that for small/medium learn-
ing rates, θC, θFT exhibit linear connectivity
on data with cue; correspondingly, counter-
factual behavior is shared, indicating mecha-
nistic similarity. Increasing the learning rate
breaks this linear connectivity; correspond-
ingly, models respond differently to counter-
factuals and are mechanistically dissimilar.
See App. E for further results.

In App. F, we show the above conjecture holds lo-
cally by analyzing the landscape up to a second-order
approximation. We provide extensive experiments to
demonstrate the conjecture holds true in real settings
(see Fig. 4 & App. E). Specifically, we train VGG-13
and ResNet-18 models on our synthetic datasets and
fine-tune these trained models on the original data with-
out cues for 100 epochs, different initial learning rates,
and a step-decay schedule. We see that whenever linear
connectivity is exhibited, the modes respond similarly
to counterfactual datasets (i.e., they are mechanisti-
cally similar). Meanwhile, when linear connectivity
does not emerge, the fine-tuned mode responds differ-
ently on counterfactuals: e.g., fine-tuning using a large
learning rate exhibits clear invariance to the spurious
cue, while the original mode does not. Our results
thus provide nuance to prior claims that all modes are
linearly connected up to permutations [15, 16]: we
find the landscape is a collection of basins of linearly
connected modes that follows similar mechanisms to
produce their outputs. The training pipeline’s inherent
biases (e.g., simplicity bias in SGD [4, 5, 36]) shows
preferential behavior for certain basins, due to which
linear connectivity may emerge (up to permutations)
for the same pipeline but slightly different settings that
do not shift bias towards another basin (e.g., changed
initializations). Meanwhile, two mechanistically dis-
similar modes cannot be connected linearly, exhibiting
an increase in loss along the linear path between them.

Mechanistic Fine-Tuning: Consider a mode θC that we want to fine-tune on some minimal “clean”
data to create a mode θFT that does not use some undesirable mechanism. This premise follows from
recent work on removing reliance on spurious cues in DNNs [34, 35]. We now show our developed
insights can be used to address this problem (see App. C for details). Specifically, we propose to
regularize the fine-tuning process to induce a high loss barrier between linear interpolation of the
current state of θFT and θC. As per our analysis, the existence of this barrier will imply lack of shared
invariances and hence mechanistic dissimilarity. To ensure the unshared invariance corresponds
to ignoring vs. using the spurious cue, we further add an invariance loss that asks class-centroids
produced by θFT on data with and without cue to be the same. We find this approach, termed
Connectivity-Based Fine-Tuning (CBFT), outperforms recent baselines [34, 35] and naive fine-tuning
on clean and counterfactual data, indicating emergence of desired invariances (see Tab. 1 & App. 3).
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A Related Work

Model Similarity: Prior works have tried to assess similarity of two models trained under different
settings via the notion of prediction mismatch [37, 38, 39], which involves finding which samples
two models produce different outputs on. In contrast to such works, we propose to assess model
simlarity via their response to relevant data transformations, where relevance depends on the task and
user choices. If two models use similar mechanisms, they should respond similarly to transformed
inputs; by choosing transforms that encode task-relevant vulnerabilities, we can make this definition
operationally well-motivated. For example, by randomizing the synthetic cue in Figure 5, we
can assess whether the model relies on the cue or not. This is analogous to the use of visual
illusions (inaccurate perceptual inferences) for determining valid computational models of early visual
processing in cognitive science [29] and neuroscience [28], and relates to the idea of Goldstone’s
theorem in physics [40, 41], which claims moving in the direction of an operator’s symmetry does not
yield increase in system’s energy. Intuitively, then, we can expect the number of shared symmetries
to be a valid proxy for how benign a path must be for two mechanistically dissimilar modes to be
connected. We also note our work is among the first works to examine the mechanistic similarity
of different networks. While many previous works have asked whether a neural network learns the
true causal mechanisms generating the data, ours is the second work to examine the mechanistic
similarity of different networks, after Nanda et al. [42], who introduce a method (“STIR”) for
measuring how similar the mechanisms learned by two networks are. We also note the idea of
identifying easily manipulable latents to infer interpretable modules is also popular in generative
models [43, 44, 45, 46].

Mode connectivity. Existence of a single, continuous manifold connecting global minimizers was first
identified theoretically by [33] and empirically discovered in concurrent works under the title of “mode
connectivity” by [11] and [12]. A geometrical characterization of the manifold connecting minimizers
was provided by [32], who showed the manifold is primarily composed of affine subspaces. Mode
connectivity results have been used for designing and analyzing algorithms for several practically
relevant applications, such as ensembling [14, 47, 48, 49], network pruning [13, 15], fine-tuning [50],
adversarial robustness [51], and multi-task/continual learning [52]. This last work is closely related
to ours: they find that they can train a model which is linearly mode connected to models trained on
individual tasks. During the course of this work, we became aware of the contemporary paper by
[53], who empirically investigate if minimizers connected via linear paths follow similar strategies
to produce their decisions. Their analysis focuses on NLP tasks and follows an alternative analysis;
hence, their results can be regarded as further verification of our claims about linear mode connectivity
on a different modality.

Fine-tuning. Fine-tuning is a well-established practice in deep learning. The most basic fine-tuning
method is to treat the pre-trained model as an initialization, and continue training with new data.
A variant is to train only a subset of parameters, such as the final classification layer [34].While
[34] argue that “last layer re-training is sufficient for robustness to spurious correlations”, our more
in-depth evaluation shows that this method actually does not eliminate sensitivity to spurious features.
Our findings are more congruent with those of [50], who find that fine-tuned models tend to remain
linearly connected to the pretraining mode, suggesting that fine-tuning may fail to make fundamental
changes to a model’s behavior.

Model editing. Model editing refers to fine-tuning approaches that aim to make a targeted change to
a particular aspect of model’s behavior without incidentally affecting other aspects. For instance, [54]
give the example of correcting a prediction errors on a particular example without changing a model’s
prediction on other examples. Most work to date on model editing aims to make such changes
that are “local” in input space, i.e. only affecting the model’s “understanding” of who the current
prime minister of the UK is [55]. Mechanistic fine-tuning shares this high-level goal of “targeted”
fine-tuning, however, we aim to make edits that are local in a different sense: we want to make a
targeted change to the causal mechanism the model implements to make predictions. Specifically, we
aim to make a model invariant to (e.g. spurious/nuisance) features that is was not already invariant
to (or vice versa), without changing its learned representations of the features themselves, or its
invariance to other features. Such a change would tend to influence many of a model’s predictions,
making approaches such as MEND [55] inappropriate for our setting. We believe [56] is the work
most similar to ours in this respect; three significant differences are: (i) their method only works
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Linearly Nonlinearly Linearly Nonlinearly
Mode Mode Mech. Mech.

Connected Connected Connected Connected

Mechanistically Similar ✓ ✓ ✓ ✓
Mechanistically Dissimilar ✗ ✓ ✗ ✗

Table 2: Summary of our (empirical) findings regarding mode connectivity of mechanistically
(dis)simmilar modes. The ✓mark indicates that such (pairs of) models exhibit that type of connectivity.

given a large model pre-trained on lots of data, (ii) they rely on style transfer, (iii) they only tune
some of the layers.

B Training Setup and Dataset Visualizations

B.1 Training details

When training from scratch (e.g., in Fig. 3), we train models for 100 epochs with a batch-size of
256. Learning rate starts at 0.1 and is dropped by a factor of 10 at the 40th and 80th epochs. No data
augmentations are used. When fine-tuning to assess linear connectivity (e.g., in Fig. 4), we train
models for a further 100 epochs on data without cues using different initial learning rates, but the
same step-decay schedule (decay factor of 0.1 at decay epochs 40 and 80). When using synthetic
datasets, if a proportion c is to be assigned the cue feature, we use the first c% samples of all classes to
assign them the respective cues. We do not store the samples beforehand and use manually designed
dataloaders that allow for easy manipulation of samples in an online manner, enabling straightforward
counterfactual evaluations. We note the code is currently under review, but will be released soon.

B.2 Fine-Tuning details

We train models on the synthetic data with cue features, reserving 2500 training samples as “clean”
data for further fine-tuning to remove reliance on the spurious cue. Depending on the method, the
fine-tuning setup involves different hyperparameters. For consistency, we follow the use of a cosine
schedule for fine-tuning on clean data, as done by Kirichenko et al. [34] and Kumar et al. [35].

Naive Fine-Tuning. We use different initial learning rates, including medium (0.01) and small
(0.001). For a large learning rate, we note that while fine-tuning on a minimal set does induce good
invariance properties, the performance on the original, without cue data (called NC in tables) is often
rather poor. Hence, we disinclude those results.

LLRT (Kirichenko et al. [34]). We freeze the model parameters at their current state, remove the
final linear layer, and replace it with a randomly initialized one. The layer is fine-tuned on clean data
for 100 epochs with a cosine decay schedule that starts at a LR of 30.

LPFT (Kumar et al. [35]). First, we follow the protocol above for LLRT and get a new linear layer.
Thereafter, the entire model is fine-tuned on clean data for 20 epochs with initial learning rates of
0.01, 0.001, and 0.0001. The best retrieved results on validation data are reported.

CBFT. We initialize the model at the spurious mode θC and first run a warmup epoch without the
invariance loss (i.e., only the barrier loss and clean data loss are used). This is similar to the LLRT
step in LPFT and helps move the model away from θC. Thereafter, the model is fine-tuned for 20
epochs with an initial learning rate of 0.01.

B.3 Data Generating Process and Visualizations

Since our goal is to assess the role of mechanistic similarity on connectivity of modes, we need
models that we know for a fact rely on different mechanisms for making their decisions. To this
end, we propose to use easily manipulable synthetic datasets. Such datasets have been used by
prior works for better understanding several important topics, such as transfer learning [57], domain
generalization [58, 59], disentanglement [60, 61], self- and semi-supervised learning [22, 62, 19],
and inductive biases of neural networks [6, 7, 63]. Our data generation process (DGP) is illustrated in
Figure 5 and involves augmenting the natural DGP with synthetic cue features that are conditioned
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on the sample category. By design, the dataset is easy to intervene on for creating counterfactual
samples (see Def. 2). We specifically focus on interventions which break the cue’s correlation with
respect to target category by randomizing it (e.g., uniformly changing location of the box cue in the
“located CIFAR-10” dataset). Vice-versa, we also analyze the case where the cue remains intact,
but the underlying image is randomized (e.g., putting a cat instead of a dog). This helps analyze
how much a given mode relies on possibly semantically relevant features that originate from the
source image, especially under partial correlation. We highlight that such low-complexity cues can be
viewed as stand-ins for spurious or shortcut features that are commonplace in realistic settings [2, 1],
allowing us to analyze if modes that use spurious versus non-spurious features are connected.

Figure 5: Data-Generating Process (left). We design evaluation datasets by augmenting the latents
of the natural DGP (zn) with synthetic cues (zs). By conditioning (denoted grey, dotted line) the
values of these cues on sample category (y), we can induce correlation between the desired output
of a model and input features that are irrelevant to the task. If the cues are designed to be linearly
separable, the simplicity bias of neural networks [5] will ensure the model preferentially uses them
for making its decisions. Datasets (right). We use three datasets: (1) CIFAR-10 with a 3× 3 box
whose location depends on the sample category; (2) CIFAR-100 with 3× 3 boxes colored according
to the first digit of the object label, and located according to the second digit; (3) and Dominoes [5],
wherein CIFAR-10 images are concatenated same class FashionMNIST images.

B.4 Identifying Quadratic Paths

The qudaratic path is defined as follows.

γθ1→θ2(t) = t2θ1 + 2t(1− t)θm + (1− t)2θ2. (1)

The set of parameters θm can be thought of as vertex of a parabola that helps anchor the curve. To
identify this set of parameters, we follow [11] and train points randomly sampled from the quadratic
path to achieve zero loss on a given dataset D. That is,

θm = argmin
θ

Ex∈D,t∈[0,1](L(f(x; γθ1→θ2)(t))). (2)

Note that consequently, a quadratic connectivity path necessarily depends on the dataset used for
its identification and it is not mandatory that it will generalize across datasets/distributions. This
is precisely what we see in our results in Figure 3, where we are able to identify quadratic mode-
connectivty between two sets of parameters on a given dataset, but those paths do not generalize to
counterfactual datasets.

B.5 Finding Permutations for Linear Connectivity

Given two sets of parameters θ1, θ1, identifying the linear path between them involves merely
interpolating the parameters. [15] argue that parameters discovered using SGD can always be linearly
mode connected up to permutations, i.e., there exists a permutation π that connects the π(θ1), θ2 in
the sense of Def. 1. To empirically analyze this claim in our work, we identify π by maximizing the
similarity of activations produced by model with parameters θ1 and θ2. That is,

π∗ = argmin
π
||f(x;π(θ1))− f(x; θ2)||. (3)

Given the above problem involves discrete optimization, we propose to solve it greedily by computing
representations at each layer of the two models, finding a permutation that matches the representations
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maximally, and then repeating the process for the next layer. For finding the permutation, we use
SciPy’s linear assignment solver [64]. We use representations over a batch-size of 512 and run the
matching process over the entire dataset.

Let π<l denotes permutations before layer l.
Initialize: θ1, θ2, dataset D, model f , πl

L
1 = I , where I is identity permutation.

l← 1
L← # of Layers
for x ∈ D do

l← 1
for l ≤ L do

πl = argminπ ||fl(x;π<l(θ1))− fl(x; θ2)|| ▷ fl denotes representation at layer l
l← l + 1

end for
end for

Our algorithm is able to recover the ground-truth permutation if a given model’s neurons are inten-
tionally randomized (while maintaining functional connectivity). This serves as a sanity check that
confirms the validity of our technique.

C Mechanistic Fine Tuning: Overriding Decision-Making Rules by Driving a
Model Beyond Mechanistic Barrier

Fine tuning is commonly used as a strategy to improve sample efficiency by taking a pre-trained
model as an initialization and training it further on a new small data set. This section explores the
idea of mechanistic fine tuning, where we specifically aim to override existing mechanisms of a
pretrained model by fine tuning it on a small out-of-distribution dataset. Note that here we are not
trying to teach the model how to perform new extra tasks (e.g., classifying new image categories,
etc.), but rather attempting to override its existing mechanisms, e.g., for how it classifies images with
a fixed set of classes.

Mechanistic fine-tuning with connectivity-based fine-tuning (CBFT) Consider a set of parameters
θC found by training a model f(.) on dataset DC that has some spurious or shortcut cue that a model
can use to achieve zero loss. Practically, this situation is commonplace because spurious or shortcut
cues are often highly correlated with the actual target category [2]. Recent work has aimed to use
minimal data with “clean” samples, i.e., samples which lack the spurious cue to remove the model’s
reliance on such cues [34, 35], while trying to maintain any other useful features it has learned. We
now show that our newfound understanding of neural network loss landscapes from the perspective
of mechanistic similarity can be used to address this problem. To this end, we recall from Figure 4
that when fine-tuning models with different learning rates on original datasets, the only situation
θFT demonstrates invariance to cues embedded in the dataset is when it is not linearly connected to
the original mode θC. As per Conjecture 1, this lack of linear connectivity indicates θFT and θC are
mechanistically dissimilar due to lack of a shared invariance. We thus argue that a valid strategy to
remove a model’s reliance on spurious cues is by forcing it to move to a different region in the
landscape that does not exhibit linear connectivity to the θC .

Operationalizing this idea has a challenge however: there can be multiple regions that do not linearly
connect with θC and we speficially want ones that boast our desired invariances–i.e., regions that are
invariant to the spurious cue. We propose to circumvent this issue by assuming the existence of a
minimal “clean” dataset DNC, similar to prior work, that can be used to enforce desired invariances
on the model’s representations. Specifically, assume L(., .) denotes a classification loss, such as
cross-entropy and Di denotes the subset of a dataset D corresponding to samples that belong to the
ith class in an K−class classification problem. Then, we can use the following two-step procedure
for connectivity-based fine tuning (CBFT):

(i) L1(θ) = argmin
θ
|λ1 − LCE(ŷ(DC; γθ→θC(t)), y)|;

(ii) L2(θ) = argmin
θ
LCE(ŷ(DNC; θ), y) +

λ2

K

∥∥∥Ex∈Dk
C
(f(x; θ))− Ex∈Dk

NC
(f(x; θ))

∥∥∥ . (4)

In the above, γθ→θC(t) denotes the linear path between θ and θC. The first step aims to maximize the
model loss LCE along the linear path up to an upper bound λ1; meanwhile, the second loss aims to
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ensure the model predicts correct labels on the clean dataset DNC, while simultaneously promoting
invariance to spurious cues by producing the same average representation across all classes on both
DNC and DC. We note the set of parameters θ is initialized to θC; the method turns out to be fairly
robust to the values of λ1 and λ2, so we set both to 1 and never tune them.

In Table 3, we empirically validate CBFT against recent baselines used for removing a model’s
reliance on spurious cues. As we show, while these methods are performant, they do not work well
on counterfactuals datasets, e.g., they continue to perform well even if we randomize the image! In
contrast, we see that not only CBFT performs better on clean data, but it in fact shows the desired
behaviors: sensitivity to randomization of the image and invariance to spurious cues.

Table 3: We train ResNet-18 models on our synthetic CIFAR-10 with box cues and fine-tune the
trained models using 2500 “clean” samples without cues. Test accuracy (%) on test counterfactuals
with no Cue (NC), with Cue (C), Randomized Cue (RC), and Randomized Image (RI) is reported.
We compare our method, Connectivity-Based Fine-Tuning (CBFT), against Fine-tuning with a
medium/small learning rate (FTM/S), LLR [34], and LPFT [35]. ∼ denotes invariance is desirable,
i.e., accuracy should be similar to that on NC; ↓ indicates lower accuracy is desirable; best results
are in bold. We generally see that all baselines yield large degradations in its absence of cues; even
achieving very high accuracy when the underlying image is randomized. Meanwhile, CBFT is able
to break reliance on cues, inducing representations that are often completely invariant to its presence.

60% Cue data 70% Cue data 80% Cue data 90% Cue data

C-10 NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓

FTM 75.7 98.4 23.6 83.4 75.8 98.6 27.7 78.6 71.3 97.7 37.6 63.6 67.2 95.4 49.6 46.6
FTS 75.8 98.7 17.5 90.1 74.9 98.8 16.3 91.1 69.9 98.4 15.7 90.9 64.7 97.9 15.3 90.7
LLR 71.6 95.1 36.3 57.1 70.9 95.8 29.9 65.8 65.1 81.8 27.0 53.2 59.3 70.7 24.6 40.7
LPFT 70.6 88.1 21.0 70.7 69.6 87.3 18.7 72.5 64.4 63.8 18.8 48.0 59.7 56.6 19.8 37.8
CBFT 74.1 71.5 73.4 8.75 73.2 69.2 72.3 8.60 70.0 70.0 69.5 9.68 67.9 72.5 68.1 13.1

C-100 NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓

FTm 44.4 99.2 12.8 85.3 40.3 99.6 12.3 89.8 33.6 99.0 11.4 90.5 25.2 79.2 9.79 57.9
FTs 43.1 99.6 10.3 93.6 38.2 99.7 10.5 95.7 32.5 99.6 10.4 97.0 24.5 39.4 4.87 30.9
LLR 35.5 99.2 12.1 89.0 31.5 98.6 11.3 89.6 25.3 96.7 10.6 89.4 18.9 75.1 9.1 58.7
LPFT 35.1 93.2 10.3 82.3 31.1 90.2 9.89 78.5 25.6 89.6 9.70 80.8 18.7 28.6 4.42 19.6
CBFT 42.7 65.0 36.4 14.6 38.5 66.7 34.7 21.2 34.6 69.3 23.0 27.9 28.5 72.9 23.2 46.0

Dom. NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓

FTm 77.4 96.8 43.8 56.1 76.6 96.6 42.7 58.7 74.1 95.7 41.7 61.3 68.8 95.1 40.0 57.5
FTs 76.4 96.9 37.5 62.4 76.8 96.6 32.5 66.5 73.2 96.4 30.8 67.7 67.3 95.2 31.2 65.6
LLR 74.6 94.4 39.8 53.0 73.9 93.2 36.3 54.7 70.8 84.8 33.1 46.6 63.3 77.0 31.2 39.0
LPFT 73.2 92.5 38.0 51.8 72.7 88.0 34.8 50.9 69.4 34.8 33.1 39.1 61.2 60.8 31.2 26.6
CBFT 72.0 64.9 67.5 9.9 71.5 70.0 59.2 12.1 70.8 69.7 65.9 11.9 67.2 68.7 61.5 14.9

D Non-Linear Connectivity of Mechanistically Dissimilar Modes

We train VGG-13 and ResNet-18 models on our synthetic CIFAR-10 / CIFAR-100 / Dominoes
datasets with cue features (see subsection B.3) and the original datasets themselves. Parameters of the
corresponding models are denoted θC, θNC. We identify connectivity paths along pairs of parameters,
specifically evaluating quadratic paths identified using the data without cue (denoted Quadratic w/o
Cue), quadratic path identified using data with cue (denoted Quadratic w/ Cue), linear path (denoted
Linear), and linear path after permuting θC to maximally match θNC’s activations (denoted Linear
Permuted). In the following, plot titles denote evaluation dataset, including datasets where either
the cue is present (denoted w/ Cue), absent (denoted w/o Cue), randomized (denoted Rand. Cue),
or the underlying image is randomized but the cue remains the same (denoted Rand. Img). Line
colors denote the proportion of dataset that has synthetic cues. Across all our results, we see the set
of parameters θNC yields the same performance upon randomization of the cue, while θC loses its
performance substantially–i.e., the two modes are mechanistically dissimilar due to lack of shared
invariances (see Def. 4). Nonetheless, we can identify quadratic (but not linear) paths that connect
these mechanistically dissimilar modes in the sense of Def. 1, hence corroborating Prop.1 across
several datasets and model architectures, and showing mechanistically dissimilar modes can be
connected via relatively simple paths as well. However, different points on the connectivity paths
respond differently to counterfactuals, indicating mechanistic dissimilarity despite connectivity via
low-loss paths.
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Figure 6: VGG-13 on CIFAR-10 with Box Cue. We plot test/train accuracy curves along different
connectivity paths and see thorough corroboration of our claims in the main text: Mechanistically
dissimilar minimizers can be connected via nonlinear paths on a given dataset, but behave different
on counterfactuals, indicating lack of mechanistic similarity.

C 0.3 0.7 NC

10

50

100

Te
st

 A
cc

. (
%

) w/ Cue

C 0.3 0.7 NC

w/o Cue

C 0.3 0.7 NC

Rand. Cue

C 0.3 0.7 NC

Rand. Img

C 0.3 0.7 NC

w/ Cue

C 0.3 0.7 NC

w/o Cue

C 0.3 0.7 NC

Rand. Cue

C 0.3 0.7 NC

Rand. Img

C 0.3 0.7 NC

10

50

100

Te
st

 A
cc

. (
%

)

C 0.3 0.7 NC C 0.3 0.7 NC C 0.3 0.7 NC C 0.3 0.7 NC C 0.3 0.7 NC C 0.3 0.7 NC C 0.3 0.7 NC

Quadratic (w/o Cue) Quadratic (w/ Cue)

Linear Linear (Permuted)

60% 70% 80% 90% 100%

(a) Test Accuracy.

C 0.3 0.7 NC

10

50

100

Tr
ai

n 
Ac

c.
 (%

) w/ Cue

C 0.3 0.7 NC

w/o Cue

C 0.3 0.7 NC

Rand. Cue

C 0.3 0.7 NC

Rand. Img

C 0.3 0.7 NC

w/ Cue

C 0.3 0.7 NC

w/o Cue

C 0.3 0.7 NC

Rand. Cue

C 0.3 0.7 NC

Rand. Img

C 0.3 0.7 NC

10

50

100

Tr
ai

n 
Ac

c.
 (%

)

C 0.3 0.7 NC C 0.3 0.7 NC C 0.3 0.7 NC C 0.3 0.7 NC C 0.3 0.7 NC C 0.3 0.7 NC C 0.3 0.7 NC

Quadratic (w/o Cue) Quadratic (w/ Cue)

Linear Linear (Permuted)

60% 70% 80% 90% 100%

(b) Train Accuracy.

Figure 7: ResNet-18 on CIFAR-10 with Box Cue. We plot test/train accuracy curves along different
connectivity paths and see thorough corroboration of our claims in the main text: Mechanistically
dissimilar minimizers can be connected via nonlinear paths on a given dataset, but behave different
on counterfactuals, indicating lack of mechanistic similarity.
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Figure 8: VGG-13 on CIFAR-100 with Box/Color Cue. We plot test/train accuracy curves along
different connectivity paths and see thorough corroboration of our claims in the main text: Mecha-
nistically dissimilar minimizers can be connected via nonlinear paths on a given dataset, but behave
different on counterfactuals, indicating lack of mechanistic similarity.
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Figure 9: ResNet-18 on CIFAR-100 with Box/Color Cue. We plot test/train accuracy curves
along different connectivity paths and see thorough corroboration of our claims in the main text:
Mechanistically dissimilar minimizers can be connected via nonlinear paths on a given dataset, but
behave different on counterfactuals, indicating lack of mechanistic similarity.
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Figure 10: VGG-13 on Dominoes. We plot test/train accuracy curves along different connectivity
paths and see thorough corroboration of our claims in the main text: Mechanistically dissimilar
minimizers can be connected via nonlinear paths on a given dataset, but behave different on counter-
factuals, indicating lack of mechanistic similarity.
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Figure 11: ResNet-18 on Dominoes. We plot test/train accuracy curves along different connectivity
paths and see thorough corroboration of our claims in the main text: Mechanistically dissimilar
minimizers can be connected via nonlinear paths on a given dataset, but behave different on counter-
factuals, indicating lack of mechanistic similarity.
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E Linear Connectivity and Mechanistic Similarity

We train VGG-13 and ResNet-18 models on our synthetic CIFAR-10 / CIFAR-100 / Dominoes
datasets with cue features (see App. B.3). Corresponding models are denoted θC. These models are
then fine-tuned on the original CIFAR-10/CIFAR-100 datasets that do not have any cue features.
We use different learning rates (LR) and train for 100 epochs with a step-decay schedule (decay at
epoch 40, 80 by a factor of 0.1). Corresponding models are denoted θFT. In the following, plot titles
denote evaluation dataset, including datasets where either the cue is present (denoted w/ Cue), absent
(denoted w/o Cue), randomized (denoted Rand. Cue), or the underlying image is randomized but the
cue remains the same (denoted Rand. Img). Line colors denote the proportion of dataset that has
synthetic cues.

Across all our results, we see that for a small enough learning rate, θFT exhibits linear connectivity
with θC on the synthetic dataset (in the sense of Def.1); correspondingly, counterfactual evaluations
illustrate linear connectivity as well. This indicates the models respond similarly to interventions on
the dataset and are hence mechanistically similar and connected (see Def. 4). Meanwhile, increasing
the learning rate induces barriers along the linear path. Correspondingly, we find linear connectivity
does not hold on the synthetic dataset and models respond differently to counterfactual evaluations.
That is, they are mechanistically dissimilar and not connected.
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(b) ResNet18.

Figure 12: Fine-tuning of models trained on CIFAR-10 with Box Cue. We plot test accuracy
curves along the linear path between θC and θFT and see thorough corroboration of our claims in the
main text: Linearly connected minimizers exhibit mechanistic similarity, behaving identically on
counterfactual datasets, indicating mechanistic similarity.
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Figure 13: Fine-tuning of models trained on CIFAR-100 with Box/Color Cue. We plot test
accuracy along the linear path between θC and θFT and see thorough corroboration of our claims in
the main text: Linearly connected minimizers exhibit mechanistic similarity, behaving identically on
counterfactual datasets, indicating mechanistic similarity.
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(b) ResNet18.

Figure 14: Fine-tuning of models trained on Dominoes. We plot test accuracy along the linear
path between θC and θFT and see thorough corroboration of our claims in the main text: Linearly
connected minimizers exhibit mechanistic similarity, behaving identically on counterfactual datasets,
indicating mechanistic similarity.
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(b) ResNet18.

Figure 15: Fine-tuning of models trained on CIFAR-10 with Box Cue. We plot train accuracy
curves along the linear path between θC and θFT and see thorough corroboration of our claims in the
main text: Linearly connected minimizers exhibit mechanistic similarity, behaving identically on
counterfactual datasets, indicating mechanistic similarity.
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(b) ResNet18.

Figure 16: Fine-tuning of models trained on CIFAR-100 with Box/Color Cue. We plot train
accuracy curves along the linear path between θC and θFT and see thorough corroboration of our
claims in the main text: Linearly connected minimizers exhibit mechanistic similarity, behaving
identically on counterfactual datasets, indicating mechanistic similarity.
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(b) ResNet18.

Figure 17: Fine-tuning of models trained on Dominoes. We plot test accuracy curves along the
linear path between θC and θFT and see thorough corroboration of our claims in the main text: Linearly
connected minimizers exhibit mechanistic similarity, behaving identically on counterfactual datasets,
indicating mechanistic similarity.

F Lemma / Claims

F.1 Lemma 1.

Lemma 1. If f(.; θ) is invariant to unit interventions Ai and Aj , it must be invariant to their
composition; if it is not invariant to Ai or Aj , it cannot be invariant to their composition.

Proof. Assume the parameterization θ exhibits invariance to the intervention Ai. Independently,
consider another intervention Aj . Then, f(E(x; {Ai,Aj}); θ) = f(GX ◦ Ai ◦ Aj ◦ G−1

X (x); θ) =

f(GX ◦ Ai ◦ G−1
X (E(x;Aj)); θ) = f(E(E(x;Aj);Ai); θ) = f(E(x;Aj); θ), where the last equality

happens due to the assumed invariance of Ai. Now, if θ exhibits invariance to Aj as well, we have
f(E(x; {Ai,Aj}); θ) = f(E(x;Aj); θ) = f(x; θ), i.e., the parameterization θ is invariant to the
simultaneous operation (i.e., composition) of Ai and Aj . Meanwhile, if θ is invariant Ai, but not
to Aj , we have f(E(x; {Ai,Aj}); θ) = f(E(x;Aj); θ) ̸= f(x; θ), i.e., the parameterization θ is not
invariant to the simultaneous operation (i.e., composition) of Ai and Aj .

Note that the derivation above did not rely on the fact that the interventions are “unit”, in the sense
that they act on independent dimensions. However, if one considers general interventions that can
act on multiple dimensions of the latent space simultaneously, then a given intervention can undo
the effects of another one. For example, assume a parameterization is not invariant to interventions
that yield rotations, but nothing else. Then, two invariant interventions can make an object rotate
by equal and opposite angles, while changing some other dimensions of the latent state that the
model is invariant to. In this case, the interventions end up undoing their effect, and the overall state
change does not yield any influence on the model output. By assuming unit interventions that enforce
transformations on specific dimensions, we can circumvent this failure mode.

F.2 Proposition 1.

Proposition 1. (Mechanistically Dissimilar Modes are Connected.) Assume θ1, θ2 are two mechanis-
tically dissimilar modes of lossL(f(D; θ)) on a given datasetD. Given sufficient overparamterization,
there exists a continuous path that connects the two modes (in the sense of Def. 1).

Proof. The proof follows trivially from the results of [32, 31]. Therein, it is shown all loss minimizers
lie on a single continuous manifold given sufficient overparameterization. That is, regardless of the
underlying mechanism leading to zero loss, the minimizer will necessarily lie on the manifold of
parameterizations achieving zero loss.
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F.3 Conjecture 1.

Conjecture 1. (Mechanistic Similarity Enforces Linear Connectivity.) If, up to permutations of
neurons, θ1, θ2 show linear connectivity on a dataset D, then they must be mechanistically similar. If
they cannot be connected linearly, the modes must be mechanistically dissimilar.

Neural networks boast the well-known permutation symmetry phenomenon in their structure: permut-
ing neurons, while accounting for the fan-in and fan-out weights, yields a model that is functionally
the same [65, 15, 32]. That is, after permutation, the model encodes the exact same function as the
original model; in the language of this paper, we can say the model uses the exact same mechanisms
producing its outputs before and after the permutation. To avoid this degeneracy, we will assume
that we are analyzing two minimizers θ1, θ2 that necessarily are not permutations of each other.
In practice, one can run recent methodologies on “neural alignment” to ensure this assumption is
valid [16, 17, 66].

Proof. As per Lemma 1, we only need to establish invariance / covariance to unit interventions for
characterizing the mechanisms underlying a model’s decision rules and, correspondingly, ascertain
mechanistic similarity between two model parameterizations. To that end, we consider a unit
interventionAi that we assume the minimizer θ1 is invariant to. We will analyze the loss of the model
parameterized with linear interpolation of θ1, θ2 on a counterfactual sample E(x;Ai) generated using
intervention Ai. For brevity, we denote the latent state of z as z = G−1

X (x); correspondingly, we
denote the intervened latent state as Aαi

i (z) = z +∆z, where ∆z is 0 in all but the ith dimension,
where it is equal to ∆zi = αi. We can thus write: E(x;Aαi

i ) = GX ◦ Aαi
i ◦ G

−1
X (x) = GX(z̃) =

GX(z +∆z).

We now consider the parameterization along a general path γθ1→θ2(t) such that γθ1→θ2(0) = θ1 and
γθ1→θ2(1) = θ2. We assess its loss on the counterfactual data via a second-order expansion along the
data-generating process:

L (f (E (x;Aαi
i ) ; γθ1→θ2(t)))

= L (f (GX (z +∆z) ; γθ1→θ2(t))) ,

= L (f (GX (z) ; γθ1→θ2(t))) + (∆z)
T ∇zL (f (GX (z) ; γθ1→θ2(t)))

+
1

2
(∆z)

T ∇2
zL (f (GX (z) ; γθ1→θ2(t))) (∆z) +O(α3

i ),

≈ L (f (GX (z) ; γθ1→θ2(t))) + αi
∂

∂zi
L (f (GX (z) ; γθ1→θ2(t)))

+
1

2
(αi)

2 ∂2

∂z2i
L (f (GX (z) ; γθ1→θ2(t))) .

(5)

The parameterization along a general path connecting the two minimizers θ1, θ2 can be written in the
following form: γθ1→θ2(t) = θ1 +∆θ(t, 1), where ∆θ(t, 1) = γθ1→θ2(t) − θ1. Then, expanding
the loss achieved by the model with this parameterization on the original data up to second-order
along the change in parameters, we get the following.

L (f (GX (z) ; γθ1→θ2(t))) = L (f (GX (z) ; θ1 +∆θ(t, 1)))

= L (f (GX (z) ; θ1)) + (∆θ(t, 1))
T ∇θL (f (GX (z) ; θ1))

+
1

2
(∆θ(t, 1))

T ∇2
θL (f (GX (z) ; θ1)) (∆θ(t, 1)) +O(||∆θ(t, 1)||3),

≈ 1

2
(∆θ(t, 1))

T ∇2
θL (f (GX (z) ; θ1)) (∆θ(t, 1)) ,

(6)

where the loss and the gradient term can be ignored because θ1 is a minimizer of the loss on dataset
D. Now, substituting Equation 6 into Equation 5, we get the following.
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L (f (E (x;Aαi
i ) ; γθ1→θ2(t)))

= L (f (GX (z) ; γθ1→θ2(t))) + αi
∂

∂zi
L (f (GX (z) ; γθ1→θ2(t))) +

1

2
(αi)

2 ∂2

∂z2i
L (f (GX (z) ; γθ1→θ2(t))) ,

=
1

2
∆θ(t, 1)T∇2

θL (f (GX (z) ; θ1))∆θ(t, 1)

+ αi
∂

∂zi

(
1

2
∆θ(t, 1)T∇2

θL (f (GX (z) ; θ1))∆θ(t, 1)

)
+

1

2
(αi)

2 ∂2

∂z2i

(
1

2
∆θ(t, 1)T∇2

θL (f (GX (z) ; θ1))∆θ(t, 1)

)
,

=
1

2
∆θ(t, 1)T∇2

θ

[
L (f (GX (z) ; θ1)) + αi

∂

∂zi
L (f (GX (z) ; θ1)) +

1

2
(αi)

2 ∂2

∂z2i
L (f (GX (z) ; θ1))

]
∆θ(t, 1),

=
1

2
∆θ(t, 1)T∇2

θ

[
L (f (GX (z) ; θ1)) + (∆z)

T ∇zL (f (GX (z) ; θ1)) +
1

2
(∆z)

T ∇2
zL (f (GX (z) ; θ1)) (∆z)

]
∆θ(t, 1),

≈ 1

2
∆θ(t, 1)T∇2

θ [L (f (GX (z +∆z) ; θ1))]∆θ(t, 1),

=
1

2
∆θ(t, 1)T∇2

θ [L (f (E (x;Aαi
i ) ; θ1))]∆θ(t, 1),

=
1

2
∆θ(t, 1)T∇2

θ [L (f (x; θ1))]∆θ(t, 1),

(7)

where the last equality follows because of the assumed invariance of θ1 to the intervention Aαi
i .

We break the argument into two cases:
1. Linear case: If the connectivity path γθ1→θ2(t) is linear, the change in loss moving

from θ1 to θ2, along the displacement vector θ2 − θ1, is zero. Since θ1 is a min-
imizer, this implies the displacement vector lies in the null-space of the Hessian, i.e.,
∆θ(2, 1)T∇2

θ [L (f (x; θ1))]∆θ(2, 1) = 0. Correspondingly, for any point in this linear path,
we have, ∆θ(t, 1)T∇2

θ [L (f (x; θ1))]∆θ(t, 1) = 0∀ t ∈ [0, 1]. Substituting this relation into
Equation 7, we get L (f (E (x;Aαi

i ) ; γθ1→θ2(t))) = 0 and all parameterizations along the linear
path share invariances with the parameterization θ1.

2. Non-Linear case: If the connectivity path γθ1→θ2(t) is not linear, then there exists an interpolation
along the linear path connecting minimizers θ1, θ2 that has a loss higher than the two minimizers.
That is, the displacement vector ∆θ(t, 1) does not lie in the null-space of the Hessian and
∆θ(t, 1)T∇2

θ [L (f (x; θ1))]∆θ(t, 1) ̸= 0. Substituting this relation into Equation 7, we get
L (f (E (x;Aαi

i ) ; γθ1→θ2(t))) ̸= 0.
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