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ABSTRACT

Estimating relative free energy differences between multiple thermodynamic states
lies at the core of numerous problems in computational biochemistry. Traditional
estimators, such as Free Energy Perturbation and its non-equilibrium counterpart
based on the Jarzynski equality, rely on defining a switching protocol between
thermodynamic states and computing the free energy difference from the work
performed during this process. In this work, we present a method for learning
such switching protocols within the class of escorted protocols, which combine
deterministic and stochastic steps. For this purpose, we use Conditional Flow
Matching and introduce Conditional Density Matching (CDM) to estimate changes
in free energy. We further reduce the variance in the multi-state setting by cou-
pling multiple flows between thermodynamic states into a flow graph of escorted
protocols, enforcing estimator consistency across different transition paths.

1 INTRODUCTION

In recent years there has been significant interest in the application of machine learning to problems
in computational biochemistry, such as protein folding (Jumper et al., 2021; Abramson et al., 2024;
Bose et al., 2024) and molecular conformer generation (Gómez-Bombarelli et al., 2018) for drug
discovery (Wan et al., 2022) and materials design (Merchant et al., 2023). While initial approaches
focused on generating single static examples of systems of interest, recent efforts have shifted towards
generating the full dynamic ensemble of the system (Noé et al., 2019; Holdijk et al., 2023; Tan et al.,
2025; Akhound-Sadegh et al., 2024). This shift towards the entire dynamical ensemble has opened up
the possibility of using these methods in computational biochemistry beyond what generating static
samples allows. Notable among these is the problem of estimating free-energy differences between
different thermodynamic states, a crucial aspect of many tasks in this field, such as binding affinity
prediction (Mobley and Gilson, 2017) and other components of the drug discovery pipeline (Cournia
and Chipot, 2024). Traditional estimators such as multiwindow Free-Energy Perturbation (FEP)
(Zwanzig, 1954; Wang et al., 2015) and its non-equilibrium variants, defined through the Jarzynski
equality (Jarzynski, 1997), are among the most commonly used for this purpose.

In this work, we specifically consider the class of Escorted Non-EQuilibrium (E-NEQ) estimators
(Vaikuntanathan and Jarzynski, 2008; 2011) based on the aforementioned Jarzynski equality. These
estimators combine dynamics that preserve a given stationary distribution p(x, t), such as Langevin
dynamics, with a deterministic escorting vector b(x, t) field to transition samples between thermody-
namic states. To minimize variance in the finite-sample limit, the preserved stationary distribution and
the escorting vector field must together satisfy the continuity equation ∂p(x,t)

∂t +∇·(p(x, t)b(x, t)) = 0
(Zhong and DeWeese, 2024). Traditionally, finding such a pair is non-trivial.

To overcome this barrier, we propose learning the stationary distribution and escorting vector field
jointly by extending the Conditional Flow Matching (CFM) framework (Lipman et al., 2023) with an
additional Conditional Density Matching (CDM) objective (Sec. 3). We hypothesize that learning
the stationary distribution and driving force in a unified framework will allow them to compensate
for each other’s small errors, leading to a more accurate estimator than using only vector fields,
such as done in methods such as Targeted Free-Energy Perturbation (TFEP) (Jarzynski, 2002) as
illustrated in Fig. 1. To further improve the applicability of the framework, we propose two important
practical considerations in the form of Lie-Trotter splitting to reduce the computational cost of the
work calculation (Sec. 4.1) and a flow graph construction to reduce the combinatorial complexity of
learning protocols for multi-state free-energy estimation (Sec. 4.2).
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Figure 1: (a) Illustration of processes transforming between two thermodynamic states (blue and
red) of the same molecular system. Using our proposed Conditional Density Matching framework
we learn approximate intermediate densities (grey) along which the learned flow (grey dotted lines)
transports samples. The top stochastic line shows how stochastic processes purely targeting the
intermediate distributions will not fully reach the target state, while the middle process shows that,
due to integration error, deterministic processes may deviate from the true path. Combining stochastic
and deterministic processes allows the two approaches to compensate, resulting in more accurate
sampling. (b) Illustration of combining two free-energy estimates with a central connecting node (A)
to obtain the free-energy ∆FB→C difference between the nodes not connected.

2 BACKGROUND

As stated, in this work we are interested in estimating the relative free-energy differences ∆FA→B

between pairs of thermodynamic states A and B. Each thermodynamic state A is associated with a
potential energy function UA : R3N → R, which defines the distribution of possible microscopic
states x ∈ R3N through the Boltzmann distribution

pA(x) =
1

ZA
exp (−βUA(x)), ZA =

∫
R3N

exp (−βUA(x)) dx. (1)

Generally, β = 1
kBT , with kB representing the Boltzmann constant and T the temperature of the

system in Kelvin. Using the partition function ZA, the equilibrium free-energy of state A can be
defined as FA = −β−1 lnZA and their relative free-energy difference as

∆FA→B = FB − FA = −β−1 ln
ZB

ZA
. (2)

As exemplified by the definition of the partition function, estimating free energies by directly
integrating over the entire space R3N is prohibitively expensive. As such, various fields have
developed methods to estimate this quantity more efficiently.

2.1 NON-EQUILIBRIUM FREE-ENERGY ESTIMATION

We will specifically focus on the class of alchemical Non-EQuilibrium (NEQ) free-energy estimation
methods, which are a subset of the class of path-based free-energy estimation methods. In path-based
free-energy estimation, a central object of in is the switching protocol UA→B .

Definition 2.1 (Switching Protocol). Given two thermodynamic states A and B with potential energy
functions UA and UB , a switching protocol UA→B : R3N×[0, tf ] → R is a time-dependent potential
energy function with boundary conditions UA→B(x, 0) = UA(x) and UA→B(x, tf ) = UB(x).

Using such a switching protocol UA→B , a system x initially equilibrated with respect to the potential
energy function UA, can be driven from state A to state B according to the time-dependent dynamics

∂tρ(x, t) = Ltρ(x, t), ρ(x, 0) = pA(x), (3)

where Lt is a time-dependent forward (Fokker–Planck/Liouville) generator, specified so that for all t
the target distribution p(x, t) ∝ exp (−βUA→B(x, t)) is stationary for the frozen-time dynamics, i.e.
Ltp(·, t) = 0. Notably, it does not have to be the case that the system is in equilibrium at all times,
i.e. ρ(x, t) = p(x, t) does not need to hold for all t.

2
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Under such dynamics defined by the protocol UA→B , the second law of thermodynamics tells us that,
with thermodynamic work defined as

WA→B(x) =

∫ tf

0

∂UA→B(xt, t)

∂t
dt, (4)

the average work performed on the system along trajectories x generated by the dynamics in Eq. (3)
is an upper bound on the free-energy difference between the two states

∆FA→B ≤ ⟨WA→B(x)⟩UA→B
. (5)

where the shorthand ⟨·⟩UA→B
denotes the ensemble average over trajectories x generated by the

dynamics in Eq. (3). Crucially, equality only holds here for quasi-static (infinitely slow, tf = ∞)
processes where the system remains in equilibrium at all times, i.e. ρ(x, t) = p(x, t) for all t.

2.1.1 JARZYNSKI EQUALITY

For any such switching protocols, Jarzynski (Jarzynski, 1997) showed the remarkable result that
instead of restricting to quasi-static processes to obtain an equality for the thermodynamic work we
can consider the ensemble average of the exponential of the work.
Theorem 2.1 (Jarzynski Equality (JE) (Jarzynski, 1997)). Given switching protocol UA→B and
time-dependent dynamics with frozen time stationary distribution p(x, t) ∝ exp (−βUA→B(x, t))
for all t ∈ [0, tf ] as in Eq. (3), we have that along trajectories x generated by the dynamics〈

e−βWA→B(x)
〉
UA→B

= e−β∆FA→B . (6)

Important to note here is that the class of dynamical processes considered in the JE only require
stationarity. The JE does not depend on ergodicity and is therefore valid for a wide range of dynamics
including both time-dependent stochastic dynamics such as underdamped and overdamped Langevin
as well as deterministic dynamics, e.g. Hamiltonian. Extra care is needed when momenta are
considered (e.g., underdamped Langevin dynamics). In this case, a state-dependent Hamiltonian,
rather than the potential energy, should be used in the definition of work in Eq. (4).

Using standard Monte Carlo integration with trajectories xn generated according to Eq. (3), the JE
provides a consistent but generally biased estimator of the ∆FA→B in the finite-sample setting:

∆FA→B ≈ ∆FA→B = −β−1 ln
( 1

N

N∑
n=1

e−βWA→B(xn)
)
, (7)

JE Estimator Variance Both the bias and the variance of this estimator grow with the excess work
W ex = ⟨W ⟩UA→B

−∆FA→B (Geiger and Dellago, 2010; Gore et al., 2003), which for every time t
is lower bounded by the Kullback–Leibler divergence between the two distributions (Vaikuntanathan
and Jarzynski, 2009):

W ex
t ≥ β−1DKL(ρ(x, t)||p(x, t)), ∀t ∈ [0, tf ]. (8)

As such, intuitively, while the JE is valid for any switching protocol the variance and the bias of
the estimator are determined by how much the instantaneous distribution ρ(x, t) lags behind the
stationary distribution p(x, t) at every time t defined by the switching protocol UA→B .

2.1.2 ESCORTED JARZYNSKI EQUALITY

To reduce the amount of lag between the instantaneous distribution ρ(x, t) and the target distribution
p(x, t) Vaikuntanathan and Jarzynski (2008) introduced the concept of escorted switching protocols.
Definition 2.2 (Escorted switching protocol). Given two thermodynamic statesA andB with potential
energy functions UA and UB , an escorted switching protocol (UA→B , b) consists of a time-dependent
potentialUA→B : R3N×[0, tf ] → R and a time-dependent vector field b : R3N×[0, tf ] → R3N with
boundary conditions UA→B(x, 0) = UA(x) and UA→B(x, tf ) = UB(x) and b(x, 0) = b(x, tf ) = 0.

Given an escorted switching protocol, the escorted dynamics driving a system from state A to state B
adds deterministic advection based on the time-dependent vector field b

∂tρ̂(x, t) = L̂tρ̂(x, t) = Ltρ̂(x, t)−∇·
(
b(x, t)ρ̂(x, t)

)
, ρ̂(x, 0) = pA(x). (9)
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Here Lt denotes the forward operator that satisfies frozen time stationarity Ltp(·, t) = 0 for p(x, t) ∝
exp(−βUA→B(x, t)), as defined in Eq. (3). Under escorted dynamics, Vaikuntanathan and Jarzynski
(2008) showed that with an alternative definition of the work, the JE still holds.
Theorem 2.2 (Escorted Jarzynski Equality (E-JE) Vaikuntanathan and Jarzynski (2008)). Given an
escorted switching protocol (UA→B , b) and time-dependent dynamics as in Eq. (9), we have that
along trajectories x generated by the dynamics〈

e−β ŴA→B(x)
〉
(UA→B ,b)

= e−β∆FA→B . (10)

where the escorted work ŴA→B(x) along trajectory x is defined as

ŴA→B(x) =

∫ tf

0

(
∂tUA→B(xt, t) + b(xt, t) · ∇UA→B(xt, t)− β−1∇ · b(xt, t)

)
dt. (11)

Notably, because b is not involved in enforcing that the dynamics have stationary distribution
p(x, t) ∝ exp (−βUA→B(x, t)) it can be freely chosen to minimize the amount of lag and with
that the variance of the escorted estimator ∆F̂A→B = −β−1 ln( 1

N

∑N
n=1 e

−βŴA→B(xn)). Notably
among the choices of b are the case where b = 0, which is equivalent to the non-escorted case, as
well as the following optimal choice of b as shown by Zhong et al. (2023):
Theorem 2.3 (Optimal Escorted Switching Protocol (Zhong et al., 2023)). If b(x, t) and p(x, t) ∝
exp (−βUA→B(x, t)) collectively solve the continuity equation ∂tp+∇ · (p b) = 0, then, for every
trajectory x generated by the dynamics Eq. (9), we have ŴA→B(x) = ∆FA→B .

Crucially, what this shows is that if we learn b and UA→B collectively to solve the continuity equation,
while maintaining the boundary conditions UA→B(x, 0) = UA(x) and UA→B(x, tf ) = UB(x),
then a single trajectory x generated by the dynamics in Eq. (9) suffices to estimate the free-energy
difference ∆FA→B . In the remainder of this work we will explore how we can learn these components
using Conditional Flow Matching and our proposed Conditional Density Matching.

2.1.3 BI-DIRECTIONAL SAMPLING AND THE CROOKS IDENTITY

In addition to introducing the escorting velocity field b, a second approach to reduce the variance
of our estimator of the free-energy difference is to use bi-directional estimators. Instead of only
evolving samples from the initial thermodynamic state A, it is equally straightforward to start from
state B and define a reverse protocol UB→A with boundary conditions UB→A(x, 0) = UB(x) and
UB→A(x, tf ) = UA(x). In the context of non-equilibrium free-energy estimation, this idea underpins
the Crooks Fluctuation Theorem (CFT) (Crooks, 1998):

PA→B(W )

PB→A(−W )
= exp[β (W −∆FA→B)] . (12)

Here PA→B(W ) is the probability of observing work W for a process starting from x0 ∼ pA and
evolved under the forward dynamics, while PB→A(−W ) is the probability of observing work −W
under the time-reversed protocol. This fluctuation theorem holds both for the non-escorted case and
the escorted case with ŴA→B(x) replacing W (x).

For the escorted case, the time-reversed protocol (UB→A, b̃) is given by UB→A(x, t) =

UA→B(x, tf − t) and b̃(x, t) = −b(x, tf − t). Consequently the time-reversed escorted dynamics
driving the system from state B to state A are given by

∂tρ̂R(x, t) = L̃tρ̂R(x, t)− ∇·
(
b̃(x, t) ρ̂R(x, t)

)
, ρ̂R(x, 0) = pB(x). (13)

Here L̃t denotes the reverse operator of a non-escorted dynamics that satisfies frozen time stationarity
L̃tp̃(x, t) = 0 for p̃(x, t) = p(x, tf − t) ∝ exp(−βUB→A(x, t)). In the case where dynamics with
momenta are considered, the momenta have to be reversed in the reverse generator L̃t.

Crucially, the Crooks Fluctuation Theorem expresses ∆FA→B as the solution to a single-parameter
problem. Rather than directly estimating ∆FA→B via the JE, which often suffers from high variance
and finite sample bias due to its exponential average, the CFT can be inverted to solve for ∆FA→B

as the parameter that best fits a given set of observed forward and reverse work for a given protocol.

The remainder of this work will only consider using the CFT instead of the JE. Practically, this is
implemented by the Bennett Acceptance Ratio (BAR) estimator (Bennett, 1976).
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3 LEARNING ESCORTED PROTOCOLS USING FLOW AND DENSITY MATCHING

Having discussed the background of (Escorted-) Non-Equilibrium free-energy estimators, we now
propose a new method for parameterising and learning the escorted switching protocol (Uθ

A→B , b
ϕ)

such that they collectively solve the continuity equation, and adhere to the boundary conditions
Uθ
A→B(x, 0) = UA(x) and Uθ

A→B(x, tf ) = UB(x). We propose to parameterise both components
by learning bϕt using standard Conditional Flow Matching (CFM) (Lipman et al., 2023) and Uθ

t using
an extension of CFM, which we call Conditional Density Matching.

3.1 LEARNING bθt USING CONDITIONAL FLOW MATCHING

Conditional Flow Matching (CFM) is a general framework for learning a vector field vϕt that drives
samples from one arbitrary distribution p0 to another p1 along a set of time-dependent intermediate
distributions pt. As it can generally be assumed that there is no access to the ground truth vector field
vt or samples from the intermediate distributions pt beyond the initial and final distributions, CFM
approaches this by considering a conditional time-dependent distribution pt(xt | z) generated by a
conditional vector field vt(xt | z) and a coupling distribution q(z). A common choice is to have q(z)
defined as an Optimal Transport coupling (Tong et al., 2024) to enforce vt to follow straight paths.

Using this coupling of conditional and marginal vector fields, Lipman et al. (2023) showed that if we
learn the vector field vϕ(xt, t) by regressing on the conditional vector field vt(xt, t | z) using

LCFM = Et∼Uni(0,1), z∼q(z), xt∼pt(xt|z)

[∥∥vϕ(xt, t)− vt(xt | z)
∥∥2] (14)

then this is equivalent to regressing on the vector field vt(xt) directly.

Crucially, given a paired conditional vector field and conditional distribution, under minor regu-
larity conditions, for any choice of coupling distribution q(z) the marginal vector field vt(xt) =

⟨ vt(xt|z)pt(xt|z)
pt(xt)

⟩q(z) and marginal distribution pt(xt) = ⟨pt(xt|z)⟩q(z) are shown to jointly solve the
continuity equation (Tong et al., 2024). As such, if we set p0 = pA, p1 = pB , t−1

f vϕ(x, s) = bϕ(x, t)

under the rescaling t = stf , and define ps(x) = p(x, t) ∝ exp
(
−βUθ

A→B(x, t)
)
, then CFM

provides a valid approach to finding the escorting vector field bϕ for our escorted switching protocol.

3.2 LEARNING Uθ
t USING CONDITIONAL DENSITY MATCHING

This still leaves us with the problem of learning the time-dependent potential Uθ(x, t). For this
purpose, we employ a similar trick to that used by CFM to learn the time-dependent potential
pθ(x, t) ∝ exp

(
−βUθ

A→B(x, t)
)

from the conditional time-dependent distribution pt(xt | z) and
consider the following maximum likelihood objective:

LDM = Et∼Uni(0,1), xt∼pt(xt)

[
− log pθ(xt, t)

]
, (15)

which we denote as the Density Matching (DM) objective.

Due to LDM being defined as an expectation over the unknown distribution pt(xt), learning
Uθ
A→B(x, t) directly using this objective is not possible. However, similar to the CFM objective, we

can equivalently express another maximum likelihood objective using the conditional distribution
pt(xt | z) instead. We denote this as the Conditional Density Matching (CDM) objective:

LCDM = Et∼Uni(0,1), z∼q(z), xt∼pt(xt|z)
[
− log pθ(xt, t)

]
. (16)

Similar to the CFM objectives, the DM and CDM objectives have equivalent gradients, ∇θLDM =
∇θLCDM, and thus MLE using the conditional distribution will result in the same learned marginal
distribution pθt as MLE using the marginal distribution.

In summary, combining the CFM objective reviewed above with the proposed CDM objective, we
thus learn a pair of escorting vector field bϕ(x, t) and potential Uθ

A→B(x, t) that collective solve the
continuity equation. When these two components are collectively used as the escorted switching
protocol in an E-NEQ estimator, this results in a low-variance estimate of ∆FA→B .
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4 EFFICIENT MULTI-STATE FREE-ENERGY ESTIMATION

With the previous section proposing a method for learning the escorted protocol (Uθ
A→B , b

ϕ), we now
consider some practical restrictions of E-NEQ estimators. Namely, (i) the work calculation becoming
prohibitively expensive because a very small global time step dt being required to deal with the
numerical instability of the stationary distribution preserving dynamics, and (ii) in the multi-state
setting the number of escorted switching protocols grows exponentially with the number of states.
We will address both of these issues in the following two sections. In the appendix we further discuss
three more standard, but important, practical considerations.

4.1 EFFICIENT WORK CALCULATION BY LIE-TROTTER SPLITTING

Molecular Dynamics simulation is known to quickly become numerically unstable when using large
time-steps due to the potential energy including sharply peaked components such as Lennard–Jones
potentials. As such, when simulating the dynamics of our escorted protocol in Eq. (9), we are required
to use a very small global time-step dt. Unfortunately, as a result of this, in the work calculation we
therefore must evaluate the divergence many times, which can be computationally very expensive
for any system of considerable size. Ideally, we would therefore like to decouple the divergence
calculation from the unstable stationary distribution preserving dynamics.

For this purpose we propose to use Lie–Trotter (Trotter, 1959) splitting to split the combined
dynamics into two separate steps; first a step using b(x, t) and then a step using the stationarity-
preserving distribution preserving dynamics. Given our escorted dynamics L̂t = Lt + Et where
Et = −∇ · (b(x, t)ρ(x, t)) is the escort transport, a Lie–Trotter step of size h = dt frozen at time t
approximates the full evolution by composing the subflows as

ehL̂t ≈ ehLtehEt . (17)

Under such split dynamics, a simplified version of the Escorted Jarzynski Equality holds.
Theorem 4.1 (Split Escorted Jarzynski Equality). Given an escorted switching protocol (UA→B , b)

and split escorted time-dependent dynamics ehL̂t ≈ ehLtehEt , where Lt is the stationarity-
preserving operator (i.e. Ltp(x, t) = 0 with p(x, t) ∝ e−βUA→B(x,t)) and Etρ = −∇·

(
b(x, t)ρ

)
is

the escort transport, consider a Lie–Trotter time grid tk = kh with N · h = tf and the split update

x′k = xk + b(xk, tk)h, xk+1 ∼ Ktk(x
′
k, ·), (18)

where Kt is any transition kernel that preserves p(x, t) at frozen time t. If x0 ∼ pA(x), then〈
e−β ŴA→B(x,h)

〉
(UA→B ,b,h)

= e−β∆FA→B +O(h), (19)

where the split escorted work is defined by

ŴA→B(x, h) =

N−1∑
k=0

(
∂UA→B

(
x′k, tk

)
∂t

− β−1 ∇· b(xk, tk)

)
h. (20)

In particular, (19) holds exactly in the limit h→ 0, recovering the Escorted Jarzynski Equality.

Proof. Consider the escort step as a deterministic kernel Ltk(x
′|x) = δx+b(x,tk)h(x

′) and the
stationarity-preserving step as a kernel Ktk with stationary distribution p(x, tk) such that the com-
posed update is the kernel Ptk = Ktk ◦ Ltk . Then the proof follows from the discrete-time E-JE in
Vaikuntanathan and Jarzynski (2011).

While this still requires us to use the global time discretization h = dt for each individual substep as
well as for the calculation of the work, it allows for smaller internal time discretization within the
stationarity-preserving kernelKt independent of the escort step. This split can be used to significantly
reduce the number of divergence evaluations ∇x · b(x, t) needed in the work calculation.

For reference, operator splitting is a common topic in MD simulation (Frenkel and Smit). It is, for
example, at the core of the BAOAB splitting for underdamped Langevin dynamics and the velocity
Verlet integrator for Hamiltonian Monte Carlo (Leimkuhler and Matthews, 2013; Swope et al., 1982).
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4.2 EFFICIENT MULTI-STATE FE ESTIMATION USING FLOW-GRAPH BASED MBAR

With the combined CFM and CDM approach to learn the escorted switching protocol (Uθ
A→B , b

ϕ)
between the two thermodynamic states A and B, we now consider how to extend this to the case of
estimating the relative free-energy difference {∆Fi→j}Ki=1,j=1 between a collection of K thermody-
namic states. Within the context of the drug-discovery pipeline, lead optimization for example often
involves large assays of ligands for which we need to assess their binding affinity (Wang et al., 2015).

Naively, using a single reference state k we can train K − 1 escorted switching protocols
{(Uθi

k→i, b
ϕi

k→i}Ki=1 to calculate {∆Fi→j}Ki=1,j=1 using the E-JE. Considering that Free-Energy
differences are a state function, we can then obtain all not-directly connected estimates as
∆Fi→j = −∆Fk→i + ∆Fk→j . While this would result in a consistent estimate for all pairs
of states, it is generally understood that to obtain accurate multi-state free-energy it is best to obtain
all {Wi→j}Ki=1,j=1 individually and use the self-consistent Multistate Bennett Acceptance Ratio
(MBAR) (Shirts and Chodera, 2008) to obtain {∆Fi→j}Ki=1,j=1. Following this line of thinking,

a straightforward extension of the CFM/CDM framework would therefore be to learn a Uθi,j
i→j and

escorting vector fields bϕi,j

i→j for each pair of states i and j individually and use them to obtain Ŵi→j

according to Eq. (4). However, for a set of K thermodynamic states, this would require K(K − 1)/2
models, which would quickly become infeasible.

Instead, we propose to construct a Escorted Protocol Flow Graph.
Definition 4.1 (Escorted Protocol Flow Graph (EPFG)). Given a collection of K thermodynamic
states andK−1 escorted switching protocols {(Uθi

k→i, b
ϕi

k→i}Ki=1,i̸=k with central node k an Escorted
Protocol Flow Graph (EPFG) is constructed by considering the K thermodynamic states to be
the nodes and the escorted switching protocols {(Uk→i, bk→i}Ki=1,j=1 between all states i and j to
represent the edges. Here all edges not connected to the central node k are given by

(Ui→j(x, t), bi→j(x, t)) =

{
(Uθi

k→i(x, tf − 2t),−2bϕi

k→i(x, tf − 2t)) if 0 ≤ t <
tf
2

(U
θj
k→j(x, 2t− tf ), 2b

ϕj

k→j(x, 2t− tf )), if tf
2 ≤ t ≤ tf .

(21)

Using the EPFG and the escorted protocols defined as its edges, including the constructed concate-
nated ones, we can now obtain {Wi→j}Ki=1,j=1 for all combinations of states i and j while only
requiring the training of K − 1 protocols. This enables more accurate free-energy estimates using the
self-consistent MBAR estimator compared to using the simple pair based approach while minimizing
the training costs.

5 EXPERIMENTS
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Figure 2: Umbrella sampling FES reconstruction
and training samples for ADP.

We evaluate the feasibility of learning the thermody-
namic flow network of coupledUθ and escorting field
bϕ using the well-known alanine dipeptide (ADP)
system. While limited in size, ADP shows similar
challenges to larger systems such as high-energy bar-
riers and solvent effects. Furthermore, as ADP in
solvent has six distinct metastable states, as visual-
ized in Fig. 2, which are known to exhibit significant
differences in conformational free energy it serves as
an excellent benchmark for the multi-state setting.

Data Generation For each metastable state, we gen-
erated 10,000 samples using a harmonic flat-bottom
constraint on the torsion angles defined by the metastable state boundaries, as specified in the ap-
pendix. Training samples for each state are visualized in Fig. 2. We observe that the training samples
cover each state but do not represent the correct ratios as observed in full equilibrium sampling.

Baselines To obtain a baseline value to validate our method against, we performed an extensive
Umbrella Sampling (US) estimate using a large number of windows and the same setup as used for
data generation. Additionally, we compare our method against the Targeted Free-Energy Perturbation
method (TFEP) which was first introduced by (Jarzynski, 2002). The TFEP method is a special case
of E-NEQ where only the deterministic vector field b is used to define an invertible mapping. TFEP
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Table 1: Quantitative results of the estimated ∆F between the central αR state of the escorted flow graph
and the directly connected states, as well as the Mean Absolute Error (MAE) over all pairs of states including
those not directly connected. The L column denotes the type of integrator used: Underdamped Langevin (UL),
Overdamped Langevin (OL) or Hamiltonian Monte Carlo (HMC). EPFG denotes whether the estimates were
obtained using pairwise summation (EPFG=N), or using the escorted protocol flow graph (EPFG=Y).

Method L EPFG αL αD β C5 α′ MAE

US - - 7.42 ± 0.16 12.07 ± 0.40 -1.11 ± 0.03 1.37 ± 0.05 6.55 ± 0.13 -
TFEP - N 8.60 ± 0.05 12.39 ± 0.06 0.77 ± 0.04 2.39 ± 0.04 5.78 ± 0.03 1.17

E-NEQ UL N 7.93 ± 0.13 12.82 ± 0.16 0.54 ± 0.12 1.47 ± 0.21 5.96 ± 0.06 0.93
(ours) UL Y 7.35 ± 0.12 12.54 ± 0.15 0.78 ± 0.11 1.31 ± 0.20 6.14 ± 0.06 0.88

OL N 8.22 ± 0.07 12.86 ± 0.08 0.26 ± 0.12 1.78 ± 0.10 5.59 ± 0.05 0.96
OL Y 8.06 ± 0.05 12.09 ± 0.06 0.24 ± 0.05 1.69 ± 0.05 7.04 ± 0.04 0.59

HMC N 7.96 ± 0.12 13.05 ± 0.17 0.62 ± 0.09 1.57 ± 0.22 5.97 ± 0.05 0.99
HMC Y 7.33 ± 0.11 12.89 ± 0.16 0.50 ± 0.09 1.83 ± 0.20 5.94 ± 0.06 0.95

has been studied within the machine learning context in (Wirnsberger et al., 2020; Rizzi et al., 2023;
2021; Erdogan et al., 2024; Zhao and Wang, 2023), which all use variants of MLE trained discrete
normalizing flows or Flow Matching. Notably, none of this earlier works considers the multistate
perspective. For our comparison we will use the vector field bϕ learned using Conditional Flow
Matching to implement the TFEP method. As such, the only discrepancy between the TFEP and the
E-NEQ can come from the inclusion of the stationary distribution preserving dynamics.

Model Details We used the same model definitions and training setup for all learned escorted
protocols. The escorting vector field bϕ is implemented using the SE(3)-equivariant graph neural
network (Satorras et al., 2021) with an additional learnable time-embedding component to make it
time-dependent (Tan et al., 2025). The potential Uθ is parameterised as the negative log probability
of a discrete normalizing flow with conditional affine coupling layers and a similar learnable time-
embedding component. We chose to use a discrete-time normalising flow here, instead of a more
general energy-based model, to minimize the complexity of maximum-likelihood training.

Integration Details For the implementation of the escorted dynamics in Eq. (9), we use the following
setup. The escorting vector field is implemented in all experiments using a Runge–Kutta integrator,
while we consider three different options for the stationary preserving component of the split dynamics:
underdamped Langevin, overdamped Langevin, and Hamiltonian Monte Carlo, all of which use
Metropolis-Hastings (MH) correction to preserve the stationary distribution in finite time. The split
operators E and L are iteratively applied for 100 time steps, during which the work is calculated.

5.1 RESULTS
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Figure 3: Correlation of estimated free-energy dif-
ferences from E-NEQ and TFEP against the Um-
brella Sampling MBAR baseline.

In Tab. 1, we report the main quantitative results
of learning the escorting vector field bϕ and corre-
sponding potential Uθ for use in the E-NEQ estima-
tor, compared to the TFEP approach. We note that
the αR state was chosen as the central node when
constructing the flow graph. As such, all reported
free-energy differences are relative to αR.

E-NEQ improves over TFEP for the same
amount of divergence calculations Across all three
integration approaches, we find that E-NEQ with
learned escorted dynamics outperforms TFEP. This
holds for both the directly reported ∆F values us-
ing the central αR state and the MAE of the free-
energy differences across all pairs of states, with the
β state a noticeable exception. In almost all cases
the found free-energy differences closely resemble
the US baseline with β as notable exception.

A further study of the correlation between the estimated free-energy differences and the true (as
reported by US) free-energy differences similarly shows that the E-NEQ estimator outperforms TFEP.
As highlighted in Fig. 3, both E-NEQ and TFEP show strong correlations, with R2 and Pearson
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Table 2: Number of successful trajectories starting in each state for the different integration schemes. The
maximum number of trajectories is 50,000, 10,000 to each other state.

fU
t dt acc. rate αR αL αD β C5 α′

Underdamped Langevin 1e-4 0.94 49459 48871 48383 49183 48328 49419
Overdamped Langevin 1e-8 0.91 49535 49420 49265 49414 49172 49539
Hamiltonian Monte Carlo 1e-4 0.96 44056 46892 38892 40145 32477 47582

correlation coefficients of 0.91 and 0.96 for E-NEQ and 0.90 and 0.95 for TFEP. Both methods are
firmly within 1 kcal/mol of the true free-energy differences, and in most cases even within 1 kJ/mol.
This is well within the generally considered acceptable tolerances for free-energy estimation.

Concatenating Protocols improves Multistate Free-Energy Estimation Comparing the results in
table 1 between using pairwise consistent estimation between all states using only directly connected
states (EPFG=N) and using a EPFG with concatenated protocols (EPFG=Y), we find that the latter
is in almost all cases more accurate. Notably, it is not only the MAE that improves, but also the
estimated free-energy differences between the states directly connected to the reference αR state,
despite using the same trajectories.

180 120 60 0 60 120 180
 (degrees)

180

120

60

0

60

120

180

 (d
eg

re
es

)

Start Points
End Points

0

9

18

27

36

45

54

63

Fr
ee

 E
ne

rg
y 

(k
J/

m
ol

)

Figure 4: Trajectories of the E-NEQ estimator us-
ing a concatenated protocol starting from the β
state towards the αL state using the underdamped
Langevin integrator.

In Fig. 4 we have visualized E-NEQ trajectories start-
ing from the β state towards the αL state following a
concatenated protocol. The trajectories clearly show
the concatenation of the characteristically straight
paths of OT-CFM starting from the β and visiting the
αR state before finally transitioning to the αL state.

Stationary Preserving Dynamics comparison
Lastly, we observe that, within the E-NEQ estima-
tor with learned dynamics, underdamped and over-
damped Langevin seem to be more stable than Hamil-
tonian Monte Carlo. Specifically, we found that over
longer transitions, as occurs during the concatenation
of protocols for multistate free-energy estimation, the
HMC approach was more likely to diverge, resulting
in discarded samples and ultimately a higher finite
sample bias. The discrepancy between the number of
successful trajectories starting in each state between

the different integrators is reported in Tab. 2. MH correction does not help in this case due to the
instability primarily caused by the deterministic vector field putting the samples in high-energy
regions of the learned potential. As exemplified by the extremely small step size for overdamped
Langevin dynamics, our proposed Lie-Trotter splitting of the work calculation is a necessary step to
make the computation feasible within an acceptable compute budget.

6 DISCUSSION

In this work we have proposed a method to learn the escorting switching protocol (Uθ
A→B , b

ϕ) to
construct an E-NEQ estimator with minimal variance. For this purpose we considered the framework
of Conditional Flow Matching to learn bϕ and proposed an extension named Conditional Density
Matching to learn Uθ

A→B . Furthermore, we considered two practical considerations in the form
of Lie-Trotter splitting to reduce the computational cost of the work calculation and a flow graph
construction to reduce the combinatorial complexity of learning multiple protocols in the multi-state
setting. In our experimental evaluation using the ADP system, which has six well-defined metastable
states, we have shown our proposed method for learning the escorted protocols to be effective.

Limitations and future work While ADP is a fitting benchmark for our method due to its multiple
metastable states, similar challenges to larger systems, and generally a complexity level similar in
size to studied in other related work (Rizzi et al., 2021; 2023; Máté et al., 2024; Erdogan et al., 2024;
He et al., 2025), it is still a toy problem within the context of practical applications. We therefore
emphasize the need to focus on scalability in future work. Preliminary experiments have shown that
to achieve this emphasis should be placed on accurately learning the correct time-dependent potential
Uθ
A→B . For this purpose we believe that recent advances in scaling discrete time normalising flows is

an important avenue to explore (Rehman et al., 2025; Zhai et al., 2024).

9
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A APPENDIX

A.1 BENNETT ACCEPTANCE RATIO (BAR) AND MULTISTATE BENNETT ACCEPTANCE RATIO
(MBAR)

In this section we briefly introduce the Bennett Acceptance Ratio (BAR) and Multistate Bennett
Acceptance Ratio (MBAR) estimators as introduced in the main text. First, the BAR estimator can be
interpreted as a maximum likelihood solution for the logistic model that is implied by the Crooks
Fluctuation Theorem (CFT). Given a collection of forward xF

i and backward xB
i trajectories and

their corresponding work values WA→B(x
F
i ) and WB→A(x

B
i ) respectively, BAR solves:

NA∑
i=1

1

1 + expβ−1(WA→B(xF
i )−∆F )

=

NB∑
i=1

1

1 + expβ−1(−WB→A(xB
i )−∆F )

(22)

which can be solved using standard root-finding algorithms. The approximate solution for ∆F found
using this estimator is known to have minimal variance among estimators that use both forward and
backward trajectories (Bennett, 1976).

Adjusted to the multistate setting, the MBAR estimate is given by the set of equations (Shirts and
Chodera, 2008):

Fk = −β−1 ln

 K∑
j=1

Nj∑
n=1

exp
(
−βWi→j(x

i→j
n )

)∑K
l=1Nl exp

(
Fl − βWl→j(x

l→j
n )

)
 (23)

where Wi→j(x
i→j
n ) is the work done on the n-th trajectory moving from state i to state j. Note that

here we obtain absolute free-energies as Fl with respect to the reference state k. Thus, to obtain the
free-energy differences between all pairs of states, we can use the following equation:

∆Fi→j = Fj − Fi. (24)

A.2 FULL ALGORITHMIC OVERVIEW

Below we briefly provide the full algorithmic overview of the both the two state setting for
free-energy estimation using E-NEQ as well as the multistate setting. Code is available at:
https://github.com/iclranon862/Anonymous-Repo

A.2.1 TWO-STATE SETTING

Given our Conditional Flow and Density Matching based method, we break down the algorithm to
obtain the free-energy difference between two thermodynamic states into the following steps:

1. Generating Training Samples: Given the two thermodynamic states of interest generate
the equilibrium distributions of each state using standard molecular dynamics simulations.
This results in two sets of samples {xA

n }
NA
n=1 and {xB

n }
NB
n=1 from respectively state A and

state B.
2. Learning Escorted Dynamics: Learn the parameterised vector field bθ and corresponding

time-dependent potential Uθ
A→B using Conditional Flow Matching and Conditional Density

Matching respectively.
3. Running the Escorted Protocol: Using the learned bθ and Uθ

A→B , run fixed length non-
equilibrium trajectories using the escorted dynamics in Eq. (9) and determine for each
trajectory the work done on the system using Eq. (4). Apply the Jarzynski Equality to
estimate the free-energy difference between the two states.

4. Running the Reversed Protocol [Optional, but highly recommended]: Run the reversed
protocol as defined in Eq. (13) and determine the work done on the system using the same
method as above. Use the BAR estimator to obtain the minimum-variance estimate of the
free-energy difference between the two states using the collection of work values from both
the forward and reversed protocol.
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A.2.2 MULTI-STATE SETTING

Extending to the multi-state setting using the proposed escorted protocol flow graph, we can break
down the algorithm to estimate the free-energy differences between a set of thermodynamic states
into the following steps:

1. Generating Training Samples Given a set of K thermodynamic states of interest and their
corresponding potential energies {Uk}Kl=1, generate a dataset of Nk equilibrium samples
{xk

n}
Nk
n=1 from each state k using standard molecular dynamics simulations.

2. Learning K − 1 Escorted Protocols Select one of the thermodynamic states as the ref-
erence state and learn the K − 1 escorted protocols using the method proposed in Sec. 3.
Subsequently, construct the fully connected flow graph using the concatenated potentials
and escorting vector fields as defined in Eq. (21).

3. Running the Escorted Protocols Use the K(K − 1)/2 escorted protocols in combination
with one of the following methods to estimate the free-energy differences between all pairs
of states:

• RunK(K−1)/2 fixed length non-equilibrium trajectories using the escorted dynamics
to obtain an estimate of the free-energy differences between all pairs of states using the
Jarzynski Equality.

• RunK(K−1)/2 fixed length non-equilibrium trajectories using the escorted dynamics,
and another K(K − 1)/2 fixed length non-equilibrium trajectories using the reversed
escorted dynamics to obtain a pair-wise estimate of the free-energy differences between
all pairs of states using the BAR estimator.

• Similar to above, but now use the MBAR estimator using the pairwise work values
from the forward and reversed protocols to obtain a self-consistent estimate of the
free-energy differences between all pairs of states.

In our experiments, we used the third option using the MBAR estimator.

A.2.3 PRACTICAL DETAILS

So far we have assumed each thermodynamic state k to have its own potential energy function Uk. In
practice, this is only the case for a small number of free-energy estimation problems, such as solvation
free-energy. For most other forms of free-energy, such as conformational free-energy which we
consider in our experimental evaluation, the states have the same potential energy U but correspond
to different regions of the phase-space. In this case, a state-restricted potential energy function Ui has
to be defined as:

Ui(x) =

{
U(x), x ∈ Ωi

+∞, x /∈ Ωi
(25)

where Ωi is the region of space that is considered to be part of thermodynamic state i. Restricting
potential energies to specific regions of space is a common technique in Molecular Dynamics
simulations (Torrie and Valleau, 1977).

Equivariances Molecular systems are in general invariant to rigid-body transformations, such as
rotations and translations. Including these transformations in architecture design of bθ and Uθ is
thus desirable and can significantly improve the performance of the method. However, in the case of
Flow Matching extra care needs to be taken to ensure that the target vector field vt also takes these
transformations into account. This is formalised in the framework of Riemannian Flow Matching
(Chen and Lipman, 2024; Bose et al., 2024).

Thermodynamic Irrelevant Degrees of Freedom In addition to the reduction in complexity that
can be achieved by considering the symmetry structure of the system, an additional inductive bias
can be introduced by considering the degrees of freedom of the system that do not contribute to the
free-energy difference between the states of interest. For example, in the case of Alanine Dipeptide
(ADP) a number of Carbon atoms are each connected to a single other heavy atom and have their
remaining valences satisfied by hydrogen atoms. While these Hydrogen atoms considerably fluctuate
during the simulation and can cause significant spikes in the potential energy, they generally have a
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uniform contribution to the free-energy across all the states of interest. As such, we do not have to
include them in the representation of the system used for Uθ and bθ.

Note that removing degrees of freedom that are considered thermodynamic irrelevant has to be done
with care, as incorrect removal can have a detrimental effect on the performance of the method. For
example, while the atoms in the ADP system attached to terminal Carbon atoms are considered
thermodynamic irrelevant, the same is not true for the atoms attached to central heavy atoms.

A.3 EXPERIMENTAL SETUP

A.3.1 MOLECULAR DYNAMICS SIMULATION DETAILS

The simulation was run at 300 K using a standard Langevin middle integrator with a BAOAB splitting
scheme and a time step of 2 fs. Samples were saved every 1000 steps. The Amber 14-alndx force-field
was used with the GBn2 implicit solvent model. The same force field and implicit solvent model
were used as the UA and UB potentials in the Umbrella Sampling simulations.”

A.3.2 METASTABLE STATE DEFINITIONS

For the Alanine Dipeptide (ADP) system, we use the following definition of the metastable states
based on the ϕ and ψ dihedral angles:

αR = {−120 ≤ ϕ ≤ 0,−110 ≤ ψ ≤ 90} (26)
β = {−120 ≤ ϕ ≤ 0, 90 ≤ ψ ≤ 180} ∪ {−120 ≤ ϕ ≤ 0,−180 ≤ ψ ≤ −110} (27)

C5 = {−180 ≤ ϕ ≤ −120,−180 ≤ ψ ≤ −110} ∪ {−180 ≤ ϕ ≤ −120, 90 ≤ ψ ≤ 180}
∪ {120 ≤ ϕ ≤ 180,−180 ≤ ψ ≤ −110} ∪ {120 ≤ ϕ ≤ 180, 90 ≤ ψ ≤ 180} (28)

α′ = {−180 ≤ ϕ ≤ −120,−110 ≤ ψ ≤ 90} ∪ {120 ≤ ϕ ≤ 180,−110 ≤ ψ ≤ 90} (29)
αL = {0 ≤ ϕ ≤ 120,−90 ≤ ψ ≤ 90} (30)
αD = {0 ≤ ϕ ≤ 120,−180 ≤ ψ ≤ −90} ∪ {0 ≤ ϕ ≤ 120, 90 ≤ ψ ≤ 180} (31)

adapted from (Vymětal and Vondrášek, 2010).

We have visualised the 5 metastable states in figure 2.
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