

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNICM: A UNIFIED CONSISTENCY MODEL FOR EFFICIENT MULTIMODAL GENERATION AND UNDERSTANDING

Anonymous authors

Paper under double-blind review

ABSTRACT

Consistency models (CMs) have shown promise in the efficient generation of both image and text. This raises the natural question of whether we can learn a unified CM for efficient multimodal generation (e.g., text-to-image) and understanding (e.g., image-to-text). Intuitively, such a model could be acquired by applying the consistency distillation (CD) to existing unified multimodal models. However, the key challenge is establishing a unified denoising perspective for both image and text generation, which is essential for establishing the consistency mapping. To tackle this, at the representation level, we advocate for discrete tokens for both modalities to best preserve language modeling capabilities. Critically, instead of defining the text denoising trajectory via recent discrete diffusion language modeling principles, we specify it using the parallel decoding trace of an autoregressive language model, benefiting from the latter’s superior performance in general text generation tasks. The denoising trajectory of image tokens adheres to standard discrete diffusion. We train our unified consistency models (UniCMs) on these combined multimodal trajectories simultaneously with a unified objective. We introduce a trajectory segmentation strategy to improve the training convergence. Empirically, in text-to-image generation, UniCMs outperform SD3 on GenEval and Image Reward, while requiring only approximately 1/8 of the sampling time. Meanwhile, in image-to-text generation, UniCMs surpass Show-o on the MMMU benchmark while being 1.5 \times faster at long-sequence generating speed.

1 INTRODUCTION

Consistency models (CMs) (Song et al., 2023) have made significant achievements in efficient content generation across modalities. For image generation, CMs have revolutionized diffusion models, synthesizing high-fidelity images with few sampling steps (Song et al., 2023; Luo et al., 2023; Song & Dhariwal, 2023; Ren et al., 2024; Xie et al., 2024b; Wang et al., 2024a). Recently, CMs have been extended to text generation, realizing inference acceleration up to 3 times (Kou et al., 2024a). Naturally, this raises an important question: *can such advances in different modalities lead to a unified consistency model capable of efficiently understanding and generating cross-modal data?*

Given the recent progress on unified multimodal generation and understanding models (Team, 2024b; Zhou et al., 2024; Wang et al., 2024b; Xie et al., 2024a), it is intuitive to apply consistency distillation (CD) (Song et al., 2023) to them to acquire unified consistency models. However, this cannot be implemented trivially due to a dilemma—the consistency mapping needs to be defined on a denoising-style generation trajectory, but how to establish a unified denoising perspective that encompasses both text and image generation remains an open challenge.

To address this, this paper introduces UniCM, a unified consistency model. We advocate discrete tokenization for both modalities at the representation level, which preserves language modeling ability. Thus, the core problem boils down to constructing a unified discrete denoising trajectory for the generation of both image and text tokens. For the former, we follow the typical masked diffusion paradigm (e.g., Muse (Chang et al., 2023), MaskGit (Chang et al., 2022), MagVit (Yu et al., 2023), and Show-o (Xie et al., 2024a)). For the latter, we suggest specifying the denoising trajectory with the parallel decoding trace of an autoregressive (AR) language generation process,

Figure 1: **512 × 512 images generated by UniCMs.** All images are generated by UniCMs in 4 sampling steps without reliance on classifier-free guidance (Ho & Salimans, 2021).

given the success of consistency LLMs (CLLMs) (Kou et al., 2024a). We bypass the recent discrete diffusion language models (Nie et al., 2025; Ye et al., 2025; Nie et al., 2024; Gong et al., 2024) due to weaker performance and limited multimodal applicability compared to AR ones.

With such multimodal trajectories, we train the unified consistency models (UniCMs) using a unified objective. Specifically, UniCMs are pushed to consistently map any point on the trajectory to the same endpoint to enable fast-forward generation. We introduce a trajectory segmentation strategy (Heek et al., 2024; Zheng et al., 2024; Xie et al., 2024b) in which distillation is applied to each segment of the complete generation trajectory to improve convergence. We also design regularizations to ensure the training stability. Conceptually, our approach constitutes an empirical generalization of the original CMs (Song et al., 2023) to discrete denoising trajectories and establishes a cross-modal extension of CLLMs.

Given that Show-o (Xie et al., 2024a) can perform AR generation for text tokens and mask diffusion generation for image tokens, we opt to leverage it to collect text-to-image denoising trajectories on COCO 2017 (Lin et al., 2014) and image-to-text ones on LLaVA instruction tuning dataset (Liu et al., 2024d). We then initialize UniCMs with Show-o and perform fine-tuning on such trajectories. This training lasts for 36 hours on 8 A100-40GB GPUs. For text-to-image generation, UniCMs outperform SD3 (Esser et al., 2024) on GenEval (Ghosh et al., 2023), Image Reward (IR) (Li et al., 2024b), and CLIP Score (CS) (Hessel et al., 2022), while requiring only approximately 1/8 of time. For image-to-text generation, UniCMs surpass Show-o on the MMMU (Yue et al., 2024) benchmark while being approximately 1.5× faster on the captioning tasks like NoCaps (Agrawal et al., 2019).

In summary, our main contributions are as follows:

- We propose UniCMs, a novel unified consistency model family, which enables efficient multimodal understanding and generation within a single backbone architecture.
- For text-to-image generation, UniCMs outperform SD3 (Esser et al., 2024) while requiring only 1/8 of time. For image-to-text generation, UniCMs surpass Show-o on MMMU (Yue et al., 2024) while being approximately 1.5× faster on NoCaps (Agrawal et al., 2019).

108 **2 RELATED WORK**

110 **Unified Models.** Early generative models typically specialized in either text-conditioned image
 111 generation (Rombach et al., 2022; Podell et al.; Song et al., 2020; Chen et al., 2023; 2024; Li et al.,
 112 2024c; Yang et al., 2024; Sun et al., 2024) or vision–language understanding (Liu et al., 2024c; Lin
 113 et al., 2024; Liu et al., 2024d;b; Li et al., 2024a; Zhu et al., 2024; Bai et al., 2023; Ye et al., 2024; Zhu
 114 et al., 2023), handling only one direction of multimodal interaction. To address this, unified multi-
 115 modal models (Wu et al., 2023a; Zhao et al., 2024; Chern et al., 2024; Dong et al., 2023; Wu et al.,
 116 2024) have been proposed to support both image and text tasks. For example, Chameleon (Team
 117 et al., 2023) and Emu3 (Wang et al., 2024b) autoregressively generate text and image tokens, while
 118 Transfusion (Zhou et al., 2024) combines autoregressive and continuous diffusion methods. Simi-
 119 larly, Show-o (Xie et al., 2024a) uses autoregressive text generation with discrete diffusion for
 120 images. Although these unified models mark progress toward versatile multimodal systems, their
 121 reliance on iterative generation still incurs high computational cost.

122 **Consistency Models (CMs).** CMs have gained attention for generating high-quality outputs effi-
 123 ciently. First proposed for continuous diffusion models (Song et al., 2023; Luo et al., 2023), they
 124 introduce trajectory consistency: mapping any two points along a sampling trajectory to a shared
 125 endpoint (Song et al., 2023). This property lets the model skip intermediate steps and directly predict
 126 the endpoint, enabling high-quality generation in far fewer steps—sometimes even one. Building on
 127 this idea, multi-step CMs segment trajectories and enforce consistency within each segment (Zheng
 128 et al., 2024; Heek et al., 2024; Xie et al., 2024b; Wang et al., 2024a). While research has focused
 129 on continuous domains, the principle has also been applied to discrete diffusion models (Hayakawa
 130 et al., 2024), though with limited efficiency gains. Consistency distillation has further been adapted
 131 to accelerate large language models (LLMs) by applying similar objectives to iterative text genera-
 132 tion (Kou et al., 2024a). However, these efforts have largely concentrated on continuous diffusion
 133 models, primarily for image generation, or on purely text-based models addressing single tasks. To
 134 date, unified consistency models remain largely unexplored.

135 **3 METHOD**

138 This section presents unified consistency models (UniCMs) for efficient multimodal generation and
 139 understanding. We first review existing approaches on unified models and then provide insights
 140 on how to establish a unified denoising trajectory for learning UniCMs. We also elaborate on the
 141 unified CD loss as well as a suite of strategies to improve the model training.

143 **3.1 PRELIMINARY: UNIFIED MULTIMODAL MODELS**

145 Unified multimodal modeling aims to process both textual and visual modalities within a compact
 146 model for joint generation (Team et al., 2023; Wang et al., 2024b; Team, 2024b). Typically, the ar-
 147 chitecture includes a transformer backbone, an encoder and decoder for images, and a text tokenizer.
 148 The image encoder converts an input image into patch-wise tokens $\mathbf{u} = \{u_1, \dots, u_m\}$, where m
 149 is the number of patches and u_i can be continuous vectors or discrete indices derived from vector
 150 quantization (Van Den Oord et al., 2017). The text tokenizer encodes text into n discrete tokens
 151 $\mathbf{v} = \{v_1, \dots, v_n\}$. The unified model then characterizes the text-to-image (T2I) and image-to-text
 152 (i.e., multimodal understanding, MMU) relationships simultaneously with the shared transformer
 153 backbone. In particular, the backbone predicts image and text tokens, which are then decoded by
 154 the image decoder and detokenized, respectively, to obtain images and text.

155 Unified models typically generate text tokens \mathbf{v} autoregressively, a consequence of language’s dis-
 156 crete and sequential nature. Formally, the learning objective is Next Token Prediction (NTP):

$$\mathcal{L}_{\text{NTP}} := \sum_i \log p_{\theta}(v_i | v_1, \dots, v_{i-1}, \mathbf{u}), \quad (1)$$

160 where θ denotes learnable parameters and p_{θ} refers to model likelihood.

161 Based on how \mathbf{u} are produced, existing approaches can be categorized into three main classes:

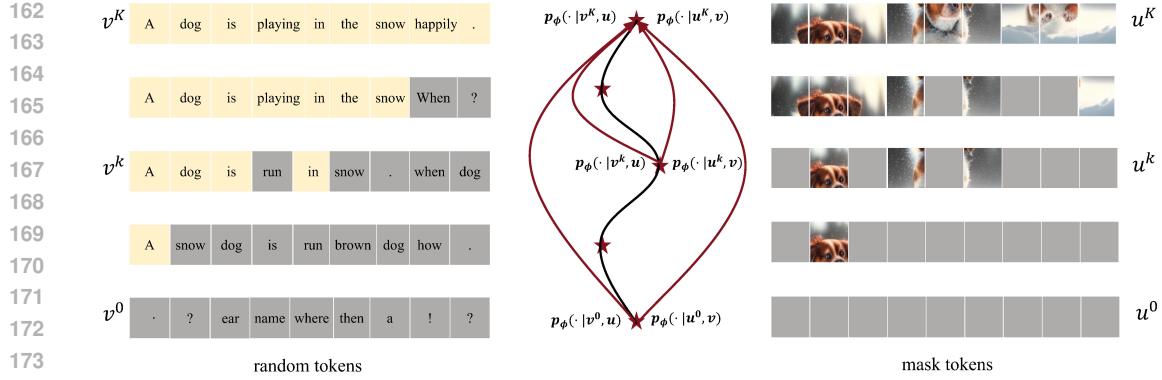


Figure 2: **Illustration of the unified denoising perspective of text and image generation.** As shown, the trajectories both display a denoising pattern. The black line denotes the unified abstraction of the multimodal trajectory, and the red lines illustrate the objective of UniCMs—to map an arbitrary point on the sampling trajectory to the same endpoint for both text and image generation. Note that we omit the trajectory segmentation strategy in the training process for brevity.

- Autoregressive generation (Sun et al., 2024; Ma et al., 2024) of \mathbf{u} , where \mathbf{u} are discrete, as seen in models like Emu3 (Wang et al., 2024b), Chameleon (Team, 2024b), LWM (Liu et al., 2024a), etc.
- Discrete diffusion (Chang et al., 2022; 2023; Yu et al., 2023) generation of \mathbf{u} , which also relies on discrete \mathbf{u} and is known as mask diffusion, exemplified by Show-o (Xie et al., 2024a).
- Gaussian diffusion (Ho et al., 2020; Song et al., 2020; Luo et al., 2023) generation of \mathbf{u} , where \mathbf{u} are continuous vectors, as demonstrated in Transfusion (Zhou et al., 2024).

Despite the promise of multimodal generation, unified models remain slow, especially in T2I. For instance, Emu3 takes over a minute to produce a 512×512 image on an NVIDIA 4090 GPU due to long image tokens (e.g., 4096). Diffusion models like Show-o and Transfusion improve efficiency but still trail specialized T2I models (Ren et al., 2024; Sauer et al., 2024). Similarly, image-to-text also demand acceleration, as outputs can be lengthy, e.g., image captioning (Plummer et al., 2017; Young et al., 2014) and multimodal chain-of-thought reasoning (Shen et al., 2025; Feng et al., 2025).

Efficient Unified Generation and Understanding by CMs. CMs enable efficient generation in both image (Song et al., 2023; Luo et al., 2023) and text (Kou et al., 2024a), providing a unified framework. Given a denoising trajectory, CMs map any two points to a common endpoint for fast-forward generation. Thus, unified CMs require a shared trajectory across modalities. When aligning discrete image tokens with text tokens, the key challenge is defining a unified discrete denoising trajectory.

3.2 A UNIFIED DENOISING PERSPECTIVE FOR THE GENERATION OF IMAGE AND TEXT

Denoising Trajectory for Image. A natural approach to obtain a discrete denoising trajectory for image tokens \mathbf{u} is through discrete diffusion modeling. Typically, the process begins with a sequence of m fully masked image tokens $\mathbf{u}^0 := \{u_1^0, \dots, u_m^0\}$, with the mask ratio progressively decreasing to 0 over K iterative steps. Specifically, in the k -th step, given the sequence \mathbf{u}^k , let M_k be the set of indices of masked tokens within \mathbf{u}^k . The model first predicts the tokens for all masked positions $i \in M_k$ to get an intermediate sequence $\bar{\mathbf{u}}^{k+1}$ as follows:

$$\bar{u}_i^{k+1} = \begin{cases} \arg \max_u p_\theta(u_i = u | \mathbf{u}^k, \mathbf{v}), & \text{if } i \in M_k \\ u_i^k, & \text{if } i \notin M_k \end{cases} \quad (2)$$

where \mathbf{v} denotes the text condition and p_θ is abused to denote a T2I model that employs masked diffusion modeling on images (e.g., Show-o (Xie et al., 2024a), Muse (Chang et al., 2023), and Meissson (Bai et al., 2024)). Then, the model re-masks low-confidence generations in $\bar{\mathbf{u}}^{k+1}$ according to the mask ratio schedule, yielding \mathbf{u}^{k+1} . The resultant trajectory $\{\mathbf{u}^0, \mathbf{u}^1, \dots, \mathbf{u}^K\}$ is visualized in Figure 2.

216 **Denoising Trajectory for Text.** To obtain text denoising trajectories, we consider two approaches:
 217 (1) leveraging recent discrete diffusion-based language generation methods (Ye et al., 2025; Nie
 218 et al., 2025) or (2) utilizing the parallel decoding trajectories derived from an AR language gen-
 219 eration process, as suggested by CLLMs (Kou et al., 2024a). Given the slightly inferior performance
 220 and limited application in processing multimodal inputs of diffusion language models compared to
 221 AR ones, we opt for the latter.

222 Technically, starting from a sequence of n randomly initialized text tokens, denoted as $\mathbf{v}^0 :=$
 223 $\{v_1^0, \dots, v_n^0\}$, the parallel decoding process iteratively refines the token sequence until a fixed point.
 224 At k -th iteration, the refinement corresponds to simultaneously solving the following n problems:

$$\begin{aligned} v_1^{k+1} &= \arg \max_v p_\theta(v|\mathbf{u}), \\ v_2^{k+1} &= \arg \max_v p_\theta(v|v_1^k, \mathbf{u}), \\ &\dots \\ v_n^{k+1} &= \arg \max_v p_\theta(v|v_1^k, \dots, v_{n-1}^k, \mathbf{u}), \end{aligned} \tag{3}$$

229 where p_θ is abused for an image-to-text AR model. In fact, these problems can be solved sim-
 230 ultaneously with only one forward pass using a causal attention mask, which takes roughly identical
 231 time as decoding one new token. Note that the greedy sampling strategy is used here. Abusing K to
 232 denote the number of iterations to reach the fixed point \mathbf{v}^K , it is easy to see $K \leq n+1$ because there
 233 is at least one token being correctly predicted in each iteration.¹ Refer to Figure 2 for a visualization
 234 of the sampling trajectory $\{\mathbf{v}^0, \dots, \mathbf{v}^K\}$, which displays a gradual denoising pattern.

238 3.3 TRAINING OF UNICMS

240 Based on the foregoing, text trajectories can be sourced from AR image-to-text models (like
 241 LLaVA (Liu et al., 2023), Qwen-VL-chat (Bai et al., 2023), Show-o (Xie et al., 2024a)), and image
 242 trajectories from mask diffusion T2I models (like Show-o (Xie et al., 2024a), Muse (Chang et al.,
 243 2023), and Meissonic (Bai et al., 2024)). Given Show-o’s ability to fulfill both roles, we favor it in
 244 our current work. Furthermore, this preference naturally extends to initializing UniCMs with Show-
 245 o’s architecture and parameters when training on its trajectories, facilitating a smoother cold start.
 246 Letting p_ϕ denote the UniCMs to learn, we elaborate on the algorithmic details below.

247 **Unified Training Objective.** The consistency loss on image trajectories is:

$$\mathcal{L}_c^u = \mathbb{E}_{k \sim \mathcal{U}(0, K)} d\left(p_{\phi^-}(\cdot|\mathbf{u}^K, \mathbf{v}), p_\phi(\cdot|\mathbf{u}^k, \mathbf{v})\right), \tag{4}$$

250 where ϕ^- denotes stopping gradient backpropagation for stable training (Song et al., 2023) and
 251 d indicates a divergence measure. For \mathcal{L}_c^u , d aggregates the KL divergence between categorical
 252 prediction distributions over the masked image tokens. The consistency loss on text trajectories can
 253 be similarly defined:

$$\mathcal{L}_c^v = \mathbb{E}_{k \sim \mathcal{U}(0, K)} d\left(p_{\phi^-}(\cdot|\mathbf{u}, \mathbf{v}^K), p_\phi(\cdot|\mathbf{u}, \mathbf{v}^k)\right), \tag{5}$$

254 where d aggregates over the positions where the two prediction distributions differ. These losses,
 255 \mathcal{L}_c^u and \mathcal{L}_c^v , are global consistency losses for image and text trajectory (mapping to their respective
 256 endpoints \mathbf{u}^K and \mathbf{v}^K), empirically superior to local losses for discrete denoising trajectories (Kou
 257 et al., 2024a). Conceptually, our objective forms an empirical generalization of the original CMs
 258 defined on the ODE trajectories and a cross-modal extension of CLLMs (Kou et al., 2024a).

259 **Trajectory Segmentation.** We empirically ascertain that imposing long-range consistency may
 260 introduce unnecessary learning challenges, potentially impeding model convergence and ultimately
 261 limiting the model’s inference efficiency. Inspired by previous work (Heek et al., 2024; Zheng
 262 et al., 2024; Xie et al., 2024b), we design a segmentation strategy for the collected discrete multi-
 263 modal sampled trajectories, enforcing consistency and regularization constraints in specific regions
 264 between points within a segment and segment endpoints. More details about the trajectory segmen-
 265 tation can be found in Appendix E.

266 As the training proceeds, the trajectories of UniCMs may deviate significantly from the original
 267 collected multimodal trajectories. Thus, persisting in utilizing the original trajectory for distillation

268 ¹By correctness, we mean the generated tokens equal to those generated by regular AR decoding.

Type	Model	Res.	Steps	GenEval \uparrow	HPS \uparrow	IR \uparrow	CS \uparrow	Time (s) \downarrow
Gen. Only	Emu3-Gen (Wang et al., 2024b)	512	4096	0.540	-	-	-	309.51
	SDXL (Podell et al., 2023)	1024	50	0.550	0.267	0.698	0.312	6.88
	SDXL-Turbo (Sauer et al., 2024)	512	1	0.551	0.273	0.759	0.315	0.27
	SD3 (Esser et al., 2024)	512	24	0.620	0.275	0.787	0.308	1.33
	Hyper-SD3 (Ren et al., 2024)	1024	4	0.458	0.266	0.649	0.308	1.19
Und. & Gen.	Show-o (Xie et al., 2024a)	512	16	0.674	0.277	0.992	0.318	1.39
		512	8	0.578	0.257	0.672	0.313	0.76
	Transfusion (Zhou et al., 2024)	256	250	0.630	-	-	-	-
	Chameleon (Team, 2024a)	512	1024	0.430	-	-	-	19.24
	Orthus (Team, 2024a)	512	1024	0.580	-	-	-	239.90
		512	8	<u>0.638</u>	<u>0.273</u>	<u>0.963</u>	0.318	0.33
	UniCMs	512	4	0.625	0.269	0.934	0.318	0.17
		512	2	0.557	0.247	0.680	<u>0.312</u>	0.09

Table 1: **Comparison of model performance for T2I task.** For the "Und. & Gen." panel, best results are shown in **bold** and second best results are underlined.

purposes could constrain the ultimate acceleration effect. We propose to regenerate multimodal denoising trajectories using the consistency model obtained in past stages. In this training stage, we also halve the number of segments of the trajectory to achieve better acceleration. Doing so encourages the final UniCMs to learn consistency mapping over long distances.

Regularization. Training UniCMs with only consistency loss in discrete multimodal denoising can lead to trivial convergence (e.g., identical outputs for varied inputs). To prevent this, we add regularizations for both modalities. For text, p_ϕ must fit endpoint tokens \mathbf{v}^K via an NTP objective. For images, we observe that the prediction logits of recovered image tokens contain rich information (e.g., easy-to-difficult hierarchies), so record them at each sampling step during trajectory collection (detailed in Appendix D, Figure 7). Then, we use the logits as targets to regularize $p_\phi(\cdot | \mathbf{u}^k, \mathbf{v})$.

We use \mathcal{L}_{REG}^v and \mathcal{L}_{REG}^u to represent these two regularizations respectively. The total loss is

$$\mathcal{L} = \mathcal{L}_c^u + \alpha \mathcal{L}_c^v + \beta \mathcal{L}_{REG}^u + \gamma \mathcal{L}_{REG}^v, \quad (6)$$

where α , β and γ are the trade-off coefficients to balance the different losses.

Sampling Strategy. We find that for the learned UniCMs with few sampling steps, there is significantly higher uncertainty in the prediction distribution of the mask tokens. We empirically identify that incorporating the top-k sampling strategy, which is widely used in language models, can alleviate this issue, substantially improving the sampling quality in 2-4 steps (see Table 3).

4 EXPERIMENTS

This section evaluates on T2I generation and MMU tasks to inspect the efficacy of UniCMs.

4.1 IMPLEMENTATION DETAILS

Datasets. The captions from the training split of COCO 2017 (Lin et al., 2014) are used to generate text-to-image denoising trajectories. The LLaVA instruction tuning dataset (Liu et al., 2024d) is employed to collect image-to-text denoising trajectories. Besides, the RefinedWeb text dataset (Penedo et al., 2023) is incorporated to preserve the model’s language modeling capabilities through autoregressive objective.

Training Details. We train UniCMs at two resolutions: results at 512 are in the main text, while 256 results and details appear in Appendix F. Training has two stages. For 512 resolution, stage one collects image trajectories with classifier-free guidance (CFG) (Ho & Salimans, 2021) scale 15 and $K = 32$, splitting each trajectory into 8 segments to train UniCMs*. Stage two collects trajectories from UniCMs* with CFG scale 1.75, $K = 16$, and 4 segments. Text trajectories are collected analogously. We use parallel decoding, generating 16 tokens per block to form long text, which

Type	Method	Param	TPS ↑	POPE ↑	SQA ↑	MMMU ↑	NoCaps ↑	Flickr30k ↑
Und. Only	Emu3-Chat (Wang et al., 2024b)	8B	13.8	85.2	-	31.6	-	-
	Qwen-VL-chat (Bai et al., 2023)	7B	26.8	-	-	35.9	15.4	9.2
	InstructBLIP (Dai et al., 2023)	7B	-	78.9	31.2	28.1	30.4	24.8
Und. & Gen.	Show-o (Xie et al., 2024a)	1.3B	40.3	83.2	34.9	24.6	29.4	24.9
	Orthus (Kou et al., 2024b)	7B	7.6	79.6	-	28.2	-	-
	Chameleon (Team, 2024a)	7B	11.47	77.8	-	26.7	-	-
		UniCMs	1.3B	61.1	78.4	37.1	26.3	22.2

Table 2: **Comparison of MMU performance on multiple benchmarks.** Note that SQA refers to ScienceQA-IMG. POPE and MMMU measure question-answering ability, while Flickr30K and NoCaps evaluate the ability of image description.

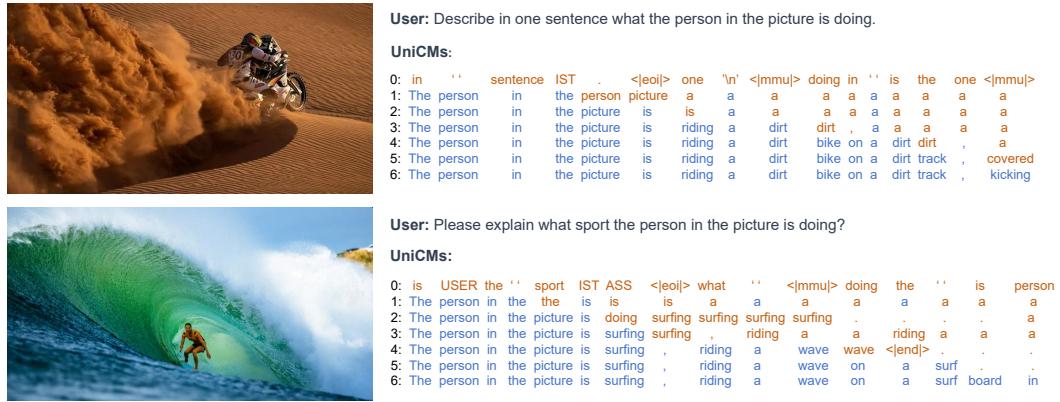


Figure 3: **The text sampling trajectory of UniCMs in MMU cases.** UniCMs realize acceleration by predicting multiple successive tokens in one iteration and correctly guessing the later tokens.

accelerates generation while preserving modeling ability (Kou et al., 2024a). Multimodal trajectories are collected deterministically in both stages for stability, though UniCMs remain compatible with stochastic sampling (Table 3). Loss coefficients are set as $\alpha = 10$ according to the relative values of the losses, $\beta = 40$, and $\gamma = 200$ (according to Table 5). Each stage is trained with AdamW on 8 A100 GPUs for 18 hours at constant learning rate 10^{-5} . At inference, UniCMs run without CFG, further reducing computation.

4.2 MAIN RESULTS

Benchmarks. We evaluate UniCMs in the T2I task on Human Preference Dataset v2 (HPD) (Wu et al., 2023b), using metrics including Human Preference Score v2 (HPS) (Wu et al., 2023b), ImageReward (IR) (Xu et al., 2023), and CLIP Score (CS) (Hessel et al., 2022). In addition, we conduct a comprehensive evaluation of UniCMs on the GenEval (Ghosh et al., 2023) benchmark. For MMU, we assess UniCMs on the image description benchmarks Flickr30K (Plummer et al., 2017; Young et al., 2014) and NoCaps (Agrawal et al., 2019) measured by the *METEOR* (Banerjee & Lavie, 2005) metric and calculate the accuracy on question answering benchmarks, including POPE (Li et al., 2023), ScienceQA (Lu et al., 2022), and MMMU (Yue et al., 2024).

Baselines. For T2I, we compare UniCMs with typical unified models (e.g., Transfusion (Zhou et al., 2024), Orthus (Team, 2024a), Show-o (Xie et al., 2024a)) and some outstanding image generation models (e.g., Emu3-Gen (Wang et al., 2024b), SD-XL (Podell et al.) and SD3 (Esser et al., 2024)) to demonstrate the effectiveness of our method. For MMU, besides unified models, we also compare UniCMs with VLMs (e.g., Emu3-Chat (Wang et al., 2024b), Qwen-VL (Bai et al., 2023)) in terms of both inference speed and accuracy, where the speed is measured on an RTX 4090 GPU.

Figure 4: **Comparison between UniCMs, Show-o, and SD3 in T2I generation at the resolution of 512×512 .** Show-o is shown at 16 steps (using CFG), while UniCMs demonstrates performance at 8, 4, and 2 steps. SD3 results are included for comparison with UniCMs.

Quantitative Results. Table 1 shows the detailed results for T2I generation task. We observe that in 2-8 step sampling, UniCMs significantly outperform Emu3-Gen (Wang et al., 2024b), SDXL (Podell et al., 2023), SDXL-Turbo (Sauer et al., 2024), Hyper-SD3 (Ren et al., 2024) and Chameleon (Team, 2024a) on GenEval benchmark, without using CFG. Remarkably, UniCMs use approximately 1/8 of the inference time of SD3 (Esser et al., 2024) and outperform both Hyper-SD3 (Ren et al., 2024) and SDXL-Turbo (Sauer et al., 2024) within similar inference time, highlighting the superior computational efficiency of UniCMs models. In the Appendix C, Table 7 reports the comprehensive performance of UniCMs and Show-o (Xie et al., 2024a) with an equal number of sampling steps, displaying the advantage of UniCMs in low-step generation scenarios. Besides, we can observe that UniCMs clearly outperform UniCMs* in Appendix C, Table 7, demonstrating the efficacy of the second training stage. Additionally, we demonstrate that CFG can further enhance UniCMs performance for image generation task with 4-16 step sampling in the Appendix C, Table 6.

Table 2 shows the performance of UniCMs in MMU tasks. We evaluate the text token generation speed on NoCaps (Agrawal et al., 2019), showing that UniCMs is on average 1.5x faster than Show-o (Xie et al., 2024a) while maintaining competitive performance. Besides, we notice that UniCMs outperform Show-o on MMMU (Yue et al., 2024) and ScienceQA-IMG (Lu et al., 2022). The slight drop on NoCaps and Flickr30K captioning reflects a speed–performance trade-off. We attribute this to two factors: (1) multi-step sampling in consistency models accumulates errors from overlapping time intervals, as noted in prior work (Kim et al., 2023); (2) UniCMs is trained on far fewer data

Set.	#IT ↓	POPE ↑	MME ↑	IR ↑	CS ↑
4	10.57	72.6	803.4	0.586	0.307
2	12.48	69.8	595.8	0.500	0.306
1	11.71	74.1	675.3	0.270	0.304

Table 4: **Ablation on segment number.** #IT means the number of iterations required by parallel decoding to decode 16 text tokens.

Set. (β, γ)	#IT ↓	POPE ↑	MME ↑	IR ↑	CS ↑
(0, 0)	2.85	0.0	4.91	-2.278	0.184
(10, 50)	12.71	74.8	798.4	0.483	0.307
(20, 100)	10.57	72.6	803.4	0.586	0.307

Table 5: **Ablation on the regularization coefficients in the total loss.**

(e.g., 120k COCO prompts) than its teacher, which uses millions of image–text pairs. Distillation with richer MMU trajectories may alleviate this gap.

Qualitative Results. Figure 4 compares image generation models across different sampling steps. UniCMs can produce clear, high-quality images in only 2–4 steps without CFG, achieving visual quality comparable to Show-o (Xie et al., 2024a) and SD3 (Esser et al., 2024), which require dozens of steps. Additional UniCM results in Figure 1 further demonstrate effective sampling with few steps. Figure 3 illustrates UniCM text sampling trajectories for several MMU cases. UniCMs predict 16 tokens within fewer than 10 iterations by generating multiple successive tokens per iteration and correctly anticipating later tokens.

We also present UniCM performance in image inpainting and extrapolation in Appendix B (Figures 5 and 6), where both tasks are completed in four steps without extra training.

4.3 ABLATION STUDIES

To analyze the influence of each part, we conduct a comprehensive ablation study with an image resolution of 256. Unless otherwise specified, we report the results after the first training stage (i.e., UniCMs*), and the T2I generation is done with 4 sampling steps.

Number of Segments. We study the influence of segments on UniCMs. As shown in Table 4, models trained in two segments and without trajectory segmentation (i.e., using one segment) can exhibit a suboptimal performance and a degraded acceleration effect. This result reflects the effectiveness of our trajectory segmentation strategy for improving convergence speed and model performance.

Regularization. As shown in Table 5, training without regularization constraints (i.e., $\beta = 0, \gamma = 0$) tends to make the model collapse rapidly. Besides, smaller regularization weights can lead to inferior performance, highlighting the importance of regularization in constraining the distribution of UniCMs in training.

Top-k Sampling. Table 3 shows the results with different sampling strategies for T2I. We observe that top-k significantly improves the performance of UniCMs on 2-step and 4-step sampling. This is probably because there is high uncertainty in the output distribution of UniCMs.

5 CONCLUSIONS AND LIMITATIONS

In this paper, we introduce UniCMs, a unified consistency model family for multimodal generation and understanding. UniCMs adopt a unified denoising perspective for both text and image generation. They are trained via an adapted consistency distillation approach on collected multimodal trajectories, learning to map any point on the trajectory to the same endpoint. The unified training objective empowers UniCMs to deliver strong performance with significantly fewer steps across both multimodal generation and understanding tasks. For future work, we plan to scale our model on more advanced multimodal trajectories to further improve the performance of UniCMs.

486

6 ETHICS STATEMENT

487
488 This work does not involve human subjects, animal experiments, or sensitive data. Therefore, it does
489 not raise any ethical concerns.
490491

7 REPRODUCIBILITY STATEMENT

492
493 To promote reproducibility, we plan to release the source code for both training and inference of the
494 proposed method in the future. The released code and accompanying instructions will enable other
495 researchers to reproduce our results and build upon this work.
496497

REFERENCES

498
499 Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark Johnson, Dhruv Batra,
500 Devi Parikh, Stefan Lee, and Peter Anderson. Nocaps: Novel object captioning at scale. In
501 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 8948–8957, 2019.502
503 Jinbin Bai, Tian Ye, Wei Chow, Enxin Song, Qing-Guo Chen, Xiangtai Li, Zhen Dong, Lei Zhu,
504 and Shuicheng Yan. Meissonic: Revitalizing masked generative transformers for efficient high-
505 resolution text-to-image synthesis. In *The Thirteenth International Conference on Learning Rep-*
506 *resentations*, 2024.507
508 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
509 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.510
511 Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
512 correlation with human judgments. In *Proceedings of the acl workshop on intrinsic and extrinsic*
513 *evaluation measures for machine translation and/or summarization*, pp. 65–72, 2005.514
515 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
516 image transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
Recognition, pp. 11315–11325, 2022.517
518 Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan
519 Yang, Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image gen-
520 eration via masked generative transformers. *arXiv preprint arXiv:2301.00704*, 2023.521
522 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
523 Kwok, Ping Luo, Huchuan Lu, et al. Pixart- α : Fast training of diffusion transformer for photore-
alistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.524
525 Junsong Chen, Yue Wu, Simian Luo, Enze Xie, Sayak Paul, Ping Luo, Hang Zhao, and Zhenguo Li.
526 Pixart- δ : Fast and controllable image generation with latent consistency models. *arXiv preprint*
arXiv:2401.05252, 2024.527
528 Ethan Chern, Jiadi Su, Yan Ma, and Pengfei Liu. Anole: An open, autoregressive, native large mul-
529 timodal models for interleaved image-text generation. *arXiv preprint arXiv:2407.06135*, 2024.530
531 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
532 Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
533 models with instruction tuning, 2023.534
535 Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao, Jianjian
536 Sun, Hongyu Zhou, Haoran Wei, et al. Dreamllm: Synergistic multimodal comprehension and
537 creation. *arXiv preprint arXiv:2309.11499*, 2023.538
539 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*,
2024.

540 Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo, Yibing Wang, Tianshuo Peng, Benyou
 541 Wang, and Xiangyu Yue. Video-r1: Reinforcing video reasoning in mllms. *arXiv preprint*
 542 *arXiv:2503.21776*, 2025.

543 Dhruba Ghosh, Hanna Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for
 544 evaluating text-to-image alignment, 2023. URL <https://arxiv.org/abs/2310.11513>.

545 Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
 546 Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
 547 autoregressive models. *arXiv preprint arXiv:2410.17891*, 2024.

548 Satoshi Hayakawa, Yuhta Takida, Masaaki Imaizumi, Hiromi Wakaki, and Yuki Mitsuji. Distil-
 549 lation of discrete diffusion through dimensional correlations. *arXiv preprint arXiv:2410.08709*,
 550 2024.

551 Jonathan Heek, Emiel Hoogeboom, and Tim Salimans. Multistep consistency models. *arXiv*
 552 *preprint arXiv:2403.06807*, 2024.

553 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
 554 reference-free evaluation metric for image captioning, 2022. URL <https://arxiv.org/abs/2104.08718>.

555 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on*
 556 *Deep Generative Models and Downstream Applications*, 2021.

557 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 558 *neural information processing systems*, 33:6840–6851, 2020.

559 Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
 560 Yutong He, Yuki Mitsuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
 561 bility flow ode trajectory of diffusion. *arXiv preprint arXiv:2310.02279*, 2023.

562 Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: Consistency large language
 563 models. *arXiv preprint arXiv:2403.00835*, 2024a.

564 Siqi Kou, Jiachun Jin, Zhihong Liu, Chang Liu, Ye Ma, Jian Jia, Quan Chen, Peng Jiang, and Zhijie
 565 Deng. Orthus: Autoregressive interleaved image-text generation with modality-specific heads.
 566 *arXiv preprint arXiv:2412.00127*, 2024b.

567 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
 568 Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 569 *arXiv:2408.03326*, 2024a.

570 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 571 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023.

572 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
 573 models with dynamic draft trees. *arXiv preprint arXiv:2406.16858*, 2024b.

574 Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin Long, Xinchi Deng, Yingfang Zhang,
 575 Xingchao Liu, Minbin Huang, Zedong Xiao, et al. Hunyuan-dit: A powerful multi-resolution
 576 diffusion transformer with fine-grained chinese understanding. *arXiv preprint arXiv:2405.08748*,
 577 2024c.

578 Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Jinfa Huang, Junwu Zhang, Yatian
 579 Pang, Munan Ning, et al. Moe-llava: Mixture of experts for large vision-language models. *arXiv*
 580 *preprint arXiv:2401.15947*, 2024.

581 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 582 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer*
 583 *Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014,*
 584 *Proceedings, Part V 13*, pp. 740–755. Springer, 2014.

594 Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and
 595 language with blockwise ringattention. *arXiv preprint arXiv:2402.08268*, 2024a.
 596

597 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 598 *in neural information processing systems*, 36:34892–34916, 2023.

599 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 600 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-*
 601 *nition*, pp. 26296–26306, 2024b.
 602

603 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 604 Llava-next: Improved reasoning, ocr, and world knowledge, 2024c.
 605

606 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 607 *in neural information processing systems*, 36, 2024d.

608 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 609 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 610 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 611 2022.

612 Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthe-
 613 sizing high-resolution images with few-step inference. *arXiv preprint arXiv:2310.04378*, 2023.
 614

615 Xiaoxiao Ma, Mohan Zhou, Tao Liang, Yalong Bai, Tiejun Zhao, Huaian Chen, and Yi Jin.
 616 Star: Scale-wise text-to-image generation via auto-regressive representations. *arXiv preprint*
 617 *arXiv:2406.10797*, 2024.

618 Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
 619 Li. Scaling up masked diffusion models on text. *arXiv preprint arXiv:2410.18514*, 2024.
 620

621 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
 622 Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint*
 623 *arXiv:2502.09992*, 2025.
 624

625 Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
 626 Hamza Alobaidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
 627 dataset for falcon llm: outperforming curated corpora with web data, and web data only. *arXiv*
 628 *preprint arXiv:2306.01116*, 2023.

629 Bryan A. Plummer, Liwei Wang, Christopher M. Cervantes, Juan C. Caicedo, Julia Hockenmaier,
 630 and Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
 631 image-to-sentence models. *IJCV*, 123(1):74–93, 2017.

632 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 633 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 634 synthesis. In *The Twelfth International Conference on Learning Representations*.

636 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 637 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 638 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

640 Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu, Pan Xie, Xing Wang, and Xuefeng Xiao.
 641 Hyper-sd: Trajectory segmented consistency model for efficient image synthesis. *arXiv preprint*
 642 *arXiv:2404.13686*, 2024.

643 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 644 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 645 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

646 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
 647 tillation. In *European Conference on Computer Vision*, pp. 87–103. Springer, 2024.

648 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 649 Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
 650 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.

651

652 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. *arXiv
 653 preprint arXiv:2310.14189*, 2023.

654

655 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 656 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 657 arXiv:2011.13456*, 2020.

658

659 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. *arXiv preprint
 660 arXiv:2303.01469*, 2023.

661

662 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 663 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint
 664 arXiv:2406.06525*, 2024.

665

666 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint
 667 arXiv:2405.09818*, 2024a.

668

669 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models, 2024. *URL
 670 <https://arxiv.org/abs/2405.09818>, 9, 2024b.*

671

672 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 673 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 674 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

675

676 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
 677 neural information processing systems*, 30, 2017.

678

679 Fu-Yun Wang, Zhaoyang Huang, Alexander William Bergman, Dazhong Shen, Peng Gao, Michael
 680 Lingelbach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, et al. Phased consistency model.
 681 *arXiv preprint arXiv:2405.18407*, 2024a.

682

683 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 684 Zhang, Yueze Wang, Zhen Li, Qiyi Yu, et al. Emu3: Next-token prediction is all you need.
 685 *arXiv preprint arXiv:2409.18869*, 2024b.

686

687 Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu,
 688 Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified
 689 multimodal understanding and generation. *arXiv preprint arXiv:2410.13848*, 2024.

690

691 Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multi-
 692 modal llm. *arXiv preprint arXiv:2309.05519*, 2023a.

693

694 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 695 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 696 image synthesis. *arXiv preprint arXiv:2306.09341*, 2023b.

697

698 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 699 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 700 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024a.

701

702 Qingsong Xie, Zhenyi Liao, Zhijie Deng, Shixiang Tang, Haonan Lu, et al. Mlcm: Multistep
 703 consistency distillation of latent diffusion model. *arXiv preprint arXiv:2406.05768*, 2024b.

704

705 Jiazhen Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 706 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation,
 707 2023. *URL <https://arxiv.org/abs/2304.05977>*.

708

709 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazhen Xu, Yuanming Yang,
 710 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 711 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

702 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 703 Kong. Dream 7b, 2025. URL <https://hkunlp.github.io/blog/2025/dream>.
 704

705 Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi Qian, Ji Zhang, and Fei
 706 Huang. mplug-owl2: Revolutionizing multi-modal large language model with modality collabora-
 707 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 708 pp. 13040–13051, 2024.

709 Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
 710 denotations: New similarity metrics for semantic inference over event descriptions. *TACL*, 2:
 711 67–78, 2014.

712 Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
 713 Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
 714 transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 715 nition*, pp. 10459–10469, 2023.

716

717 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,
 718 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 719 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF
 720 Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

721 Chuyang Zhao, Yuxing Song, Wenhao Wang, Haocheng Feng, Errui Ding, Yifan Sun, Xinyan Xiao,
 722 and Jingdong Wang. Monoformer: One transformer for both diffusion and autoregression. *arXiv
 723 preprint arXiv:2409.16280*, 2024.

724

725 Jianbin Zheng, Minghui Hu, Zhongyi Fan, Chaoyue Wang, Changxing Ding, Dacheng Tao, and
 726 Tat-Jen Cham. Trajectory consistency distillation. *arXiv preprint arXiv:2402.19159*, 2024.

727

728 Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
 729 Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
 730 diffuse images with one multi-modal model. *arXiv preprint arXiv:2408.11039*, 2024.

731

732 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
 733 hancing vision-language understanding with advanced large language models. *arXiv preprint
 734 arXiv:2304.10592*, 2023.

735

736 Yichen Zhu, Minjie Zhu, Ning Liu, Zhicai Ou, Xiaofeng Mou, and Jian Tang. Llava-phi: Efficient
 737 multi-modal assistant with small language model. *arXiv preprint arXiv:2401.02330*, 2024.

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A ABLATION STUDIES RESULTS**
757758 **A.1 THE USE OF LARGE LANGUAGE MODELS**
759760 In this work, large language models (LLMs) were employed solely as writing assistants. Their
761 role was limited to polishing the language, improving clarity, and refining the overall readability
762 of the manuscript. No part of the conceptual development, experimental design, data analysis, or
763 interpretation of results relied on LLMs.
764765 **B INPAINTING AND EXTRAPOLATION**
766767 Figure 5 shows that UniCMs can efficiently fill in missing parts of an image with high quality in
768 just 2 to 4 steps, based on the given prompt. Meanwhile, Figure 6 demonstrates that UniCMs can
769 smoothly complete image extrapolation in just 4 steps.
770772 prompt: In the distance, a small white sailboat was parked between the mountains and the water.
773774 **Figure 5: Visualization of image inpainting by UniCMs on 256 resolution.** From left to right are the 2, 4,
775 and 8 steps sampling.
776778 **Figure 6: Visualization of image extrapolation by UniCMs on 256 resolution.** From top to bottom are the
779 2, 4, and 8 steps sampling.
780

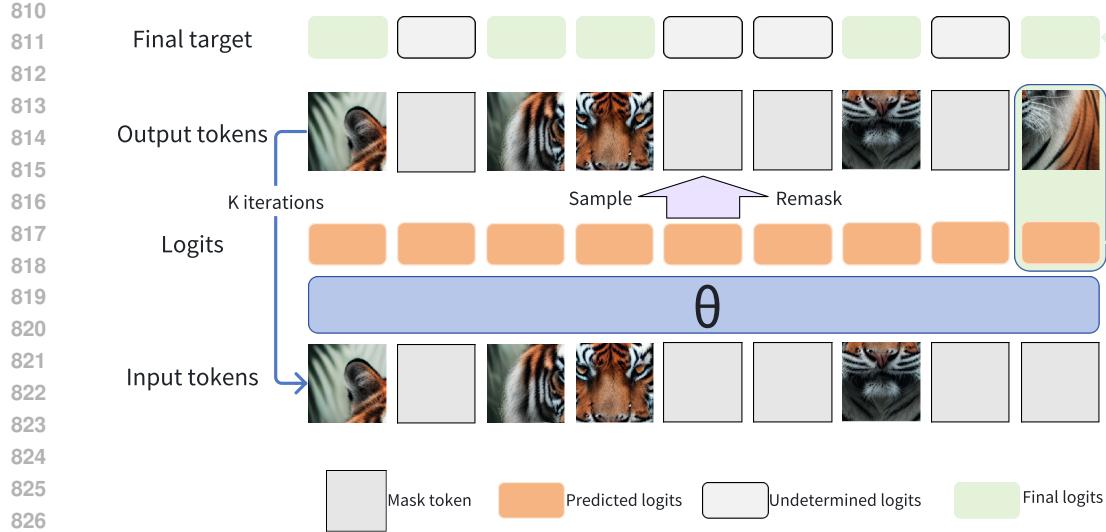


Figure 7: **Visualization of regularization label for image trajectory distillation.** For each iteration, we only record the logits of the region converted from the mask to the image token, and finally concatenate them into the regularization logits label. We abuse the θ to denote the mask diffusion models here.

Model	Steps	CFG	HPS \uparrow	IR \uparrow	CS \uparrow
UniCMs	16	0	0.258	0.752	0.310
		1	0.258	0.816	0.310
	8	0	0.255	0.738	0.309
		1	0.255	0.782	0.310
	4	0	0.252	0.706	0.309
		1	0.252	0.731	0.309
	2	0	0.240	0.529	0.306
		1	0.235	0.420	0.302
	Show-o	16	0	0.174	-1.097
			0.254	0.739	0.310
		8	0	0.181	-0.916
			0.249	0.665	0.308
		4	0	0.178	-0.877
			0.228	0.219	0.301
		2	0	0.159	-1.661
			0.169	-1.257	0.254

Table 6: **Results with different CFG on 256 resolution.** A proper CFG can enhance the performance of Show-o and UniCMs.

C SETTINGS OF CFG

As shown in Table 6, the appropriate use of CFG further enhances the sampling performance of UniCMs, particularly for sampling steps of 4 or more. Additionally, the performance of Show-o drops significantly without CFG, resulting in images that lack semantic information.

D REGULARIZATION LOSS DETAILS

The regularization loss for text trajectories is straightforward to compute because we only need p_ϕ to fit the endpoint text tokens \mathbf{v}^K . However, directly employing sampled images for the regularization loss of image trajectories degrades quality. This degradation arises because sampling images along

Steps	Model	CFG	GenEval \uparrow							HPS \uparrow	IR \uparrow	CS \uparrow
			AVG	TO	CT	P	CL	SO	CA			
16	Show-o	10	0.674	0.823	0.647	0.288	0.838	0.984	0.463	0.277	0.992	0.318
	Show-o	5	0.672	0.778	0.666	0.293	0.835	0.991	0.468	0.270	0.885	0.318
	UniCMs*	0	0.649	0.793	0.644	0.253	0.809	0.956	0.440	0.266	0.768	0.315
	UniCMs	0	0.646	0.818	0.597	0.218	0.827	0.984	0.430	0.273	0.925	0.318
8	Show-o	10	0.578	0.631	0.519	0.235	0.811	0.991	0.280	0.257	0.672	0.313
	Show-o	5	0.580	0.647	0.584	0.225	0.766	0.984	0.275	0.255	0.632	0.313
	UniCMs*	0	0.642	0.788	0.631	0.253	0.787	0.981	0.413	0.264	0.800	0.315
	UniCMs	0	0.638	0.813	0.541	0.250	0.814	0.991	0.420	0.273	0.963	0.318
4	Show-o	10	0.353	0.237	0.325	0.095	0.540	0.863	0.060	0.197	-0.560	0.283
	Show-o	5	0.396	0.298	0.334	0.158	0.572	0.925	0.088	0.207	-0.300	0.294
	UniCMs*	0	0.596	0.692	0.553	0.218	0.758	0.978	0.375	0.249	0.633	0.312
	UniCMs	0	0.625	0.770	0.553	0.245	0.806	0.978	0.398	0.269	0.934	0.318
2	Show-o	10	0.181	0.025	0.131	0.008	0.327	0.588	0.008	0.140	-1.756	0.246
	Show-o	5	0.251	0.051	0.188	0.038	0.442	0.778	0.010	0.152	-1.456	0.260
	UniCMs*	0	0.459	0.407	0.422	0.148	0.668	0.925	0.185	0.201	-0.259	0.295
	UniCMs	0	0.557	0.614	0.478	0.180	0.793	0.972	0.305	0.247	0.680	0.312

Table 7: **Comparison of T2I performance at the resolution of 512×512 based on GenEval, HPS, IR, and CS.** AVG: average, TO: Two Object, CT: Counting, P: Position, CL: colors, SO: Single Object, CA: Color Attr.

Steps	Model	CFG	GenEval \uparrow							HPS \uparrow	IR \uparrow	CS \uparrow
			AVG	TO	CT	P	CL	SO	CA			
16	Show-o	10	0.591	0.692	0.478	0.165	0.859	0.978	0.378	0.254	0.739	0.310
	Show-o	5	0.571	0.631	0.469	0.155	0.846	0.994	0.333	0.253	0.642	0.309
	UniCMs*	0	0.543	0.593	0.447	0.130	0.814	0.953	0.323	0.251	0.586	0.307
	UniCMs	0	0.562	0.689	0.366	0.140	0.814	0.991	0.373	0.258	0.752	0.310
8	Show-o	10	0.540	0.578	0.428	0.145	0.838	0.969	0.285	0.249	0.665	0.308
	Show-o	5	0.530	0.558	0.441	0.133	0.825	0.972	0.255	0.247	0.602	0.308
	UniCMs*	0	0.518	0.518	0.400	0.123	0.809	0.972	0.285	0.250	0.597	0.307
	UniCMs	0	0.552	0.669	0.353	0.128	0.817	0.963	0.385	0.255	0.738	0.309
4	Show-o	10	0.425	0.333	0.334	0.100	0.700	0.950	0.135	0.228	0.219	0.301
	Show-o	5	0.429	0.351	0.369	0.078	0.707	0.947	0.120	0.228	0.225	0.302
	UniCMs*	0	0.504	0.513	0.375	0.130	0.787	0.962	0.257	0.245	0.586	0.307
	UniCMs	0	0.523	0.664	0.303	0.103	0.801	0.959	0.308	0.252	0.706	0.309
2	Show-o	10	0.206	0.046	0.140	0.033	0.330	0.678	0.010	0.169	-1.257	0.254
	Show-o	5	0.229	0.068	0.122	0.023	0.378	0.763	0.020	0.182	-0.917	0.263
	UniCMs*	0	0.439	0.358	0.313	0.075	0.755	0.941	0.193	0.224	0.174	0.302
	UniCMs	0	0.494	0.530	0.334	0.093	0.787	0.959	0.260	0.240	0.529	0.306

Table 8: **Comparison of 256×256 T2I performance on GenEval, HPS, IR, and CS.** UniCMs* refers to the model after the first stage of training. AVG: average, TO: Two Object, CT: Counting, P: Position, CL: colors, SO: Single Object, CA: Color Attr.

a fixed trajectory under a greedy strategy diminishes both their diversity and quality. Moreover, the T2I model’s distribution encapsulates rich information, which is inherently diminished during the sampling process due to information loss. To address this, we propose constructing regularized logits labels by capturing the T2I model’s distribution at each sampling step. As illustrated in Figure 7, we initialize a global logits target as an all-zero tensor. During the iteration of the trajectory \mathbf{u}^k , we focus on regions transitioning from mask to image tokens, populating the final target with the

Method	Decoding	tokens/s \uparrow	POPE \uparrow	MMMU \uparrow	Flickr30K \uparrow	NoCaps \uparrow
Show-o	AR	40.3	83.2	24.6	24.9	29.4
	Jacobi	36.9	83.2	24.6	24.9	29.4
UniCMs*	Jacobi	49.9	81.8	25.4	23.5	28.1
	Jacobi	61.1	78.4	26.3	22.2	26.5

Table 9: **Comparison of I2T performance at the resolution of 512×512 on multiple benchmarks.** Note that Flickr30K and NoCaps evaluate the ability of image description, and POPE and MMMU measure question-answering ability.

corresponding predicted logits for these regions. Through this iterative procedure, we synthesize a complete logits target, enabling the computation of \mathcal{L}_{REG}^u . If a segmentation strategy is adopted, the missing portions of the logits target can be populated with the final predicted logits at the segmentation endpoints. This produces a complete regularization label.

E SEGMENTATION DETAILS

Direct learning of consistency across an entire trajectory is challenging for models and often leads to convergence difficulties. Therefore, we propose applying a segmentation strategy to the multimodal denoising trajectory. Specifically, we evenly divide the trajectory into several segments and enforce consistency constraints between a randomly selected point within a segment and the endpoint of that segment, rather than the endpoint of the entire trajectory. For image trajectories, the regularization logits labels constructed from segment endpoints are incomplete. We address this by filling the missing parts with the logits predicted from the last iteration of that segment. We only compute the consistency loss in the masked regions of the segment endpoints and the regularization loss in the masked regions of the randomly selected points. For text trajectories, we continue to use noise-free text as the regularization constraint, introducing segmentation only in the consistency loss. Through ablation studies in Section 4.3, we demonstrate that this objective is more amenable to learning, facilitating model convergence toward the target and enhancing the effectiveness of acceleration.

F TRAINING DETAILS AND RESULTS OF 256 RESOLUTION

For 256 resolution, we separate the training process into two stages. In the first stage, we get image trajectories with a CFG scale of 10 and $K = 16$. We split each trajectory into 4 segments to train the consistency model, denoted as UniCMs*. In the second stage, we collect image trajectories using UniCMs*. We sample image trajectories with a CFG scale of 1.5, $K = 8$, and the number of segments as 2. The text trajectories are collected similarly. We employ Jacobi decoding to iteratively produce 16 tokens in each round to finally form lengthy text, which proves to yield good acceleration performance while preserving the generative modeling capabilities (Kou et al., 2024a). In terms of loss coefficients, we set $\alpha = 10$ according to the relative values of the losses, set $\beta = 20$ and $\gamma = 100$ according to the ablation study in Table 5, and set $\delta = 2$ following (Xie et al., 2024a). We use an AdamW optimizer and 8 RTX 4090 GPUs to train each stage for 18 hours, with a constant learning rate of 10^{-5} .

Method	Decoding	tokens/s \uparrow	POPE \uparrow	MME \uparrow	MMMU \uparrow	Flickr30K \uparrow	NoCaps \uparrow
Show-o	AR	41.8	73.8	948.4	25.1	20.8	25.8
	Jacobi	38.2	73.8	948.4	25.1	20.8	25.8
UniCMs*	Jacobi	61.3	72.6	803.4	27.0	19.8	23.8
	Jacobi	64.5	73.2	872.4	25.8	19.2	23.0

Table 10: **Comparison of 256×256 MMU performance on multiple benchmarks.** Note that Flickr30K and NoCaps evaluate the ability of image description, and POPE, MME, and MMMU measure question-answering ability.

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 Table 8 and Table 10 show the performance of UniCMs on T2I and MMU tasks at 256-resolution respectively. It can be observed that UniCMs can also achieve the effect of 8 steps of the original model in 4-step sampling without CFG in 256-resolution image generation, and also achieves about 1.5 times acceleration in 256-resolution image understanding.

G ABLATION STUDY ON BLOCK SIZE FOR IMAGE-TO-TEXT GENERATION

To investigate the impact of the parallel decoding block size on the inference speed of UniCMs, we conduct an ablation study on the NoCaps dataset. As parallel decoding introduces overhead, its efficiency is highly dependent on the length of the generated sequence. We therefore evaluate two distinct scenarios: a short caption generation task (e.g., 10-30 tokens) and a long caption generation task (e.g., 80-120 tokens). We measure the throughput in Tokens Per Second (TPS) and the average number of iterations required to decode a single block.

The results, presented in Table 11 and Table 12, reveal a clear trade-off.

Block Size	TPS \uparrow	Avg. Iterations/Block \downarrow
16	61.1	10.6
32	43.1	19.4
64	23.5	35.6

Table 11: Performance on **short** caption generation tasks with varying block sizes. Larger block sizes increase overhead and reduce overall throughput for short sequences.

Block Size	TPS \uparrow	Avg. Iterations/Block \downarrow
16	80.3	10.8
32	90.1	18.5
64	92.6	35.6

Table 12: Performance on **long** caption generation tasks with varying block sizes. For longer sequences, larger block sizes significantly improve throughput.

As indicated, for short generation tasks like standard image captioning, increasing the block size from 16 to 64 significantly raises the generation overhead (from 10.6 to 35.6 iterations), thereby reducing the effective throughput (TPS). Conversely, for long generation tasks, the overhead of parallel decoding is amortized over a longer sequence, and larger blocks substantially improve throughput. With a block size of 64, the throughput reaches 92.6 TPS, achieving a significant **2.3 \times speedup** compared to the 40.3 TPS of the autoregressive baseline (Show-o).

The 1.5 \times speedup reported in the main manuscript corresponds to the more common short captioning scenario (block size 16), which represents a conservative estimate of the acceleration capability of UniCMs.

H ADDITIONAL IMAGE RESULTS

Figure 8 and Figure 9 show the image generation results for 512 and 256 resolutions respectively. UniCMs can generate high-quality images with rich details using only 2 to 4 sampling steps and without CFG.

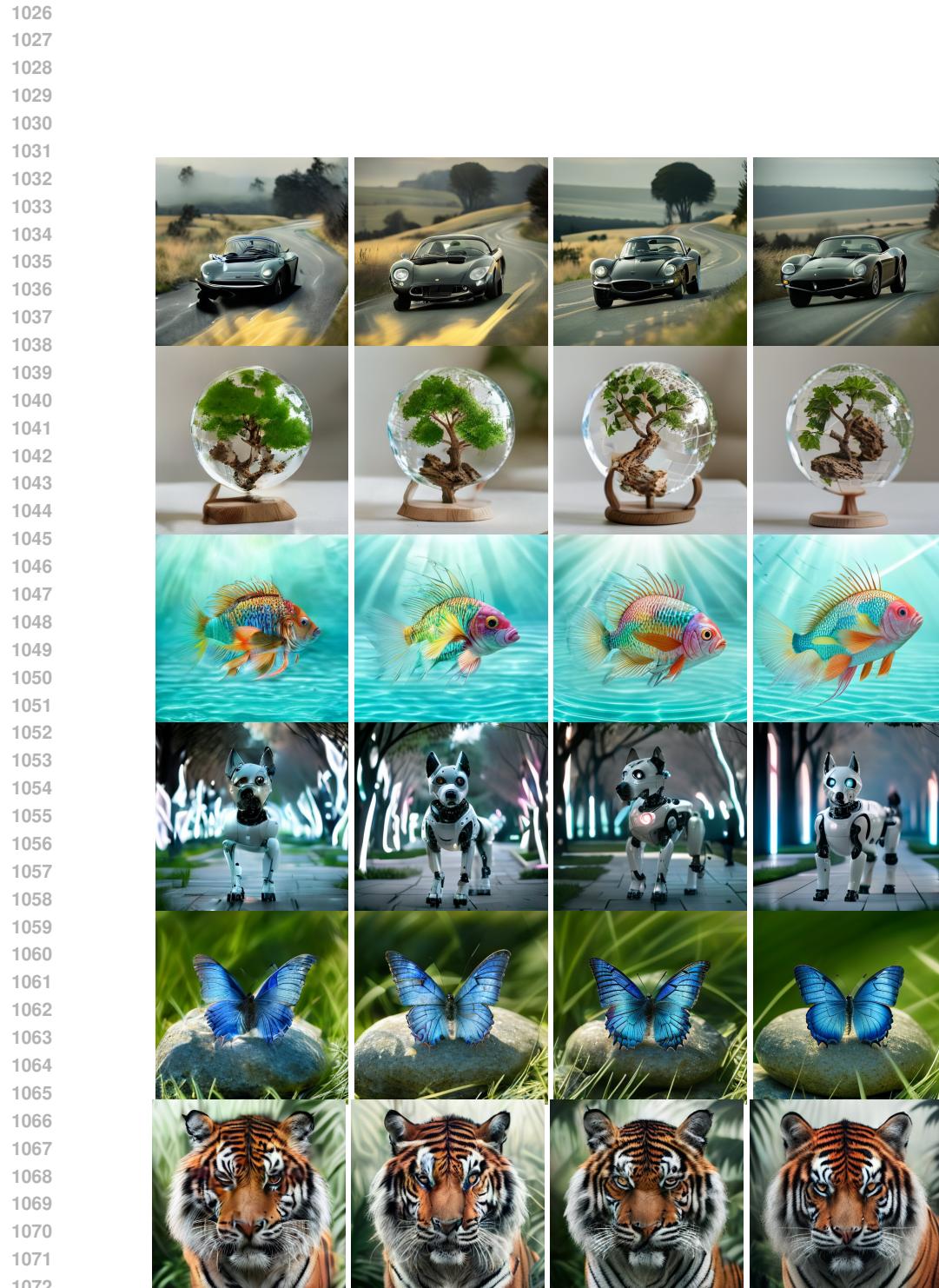
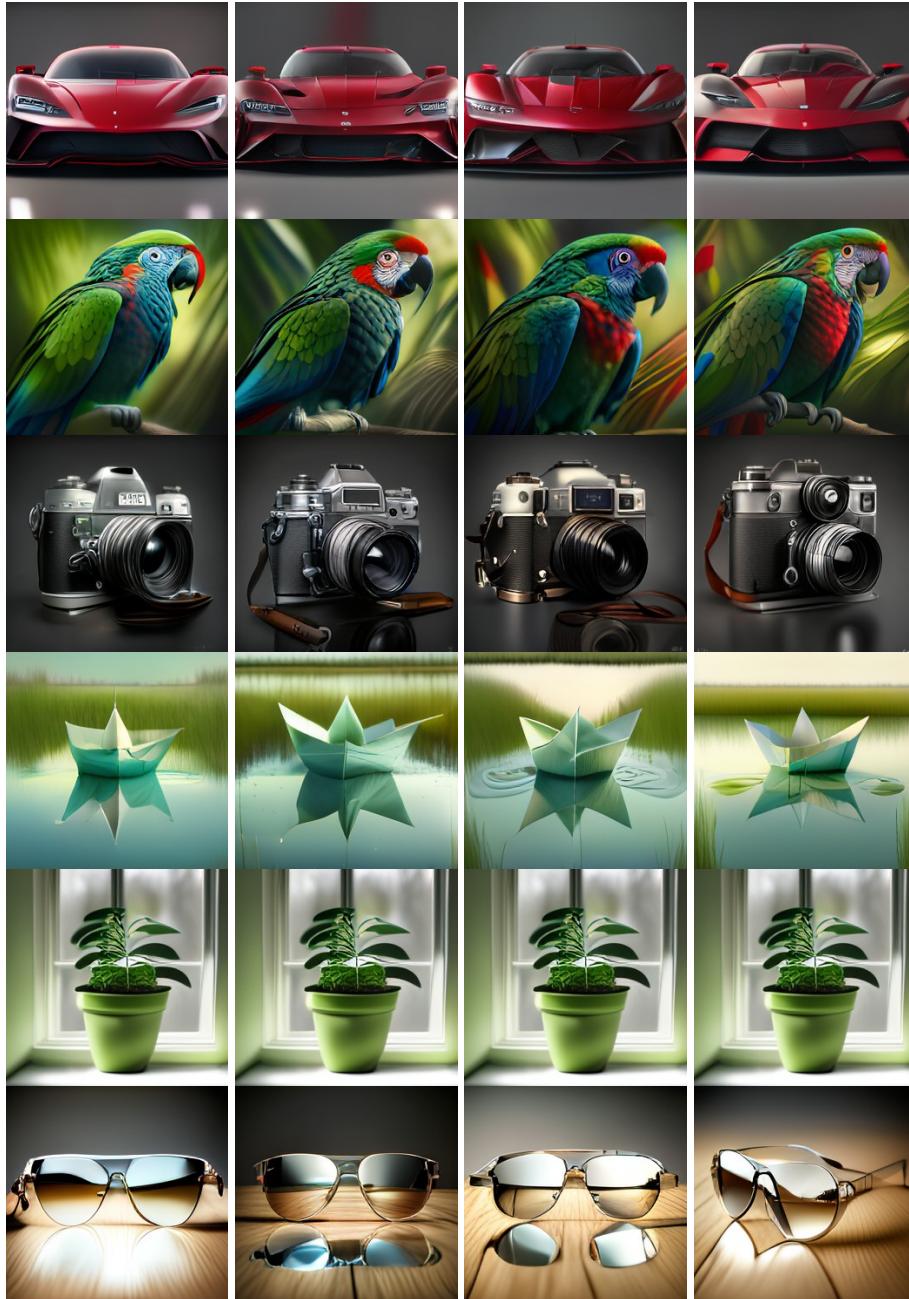


Figure 8: **512 × 512 images generated by UniCMs.** From left to right, the images are generated by UniCMs in 2, 4, 8 and 16 sampling steps without CFG.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126



1127 Figure 9: **256 × 256 images generated by UniCMs.** From left to right, the images are generated by UniCMs
1128 in 2, 4, 8 and 16 sampling steps without CFG.

1129
1130
1131
1132
1133