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ABSTRACT

Estimating relative free energy differences between multiple thermodynamic states
lies at the core of numerous problems in computational biochemistry. Traditional
estimators, such as Free Energy Perturbation and its non-equilibrium counterpart
based on the Jarzynski equality, rely on defining a switching protocol between
thermodynamic states and computing the free energy difference from the work
performed during this process. In this work, we present a method for learning
such switching protocols within the class of escorted protocols, which combine
deterministic and stochastic steps. For this purpose, we use Conditional Flow
Matching and introduce Conditional Density Matching (CDM) to estimate changes
in free energy. We further reduce the variance in the multi-state setting by cou-
pling multiple flows between thermodynamic states into a flow graph of escorted
protocols, enforcing estimator consistency across different transition paths.

1 INTRODUCTION

In recent years there has been significant interest in the application of machine learning to problems
in computational biochemistry, such as protein folding (Jumper et al., 2021; Abramson et al., 2024;
Bose et al., 2024) and molecular conformer generation (Gémez-Bombarelli et al., 2018) for drug
discovery (Wan et al., 2022) and materials design (Merchant et al., 2023). While initial approaches
focused on generating single static examples of systems of interest, recent efforts have shifted towards
generating the full dynamic ensemble of the system (Noé et al., 2019; Holdijk et al., 2023; Tan et al.,
2025; Akhound-Sadegh et al., 2024). This shift towards the entire dynamical ensemble has opened up
the possibility of using these methods in computational biochemistry beyond what generating static
samples allows. Notable among these is the problem of estimating free-energy differences between
different thermodynamic states, a crucial aspect of many tasks in this field, such as binding affinity
prediction (Mobley and Gilson, 2017) and other components of the drug discovery pipeline (Cournia
and Chipot, 2024). Traditional estimators such as multiwindow Free-Energy Perturbation (FEP)
(Zwanzig, 1955; Wang et al., 2015) and its non-equilibrium variants, defined through the Jarzynski
equality (Jarzynski, 1997), are among the most commonly used for this purpose.

In this work, we specifically consider the class of Escorted Non-EQuilibrium (E-NEQ) estimators
(Vaikuntanathan and Jarzynski, 2008; 2011) based on the aforementioned Jarzynski equality. These
estimators combine dynamics that preserve a given stationary distribution p(x, t), such as Langevin
dynamics, with a deterministic escorting vector b(z, t) field to transition samples between thermody-
namic states. To minimize variance in the finite-sample limit, the preserved stationary distribution and
the escorting vector field must together satisty the continuity equation % +V-(p(z,t)b(x,t)) =0
(Zhong and DeWeese, 2024). Traditionally, finding such a pair is non-trivial.

To overcome this barrier, we propose learning the stationary distribution and escorting vector field
jointly by extending the Conditional Flow Matching (CFM) framework (Lipman et al., 2023) with an
additional Conditional Density Matching (CDM) objective (Sec. 3). We hypothesize that learning
the stationary distribution and driving force in a unified framework will allow them to compensate
for each other’s small errors, leading to a more accurate estimator than using only vector fields,
such as done in methods such as Targeted Free-Energy Perturbation (TFEP) (Jarzynski, 2002) as
illustrated in Fig. 1. To further improve the applicability of the framework, we propose two important
practical considerations in the form of Lie-Trotter splitting to reduce the computational cost of the
work calculation (Sec. 4.1) and a flow graph construction to reduce the combinatorial complexity of
learning protocols for multi-state free-energy estimation (Sec. 4.2).
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Figure 1: (a) Ilustration of processes transforming between two thermodynamic states (blue and red) of the
same molecular system. Using our proposed Conditional Density Matching framework we learn approximate
intermediate densities (grey) along which the learned flow (grey dotted lines) transports samples. The top
stochastic line shows how stochastic processes purely targeting the intermediate distributions will not fully reach
the target state, while the middle process shows that, due to integration error, deterministic processes may deviate
from the true path. Combining stochastic and deterministic processes allows the two approaches to compensate,
resulting in more accurate sampling. (b) [llustration of combining two free-energy estimates with a central
connecting node (A) to obtain the free-energy A Fp_, ¢ difference between the nodes not connected.

The remainder of our paper is organized as follows to introduce the core contributions of our work:

* Sec. 2 introduces the theory of non-equilibrium free-energy estimation, focusing on topics such
as the Jarzynski equality, escorted switching protocols, and bi-directional estimators.

» Sec. 3 then relates escorted switching protocols with the Flow Matching framework and introduces
one of our core contributions in the form of conditional Density Matching. Collectively these
form the learning objectives for our proposed Escorted Non-EQuilibrium (E-NEQ) estimator.

» To improve the efficiency of multistate free-energy estimation, Sec. 4.1 proposes a Lie—Trotter
splitting scheme and Sec. 4.2 proposes the concept of Escorted Protocol Flow Graphs to combine
multiple trained escorted switching protocols to reduce training requirements.

* In Sec. 5 the E-NEQ estimator is experimentally validated using the well-known Alanine Dipep-
tide (ADP) system. ADP is an important benchmark due to its multistate free-energy surface.

2 BACKGROUND

As stated, in this work we are interested in estimating the relative free-energy differences AF4_, g
between pairs of thermodynamic states A and B. Each thermodynamic state A is associated with a
potential energy function U4 : R*N — R, which defines the distribution of possible microscopic
states # € R3" through the Boltzmann distribution

m(m)zz%exp(—m(x)), Zi = / exp (~BUA()) do. (1)

Generally, § = ,CE%T, with kp representing the Boltzmann constant and 7" the temperature of the
system in Kelvin. Using the partition function Z 4, the equilibrium free-energy of state A can be

defined as Fy = —3~!1In Z 4 and their relative free-energy difference as
VA
APap=Fp—Fa=—f"In 2. &)
Za

As exemplified by the definition of the partition function, estimating free energies by directly
integrating over the entire space R3" is prohibitively expensive. As such, various fields have
developed methods to estimate this quantity more efficiently.

2.1 NON-EQUILIBRIUM FREE-ENERGY ESTIMATION

We will specifically focus on the class of alchemical Non-EQuilibrium (NEQ) free-energy estimation
methods, which are a subset of the class of path-based free-energy estimation methods. In path-based
free-energy estimation, a central object of in is the switching protocol U4_, .

Definition 2.1 (Switching Protocol). Given two thermodynamic states A and B with potential energy
functions U 4 and Ug, a switching protocol Us_, g : R3*N x [0, 7] = Ris a time-dependent potential
energy function with boundary conditions U, g(x,0) = Ua(x) and Us—,g(z,ty) = Up(x).
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Using such a switching protocol U 4_, g, a system « initially equilibrated with respect to the potential
energy function U 4, can be driven from state A to state B according to the time-dependent dynamics

8tp('rat) :‘Ctp(x7t)7 p(.l?,O) :pA(x)v (3)

where L; is a time-dependent forward (Fokker—Planck/Liouville) generator, specified so that for all ¢
the target distribution p(z, t) < exp (—BU s p(z,t)) is stationary for the frozen-time dynamics, i.e.
L:p(-,t) = 0. Notably, it does not have to be the case that the system is in equilibrium at all times,
i.e. p(x,t) = p(z,t) does not need to hold for all .

Under such dynamics defined by the protocol U 4_, g, the second law of thermodynamics tells us that,
with thermodynamic work defined as

trou Jt
Wasp(x) = / % dt, 4)
0

the average work performed on the system along trajectories x generated by the dynamics in Eq. (3)
is an upper bound on the free-energy difference between the two states

AFap < (WasB(X)Ua_,p- (5)

where the shorthand (-)y;, ., denotes the ensemble average over trajectories x generated by the
dynamics in Eq. (3). Crucially, equality only holds here for quasi-static (infinitely slow, ¢ty = 00)
processes where the system remains in equilibrium at all times, i.e. p(z,t) = p(z,t) for all ¢.

2.1.1 JARZYNSKI EQUALITY

For any such switching protocols, Jarzynski (Jarzynski, 1997) showed the remarkable result that
instead of restricting to quasi-static processes to obtain an equality for the thermodynamic work we
can consider the ensemble average of the exponential of the work.

Theorem 2.1 (Jarzynski Equality (JE) (Jarzynski, 1997)). Given switching protocol Ua_, g and
time-dependent dynamics with frozen time stationary distribution p(x,t) x exp (—fUa—p(x,t))
forallt € [0,ts] as in Eq. (3), we have that along trajectories x generated by the dynamics

(-pwaa)  para ©®

Uasb

Important to note here is that the class of dynamical processes considered in the JE only require
stationarity. The JE does not depend on ergodicity and is therefore valid for a wide range of dynamics
including both time-dependent stochastic dynamics such as underdamped and overdamped Langevin
as well as deterministic dynamics, e.g. Hamiltonian. Extra care is needed when momenta are
considered (e.g., underdamped Langevin dynamics). In this case, a state-dependent Hamiltonian,
rather than the potential energy, should be used in the definition of work in Eq. (4).

Using standard Monte Carlo integration with trajectories x,, generated according to Eq. (3), the JE
provides a consistent but generally biased estimator of the AF4_, p in the finite-sample setting:

N
1
AFasp = AFasp = —f"In (5 3 e Wamste), 7
=1

JE Estimator VarianceBoth the bias and the variance of this estimator grow with the excess work
W = (W), — AFa_p (Geiger and Dellago, 2010; Gore et al., 2003), which for every time ¢
is lower bounded by the Kullback—Leibler divergence between the two distributions (Vaikuntanathan
and Jarzynski, 2009):

W > B~ Do (p(a, t)||p(z, t), VYt e [0,ty]. ®)

As such, intuitively, while the JE is valid for any switching protocol the variance and the bias of
the estimator are determined by how much the instantaneous distribution p(x,t) lags behind the
stationary distribution p(x, t) at every time ¢ defined by the switching protocol U4, 5.

2.1.2 ESCORTED JARZYNSKI EQUALITY

To reduce the amount of lag between the instantaneous distribution p(z, t) and the target distribution
p(x,t) Vaikuntanathan and Jarzynski (2008) introduced the concept of escorted switching protocols.
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Definition 2.2 (Escorted switching protocol). Given two thermodynamic states A and B with potential
energy functions U 4 and Up, an escorted switching protocol (U s, , b) consists of a time-dependent
potential Uy, g : R3N x[0,t¢] — R and a time-dependent vector field b : R3N x [0, t ;] — R3N with
boundary conditions U, g(x,0) = Ua(z) and Ua_,g(x,tf) = Up(x) and b(x,0) = b(x,ty) = 0.

Given an escorted switching protocol, the escorted dynamics driving a system from state A to state B
adds deterministic advection based on the time-dependent vector field b

i) = Laplat) = Laplarst) = V(b Dp(@,8),  pla,0) =pala). O

Here £, denotes the forward operator that satisfies frozen time stationarity £;p(-,t) = 0 for p(x,t)
exp(—BU s p(x,t)), as defined in Eq. (3). Under escorted dynamics, Vaikuntanathan and Jarzynski
(2008) showed that with an alternative definition of the work, the JE still holds.

Theorem 2.2 (Escorted Jarzynski Equality (E-JE) Vaikuntanathan and Jarzynski (2008)). Given an
escorted switching protocol (Ua_, g, b) and time-dependent dynamics as in Eq. (9), we have that
along trajectories x generated by the dynamics

<e*ﬁ VAVA%B(X)> — ¢ BAFa-EB. (10)
(UA—§B7b)

where the escorted work Wa_, (x) along trajectory x is defined as
. ty
Wasp(x) = / (8tUA_>B(xt, £) + b(ze,t) - VUL (21, 8) — BV - b(ze, t)) at. (1)
0

Notably, because b is not involved in enforcing that the dynamics have stationary distribution
p(z,t) o exp (—pUa_p(x,t)) it can be freely chosen to minimize the amount of lag and with

that the variance of the escorted estimator AF4_, 3 = —3~! In(+ 25:1 e~ BWa—5(xn)) Notably
among the choices of b are the case where b = 0, which is equivalent to the non-escorted case, as

well as the following optimal choice of b as shown by Zhong et al. (2023):

Theorem 2.3 (Optimal Escorted Switching Protocol (Zhong et al., 2023)). Ifb(z,t) and p(x,t)
exp (—BUa— g (x,1)) collectively solve the continuity equation O;p + V - (pb) = 0, then, for every
trajectory x generated by the dynamics Eq. (9), we have W _,p(x) = AF 4.

Crucially, what this shows is that if we learn b and U4 _, p collectively to solve the continuity equation,
while maintaining the boundary conditions Us_,g(2,0) = Ua(z) and Ua_,p(z,t;) = Up(z),
then a single trajectory x generated by the dynamics in Eq. (9) suffices to estimate the free-energy
difference AF'4_, g. In the remainder of this work we will explore how we can learn these components
using Conditional Flow Matching and our proposed Conditional Density Matching.

2.1.3 BI-DIRECTIONAL SAMPLING AND THE CROOKS IDENTITY

In addition to introducing the escorting velocity field b, a second approach to reduce the variance
of our estimator of the free-energy difference is to use bi-directional estimators. Instead of only
evolving samples from the initial thermodynamic state A, it is equally straightforward to start from
state B and define a reverse protocol Up_, 4 with boundary conditions Ug_, 4(x,0) = Ug(x) and
Up—a(z,ty) = Ua(z). In the context of non-equilibrium free-energy estimation, this idea underpins
the Crooks Fluctuation Theorem (CFT) (Crooks, 1998):

PA—>B (W)
PB%A (_W)
Here P4_, g(W) is the probability of observing work W for a process starting from 2y ~ p4 and

evolved under the forward dynamics, while Pg_, o(—W) is the probability of observing work — W
under the time-reversed protocol. This fluctuation theorem holds both for the non-escorted case and

the escorted case with TW4_, 5(x) replacing W (x).

= exp[B(W — AF4_5)]. (12)

For the escorted case, the time-reversed protocol (Up_ a,b) is given by Up_a(x,t) =
Uasp(z,ty —t)and b(z,t) = —b(z,t; — t). Consequently the time-reversed escorted dynamics
driving the system from state B to state A are given by

Orpr(w,t) = Lipr(x,t) — V-(b(z,t) pr(z, 1)), pr(z,0) = pp(z). (13)
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Here £, denotes the reverse operator of a non-escorted dynamics that satisfies frozen time stationarity
Lip(x,t) = 0for p(x,t) = p(x,ty —t) x exp(—BUp_a(z,t)). In the case where dynamics with
momenta are considered, the momenta have to be reversed in the reverse generator L;.

Crucially, the Crooks Fluctuation Theorem expresses AF4_, p as the solution to a single-parameter
problem. Rather than directly estimating AF'4_, p via the JE, which often suffers from high variance
and finite sample bias due to its exponential average, the CFT can be inverted to solve for AF4_, p
as the parameter that best fits a given set of observed forward and reverse work for a given protocol.

The remainder of this work will only consider using the CFT instead of the JE. Practically, this is
implemented by the Bennett Acceptance Ratio (BAR) estimator (Bennett, 1976).

2.2 RELATED WORK

|
I Traditional Free-Energy Estimation In addition to the traditional alchemical non-equilibrium
I free-energy estimation approaches introduced in the previous section, a large collection of other
I approaches have been proposed. We briefly outline the core lines of work here. Closely related to
the approaches considered in this work are alchemical equilibrium approaches such as (iterative)
I Free-Energy Perturbation (FEP) (Zwanzig, 1955) and Thermodynamic Integration (TI) (Kirkwood,
1935), which depend on the Zwanzig equation (Zwanzig, 1955). Next are the non-alchemical
path-based approaches such as transition path sampling (Bolhuis et al., 2002) and nudged elastic
band sampling (Henkelman et al., 2000). Non-alchemical approaches rely on frameworks such as
Transition State Theory (Truhlar et al., 1996) and the Arrhenius/Eyring equation (Eyring, 1935).

Neural Free-Energy Estimation Methods Within the family of alchemical free-energy estimation
approaches, most proposed neural approaches focus on the Targeted Free-Energy Perturbation
method (TFEP) (Jarzynski, 2002). The TFEP method can be considered a special case of the
escorted switching protocol where only the deterministic vector field b is used to define an invertible
mapping. TFEP has been studied within the machine learning context in Wirnsberger et al. (2020);
Rizzi et al. (2023; 2021); Erdogan et al. (2024); Zhao and Wang (2023), which all use variants of
MLE-trained discrete normalizing flows or Flow Matching. Within the same alchemical family,
Maté et al. (2024; 2025) propose a neural version of Thermodynamic Integration. Lastly, most
closely related to methods proposed here is the work by He et al. (2025), which also parameterizes an
escorted switching protocol. Crucially, their proposed method FEAT uses two different protocols for
the forward and backward process between two states and does not consider the multistate setting.

3 LEARNING ESCORTED PROTOCOLS USING FLOW AND DENSITY MATCHING

Having discussed the background of (Escorted-) Non-Equilibrium free-energy estimators, we now
propose a new method for parameterising and learning the escorted switching protocol (Ug B b?)
such that they collectively solve the continuity equation, and adhere to the boundary conditions
Uf_ 5(2,0) = Ua(z) and U4_, z(x,t;) = Up(x). We propose to parameterise both components
by learning bf using standard Conditional Flow Matching (CFM) (Lipman et al., 2023) and U? using
an extension of CFM, which we call Conditional Density Matching.

3.1 LEARNING bY USING CONDITIONAL FLOW MATCHING

Conditional Flow Matching (CFM) is a general framework for learning a vector field vf that drives
samples from one arbitrary distribution pg to another p; along a set of time-dependent intermediate
distributions p;. As it can generally be assumed that there is no access to the ground truth vector field
v; or samples from the intermediate distributions p; beyond the initial and final distributions, CFM
approaches this by considering a conditional time-dependent distribution p;(z; | z) generated by a
conditional vector field v¢(x; | z) and a coupling distribution ¢(z). A common choice is to have ¢(z)
defined as an Optimal Transport coupling (Tong et al., 2024) to enforce v, to follow straight paths.

Using this coupling of conditional and marginal vector fields, Lipman et al. (2023) showed that if we
learn the vector field v?(x;,t) by regressing on the conditional vector field v;(z;,t | 2) using

2
Lcpm = Ethni(O,l),zwq(z),mtwpt(zﬂz) [H’U(b(xht) - Ut(xt ‘ Z)H :| (14)

then this is equivalent to regressing on the vector field v;(x;) directly.
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Crucially, given a paired conditional vector field and conditional distribution, under minor regu-
larity conditions, for any choice of coupling distribution ¢(z) the marginal vector field v;(z;) =
vt (ze]2)pe (@4 |2)
e
continuity equation (Tong et al., 2024). As such, if we set pg = pa, p1 = ps, t;lv‘ﬁ(z, 5) = b?(x,t)
under the rescaling ¢ = sty, and define py(z) = p(z,t) o exp (—BU4_, z(z,t)), then CFM
provides a valid approach to finding the escorting vector field b¢ for our escorted switching protocol.

)q(=) and marginal distribution p; (2) = (p¢(¢|2))q(2) are shown to jointly solve the

3.2 LEARNING U/ USING CONDITIONAL DENSITY MATCHING

This still leaves us with the problem of learning the time-dependent potential U%(x,t). For this
purpose, we employ a similar trick to that used by CFM to learn the time-dependent potential
p?(z,t) o< exp (—BUY_, g(x,t)) from the conditional time-dependent distribution p; (¢ | z) and
consider the following extended version of the Maximum Likelihood Estimation (MLE) objective

Lpm = Ethni(O,l),mtwpt(m,,) [_ logpe(xta t)} ) (15)

which adds an additional time dependence. To highlight the similarity with Flow Matching, we
denote this object as the Density Matching (DM) objective.

Due to Lpy being defined as an expectation over the unknown distribution p;(x;), learning
Uf1 _, (@, ) directly using this objective is not possible. However, similar to the CFM objective, we
can equivalently express another maximum likelihood objective using the conditional distribution
pt(x | z) instead. We denote this as the Conditional Density Matching (CDM) objective:

‘CCDM = EtNUni(O,l),zwq(z),xtwpt(zﬂz) [_ logpe(xtu t)} . (16)

Similar to the CFM objectives, the DM and CDM objectives have equivalent gradients, Vg Lpyn =
VoLcpwu, and thus MLE using the conditional distribution will result in the same learned marginal
distribution p? as MLE using the marginal distribution.

In summary, combining the CFM objective reviewed above with the proposed CDM objective, we
thus learn a pair of escorting vector field b? (z, ) and potential U . 5(z, ) that collective solve the
continuity equation. When these two components are collectively used as the escorted switching
protocol in an E-NEQ estimator, this results in a low-variance estimate of AF4_, .

4 EFFICIENT MULTI-STATE FREE-ENERGY ESTIMATION

With the previous section proposing a method for learning the escorted protocol (U§_, 5, b?), we now
consider some practical restrictions of E-NEQ estimators. Namely, (i) the work calculation becoming
prohibitively expensive because a very small global time step dt being required to deal with the
numerical instability of the stationary distribution preserving dynamics, and (ii) in the multi-state
setting the number of escorted switching protocols grows exponentially with the number of states.
We will address both of these issues in the following two sections. In the appendix we further discuss
three more standard, but important, practical considerations.

4.1 EFFICIENT WORK CALCULATION BY LIE-TROTTER SPLITTING

Molecular Dynamics simulation is known to quickly become numerically unstable when using large
time-steps due to the potential energy including sharply peaked components such as Lennard—Jones
potentials. As such, when simulating the dynamics of our escorted protocol in Eq. (9), we are required
to use a very small global time-step d¢. Unfortunately, as a result of this, in the work calculation we
therefore must evaluate the divergence many times, which can be computationally very expensive
for any system of considerable size. Ideally, we would therefore like to decouple the divergence
calculation from the unstable stationary distribution preserving dynamics.

For this purpose we propose to use Lie-Trotter (Trotter, 1959) splitting to split the combined
dynamics into two separate steps; first a step using b(x, t) and then a step using the stationarity-

preserving distribution preserving dynamics. Given our escorted dynamics EAt = L; + & where
& =—V - (b(x,t)p(x, 1)) is the escort transport, a Lie—Trotter step of size h = dt frozen at time ¢
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approximates the full evolution by composing the subflows as

bt ng ehlrghte, (17)

Under such split dynamics, a simplified version of the Escorted Jarzynski Equality holds.

Theorem 4.1 (Split Escorted Jarzynski Equality). Given an escorted switching protocol (Ua_ g, b)

and split escorted time-dependent dynamics e"*t ~ e tel€t where L, is the stationarity-

preserving operator (i.e. L;p(x,t) = 0 with p(z,t) oc e PUA~B&D) and £p = — V- (b(m7 t)p) is
the escort transport, consider a Lie=Trotter time grid ty, = kh with N - h = t; and the split update

x;g = Tk + b(l’k,tk)h, Tk+1 ™~ Ktk (:C;ca ')7 (18)
where K is any transition kernel that preserves p(x,t) at frozen time t. If xo ~ pa(x), then
(eaWazplul)) = e PAFA~E L O(h), (19)
(Ua-B,b,h)

where the split escorted work is defined by

N-1
—~ ouU T t
Taatn = 3 (ki

k=0

—-p7tv. b(xk,tk)> h. (20)
In particular, (19) holds exactly in the limit h — 0, recovering the Escorted Jarzynski Equality.

Proof. Consider the escort step as a deterministic kernel Ly, (2'|2) = 0,4p(z,¢,)n(2") and the
stationarity-preserving step as a kernel K, with stationary distribution p(z, ;) such that the com-
posed update is the kernel P, = K, o Ly, . Then the proof follows from the discrete-time E-JE in
Vaikuntanathan and Jarzynski (2011). O

While this still requires us to use the global time discretization h = dt for each individual substep as
well as for the calculation of the work, it allows for smaller internal time discretization within the
stationarity-preserving kernel K; independent of the escort step. This split can be used to significantly
reduce the number of divergence evaluations V- b(z, t) needed in the work calculation.

For reference, operator splitting is a common topic in MD simulation (Frenkel and Smit). It is, for
example, at the core of the BAOAB splitting for underdamped Langevin dynamics and the velocity
Verlet integrator for Hamiltonian Monte Carlo (Leimkuhler and Matthews, 2013; Swope et al., 1982).

4.2 EFFICIENT MULTI-STATE FE ESTIMATION USING FLOW-GRAPH BASED MBAR

With the combined CFM and CDM approach to learn the escorted switching protocol (U _, 5, b%)
between the two thermodynamic states A and B, we now consider how to extend this to the case of
estimating the relative free-energy difference {AF;_,; }ZK:1 ;=1 between a collection of K thermody-
namic states. Within the context of the drug-discovery pipeline, lead optimization for example often
involves large assays of ligands for which we need to assess their binding affinity (Wang et al., 2015).

Naively, using a single reference state k we can train K — 1 escorted switching protocols
(g, b?* K| to calculate {AFi;}/E, j—; using the E-JE. Considering that Free-Energy

k—1
differences are a state function, we can then obtain all not-directly connected estimates as
AFi; = —AFii + AFi—;. While this would result in a consistent estimate for all pairs
of states, it is generally understood that to obtain accurate multi-state free-energy it is best to obtain

all {W;_,;}/<, ;_, individually and use the self-consistent Multistate Bennett Acceptance Ratio
(MBAR) (Shirts and Chodera, 2008) to obtain {Afiﬁj}fil,jzl. Following this line of thinking,

a straightforward extension of the CFM/CDM framework would therefore be to learn a ULJJ and
escorting vector fields bfs_jj for each pair of states ¢ and j individually and use them to obtain Wi, j
according to Eq. (4). However, for a set of K thermodynamic states, this would require K (K — 1)/2

models, which would quickly become infeasible.

Instead, we propose to construct a Escorted Protocol Flow Graph.
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Definition 4.1 (Escorted Protocol Flow Graph (EPFG)). Given a collection of K thermodynamic
states and K —1 escorted switching protocols {(U,fl_) i bf; i}fil,# « With central node k an Escorted
Protocol Flow Graph (EPFG) is constructed by considering the K thermodynamic states to be
the nodes and the escorted switching protocols { (U, bk—ﬂ'}i}il, =1 between all states i and j to
represent the edges. Here all edges not connected to the central node k are given by

(UL, (e ty —2t), =200 (a,ty —2t)) fO<t<Y

k—1i

(U, (2,2t — 1), 2607 (.2t — ), if 5% <t <ty.

(Ui%j(xvt),bi—m'(xvt)) = { (21)

Using the EPFG and the escorted protocols defined as its edges, including the constructed concate-
nated ones, we can now obtain {Wiﬁj}fil, j=1 for all combinations of states ¢ and j while only
requiring the training of K — 1 protocols. This enables more accurate free-energy estimates using the
MBAR estimator compared to using the pair based approach while minimizing the training costs.

5 EXPERIMENTS

We evaluate the feasibility of learning the thermodynamic
flow network of coupled U? and escorting field b® using
the well-known alanine dipeptide (ADP) system. While
limited in size, ADP shows similar challenges to larger
systems such as high-energy barriers and solvent effects.
Furthermore, as ADP in solvent has six distinct metastable
states o, ap, 8, C5 and o as visualized in Fig. 2. These
states are known to exhibit significant differences in con-
formational free energy it serves as an well-understood
benchmark for the multi-state setting.

W (degrees)

Figure 2: Umbrella sampling FES reconstruc-

Data GenerationFor each metastable state, we generated  ion and training samples for ADP.

10,000 samples using a harmonic flat-bottom constraint on

the torsion angles defined by the metastable state boundaries, as specified in the appendix. Training
samples for each state are visualized in Fig. 2. We observe that the training samples cover each state
but do not represent the correct ratios as observed in full equilibrium sampling.

Baselines To obtain a baseline value to validate our method against, we performed an extensive
Umbrella Sampling (US) estimate using a large number of windows and the same setup as used
for data generation. Additionally, we compare our method against a neural version of Targeted
Free-Energy Perturbation (TFEP). For our comparison we will use the vector field b¢ learned using
Conditional Flow Matching to implement the TFEP method. As such, the only difference between
TFEP and E-NEQ can come from the inclusion of the stationary distribution preserving dynamics.

Model Details We used the same model definitions and training setup for all learned escorted
protocols. The escorting vector field b? is implemented using the SE(3)-equivariant graph neural
network (Satorras et al., 2021) with an additional learnable time-embedding component to make it
time-dependent (Tan et al., 2025). We use optimal transport coupling ¢ (Tong et al., 2024) to enforce
that the escorting vector field and the time-dependent density not only collectively solve the continuity
equation but also align with the dynamical optimal transport problem (Benamou and Brenier, 2000).
While not discussed in depth in this work, there is a close connection between the dynamical optimal
transport problem and the amount of dissipated work in escorted switching protocols (Zhong et al.,
2023; Zhong and DeWeese, 2024). We leave exploring this interplay further for future work.

The potential U? is parameterised as the negative log probability of a discrete normalizing flow with
conditional affine coupling layers and a similar learnable time-embedding component. We chose to
use a discrete-time normalising flow here, instead of a more general energy-based model, to minimize
the complexity of maximum-likelihood training.

Integration Details For the implementation of the escorted dynamics in Eq. (9), we use the following
setup. The escorting vector field is implemented in all experiments using a Runge—Kutta integrator,
while we consider three different options for the stationary preserving component of the split dynamics:
underdamped Langevin, overdamped Langevin, and Hamiltonian Monte Carlo, all of which use
Metropolis-Hastings (MH) correction to preserve the stationary distribution in finite time. The split
operators £ and L are iteratively applied for 100 time steps, during which the work is calculated.



Under review as a conference paper at ICLR 2026

Table 1: Quantitative results of the estimated AF' between the central ar state of the escorted flow graph
and the directly connected states, as well as the Mean Absolute Error (MAE) over all pairs of states including
those not directly connected. The £ column denotes the type of integrator used: Underdamped Langevin (UL),
Overdamped Langevin (OL) or Hamiltonian Monte Carlo (HMC). EPFG denotes whether the estimates were
obtained using pairwise summation (EPFG=N), or using the escorted protocol flow graph (EPFG=Y).

Method | £  EPFG |  ag ap 8 cs o' | MAE

us - 742+0.16 1207040 -1.11+0.03 137+0.05 6.55+0.13 -
8.60+£0.05 1239+0.06 0.77+0.04 239+0.04 5.78+0.03 1.17

TFEP - N
E-NEQ UL N 793+0.13 12.82+0.16 054+0.12 147021 596+0.06 | 093
(ours) UL Y 735+£0.12 1254+0.15 0.78+0.11 1.31+0.20 6.14+0.06 | 0.88
OL N 822+0.07 1286+0.08 026+0.12 1.78+0.10 5.59£0.05 | 0.96
OL Y 8.06+£0.05 12.09+0.06 024+0.05 1.69+0.05 7.04%£0.04 | 0.59
HMC N 796+0.12 13.05+£0.17 062+0.09 157+0.22 597+0.05 | 0.99
HMC Y 733+0.11 12.89+0.16 050+0.09 1.83+£020 594+0.06 | 0.95

5.1 RESULTS

In Tab. 1, we report the main quantitative results
of learning the escorting vector field b® and corre-
sponding potential U? for use in the E-NEQ estima-
tor, compared to the TFEP approach. We note that
the oy state was chosen as the central node when
constructing the flow graph. As such, all reported
free-energy differences are relative to ag.

E-NEQ improves over TFEP for the same
amount of divergence calculations Across all three

Estimated AF (kJ/mol)

integration approaches, we find that E-NEQ with 4 E-NEQ (R?=0.91, r=0.96)
learned escorted dynamics outperforms TFEP. This -5 # TFEP (R?=0.90, r=0.95)
holds for both the directly reported AF values us- 00 25 50 75 100 135

ing the central a g state and the MAE of the free- US AF (kj/mol)
energy differences across all pairs of states, with the
[ state a noticeable exception. In almost all cases
the found free-energy differences closely resemble
the US baseline with 8 as notable exception.

Figure 3: Correlation of estimated free-energy dif-
ferences from E-NEQ and TFEP against the Um-
brella Sampling MBAR baseline.

A further study of the correlation between the estimated free-energy differences and the true (as
reported by US) free-energy differences similarly shows that the E-NEQ estimator outperforms TFEP.
As highlighted in Fig. 3, both E-NEQ and TFEP show strong correlations, with R? and Pearson
correlation coefficients of 0.91 and 0.96 for E-NEQ and 0.90 and 0.95 for TFEP. Both methods are
firmly within 1 kcal/mol of the true free-energy differences, and in most cases even within 1 kJ/mol.
This is well within the generally considered acceptable tolerances for free-energy estimation.

Concatenating Protocols improves Multistate

Free-Energy Estimation Comparing the results in
»  table 1 between using pairwise consistent estima-

tion between all states using only directly connected
" states (EPFG=N) and using a EPFG with concate-
»  nated protocols (EPFG=Y), we find that the latter is
in almost all cases more accurate. Notably, it is not
only the MAE that improves, but also the estimated
free-energy differences between the states directly
connected to the reference oy state, despite using the
same trajectories.

¥ (degrees)
-
Free Energy (k]/mol)

In Fig. 4 we have visualized E-NEQ trajectories start-
0 ing from the [ state towards the o, state following a

10 -120 60 0 60 120 180

: L ot . ncaten rotocol. The trajectories clearly sh
Figure 4: Trajectories of the E-NEQ estimator us- concatenated p.0t0c¥ el: a]ecto' es clearly Show
ing a concatenated protocol starting from the 3 the concatenation o Fhe c aractenstwally .s.tralght

paths of OT-CFM starting from the /3 and visiting the

state towards the oz, state using the underdamped S
Langevin integrator. o state before finally transitioning to the «, state.
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Table 2: Number of successful trajectories starting in each state for the different integration schemes. The
maximum number of trajectories is 50,000, 10,000 to each other state.

Jid | dt acc.rate | agr ar ap B C5 o

Underdamped Langevin le-4 0.94 49459 48871 48383 49183 48328 49419
Overdamped Langevin le-8 0.91 49535 49420 49265 49414 49172 49539
Hamiltonian Monte Carlo | le-4 0.96 44056 46892 38892 40145 32477 47582

Stationary Preserving Dynamics comparison Lastly, we observe that, within the E-NEQ estima-
tor with learned dynamics, underdamped and overdamped Langevin seem to be more stable than
Hamiltonian Monte Carlo. Specifically, we found that over longer transitions, as occurs during the
concatenation of protocols for multistate free-energy estimation, the HMC approach was more likely
to diverge, resulting in discarded samples and ultimately a higher finite sample bias. The discrepancy
between the number of successful trajectories starting in each state between the different integrators
is reported in Tab. 2. MH correction does not help in this case due to the instability primarily caused
by the deterministic vector field putting the samples in high-energy regions of the learned potential.
As exemplified by the extremely small step size for overdamped Langevin dynamics, our proposed
Lie-Trotter splitting of the work calculation is a necessary step to make the computation feasible
within an acceptable compute budget.

6 DISCUSSION

In this work we have proposed a method to learn the escorting switching protocol (Uf1 B b?) to
construct an E-NEQ estimator with minimal variance. For this purpose we considered the framework
of Conditional Flow Matching to learn b and proposed an extension named Conditional Density
Matching to learn U§_, 5. Furthermore, we considered two practical considerations in the form
of Lie-Trotter splitting to reduce the computational cost of the work calculation and a flow graph
construction to reduce the combinatorial complexity of learning multiple protocols in the multi-state
setting. In our experimental evaluation using the ADP system, which has six well-defined metastable
states, we have shown our proposed method for learning the escorted protocols to be effective.

Limitations and future work While ADP is a fitting benchmark for our method due to its multiple
metastable states, similar challenges to larger systems, and generally a complexity level similar in
size to studied in other related work (Rizzi et al., 2021; 2023; Maté et al., 2024; Erdogan et al., 2024;
He et al., 2025), it is still a toy problem within the context of practical applications. We therefore
emphasize the need to focus on scalability in future work. Preliminary experiments have shown that
to achieve this emphasis should be placed on accurately learning the correct time-dependent potential
U%_, 5. For this purpose we believe that recent advances in scaling discrete time normalising flows is
an important avenue to explore (Rehman et al., 2025; Zhai et al., 2024).

In addition to this, we would like to note that in this work we choose to align the proposed method
as closely as possible to the presented theory in Sec. 2 to provide a well grounded first exploration
of neural escorted free-energy estimation. As such, we believe that by lifting some of these strict
constraints performance could be improved. For example, removing the Metropolis-Hasting step that
is used to ensure that stationary is preserved under discretized dynamics, and using adaptive ODE
solvers instead of Runga-Kutta to set the lie-trotter splitting could therefore be beneficial. Both of
these are common practice for standard molecular dynamic simulation. Furthermore, extensions of
the current framework through hard constraints for enforcing the continuity equation instead of just
encoding it in the joint CFM and CDM learning objectives, or incorporating the EPFG already during
the training process could be beneficial. Lastly, we note that while we consider Flow Matching as
the base for our E-NEQ estimation other generative modelling approachs in the form of Schrodinger
Bridge marching and recent advances in Flow-Maps should also be considered in future work.
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A APPENDIX

A.1 BENNETT ACCEPTANCE RATIO (BAR) AND MULTISTATE BENNETT ACCEPTANCE RATIO
(MBAR)

In this section we briefly introduce the Bennett Acceptance Ratio (BAR) and Multistate Bennett
Acceptance Ratio (MBAR) estimators as introduced in the main text. First, the BAR estimator can be
interpreted as a maximum likelihood solution for the logistic model that is implied by the Crooks
Fluctuation Theorem (CFT). Given a collection of forward x" and backward xZ trajectories and
their corresponding work values W4, g(x") and Wp_, 4 (x? ) respectively, BAR solves:

NA NB

1 1
gl—l—expﬁ Y Wasp(xE) — AF) z:ll—kexpﬁ—( Wpoa(xB) — AF)

(22)

which can be solved using standard root-finding algorithms. The approximate solution for A F' found
using this estimator is known to have minimal variance among estimators that use both forward and
backward trajectories (Bennett, 1976).

Adjusted to the multistate setting, the MBAR estimate is given by the set of equations (Shirts and
Chodera, 2008):

Fr=-p"'In ZZ exp ( ﬁWHj(X?]))z _ 23)
j=1ln= lzl 1NleXp (E ﬁWl%j(Xnﬁj)>

where W;_, ;(x%77) is the work done on the n-th trajectory moving from state i to state j. Note that
here we obtain absolute free-energies as F; with respect to the reference state k. Thus, to obtain the
free-energy differences between all pairs of states, we can use the following equation:

AF,_,; = F; — F,. 24)

A.2 FULL ALGORITHMIC OVERVIEW

Below we briefly provide the full algorithmic overview of the both the two state setting for
free-energy estimation using E-NEQ as well as the multistate setting. Code is available at:
https://github.com/iclranon862/Anonymous-Repo

A.2.1 TwO-STATE SETTING

Given our Conditional Flow and Density Matching based method, we break down the algorithm to
obtain the free-energy difference between two thermodynamic states into the following steps:

1. Generating Training Samples: Given the two thermodynamic states of interest generate
the equilibrium distributions of each state using standard molecular dynamics simulations.
This results in two sets of samples {x;‘} 1 and {xZ1} "2 from respectively state A and
state B.

2. Learning Escorted Dynamics: Learn the parameterised vector field b’ and corresponding
time-dependent potential UY_,  using Conditional Flow Matching and Conditional Density
Matching respectively.

3. Running the Escorted Protocol: Using the learned b? and UY_, 5, run fixed length non-
equilibrium trajectories using the escorted dynamics in Eq. (9) and determine for each
trajectory the work done on the system using Eq. (4). Apply the Jarzynski Equality to
estimate the free-energy difference between the two states.

4. Running the Reversed Protocol [Optional, but highly recommended]: Run the reversed
protocol as defined in Eq. (13) and determine the work done on the system using the same
method as above. Use the BAR estimator to obtain the minimum-variance estimate of the
free-energy difference between the two states using the collection of work values from both
the forward and reversed protocol.
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A.2.2 MULTI-STATE SETTING

Extending to the multi-state setting using the proposed escorted protocol flow graph, we can break
down the algorithm to estimate the free-energy differences between a set of thermodynamic states
into the following steps:

1. Generating Training Samples Given a set of K thermodynamic states of interest and their
corresponding potential energies {Uy } |, generate a dataset of N}, equilibrium samples

{x*} Nk from each state k using standard molecular dynamics simulations.

2. Learning K — 1 Escorted Protocols Select one of the thermodynamic states as the ref-
erence state and learn the K — 1 escorted protocols using the method proposed in Sec. 3.
Subsequently, construct the fully connected flow graph using the concatenated potentials
and escorting vector fields as defined in Eq. (21).

3. Running the Escorted Protocols Use the K (K — 1)/2 escorted protocols in combination
with one of the following methods to estimate the free-energy differences between all pairs
of states:

* Run K (K —1)/2 fixed length non-equilibrium trajectories using the escorted dynamics
to obtain an estimate of the free-energy differences between all pairs of states using the
Jarzynski Equality.

* Run K (K —1)/2 fixed length non-equilibrium trajectories using the escorted dynamics,
and another K (K — 1)/2 fixed length non-equilibrium trajectories using the reversed
escorted dynamics to obtain a pair-wise estimate of the free-energy differences between
all pairs of states using the BAR estimator.

 Similar to above, but now use the MBAR estimator using the pairwise work values
from the forward and reversed protocols to obtain a self-consistent estimate of the
free-energy differences between all pairs of states.

In our experiments, we used the third option using the MBAR estimator.

A.2.3 PRACTICAL DETAILS

So far we have assumed each thermodynamic state k to have its own potential energy function Uy. In
practice, this is only the case for a small number of free-energy estimation problems, such as solvation
free-energy. For most other forms of free-energy, such as conformational free-energy which we
consider in our experimental evaluation, the states have the same potential energy U but correspond
to different regions of the phase-space. In this case, a state-restricted potential energy function U; has
to be defined as:

U(z), =€,

+oo, ¢, (25)

where (2; is the region of space that is considered to be part of thermodynamic state . Restricting
potential energies to specific regions of space is a common technique in Molecular Dynamics
simulations (Torrie and Valleau, 1977).

Equivariances Molecular systems are in general invariant to rigid-body transformations, such as
rotations and translations. Including these transformations in architecture design of b’ and U? is
thus desirable and can significantly improve the performance of the method. However, in the case of
Flow Matching extra care needs to be taken to ensure that the target vector field v; also takes these
transformations into account. This is formalised in the framework of Riemannian Flow Matching
(Chen and Lipman, 2024; Bose et al., 2024).

Thermodynamic Irrelevant Degrees of Freedom In addition to the reduction in complexity that
can be achieved by considering the symmetry structure of the system, an additional inductive bias
can be introduced by considering the degrees of freedom of the system that do not contribute to the
free-energy difference between the states of interest. For example, in the case of Alanine Dipeptide
(ADP) a number of Carbon atoms are each connected to a single other heavy atom and have their
remaining valences satisfied by hydrogen atoms. While these Hydrogen atoms considerably fluctuate
during the simulation and can cause significant spikes in the potential energy, they generally have a
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uniform contribution to the free-energy across all the states of interest. As such, we do not have to
include them in the representation of the system used for U? and b%.

Note that removing degrees of freedom that are considered thermodynamic irrelevant has to be done
with care, as incorrect removal can have a detrimental effect on the performance of the method. For
example, while the atoms in the ADP system attached to terminal Carbon atoms are considered
thermodynamic irrelevant, the same is not true for the atoms attached to central heavy atoms.

A.3 EXPERIMENTAL SETUP
A.3.1 MOLECULAR DYNAMICS SIMULATION DETAILS

The simulation was run at 300 K using a standard Langevin middle integrator with a BAOAB splitting
scheme and a time step of 2 fs. Samples were saved every 1000 steps. The Amber 14-alndx force-field
was used with the GBn2 implicit solvent model. The same force field and implicit solvent model
were used as the U4 and Up potentials in the Umbrella Sampling simulations.”

A.3.2 METASTABLE STATE DEFINITIONS

For the Alanine Dipeptide (ADP) system, we use the following definition of the metastable states
based on the ¢ and v dihedral angles:
ap={-120 < ¢ <0,—110 < ¢ <90} (26)
B={-120< ¢ <0,90 <1 <180} U{-120 < ¢ < 0,—180 < ¢ < —110} 27
C5={-180 < ¢ < —120,—180 < ¢ < —-110} U {—180 < ¢ < —120,90 < ¢ < 180}
U {120 < ¢ <180,—180 < ¢ < —110} U {120 < ¢ < 180,90 < ¢ < 180} (28)
o ={-180 < ¢ < —120,—-110 < ¢ < 90} U {120 < ¢ < 180, —110 < ¢ < 90} 29)
ar, ={0 < ¢ <120,-90 < ¢ <90} (30)
ap ={0< ¢ <120,-180 < ¢ < —90} U {0 < ¢ < 120,90 < ¢ < 180} (31)
adapted from (Vymétal and Vondrasek, 2010).

We have visualised the 5 metastable states in figure 2.
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