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ABSTRACT

Consistency models (CMs) have shown promise in the efficient generation of both
image and text. This raises the natural question of whether we can learn a unified
CM for efficient multimodal generation (e.g., text-to-image) and understanding
(e.g., image-to-text). Intuitively, such a model could be acquired by applying the
consistency distillation (CD) to existing unified multimodal models. However, the
key challenge is establishing a unified denoising perspective for both image and
text generation, which is essential for establishing the consistency mapping. To
tackle this, at the representation level, we advocate for discrete tokens for both
modalities to best preserve language modeling capabilities. Critically, instead of
defining the text denoising trajectory via recent discrete diffusion language model-
ing principles, we specify it using the parallel decoding trace of an autoregressive
language model, benefiting from the latter’s superior performance in general text
generation tasks. The denoising trajectory of image tokens adheres to standard
discrete diffusion. We train our unified consistency models (UniCMs) on these
combined multimodal trajectories simultaneously with a unified objective. We in-
troduce a trajectory segmentation strategy to improve the training convergence.
Empirically, in text-to-image generation, UniCMs outperform SD3 on GenEval
and Image Reward, while requiring only approximately 1/8 of the sampling time.
Meanwhile, in image-to-text generation, UniCMs surpass Show-o on the MMMU
benchmark while being 1.5× faster at long-sequence generating speed.

1 INTRODUCTION

Consistency models (CMs) (Song et al., 2023) have made significant achievements in efficient con-
tent generation across modalities. For image generation, CMs have revolutionized diffusion models,
synthesizing high-fidelity images with few sampling steps (Song et al., 2023; Luo et al., 2023; Song
& Dhariwal, 2023; Ren et al., 2024; Xie et al., 2024b; Wang et al., 2024a). Recently, CMs have been
extended to text generation, realizing inference acceleration up to 3 times (Kou et al., 2024a). Nat-
urally, this raises an important question: can such advances in different modalities lead to a unified
consistency model capable of efficiently understanding and generating cross-modal data?

Given the recent progress on unified multimodal generation and understanding models (Team,
2024b; Zhou et al., 2024; Wang et al., 2024b; Xie et al., 2024a), it is intuitive to apply consis-
tency distillation (CD) (Song et al., 2023) to them to acquire unified consistency models. However,
this cannot be implemented trivially due to a dilemma—the consistency mapping needs to be de-
fined on a denoising-style generation trajectory, but how to establish a unified denoising perspective
that encompasses both text and image generation remains an open challenge.

To address this, this paper introduces UniCM, a unified consistency model. We advocate discrete
tokenization for both modalities at the representation level, which preserves language modeling
ability. Thus, the core problem boils down to constructing a unified discrete denoising trajectory
for the generation of both image and text tokens. For the former, we follow the typical masked
diffusion paradigm (e.g., Muse (Chang et al., 2023), MaskGit (Chang et al., 2022), MagVit (Yu
et al., 2023), and Show-o (Xie et al., 2024a)). For the latter, we suggest specifying the denoising
trajectory with the parallel decoding trace of an autoregressive (AR) language generation process,
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Figure 1: 512 × 512 images generated by UniCMs. All images are generated by UniCMs in 4
sampling steps without reliance on classifier-free guidance (Ho & Salimans, 2021).

given the success of consistency LLMs (CLLMs) (Kou et al., 2024a). We bypass the recent discrete
diffusion language models (Nie et al., 2025; Ye et al., 2025; Nie et al., 2024; Gong et al., 2024) due
to weaker performance and limited multimodal applicability compared to AR ones.

With such multimodal trajectories, we train the unified consistency models (UniCMs) using a uni-
fied objective. Specifically, UniCMs are pushed to consistently map any point on the trajectory to
the same endpoint to enable fast-forward generation. We introduce a trajectory segmentation strat-
egy (Heek et al., 2024; Zheng et al., 2024; Xie et al., 2024b) in which distillation is applied to each
segment of the complete generation trajectory to improve convergence. We also design regulariza-
tions to ensure the training stability. Conceptually, our approach constitutes an empirical general-
ization of the original CMs (Song et al., 2023) to discrete denoising trajectories and establishes a
cross-modal extension of CLLMs.

Given that Show-o (Xie et al., 2024a) can perform AR generation for text tokens and mask diffusion
generation for image tokens, we opt to leverage it to collect text-to-image denoising trajectories on
COCO 2017 (Lin et al., 2014) and image-to-text ones on LLaVA instruction tuning dataset (Liu
et al., 2024d). We then initialize UniCMs with Show-o and perform fine-tuning on such trajectories.
This training lasts for 36 hours on 8 A100-40GB GPUs. For text-to-image generation, UniCMs
outperform SD3 (Esser et al., 2024) on GenEval (Ghosh et al., 2023), Image Reward (IR) (Li et al.,
2024b), and CLIP Score (CS) (Hessel et al., 2022), while requiring only approximately 1/8 of time.
For image-to-text generation, UniCMs surpass Show-o on the MMMU (Yue et al., 2024) benchmark
while being approximately 1.5× faster on the captioning tasks like NoCaps (Agrawal et al., 2019).

In summary, our main contributions are as follows:

• We propose UniCMs, a novel unified consistency model family, which enables efficient
multimodal understanding and generation within a single backbone architecture.

• For text-to-image generation, UniCMs outperform SD3 (Esser et al., 2024) while requiring
only 1/8 of time. For image-to-text generation, UniCMs surpass Show-o on MMMU (Yue
et al., 2024) while being approximately 1.5× faster on NoCaps (Agrawal et al., 2019).
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2 RELATED WORK

Unified Models. Early generative models typically specialized in either text-conditioned image
generation (Rombach et al., 2022; Podell et al.; Song et al., 2020; Chen et al., 2023; 2024; Li et al.,
2024c; Yang et al., 2024; Sun et al., 2024) or vision–language understanding (Liu et al., 2024c; Lin
et al., 2024; Liu et al., 2024d;b; Li et al., 2024a; Zhu et al., 2024; Bai et al., 2023; Ye et al., 2024; Zhu
et al., 2023), handling only one direction of multimodal interaction. To address this, unified multi-
modal models (Wu et al., 2023a; Zhao et al., 2024; Chern et al., 2024; Dong et al., 2023; Wu et al.,
2024) have been proposed to support both image and text tasks. For example, Chameleon (Team
et al., 2023) and Emu3 (Wang et al., 2024b) autoregressively generate text and image tokens, while
Transfusion (Zhou et al., 2024) combines autoregressive and continuous diffusion methods. Sim-
ilarly, Show-o (Xie et al., 2024a) uses autoregressive text generation with discrete diffusion for
images. Although these unified models mark progress toward versatile multimodal systems, their
reliance on iterative generation still incurs high computational cost.

Consistency Models (CMs). CMs have gained attention for generating high-quality outputs effi-
ciently. First proposed for continuous diffusion models (Song et al., 2023; Luo et al., 2023), they
introduce trajectory consistency: mapping any two points along a sampling trajectory to a shared
endpoint (Song et al., 2023). This property lets the model skip intermediate steps and directly predict
the endpoint, enabling high-quality generation in far fewer steps—sometimes even one. Building on
this idea, multi-step CMs segment trajectories and enforce consistency within each segment (Zheng
et al., 2024; Heek et al., 2024; Xie et al., 2024b; Wang et al., 2024a). While research has focused
on continuous domains, the principle has also been applied to discrete diffusion models (Hayakawa
et al., 2024), though with limited efficiency gains. Consistency distillation has further been adapted
to accelerate large language models (LLMs) by applying similar objectives to iterative text genera-
tion (Kou et al., 2024a). However, these efforts have largely concentrated on continuous diffusion
models, primarily for image generation, or on purely text-based models addressing single tasks. To
date, unified consistency models remain largely unexplored.

3 METHOD

This section presents unified consistency models (UniCMs) for efficient multimodal generation and
understanding. We first review existing approaches on unified models and then provide insights
on how to establish a unified denoising trajectory for learning UniCMs. We also elaborate on the
unified CD loss as well as a suite of strategies to improve the model training.

3.1 PRELIMINARY: UNIFIED MULTIMODAL MODELS

Unified multimodal modeling aims to process both textual and visual modalities within a compact
model for joint generation (Team et al., 2023; Wang et al., 2024b; Team, 2024b). Typically, the ar-
chitecture includes a transformer backbone, an encoder and decoder for images, and a text tokenizer.
The image encoder converts an input image into patch-wise tokens u = {u1, . . . , um}, where m
is the number of patches and ui can be continuous vectors or discrete indices derived from vector
quantization (Van Den Oord et al., 2017). The text tokenizer encodes text into n discrete tokens
v = {v1, . . . , vn}. The unified model then characterizes the text-to-image (T2I) and image-to-text
(i.e., multimodal understanding, MMU) relationships simultaneously with the shared transformer
backbone. In particular, the backbone predicts image and text tokens, which are then decoded by
the image decoder and detokenized, respectively, to obtain images and text.

Unified models typically generate text tokens v autoregressively, a consequence of language’s dis-
crete and sequential nature. Formally, the learning objective is Next Token Prediction (NTP):

LNTP :=
∑
i

log pθ(vi|v1, · · · , vi−1,u), (1)

where θ denotes learnable parameters and pθ refers to model likelihood.

Based on how u are produced, existing approaches can be categorized into three main classes:
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Figure 2: Illustration of the unified denoising perspective of text and image generation. As
shown, the trajectories both display a denoising pattern. The black line denotes the unified abstrac-
tion of the multimodal trajectory, and the red lines illustrate the objective of UniCMs—to map an
arbitrary point on the sampling trajectory to the same endpoint for both text and image generation.
Note that we omit the trajectory segmentation strategy in the training process for brevity.

• Autoregressive generation (Sun et al., 2024; Ma et al., 2024) of u, where u are discrete,
as seen in models like Emu3 (Wang et al., 2024b), Chameleon (Team, 2024b), LWM (Liu
et al., 2024a), etc.

• Discrete diffusion (Chang et al., 2022; 2023; Yu et al., 2023) generation of u, which also
relies on discrete u and is known as mask diffusion, exemplified by Show-o (Xie et al.,
2024a).

• Gaussian diffusion (Ho et al., 2020; Song et al., 2020; Luo et al., 2023) generation of u,
where u are continuous vectors, as demonstrated in Transfusion (Zhou et al., 2024).

Despite the promise of multimodal generation, unified models remain slow, especially in T2I. For
instance, Emu3 takes over a minute to produce a 512× 512 image on an NVIDIA 4090 GPU due to
long image tokens (e.g., 4096). Diffusion models like Show-o and Transfusion improve efficiency
but still trail specialized T2I models (Ren et al., 2024; Sauer et al., 2024). Similarly, image-to-text
also demand acceleration, as outputs can be lengthy, e.g., image captioning (Plummer et al., 2017;
Young et al., 2014) and multimodal chain-of-thought reasoning (Shen et al., 2025; Feng et al., 2025).

Efficient Unified Generation and Understanding by CMs. CMs enable efficient generation in
both image (Song et al., 2023; Luo et al., 2023) and text (Kou et al., 2024a), providing a unified
framework. Given a denoising trajectory, CMs map any two points to a common endpoint for fast-
forward generation. Thus, unified CMs require a shared trajectory across modalities. When aligning
discrete image tokens with text tokens, the key challenge is defining a unified discrete denoising
trajectory.

3.2 A UNIFIED DENOISING PERSPECTIVE FOR THE GENERATION OF IMAGE AND TEXT

Denoising Trajectory for Image. A natural approach to obtain a discrete denoising trajectory for
image tokens u is through discrete diffusion modeling. Typically, the process begins with a sequence
of m fully masked image tokens u0 := {u0

1, . . . , u
0
m}, with the mask ratio progressively decreasing

to 0 over K iterative steps. Specifically, in the k-th step, given the sequence uk, let Mk be the set
of indices of masked tokens within uk. The model first predicts the tokens for all masked positions
i ∈ Mk to get an intermediate sequence ūk+1 as follows:

ūk+1
i =

{
argmaxu pθ(ui = u|uk,v), if i ∈ Mk

uk
i , if i /∈ Mk

(2)

where v denotes the text condition and pθ is abused to denote a T2I model that employs masked
diffusion modeling on images (e.g., Show-o (Xie et al., 2024a), Muse (Chang et al., 2023), and
Meissonic (Bai et al., 2024)). Then, the model re-masks low-confidence generations in ūk+1 ac-
cording to the mask ratio schedule, yielding uk+1. The resultant trajectory {u0,u1, . . . ,uK} is
visualized in Figure 2.
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Denoising Trajectory for Text. To obtain text denoising trajectories, we consider two approaches:
(1) leveraging recent discrete diffusion-based language generation methods (Ye et al., 2025; Nie
et al., 2025) or (2) utilizing the parallel decoding trajectories derived from an AR language genera-
tion process, as suggested by CLLMs (Kou et al., 2024a). Given the slightly inferior performance
and limited application in processing multimodal inputs of diffusion language models compared to
AR ones, we opt for the latter.

Technically, starting from a sequence of n randomly initialized text tokens, denoted as v0 :=
{v01 , . . . , v0n}, the parallel decoding process iteratively refines the token sequence until a fixed point.
At k-th iteration, the refinement corresponds to simultaneously solving the following n problems:

vk+1
1 = argmax

v
pθ(v|u),

vk+1
2 = argmax

v
pθ(v|vk1 ,u),

...

vk+1
n = argmax

v
pθ(v|vk1 , . . . , vkn−1,u),

(3)

where pθ is abused for an image-to-text AR model. In fact, these problems can be solved simul-
taneously with only one forward pass using a causal attention mask, which takes roughly identical
time as decoding one new token. Note that the greedy sampling strategy is used here. Abusing K to
denote the number of iterations to reach the fixed point vK , it is easy to see K ≤ n+1 because there
is at least one token being correctly predicted in each iteration.1 Refer to Figure 2 for a visualization
of the sampling trajectory {v0, . . . ,vK}, which displays a gradual denoising pattern.

3.3 TRAINING OF UNICMS

Based on the foregoing, text trajectories can be sourced from AR image-to-text models (like
LLaVA (Liu et al., 2023), Qwen-VL-chat (Bai et al., 2023), Show-o (Xie et al., 2024a)), and image
trajectories from mask diffusion T2I models (like Show-o (Xie et al., 2024a), Muse (Chang et al.,
2023), and Meissonic (Bai et al., 2024)). Given Show-o’s ability to fulfill both roles, we favor it in
our current work. Furthermore, this preference naturally extends to initializing UniCMs with Show-
o’s architecture and parameters when training on its trajectories, facilitating a smoother cold start.
Letting pϕ denote the UniCMs to learn, we elaborate on the algorithmic details below.

Unified Training Objective. The consistency loss on image trajectories is:

Lu
c = Ek∼U(0,K)d

(
pϕ−(·|uK ,v), pϕ(·|uk,v)

)
, (4)

where ϕ− denotes stopping gradient backpropagation for stable training (Song et al., 2023) and
d indicates a divergence measure. For Lu

c , d aggregates the KL divergence between categorical
prediction distributions over the masked image tokens. The consistency loss on text trajectories can
be similarly defined:

Lv
c = Ek∼U(0,K)d

(
pϕ−(·|u,vK), pϕ(·|u,vk)

)
, (5)

where d aggregates over the positions where the two prediction distributions differ. These losses,
Lu
c and Lv

c , are global consistency losses for image and text trajectory (mapping to their respective
endpoints uK and vK), empirically superior to local losses for discrete denoising trajectories (Kou
et al., 2024a). Conceptually, our objective forms an empirical generalization of the original CMs
defined on the ODE trajectories and a cross-modal extension of CLLMs (Kou et al., 2024a).

Trajectory Segmentation. We empirically ascertain that imposing long-range consistency may in-
troduce unnecessary learning challenges, potentially impeding model convergence and ultimately
limiting the model’s inference efficiency. Inspired by previous work (Heek et al., 2024; Zheng
et al., 2024; Xie et al., 2024b), we design a segmentation strategy for the collected discrete multi-
modal sampled trajectories, enforcing consistency and regularization constraints in specific regions
between points within a segment and segment endpoints. More details about the trajectory segmen-
tation can be found in Appendix E.

As the training proceeds, the trajectories of UniCMs may deviate significantly from the original
collected multimodal trajectories. Thus, persisting in utilizing the original trajectory for distillation

1By correctness, we mean the generated tokens equal to those generated by regular AR decoding.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Type Model Res. Steps GenEval ↑ HPS ↑ IR ↑ CS ↑ Time (s) ↓

Gen. Only

Emu3-Gen (Wang et al., 2024b) 512 4096 0.540 - - - 309.51
SDXL (Podell et al., 2023) 1024 50 0.550 0.267 0.698 0.312 6.88
SDXL-Turbo (Sauer et al., 2024) 512 1 0.551 0.273 0.759 0.315 0.27
SD3 (Esser et al., 2024) 512 24 0.620 0.275 0.787 0.308 1.33
Hyper-SD3 (Ren et al., 2024) 1024 4 0.458 0.266 0.649 0.308 1.19

Und. & Gen.

Show-o (Xie et al., 2024a) 512 16 0.674 0.277 0.992 0.318 1.39
512 8 0.578 0.257 0.672 0.313 0.76

Transfusion (Zhou et al., 2024) 256 250 0.630 - - - -
Chameleon (Team, 2024a) 512 1024 0.430 - - - 19.24
Orthus (Team, 2024a) 512 1024 0.580 - - - 239.90

UniCMs
512 8 0.638 0.273 0.963 0.318 0.33

UniCMs 512 4 0.625 0.269 0.934 0.318 0.17
512 2 0.557 0.247 0.680 0.312 0.09

Table 1: Comparison of model performance for T2I task. For the ”Und. & Gen.” panel, best
results are shown in bold and second best results are underlined.

purposes could constrain the ultimate acceleration effect. We propose to regenerate multimodal
denoising trajectories using the consistency model obtained in past stages. In this training stage,
we also halve the number of segments of the trajectory to achieve better acceleration. Doing so
encourages the final UniCMs to learn consistency mapping over long distances.

Regularization. Training UniCMs with only consistency loss in discrete multimodal denoising
can lead to trivial convergence (e.g., identical outputs for varied inputs). To prevent this, we add
regularizations for both modalities. For text, pϕ must fit endpoint tokens vK via an NTP objective.
For images, we observe that the prediction logits of recovered image tokens contain rich information
(e.g., easy-to-difficult hierarchies), so record them at each sampling step during trajectory collection
(detailed in Appendix D, Figure 7). Then, we use the logits as targets to regularize pϕ(·|uk,v).

We use Lv
REG and Lu

REG to represent these two regularizations respectively. The total loss is

L = Lu
c + αLv

c + βLu
REG + γLv

REG, (6)

where α, β and γ are the trade-off coefficients to balance the different losses.

Sampling Strategy. We find that for the learned UniCMs with few sampling steps, there is signifi-
cantly higher uncertainty in the prediction distribution of the mask tokens. We empirically identify
that incorporating the top-k sampling strategy, which is widely used in language models, can allevi-
ate this issue, substantially improving the sampling quality in 2-4 steps (see Table 3).

4 EXPERIMENTS

This section evaluates on T2I generation and MMU tasks to inspect the efficacy of UniCMs.

4.1 IMPLEMENTATION DETAILS

Datasets. The captions from the training split of COCO 2017 (Lin et al., 2014) are used to generate
text-to-image denoising trajectories. The LLaVA instruction tuning dataset (Liu et al., 2024d) is em-
ployed to collect image-to-text denoising trajectories. Besides, the RefinedWeb text dataset (Penedo
et al., 2023) is incorporated to preserve the model’s language modeling capabilities through autore-
gressive objective.

Training Details. We train UniCMs at two resolutions: results at 512 are in the main text, while
256 results and details appear in Appendix F. Training has two stages. For 512 resolution, stage one
collects image trajectories with classifier-free guidance (CFG) (Ho & Salimans, 2021) scale 15 and
K = 32, splitting each trajectory into 8 segments to train UniCMs∗. Stage two collects trajectories
from UniCMs∗ with CFG scale 1.75, K = 16, and 4 segments. Text trajectories are collected
analogously. We use parallel decoding, generating 16 tokens per block to form long text, which

6
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Type Method Param TPS ↑ POPE ↑ SQA ↑ MMMU ↑ NoCaps ↑ Flickr30k ↑

Und. Only
Emu3-Chat (Wang et al., 2024b) 8B 13.8 85.2 - 31.6 - -
Qwen-VL-chat (Bai et al., 2023) 7B 26.8 - - 35.9 15.4 9.2
InstructBLIP (Dai et al., 2023) 7B - 78.9 31.2 28.1 30.4 24.8

Und. & Gen.

Show-o (Xie et al., 2024a) 1.3B 40.3 83.2 34.9 24.6 29.4 24.9
Orthus (Kou et al., 2024b) 7B 7.6 79.6 - 28.2 - -
Chameleon (Team, 2024a) 7B 11.47 77.8 - 26.7 - -

UniCMs 1.3B 61.1 78.4 37.1 26.3 26.5 22.2

Table 2: Comparison of MMU performance on multiple benchmarks. Note that SQA refers
to ScienceQA-IMG. POPE and MMMU measure question-answering ability, while Flickr30K and
NoCaps evaluate the ability of image description.

User: Describe in one sentence what the person in the picture is doing.

0:   in        ‘ ‘        sentence   IST      .        <|eoi|>   one     ’\n’   <|mmu|>  doing  in   ‘ ‘   is     the     one  <|mmu|>
1:  The  person         in         the  person  picture     a         a          a            a     a    a    a      a        a         a
2:  The  person         in         the  picture      is         is         a          a            a     a    a    a      a        a         a
3:  The  person         in         the  picture      is        riding    a         dirt        dirt    ,     a    a      a        a         a
4:  The  person         in         the  picture      is        riding    a         dirt        bike  on  a    dirt  dirt       ,         a
5:  The  person         in         the  picture      is        riding    a         dirt        bike  on  a    dirt  track    ,      covered
6:  The  person         in         the  picture      is        riding    a         dirt        bike  on  a    dirt  track    ,       kicking

User: Please explain what sport the person in the picture is doing?

0:   is     USER  the  ‘ ‘    sport    IST  ASS     <|eoi|>  what       ‘ ‘       <|mmu|>  doing     the      ‘ ‘        is        person
1:  The  person  in   the    the      is     is            is          a          a           a            a           a         a        a            a
2:  The  person  in   the  picture  is    doing    surfing  surfing  surfing  surfing      .            .          .         .            a
3:  The  person  in   the  picture  is    surfing  surfing     ,         riding      a            a         riding    a         a           a
4:  The  person  in   the  picture  is    surfing     ,         riding      a          wave    wave   <|end|>   .          .            .
5:  The  person  in   the  picture  is    surfing     ,         riding      a          wave      on          a       surf      .             .
6:  The  person  in   the  picture  is    surfing     ,         riding      a          wave      on          a       surf   board       in

UniCMs:

UniCMs:

Figure 3: The text sampling trajectory of UniCMs in MMU cases. UniCMs realize acceleration
by predicting multiple successive tokens in one iteration and correctly guessing the later tokens.

accelerates generation while preserving modeling ability (Kou et al., 2024a). Multimodal trajectories
are collected deterministically in both stages for stability, though UniCMs remain compatible with
stochastic sampling (Table 3). Loss coefficients are set as α = 10 according to the relative values
of the losses, β = 40, and γ = 200 (according to Table 5). Each stage is trained with AdamW on
8 A100 GPUs for 18 hours at constant learning rate 10−5. At inference, UniCMs run without CFG,
further reducing computation.

4.2 MAIN RESULTS

Benchmarks. We evaluate UniCMs in the T2I task on Human Preference Dataset v2 (HPD) (Wu
et al., 2023b), using metrics including Human Preference Score v2 (HPS) (Wu et al., 2023b), Im-
ageReward (IR) (Xu et al., 2023), and CLIP Score (CS) (Hessel et al., 2022). In addition, we conduct
a comprehensive evaluation of UniCMs on the GenEval (Ghosh et al., 2023) benchmark. For MMU,
we assess UniCMs on the image description benchmarks Flickr30K (Plummer et al., 2017; Young
et al., 2014) and NoCaps (Agrawal et al., 2019) measured by the METEOR (Banerjee & Lavie,
2005) metric and calculate the accuracy on question answering benchmarks, including POPE (Li
et al., 2023), ScienceQA (Lu et al., 2022), and MMMU (Yue et al., 2024).

Baselines. For T2I, we compare UniCMs with typical unified models (e.g., Transfusion (Zhou et al.,
2024), Orthus (Team, 2024a), Show-o (Xie et al., 2024a)) and some outstanding image generation
models (e.g., Emu3-Gen (Wang et al., 2024b), SD-XL (Podell et al.) and SD3 (Esser et al., 2024)) to
demonstrate the effectiveness of our method. For MMU, besides unified models, we also compare
UniCMs with VLMs (e.g., Emu3-Chat (Wang et al., 2024b), Qwen-VL (Bai et al., 2023)) in terms
of both inference speed and accuracy, where the speed is measured on an RTX 4090 GPU.
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UniCMs Show-o SD3
8 Steps 4 Steps 2 Steps 16 Steps 24 Steps

A cybernetic owl perched on a neon-lit branch, its mechanical feathers reflecting holographic patterns...

A small succulent plant in a ceramic pot, its leaves forming a perfect geometric pattern...

A single, colorful autumn leaf floating on the surface of a calm pond...

A blue butterfly resting on a white flower petal, its wings fully open to display vibrant patterns...

Figure 4: Comparison between UniCMs, Show-o, and SD3 in T2I generation at the resolution
of 512 × 512. Show-o is shown at 16 steps (using CFG), while UniCMs demonstrates performance
at 8, 4, and 2 steps. SD3 results are included for comparison with UniCMs.

Quantitative Results. Table 1 shows the detailed results for T2I generation task. We observe that in
2-8 step sampling, UniCMs significantly outperform Emu3-Gen (Wang et al., 2024b), SDXL (Podell
et al., 2023), SDXL-Turbo (Sauer et al., 2024), Hyper-SD3 (Ren et al., 2024) and Chameleon (Team,
2024a) on GenEval benchmark, without using CFG. Remarkably, UniCMs use approximately 1/8
of the inference time of SD3 (Esser et al., 2024) and outperform both Hyper-SD3 (Ren et al., 2024)
and SDXL-Turbo (Sauer et al., 2024) within similar inference time, highlighting the superior com-
putational efficiency of UniCMs models. In the Appendix C, Table 7 reports the comprehensive
performance of UniCMs and Show-o (Xie et al., 2024a) with an equal number of sampling steps,
displaying the advantage of UniCMs in low-step generation scenarios. Besides, we can observe
that UniCMs clearly outperform UniCMs∗ in Appendix C, Table 7, demonstrating the efficacy of
the second training stage. Additionally, we demonstrate that CFG can further enhance UniCMs
performance for image generation task with 4-16 step sampling in the Appendix C, Table 6.

Table 2 shows the performance of UniCMs in MMU tasks. We evaluate the text token generation
speed on NoCaps (Agrawal et al., 2019), showing that UniCMs is on average 1.5× faster than Show-
o (Xie et al., 2024a) while maintaining competitive performance. Besides, we notice that UniCMs
outperform Show-o on MMMU (Yue et al., 2024) and ScienceQA-IMG (Lu et al., 2022). The slight
drop on NoCaps and Flickr30K captioning reflects a speed–performance trade-off. We attribute this
to two factors: (1) multi-step sampling in consistency models accumulates errors from overlapping
time intervals, as noted in prior work (Kim et al., 2023); (2) UniCMs is trained on far fewer data
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Set. #IT ↓ POPE ↑ MME ↑ IR ↑ CS ↑

4 10.57 72.6 803.4 0.586 0.307
2 12.48 69.8 595.8 0.500 0.306
1 11.71 74.1 675.3 0.270 0.304

Table 4: Ablation on segment number. #IT
means the number of iterations required by par-
allel decoding to decode 16 text tokens.

Set.(β, γ) #IT ↓ POPE ↑ MME ↑ IR ↑ CS ↑

(0, 0) 2.85 0.0 4.91 -2.278 0.184
(10, 50) 12.71 74.8 798.4 0.483 0.307
(20, 100) 10.57 72.6 803.4 0.586 0.307

Table 5: Ablation on the regularization coefficients in
the total loss.

(e.g., 120k COCO prompts) than its teacher, which uses millions of image–text pairs. Distillation
with richer MMU trajectories may alleviate this gap.

Qualitative Results. Figure 4 compares image generation models across different sampling steps.
UniCMs can produce clear, high-quality images in only 2–4 steps without CFG, achieving visual
quality comparable to Show-o (Xie et al., 2024a) and SD3 (Esser et al., 2024), which require dozens
of steps. Additional UniCM results in Figure 1 further demonstrate effective sampling with few
steps. Figure 3 illustrates UniCM text sampling trajectories for several MMU cases. UniCMs predict
16 tokens within fewer than 10 iterations by generating multiple successive tokens per iteration and
correctly anticipating later tokens.

We also present UniCM performance in image inpainting and extrapolation in Appendix B (Fig-
ures 5 and 6), where both tasks are completed in four steps without extra training.

4.3 ABLATION STUDIES

Steps Top-k HPS ↑ IR ↑ CS ↑
4 - 0.245 0.621 0.306
4 200 0.252 0.706 0.309
2 - 0.216 0.027 0.291
2 10 0.240 0.529 0.306

Table 3: Comparison on sampling strategy
at the image resolution of 256. “-” denotes
standard multinomial sampling.

To analyze the influence of each part, we con-
duct a comprehensive ablation study with an
image resolution of 256. Unless otherwise
specified, we report the results after the first
training stage (i.e., UniCMs∗), and the T2I gen-
eration is done with 4 sampling steps.

Number of Segments. We study the influence
of segments on UniCMs. As shown in Table 4,
models trained in two segments and without tra-
jectory segmentation (i.e., using one segment)
can exhibit a suboptimal performance and a de-
graded acceleration effect. This result reflects the effectiveness of our trajectory segmentation strat-
egy for improving convergence speed and model performance.

Regularization. As shown in Table 5, training without regularization constraints (i.e., β = 0, γ =
0) tends to make the model collapse rapidly. Besides, smaller regularization weights can lead to
inferior performance, highlighting the importance of regularization in constraining the distribution
of UniCMs in training.

Top-k Sampling. Table 3 shows the results with different sampling strategies for T2I. We observe
that top-k significantly improves the performance of UniCMs on 2-step and 4-step sampling. This
is probably because there is high uncertainty in the output distribution of UniCMs.

5 CONCLUSIONS AND LIMITATIONS

In this paper, we introduce UniCMs, a unified consistency model family for multimodal generation
and understanding. UniCMs adopt a unified denoising perspective for both text and image gener-
ation. They are trained via an adapted consistency distillation approach on collected multimodal
trajectories, learning to map any point on the trajectory to the same endpoint. The unified training
objective empowers UniCMs to deliver strong performance with significantly fewer steps across
both multimodal generation and understanding tasks. For future work, we plan to scale our model
on more advanced multimodal trajectories to further improve the performance of UniCMs.
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6 ETHICS STATEMENT

This work does not involve human subjects, animal experiments, or sensitive data. Therefore, it does
not raise any ethical concerns.

7 REPRODUCIBILITY STATEMENT

To promote reproducibility, we plan to release the source code for both training and inference of the
proposed method in the future. The released code and accompanying instructions will enable other
researchers to reproduce our results and build upon this work.
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A ABLATION STUDIES RESULTS

A.1 THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) were employed solely as writing assistants. Their
role was limited to polishing the language, improving clarity, and refining the overall readability
of the manuscript. No part of the conceptual development, experimental design, data analysis, or
interpretation of results relied on LLMs.

B INPAINTING AND EXTRAPOLATION

Figure 5 shows that UniCMs can efficiently fill in missing parts of an image with high quality in
just 2 to 4 steps, based on the given prompt. Meanwhile, Figure 6 demonstrates that UniCMs can
smoothly complete image extrapolation in just 4 steps.

prompt：In the distance, a small white sailboat was parked between the mountains and the water.

Figure 5: Visualization of image inpainting by UniCMs on 256 resolution. From left to right are the 2, 4,
and 8 steps sampling.

User：The mountains and 
jungles are covered with thin 
mist.

User：A serene natural land-
scape featuring a clear, lake 
surrounded by lush trees.

Figure 6: Visualization of image extrapolation by UniCMs on 256 resolution. From top to bottom are the
2, 4, and 8 steps sampling.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 7: Visualization of regularization label for image trajectory distillation. For each iteration, we only
record the logits of the region converted from the mask to the image token, and finally concatenate them into
the regularization logits label. We abuse the θ to denote the mask diffusion models here.

Model Steps CFG HPS ↑ IR ↑ CS ↑

UniCMs

16 0 0.258 0.752 0.310
1 0.258 0.816 0.310

8 0 0.255 0.738 0.309
1 0.255 0.782 0.310

4 0 0.252 0.706 0.309
1 0.252 0.731 0.309

2 0 0.240 0.529 0.306
1 0.235 0.420 0.302

Show-o

16 0 0.174 -1.097 0.272
10 0.254 0.739 0.310

8 0 0.181 -0.916 0.276
10 0.249 0.665 0.308

4 0 0.178 -0.877 0.276
10 0.228 0.219 0.301

2 0 0.159 -1.661 0.234
10 0.169 -1.257 0.254

Table 6: Results with different CFG on 256 resolution. A proper CFG can enhance the perfor-
mance of Show-o and UniCMs.

C SETTINGS OF CFG

As shown in Table 6, the appropriate use of CFG further enhances the sampling performance of
UniCMs, particularly for sampling steps of 4 or more. Additionally, the performance of Show-o
drops significantly without CFG, resulting in images that lack semantic information.

D REGULARIZATION LOSS DETAILS

The regularization loss for text trajectories is straightforward to compute because we only need pϕ to
fit the endpoint text tokens vK . However, directly employing sampled images for the regularization
loss of image trajectories degrades quality. This degradation arises because sampling images along
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Steps Model CFG GenEval ↑ HPS ↑ IR ↑ CS ↑
AVG TO CT P CL SO CA

16

Show-o 10 0.674 0.823 0.647 0.288 0.838 0.984 0.463 0.277 0.992 0.318
Show-o 5 0.672 0.778 0.666 0.293 0.835 0.991 0.468 0.270 0.885 0.318

UniCMs∗ 0 0.649 0.793 0.644 0.253 0.809 0.956 0.440 0.266 0.768 0.315
UniCMs 0 0.646 0.818 0.597 0.218 0.827 0.984 0.430 0.273 0.925 0.318

8

Show-o 10 0.578 0.631 0.519 0.235 0.811 0.991 0.280 0.257 0.672 0.313
Show-o 5 0.580 0.647 0.584 0.225 0.766 0.984 0.275 0.255 0.632 0.313

UniCMs∗ 0 0.642 0.788 0.631 0.253 0.787 0.981 0.413 0.264 0.800 0.315
UniCMs 0 0.638 0.813 0.541 0.250 0.814 0.991 0.420 0.273 0.963 0.318

4

Show-o 10 0.353 0.237 0.325 0.095 0.540 0.863 0.060 0.197 -0.560 0.283
Show-o 5 0.396 0.298 0.334 0.158 0.572 0.925 0.088 0.207 -0.300 0.294

UniCMs∗ 0 0.596 0.692 0.553 0.218 0.758 0.978 0.375 0.249 0.633 0.312
UniCMs 0 0.625 0.770 0.553 0.245 0.806 0.978 0.398 0.269 0.934 0.318

2

Show-o 10 0.181 0.025 0.131 0.008 0.327 0.588 0.008 0.140 -1.756 0.246
Show-o 5 0.251 0.051 0.188 0.038 0.442 0.778 0.010 0.152 -1.456 0.260

UniCMs∗ 0 0.459 0.407 0.422 0.148 0.668 0.925 0.185 0.201 -0.259 0.295
UniCMs 0 0.557 0.614 0.478 0.180 0.793 0.972 0.305 0.247 0.680 0.312

Table 7: Comparison of T2I performance at the resolution of 512 × 512 based on GenEval,
HPS, IR, and CS. AVG: average, TO: Two Object, CT: Counting, P: Position, CL: colors, SO:
Single Object, CA: Color Attr.

Steps Model CFG GenEval ↑ HPS ↑ IR ↑ CS ↑
AVG TO CT P CL SO CA

16

Show-o 10 0.591 0.692 0.478 0.165 0.859 0.978 0.378 0.254 0.739 0.310
Show-o 5 0.571 0.631 0.469 0.155 0.846 0.994 0.333 0.253 0.642 0.309

UniCMs∗ 0 0.543 0.593 0.447 0.130 0.814 0.953 0.323 0.251 0.586 0.307
UniCMs 0 0.562 0.689 0.366 0.140 0.814 0.991 0.373 0.258 0.752 0.310

8

Show-o 10 0.540 0.578 0.428 0.145 0.838 0.969 0.285 0.249 0.665 0.308
Show-o 5 0.530 0.558 0.441 0.133 0.825 0.972 0.255 0.247 0.602 0.308

UniCMs∗ 0 0.518 0.518 0.400 0.123 0.809 0.972 0.285 0.250 0.597 0.307
UniCMs 0 0.552 0.669 0.353 0.128 0.817 0.963 0.385 0.255 0.738 0.309

4

Show-o 10 0.425 0.333 0.334 0.100 0.700 0.950 0.135 0.228 0.219 0.301
Show-o 5 0.429 0.351 0.369 0.078 0.707 0.947 0.120 0.228 0.225 0.302

UniCMs∗ 0 0.504 0.513 0.375 0.130 0.787 0.962 0.257 0.245 0.586 0.307
UniCMs 0 0.523 0.664 0.303 0.103 0.801 0.959 0.308 0.252 0.706 0.309

2

Show-o 10 0.206 0.046 0.140 0.033 0.330 0.678 0.010 0.169 -1.257 0.254
Show-o 5 0.229 0.068 0.122 0.023 0.378 0.763 0.020 0.182 -0.917 0.263

UniCMs∗ 0 0.439 0.358 0.313 0.075 0.755 0.941 0.193 0.224 0.174 0.302
UniCMs 0 0.494 0.530 0.334 0.093 0.787 0.959 0.260 0.240 0.529 0.306

Table 8: Comparison of 256 × 256 T2I performance on GenEval, HPS, IR, and CS. UniCMs∗
refers to the model after the first stage of training. AVG: average, TO: Two Object, CT: Counting,
P: Position, CL: colors, SO: Single Object, CA: Color Attr.

a fixed trajectory under a greedy strategy diminishes both their diversity and quality. Moreover, the
T2I model’s distribution encapsulates rich information, which is inherently diminished during the
sampling process due to information loss. To address this, we propose constructing regularized log-
its labels by capturing the T2I model’s distribution at each sampling step. As illustrated in Figure 7,
we initialize a global logits target as an all-zero tensor. During the iteration of the trajectory uk,
we focus on regions transitioning from mask to image tokens, populating the final target with the

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Method Decoding tokens/s ↑ POPE ↑ MMMU ↑ Flickr30K ↑ NoCaps ↑

Show-o AR 40.3 83.2 24.6 24.9 29.4
Jacobi 36.9 83.2 24.6 24.9 29.4

UniCMs∗ Jacobi 49.9 81.8 25.4 23.5 28.1
UniCMs Jacobi 61.1 78.4 26.3 22.2 26.5

Table 9: Comparison of I2T performance at the resolution of 512 × 512 on multiple bench-
marks. Note that Flickr30K and NoCaps evaluate the ability of image description, and POPE and
MMMU measure question-answering ability.

corresponding predicted logits for these regions. Through this iterative procedure, we synthesize a
complete logits target, enabling the computation of Lu

REG. If a segmentation strategy is adopted,
the missing portions of the logits target can be populated with the final predicted logits at the seg-
mentation endpoints. This produces a complete regularization label.

E SEGMENTATION DETAILS

Direct learning of consistency across an entire trajectory is challenging for models and often leads to
convergence difficulties. Therefore, we propose applying a segmentation strategy to the multimodal
denoising trajectory. Specifically, we evenly divide the trajectory into several segments and enforce
consistency constraints between a randomly selected point within a segment and the endpoint of that
segment, rather than the endpoint of the entire trajectory. For image trajectories, the regularization
logits labels constructed from segment endpoints are incomplete. We address this by filling the
missing parts with the logits predicted from the last iteration of that segment. We only compute the
consistency loss in the masked regions of the segment endpoints and the regularization loss in the
masked regions of the randomly selected points. For text trajectories, we continue to use noise-free
text as the regularization constraint, introducing segmentation only in the consistency loss. Through
ablation studies in Section 4.3, we demonstrate that this objective is more amenable to learning,
facilitating model convergence toward the target and enhancing the effectiveness of acceleration.

F TRAINING DETAILS AND RESULTS OF 256 RESOLUTION

For 256 resolution, we separate the training process into two stages. In the first stage, we get image
trajectories with a CFG scale of 10 and K = 16. We split each trajectory into 4 segments to train
the consistency model, denoted as UniCMs∗. In the second stage, we collect image trajectories
using UniCMs∗. We sample image trajectories with a CFG scale of 1.5, K = 8, and the number of
segments as 2. The text trajectories are collected similarly. We employ Jacobi decoding to iteratively
produce 16 tokens in each round to finally form lengthy text, which proves to yield good acceleration
performance while preserving the generative modeling capabilities (Kou et al., 2024a). In terms of
loss coefficients, we set α = 10 according to the relative values of the losses, set β = 20 and
γ = 100 according to the ablation study in Table 5, and set δ = 2 following (Xie et al., 2024a). We
use an AdamW optimizer and 8 RTX 4090 GPUs to train each stage for 18 hours, with a constant
learning rate of 10−5.

Method Decoding tokens/s ↑ POPE ↑ MME ↑ MMMU ↑ Flickr30K ↑ NoCaps ↑

Show-o AR 41.8 73.8 948.4 25.1 20.8 25.8
Jacobi 38.2 73.8 948.4 25.1 20.8 25.8

UniCMs∗ Jacobi 61.3 72.6 803.4 27.0 19.8 23.8
UniCMs Jacobi 64.5 73.2 872.4 25.8 19.2 23.0

Table 10: Comparison of 256 × 256 MMU performance on multiple benchmarks. Note that
Flickr30K and NoCaps evaluate the ability of image description, and POPE, MME, and MMMU
measure question-answering ability.
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Table 8 and Table 10 show the performance of UniCMs on T2I and MMU tasks at 256-resolution
respectively. It can be observed that UniCMs can also achieve the effect of 8 steps of the original
model in 4-step sampling without CFG in 256-resolution image generation, and also achieves about
1.5 times acceleration in 256-resolution image understanding.

G ABLATION STUDY ON BLOCK SIZE FOR IMAGE-TO-TEXT GENERATION

To investigate the impact of the parallel decoding block size on the inference speed of UniCMs,
we conduct an ablation study on the NoCaps dataset. As parallel decoding introduces overhead, its
efficiency is highly dependent on the length of the generated sequence. We therefore evaluate two
distinct scenarios: a short caption generation task (e.g., 10-30 tokens) and a long caption generation
task (e.g., 80-120 tokens). We measure the throughput in Tokens Per Second (TPS) and the average
number of iterations required to decode a single block.

The results, presented in Table 11 and Table 12, reveal a clear trade-off.

Block Size TPS ↑ Avg. Iterations/Block ↓
16 61.1 10.6
32 43.1 19.4
64 23.5 35.6

Table 11: Performance on short caption generation tasks with varying block sizes. Larger block
sizes increase overhead and reduce overall throughput for short sequences.

Block Size TPS ↑ Avg. Iterations/Block ↓
16 80.3 10.8
32 90.1 18.5
64 92.6 35.6

Table 12: Performance on long caption generation tasks with varying block sizes. For longer se-
quences, larger block sizes significantly improve throughput.

As indicated, for short generation tasks like standard image captioning, increasing the block size
from 16 to 64 significantly raises the generation overhead (from 10.6 to 35.6 iterations), thereby re-
ducing the effective throughput (TPS). Conversely, for long generation tasks, the overhead of parallel
decoding is amortized over a longer sequence, and larger blocks substantially improve throughput.
With a block size of 64, the throughput reaches 92.6 TPS, achieving a significant 2.3× speedup
compared to the 40.3 TPS of the autoregressive baseline (Show-o).

The 1.5× speedup reported in the main manuscript corresponds to the more common short caption-
ing scenario (block size 16), which represents a conservative estimate of the acceleration capability
of UniCMs.

H ADDITIONAL IMAGE RESULTS

Figure 8 and Figure 9 show the image generation results for 512 and 256 resolutions respectively.
UniCMs can generate high-quality images with rich details using only 2 to 4 sampling steps and
without CFG.
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Figure 8: 512 × 512 images generated by UniCMs. From left to right, the images are generated by UniCMs
in 2, 4, 8 and 16 sampling steps without CFG.
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Figure 9: 256 × 256 images generated by UniCMs. From left to right, the images are generated by UniCMs
in 2, 4, 8 and 16 sampling steps without CFG.
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