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Abstract

Knowledge graph embeddings (KGEs) learn001
low-dimensional representations of entities002
and relations to predict missing facts based003
on existing ones. Quantum-based KGEs uti-004
lize variational quantum circuits for link pre-005
diction and score triples via the probability dis-006
tribution of measuring the qubit states. But007
current quantum-based KGEs either lose quan-008
tum advantages during optimizing, or require009
a large number of parameters to store quan-010
tum states, thus leading to overfitting and011
low performance. Besides, they ignore the-012
oretical analysis which are essential for un-013
derstanding the model performance. To ad-014
dress performance issue and bridge theory015
gap, we propose QubitE which is lightweight016
and suitable for link prediction task. In ad-017
dition, our model preserves quantum advan-018
tages which enable quantum logical comput-019
ing based on semantics. Furthermore, we020
prove that (1) QubitE is full-expressive; (2)021
QubitE can infer various relation patterns022
including symmetry/antisymmetry, inversion,023
and commutative/non-commutative composi-024
tion; (3) QubitE subsumes several existing025
approaches, e.g. DistMult, pRotatE, RotatE,026
TransE and ComplEx; (4) QubitE owns lin-027
ear space complexity and linear time com-028
plexity. Experiments on multiple benchmark029
knowledge graphs demonstrate that QubitE030
can achieve comparable results to the state-of-031
the-art classical models.032

1 Introduction033

Knowledge graphs (KGs) consist of nodes (entities)034

and edges (relationships between entities), which035

have been widely applied for knowledge-driven036

tasks such as question answering, recommendation037

system, and search engine. However, KGs are in-038

complete and this problem affects the performance039

of any algorithm related to KGs. Knowledge graph040

embeddings (KGEs) are prominent approaches to041

predict missing links for KG completion.042

Figure 1: Visualization of the QubitE architecture.
Upper explains that our socring function is based
on relation-specific quantum gates acting on entity-
specific quantum states. Lower illustrates a new feature
to operate entity embedding regardless of relation.

Quantum-based KGEs are the application of 043

quantum mechanics on knowledge representation 044

learning field, but current research is still in its ini- 045

tial stage. With parametric quantum circuits, Ma 046

et al. (2019) proposes the most classical quantum- 047

based KGEs, including two types of variational 048

quantum circuits KGEs. 049

The first type, i.e. QCE, considers latent features 050

for entities as coefficients of quantum states, while 051

predicates are characterized by parametric gates 052

acting on the quantum states. The score of a triple 053

depends on measurements on quantum states. How- 054

ever, measurements lead to information loss. The 055

quantum advantages, e.g. normalization constraint 056

of quantum states and quantum gates according to 057

the probabilistic interpretation of quantum mechan- 058

ics, disappear when optimizing the model. 059

The second type, i.e. F-QCE, generates embed- 060

dings of entities from parameterized quantum gates 061

acting on the pure quantum states. The quantum 062

embeddings can be trained efficiently meanwhile 063

preserving the quantum advantages. However, it 064

has to face the situation of parameter explosion, 065

because it is expensive to prepare multi qubits for 066

inference. 067
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Additionally, both types are of low perfor-068

mance on knowledge graph completion (KGC)069

task. Therefore, we would like to propose a method070

that (1) preserves the quantum advantages, (2) is071

lightweight and (3) achieves high performance.072

The reasons why we need the quantum advan-073

tages are listed below. Firstly, with the quantum074

advantages, we can operate on the semantics of075

entities through predefined quantum gates without076

the involvement of relations. This means that the077

model can perceive deeper, relation-independent,078

entity-specific semantic information. Secondly, it079

enables reprogramming based on semantics, cre-080

ating new entities from the negation, intersection,081

union, etc. This is new feature when compared to082

previous classical KGEs. Lastly, quantum advan-083

tages simplify the model and allow to better study084

it theoretically. All in all, it is valuable for KGE085

community to explore new approchs with physical086

explanation.087

In this paper, we propose a new quantum-based088

KGE for knowledge graph completion, namly089

QubitE. The entity embedding vectors are viewed090

as coefficients of quantum state, while preserving091

quantum advantages through activation function.092

The relation are modeled as parametric quantum093

gates acting on the quantum states. It is lightweight094

and suitable for link prediction task. Extensive095

experiments demonstrate the efficacy of our model.096

In addition, we theoretically analysis our model,097

including subsumption, full expressiveness, pat-098

terns inference and space&time complexity. We099

prove that QubitE is fully expressive and deriving100

a bound on the embedding dimensionality for full101

expressiveness, which is the crucial property that102

indicates well-separation of the data. We show that103

QubitE subsumes TransE, RotatE, pRotatE, Com-104

plEx and DisMult. Furthermore, we also prove that105

QubitE allows learning composition, inverse and106

symmetric relation patterns. Besides, QubitE owns107

linear space complexity and linear time complexity.108

We summarize our contributions as follows:109

• KGE: We propose QubitE, a new linear110

quantum-based KGE model for link predic-111

tion on knowledge graphs, that is lightweight,112

simple and expressive.113

• Theoretical Analysis: We fully analy-114

sis QubitE theoretically in subsumption,115

full expressiveness, patterns inference and116

space&time complexity.117

• Experiments: We conduct extensive exper- 118

iments on four standard public datasets to 119

demonstrate the efficacy of our model. The 120

source code is available online. 1 121

2 Related Work 122

Classical KGEs. are divided into the following 123

categories. Euclidean geometric KGEs includes 124

TransE (Bordes et al., 2013), TransR (Lin et al., 125

2015), RotatE (Sun et al., 2019), QuatE (Zhang 126

et al., 2019), 5*E (Nayyeri et al., 2021), etc. Non- 127

Euclidean geometric KGEs includes MuRP (Bal- 128

azevic et al., 2019b) and ATTH (Chami et al., 129

2020). Tensor decomposition KGEs includes 130

DistMult (Yang et al., 2015), ComplEx (Trouillon 131

et al., 2016), SimplE (Kazemi and Poole, 2018), 132

HypER (Balazevic et al., 2019a), TuckER (Balaze- 133

vic et al., 2019c), etc. Neural network KGEs in- 134

cludes ConvE (Dettmers et al., 2018), CoPER (Sto- 135

ica et al., 2020), etc. We provide short introduction 136

of these methods in Appendix A.4. 137

Quantum Embedding. Ma et al. (2019) pro- 138

poses two types of variational quantum circuits 139

(QCE and F-QCE) for knowledge graph embed- 140

ding. Lloyd et al. (2020) proposes a quantum em- 141

bedding model that represents classical data points 142

as quantum states in a Hilbert space via quantum 143

feature map. A classical data point x is translated 144

into a set of gate parameters in a quantum circuit ψ, 145

creating a quantum state |x〉 such that ψ : x→ |x〉. 146

However, our method is quite different. Firstly, we 147

distinguish quantum states by distance function on 148

the embedding vector rather than the probability 149

distribution of measuring the qubit states. Secondly, 150

entities in KG are assigned tunable parameters di- 151

rectly to create quantum states instead of using 152

parametric quantum circuits. 153

3 Preliminaries 154

Knowledge Graph Embeddings. A KG is a 155

multi-relational directed graph KG = (E ,R, T ) 156

where E is the set of nodes (entities) and R is 157

the set of edges (relations between entities). The 158

set T = {(h, r, t)} ⊆ E × R × E contains all 159

triples as (head, relation, tail), e.g. (smartPhone, 160

hypernym, iPhone). To apply learning methods 161

on KGs, a KGE learns vector representations of 162

entities (E) and relations (R). A vector represen- 163

tation denoted by (h, r, t) is learned by the model 164

per triple (h, r, t), where h, t ∈ Vde , r ∈ Vdr (Vd 165

1https://anonymous.4open.science/r/QubitE-ACL2022/
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is a d-dimensional vector space). TransE (Bordes166

et al., 2013) considers V = R while ComplEx167

(Trouillon et al., 2016) and RotatE use V = C168

(complex space) and QuatE (Zhang et al., 2019)169

considers V = H (quaternion space). In this pa-170

per, we choose two-dimensional Hilbert space to171

embed the graph i.e. V = C2. Most KGE models172

are defined via a relation-specific transformation173

function gr : Vde → Vde which maps head en-174

tities to tail entities, i.e. gr(h) = t. On top of175

such a transformation function, the score function176

f : Vde×Vdr×Vde → R is defined to measure the177

plausibility for triples: f(h, r, t) = p(gr(h), t).178

Generally, the formulation of any score function179

can be either p(gr(h), t) = −‖gr(h) − t‖ or180

p(gr(h), t) = 〈gr(h), t〉.181

Qubit. A classical bit can exist in one of two states182

denoted as 0 and 1. A quantum bit or qubit can183

exist not only in these two discrete states but in all184

possible linear superposition of them. Mathemati-185

cally, the quantum state of a qubit is represented as186

a state vector in a two-dimensional Hilbert space187

C2, whose basis vectors are denoted in the Dirac188

notation as189

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
(1)190

Let the vector |0〉 correspond to the classical value191

0, while |1〉 to 1. The state vector of a qubit is192

written as193

|ψ〉 = a |0〉+ b |1〉 (2)194

where a,b ∈ C, |a|2 + |b|2 = 1. The complex195

numbers a and b are called quantum amplitudes.196

According to quantum mechanics, if we make mea-197

surement on |ψ〉 to see whether it is in |0〉 or |1〉, the198

outcome will be 0(1) with the probability |a|2(|b|2)199

and state |0〉(|1〉) immediately. The density matrix200

ρ of state |ψ〉 is given by:201

ρ = |ψ〉 〈ψ| (3)202

Quantum Gates. Essentially, quantum gates trans-203

form the system from one state to another state.204

When measurements are not made, the time evolu-205

tion of a state is described by the Schrödinger equa-206

tion. Because of the probabilistic interpretation of207

quantum mechanics, state vectors are normalized208

to 1. Thus, the time development is unitary. Quan-209

tum gate U holds UU † = U †U = I , where U † is210

the conjugate transpose of matrix U . The general211

expression of a 2× 2 unitary matrix is 212

U =

(
a −eiψb∗
b eiψa∗

)
(4) 213

where a,b ∈ C, |a|2 + |b|2 = 1 and ψ is the angle. 214

a∗ is the complex conjugate of a. 215

4 Method 216

4.1 Model Formulation 217

Given a triple (h, r, t), the head and tail entities 218

h, t ∈ E are embedded into a d dimensional Hilbert 219

space i.e. h, t ∈ C2d where each element is a 220

2-dimensional complex value vector. A relation 221

r ∈ R is embedded into a d dimensional vector 222

r where each element is a 2 × 2 complex value 223

unitary matrix. r contains two complex vectors 224

ra and rb ∈ Cd. With rai, rbi,hai,hbi, tai, tbi, 225

we refer to the ith element of ra, rb,ha,hb, ta, tb 226

respectively. 227

4.1.1 Entity-specific Qubit Embedding 228

We use standard representation of the state of qubit 229

to represent an entity in C2d. The ith element of 230

entity embedding vector h is given by 231

hi = hai |0〉+ hbi |1〉 =

(
hai
hbi

)
,

i = 1, 2, · · · , d
(5) 232

where d is entity embedding dimension, hai,hbi ∈ 233

C and |hai|2 + |hbi|2 = 1 such that h = 234

[h1,h2, · · · ,hd]. 235

Respectively, the density matrix of entity h is 236

ρhi
= |hi〉 〈hi|

=

(
|hai|2 haih

∗
bi

hbih
∗
ai |hbi|2

)
.

(6) 237

4.1.2 Relation-specific Quantum Gate 238

We use reletion-specific transformation to map the 239

head entity h from a source to a target Hilbert 240

space. Since quantum gates are unitary, we write 241

the parameterized unitary matrix of ith element of 242

relation embedding vector r as 243

ri = Uri =

(
rai −eiψr∗bi
rbi eiψr∗ai

)
,

i = 1, 2, · · · , d
(7) 244

where d is relation embedding dimension, 245

rai, rbi ∈ C and |rai|2 + |rbi|2 = 1 so that r = 246
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Table 1: Scoring functions of state-of-the-art KGEs.
“?" denotes the circular correlation operation; “◦" de-
notes Hadmard (or element-wise) product. “⊗" denotes
Hamilton product.

Model Scoring Function Parameters

TransE ‖ (h + r)− t ‖ h, r, t ∈ Rd

HolE 〈r,h ? t〉 h, r, t ∈ Rd

DistMult 〈r,h, t〉 h, r, t ∈ Rd

ComplEx Re(〈r,h, t̄〉) h, r, t ∈ Cd

RotatE ‖ h ◦ r− t ‖ h, r, t ∈ Cd

QuatE h⊗ r · t h, r, t ∈ Hd

5*E ‖ r1h+r2
r3h+r4

− t ‖ h, t, r1...4 ∈ Cd

QubitE 〈Urh, t〉 h, t ∈ C2d

Ur ∈ C2×2×d

[r1, r2, · · · , rd]. This implies det(Uri) = eiψ 6= 0247

i.e. Uri is invertible.248

To apply quantum gate to the qubit, i.e. to apply249

relation-specific transformation r to the head entity250

h, we perform element-wise transformation via251

matrix multiplication to compute the transformed252

entity representation hr:253

hri = gri(hi) = Urihi =

(
raihai − eiψr∗bihbi
rbihai + eiψr∗aihbi

)
,

i = 1, 2, · · · , d
(8)

254

which implies hr = [hr1,hr2, · · · ,hrd].255

4.1.3 Scoring Function256

Table 1 summarizes scoring functions and parame-257

ters of several popular KGEs. TransE, HolE, and258

DistMult use Euclidean embeddings, while Com-259

plEx and RotatE operate in the complex space.260

QuatE operates in the quaternion space. In con-261

trast, our model uses quantum states and quantum262

gates which are in hyper-complex space.263

In our method, we do not need to exactly mea-264

sure the states. Instead, we separate the states by265

kernel methods.266

The score of a triple in KG is the similarity267

〈hr, t〉 between the relation-specific transformed268

head hr and tail t. The model aims to minimize269

the distance between hr and tail t, i.e. their sim-270

ilarity (〈hr, t〉) is maximized for positive triples.271

Otherwise, it is conversely minimized for sampled272

negative triples.273

There are various ways to define the similarity274

〈hr, t〉. In this paper, we choose the following275

definitions for experiments.276

Trace Distance.277

The trace distance measures the distinguishabil- 278

ity between two states. Two states are more similar 279

if their trace distance is smaller. We define the 280

similarity as the negative of the trace distance as 281

f(h, r, t) = −1

2
tr(
√

(ρhr − ρt)†(ρhr − ρt))
(9) 282

where ρhr , ρt are the density matrices of states |hr〉 283

and |t〉 respectively, tr(ρ) is the trace of density 284

matrix ρ, ρ† is the conjugate transpose of ρ. 285

Hilbert-Schmidt Distance. 286

Hilbert-Schmidt distance between two states is 287

known as l2 distance, while the l1 distance is trace 288

distance. Similarly, we define the similarity as the 289

negative of the Hilbert-Schmidt distance as 290

f(h, r, t) = −tr((ρhr − ρt)†(ρhr − ρt)) (10) 291

We also explore more definitions that may con- 292

tribute to the training procedure. Element-wise l1 293

distance and element-wise inner product are two 294

measurements that follows previous classic KGEs. 295

Element-wise l1 Distance. 296

f(h, r, t) = −‖hr − t‖1

= −
d∑
i=1

‖hri − ti‖1
(11) 297

where ‖x‖1 is the l1 norm of the two-dimensional 298

complex vector x ∈ C2d. 299

Element-wise Inner Product. 300

f(h, r, t) = Re(〈hr, t̄〉) (12) 301

whereRe(x) is the real part of the two-dimensional 302

complex vector x ∈ C2d. 〈hr, t̄〉 is element-wise 303

inner product. 304

4.1.4 Loss Function 305

In order to optimize the model, we formulate the 306

link prediction task as a classification problem. Fol- 307

lowing (Sun et al., 2019), the model minimizes the 308

following loss: 309

Loss =− log(γ − f(h, r, t))

−
K∑
i=1

p(hi, ri, ti) log σ(f(hi, ri, ti)− γ)

(13)

310

where γ is a fixed margin, K is the number 311

of negative examples, (hi, ri, ti) is the ith nega- 312

tive triple, σ is the sigmoid function. Besides, 313
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p(hi, ri, ti) is the distribution of sampling nega-314

tive samples, and it depends on negative sampling315

strategies such as uniform sampling, Bernoulli sam-316

pling and adversarial sampling (Sun et al., 2019).317

4.1.5 Initialization318

For parameter initialization, we adopt a particular319

initialization algorithm to preserve quantum advan-320

tages and speed up model efficiency and conver-321

gence (Glorot and Bengio, 2010). The initialization322

of entities follows the rule:323

areal = cos(θ)

aimg = sin(θ) cos(φ)

breal = sin(θ) sin(φ) cos(ϕ)

bimg = sin(θ) sin(φ) sin(ϕ)

(14)324

where areal,aimg,breal,bimg denote the scalar and325

imaginary coefficients of a and b, respectively.326

θ, φ, ϕ are randomly generated from the interval327

[−π, π]. The initialization of relations follows an328

extended rule. The coefficients of a and b are ini-329

tialized by the same rule as above, while the angle330

ψ is randomly generated from the interval [−π, π].331

This initialization method is optional.332

4.2 Theoretical Analysis333

The Proposition 1 below illustrates the connection334

with classic KGE methods.335

Proposition 1. qubit representation is equal to336

unit quaternion representation. In this way, spe-337

cial quantum gates are rotations in the quaternion338

space.339

For each qubit representation, there are four free340

variables normalized to 1. There exists a natural341

one-to-one mapping φ:342

φ : C2 → H
(a+ bi) |0〉+ (c+ di) |1〉 → a+ bi + cj + dk

a2 + b2 + c2 + d2 = 1

(15)

343

that map each qubit to unit quaternion. Similarly,344

the relation representation is also mapped to unit345

quaternion if we limit the angle ψ = 0 in unitary346

matrix.347

ϕ : C2×2 → H(
a+ bi −c+ di
c+ di a− bi

)
→ a+ bi + cj + dk

a2 + b2 + c2 + d2 = 1

(16)348

Therefore, that special quantum gates acting on 349

qubit states is equal to the Hamilton product of two 350

unit quaternions. With ψ = 0 we generate a variant 351

of QubitE, namely QubitE2. 352

However, QuatE (Zhang et al., 2019) which rep- 353

resents entities as quaternion and relations as rota- 354

tions in the quaternion space, subsumes QubitE2 355

but does not subsume QubitE, because ψ 6= 0. The 356

determine of unitary matrix in QubitE is eiψ rather 357

than 1. In other words, the general quantum gates 358

of QubitE are not equal to unit quaternions. 359

4.2.1 Subsumption 360

In this section, We show that QubitE subsumes 361

other models and inherits their favorable character- 362

istics in learning various graph patterns. We also 363

provide full proofs in the AppendixA.1. 364

Definition 1. A model M1 subsumes M2 when any 365

scoring over triples of a KG measured by modelM2 366

can also be obtained by M1 (Wang et al., 2018). 367

Proposition 2. QubitE subsumes DistMult, pRo- 368

tatE, RotatE, TransE and ComplEx. 369

4.2.2 Full Expressiveness 370

Definition 2 (from (Kazemi and Poole, 2018)). A 371

model M is fully expressive if there exist assign- 372

ments to the embeddings of the entities and rela- 373

tions, that accurately separate correct triples for 374

any given ground truth. 375

Proposition 3. QubitE is fully expressive. 376

4.2.3 Inference of Patterns 377

Proposition 4. Let r2 ∈ R be the inversion of r1 ∈ 378

R. QubitE infers this pattern with Ur2,i = U−1r1,i 379

for i = 1, 2, · · · , d where d is relation embedding 380

dimension. 381

Proposition 5. Let r ∈ R be symmetric (antisym- 382

metric). QubitE infers the symmetry (antisymme- 383

try) pattern if Ur,i = U−1r,i holds (does not hold) 384

for i = 1, 2, · · · , d where d is relation embedding 385

dimension. 386

Proposition 6. Let r1, r2, r3 ∈ R be relations and 387

r3 be a composition of r1 and r2. QubitE infers 388

composition with Ur2,iUr1,i = Ur3,i. If r1 and r2 389

are commutative, then Ur2,iUr1,i = Ur1,iUr2,i. If 390

r1 and r2 are non-commutative, then Ur2,iUr1,i 6= 391

Ur1,iUr2,i for i = 1, 2, · · · , d where d is relation 392

embedding dimension. 393

With above propositions, we conclude that: 394
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Theorem 1. QubitE can model the symmetry /395

antisymmetry, inversion, and commutative / non-396

commutative composition patterns.397

4.2.4 Complexity Analysis398

Table 2 compares the space and time complexity of399

QubitE with several popular models. It can be seen400

that QubitE is efficient and shares similar complex-401

ity with classical KGEs such as TransE, RotatE and402

QuatE, etc.403

Space Time
Methods Complexity Complexity

TransE O(|E|n+ |R|n) O(n)
TransH O(|E|n+ |R|n) O(n)
TransR O(|E|n+ |R|n2) O(n2)
RESCAL O(|E|n+ |R|n2) O(n2)
DistMult O(|E|n+ |R|n) O(n)
ComplEx O(|E|n+ |R|n) O(n)
RotatE O(|E|n+ |R|n) O(n)
QuatE O(|E|n+ |R|n) O(n)
5*E O(|E|n+ |R|n) O(n)

QubitE O(|E|n+ |R|n) O(n)

Table 2: Comparison in space and time complexity.

5 Experiments404

5.1 Experimental Settings405

Datasets We evaluated our model on four widely406

used benchmark datasets namely FB15k (Bol-407

lacker et al., 2008), FB15k-237 (Toutanova and408

Chen, 2015), WN18 (Bordes et al., 2013) and409

WN18RR (Dettmers et al., 2018). Table 3 sum-410

marizes the statistics of these four datasets. See411

Appendix A.2 for more details.412

Dataset #train #valid #test

FB15k 483,142 50,000 59,071
WN18 141,442 5,000 5,000
FB15k-237 272,115 17,535 20,466
WN18RR 86,835 3,034 3,134

Table 3: Dataset Statistics. Split of datasets in terms
of number of triples.

Evaluation Protocol In order to speed up evalu-413

ation, we score each triple with all entities at a time.414

In detail, firstly, for each test triples, we replace415

tail entity with all entities in the KG to obtain can- 416

didate triples. Then, we compute the scores of all 417

candidate triples and sort them by scores ascending 418

order. Finally, we store the rank of the correct triple. 419

Following the best practices of evaluations for em- 420

bedding models, we consider the most-used metrics 421

(Mean) Reciprocal Rank (MRR) and Hits@n (n = 422

1, 3, 10). For all metrics, the higher, the better. 423

Implementation Details We implement our 424

model with PyTorch (Paszke et al., 2017). The 425

model is trained and tested on one GTX1080 426

graphic card. We use Adam as a gradient optimizer. 427

In addition, we adopt the same type constraint from 428

QuatE (Zhang et al., 2019). See Appendix A.3 for 429

more details about hyperparameters. 430

Baselines We compare QubitE with 17 strong 431

baselines. For Euclidean KGEs, we report TransE, 432

TransR, RotatE, QuatE, 5*E and HopfE. For Non- 433

Euclidean KGEs, we compare to MuRP and ATTH. 434

For Tensor Decomposition KGEs, we report Dist- 435

Mult, ComplEx, SimplE, HypER and TuckER. 436

For Neural Network KGEs, we report ConvE and 437

CoPER. For Quantum KGEs, we report QCE and 438

its variant F-QCE. All these models are introduced 439

in Appendix A.4. 440

5.2 Main Results 441

We study the performance of our method on link 442

prediction task. Table 4 shows the results on 443

WN18RR and FB15k-237, and Table 5 summa- 444

rizes the results on WN18 and FB15k. Overall, 445

QubitE achieves competitive results compared to 446

the state-of-the-art classical models on all metrics 447

across all datasets exepct WN18RR. 448

FB15k-237 and WN18RR mainly contain in- 449

ference patterns of symmetry/antisymmetry and 450

composition. For Euclidean KGEs, TransE and 451

TransR perform the worst because they cannot in- 452

fer antisymmetry or inversion patterns. RotatE and 453

its variant pRotatE perform better for their infer- 454

ence ability. But QubitE subsumes RotatE and 455

not surprisingly has better performance than Ro- 456

tatE. From RotatE, QuatE to HopfE, the MRR and 457

Hits@10 steadily improve with the promotion on 458

the complex space, quantization space, etc. For 459

Tensor Decomposition KGEs, ComplEx and Dist- 460

Mult perform poorly since they cannot infer the 461

composition pattern. TuckER is much better be- 462

cause of its full expressiveness. For Neural Net- 463

work KGEs, ConvE and CoPER utilize convolution 464

neural network and contextual parameter generate 465
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FB15k-237 WN18RR

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

TransE (Bordes et al., 2013) .294 .465 − − .226 .501 − −
TransR (Lin et al., 2015) − .486 − − − .503 − −
RotatE (Sun et al., 2019) .338 .533 .375 .241 .476 .571 .492 .428
QuatE (Zhang et al., 2019) .348 .550 .382 .248 .488 .582 .508 .438
NagE (Yang et al., 2020) .340 .530 .378 .244 .477 .574 .493 .432
5*E (Nayyeri et al., 2021) .350 .530 .380 .260 .470 .580 .500 .410
HopfE (Bastos et al., 2021) .343 .534 .379 .247 .472 .586 .500 .413

MuRP (Balazevic et al., 2019b) .340 .520 .370 .240 .480 .570 .500 .440
ATTH (Chami et al., 2020) .311 .488 .339 .223 .456 .526 .471 .419

DistMult3 (Yang et al., 2015) .241 .419 .263 .155 .430 .490 .440 .390
ComplEx3 (Trouillon et al., 2016) .247 .428 .275 .158 .440 .510 .460 .410
HypER (Balazevic et al., 2019a) .341 .520 .376 .252 .465 .522 .477 .436
TuckER (Balazevic et al., 2019c) .358 .544 .394 .266 .470 .526 .482 .443

ConvE3 (Dettmers et al., 2018) .325 .501 .356 .237 .430 .520 .440 .400
CoPER (Stoica et al., 2020) .365 .504 − .295 .465 .510 − .427

QCE (Ma et al., 2019) − .350 .225 − − .323 .195 −
F-QCE (Ma et al., 2019) − .337 .198 − − .378 .274 −

QubitE (ours) .366 .554 .400 .273 .467 .525 .478 .437
QubitE2 (ours) .366 .555 .401 .273 .471 .531 .482 .441

Table 4: Link prediction results on FB15k-237 and WN18RR. Results are grouped from top to bottom by Euclidean
KGEs, Non-Euclidean KGEs, Tensor Decomposition KGEs, Neural Network KGEs and Quantum KGEs. Best
results are in bold, second best results are underlined, third best results are italic. [3]: Results are taken from
(Dettmers et al., 2018). Other results are taken from their original papers. QubitE2 is the varient with ψ = 0.

FB15k WN18

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

TransE (Bordes et al., 2013) .463 .749 .578 .297 .495 .943 .888 .113
TransR (Lin et al., 2015) .198 .582 .404 .218 .427 .940 .876 .335
RotatE (Sun et al., 2019) .797 .884 .830 .746 .949 .959 .952 .944
QuatE (Zhang et al., 2019) .782 .900 .835 .711 .950 .959 .954 .945
NagE (Yang et al., 2020) − − − − .950 .960 .953 .944
5*E (Nayyeri et al., 2021) .730 .860 .780 .660 .950 .960 .950 .950
HopfE (Bastos et al., 2021) − − − − .949 .960 .954 .938

DistMult3 (Yang et al., 2015) .798 .893 − − .797 .893 − −
ComplEx (Trouillon et al., 2016) .692 .840 .759 .599 .941 .947 .936 .936
SimplE (Kazemi and Poole, 2018) .727 .838 .773 .660 .942 .947 .944 .939
HypER (Balazevic et al., 2019a) .790 .885 .829 .734 .951 .958 .955 .947
TuckER (Balazevic et al., 2019c) .795 .892 .833 .741 .953 .958 .955 .949

ConvE (Dettmers et al., 2018) .657 .831 .723 .558 .943 .956 .946 .935

QubitE (ours) .807 .894 .838 .758 .950 .957 .952 .945
QubitE2 (ours) .818 .897 .846 .753 .950 .959 .952 .946

Table 5: Link prediction results on FB15k and WN18. Results are grouped from top to bottom by Euclidean KGEs,
Tensor Decomposition KGEs, Neural Network KGEs. Best results are in bold, second-best results are underlined,
third-best results are italic. [3]: Results are taken from (Dettmers et al., 2018); Other results are taken from their
original papers. QubitE2 is the varient with ψ = 0.

neural network to socre triples. But these two meth-466

ods require too many parameters when compared467

to the linear model QubitE. On the whole, the im-468

provement of our method demonstrate the high 469

expressiveness of QubitE. 470

FB15k and WN18 mainly contain inference pat- 471
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terns of symmetry/antisymmetry and inversion.472

For Euclidean KGEs, TransE and TransR perform473

poorly on these two datasets because TransE cannot474

handle symmetry patterns and TransR cannot in-475

fer inversion patterns. RotatE converts the relation476

into the rotation in complex space, while QuatE477

in quaternion space, thus performing better. As478

QuatE observes, the normalization of the relation479

to unit quaternion is a critical step for the embed-480

ding performance. Exactly, because of quantum481

mechanics, QubitE satisfies the normalization con-482

straint naturally to preserve quantum advantages,483

thus performing much better.484

As a quantum-based method, QubitE outper-485

forms the two representative quantum-based mod-486

els QCE and F-QCE significantly. Compared with487

QCE and F-QCE, QubitE gains 50% improvements488

in average across all metrics on FB15k and WN18.489

After all, QCE is not able to preserve quantum ad-490

vantages in training, while F-QCE is faced with491

parameter explosion and overfitting. We believe492

the improvement of QubitE also originate from its493

pattern inference ability, full-expressiveness, sub-494

sumption and the correct application of quantum495

mechanism on link prediction task.496

5.3 Model Analysis497

Ablation Study on ψ. We constraint ψ = 0 to con-498

struct the variant QubitE2, which is subsumed by499

QuatE mentioned in Section 4.2. From Table 4 and500

Table 5, we observe that QubitE2 is slightly better501

than standard QubitE accross all datasets. The re-502

sults demonstrate that ψ is not the core parameter503

that improves the performance. It also indicates504

that the other parameters, whcih make quantum505

advantages come true, are more important for high506

performance. By the way, there is another expla-507

nation that ψ does not affect the physical measure-508

ment of qubits, so it does not significantly affect509

the experimental results.510

Impacts of Dimensionality. Our experiments511

also indicate that the selection of embedding512

dimension has substantial influence on both513

effectiveness and efficiency of QubitE. We514

train QubitE with embedding dimension d ∈515

{100, 200, 400, 800, 1000, 1200} and plot results516

based on the validation set, as shown in Figure 2.517

With the increase of d, the training time rises, while518

the model performance (indicated by MRR) in-519

creased slowly during d = 100 and d = 400 but520

fell sharply after d = 400. Therefore, we decide521

Figure 2: The convergence MRR and training time of
QubitE on WN18RR.

400 as the best setting for WN18RR. 522

Semantic Logic Computing. Logic computing is 523

the favorable feature different from all previous 524

classical KGEs. With the benification of quantum 525

mechanics, we can perform quantum logic comput- 526

ing on the semantic of learned quantum embedding. 527

For instance, given entity A, we can compute the 528

semantic negation of entity A using NOT quantum 529

circuit. In addition, we are able to get the semantic 530

intersection of given entity A and B with the help 531

of AND quantum gate. The NOT gate and AND 532

gate are non-parametric, indicating that logic com- 533

puting is relation-independent for entity quantum 534

embedding. QubitE supports all quantum logic op- 535

erators. AppendixA.6 gives the definitions of logic 536

operator NOT for example, explains how to use it 537

and visualizes the results. 538

6 Conclusion 539

In this paper, we propose a novel KGE named 540

QubitE to apply quantum mechanics for knowl- 541

edge graph completion. QubitE models entities as 542

qubit states and represents relations as quantum 543

gates. With fine-grained initialization algorithm 544

and scoring function, QubitE can preserve quan- 545

tum advantages and separate the triples properly. 546

With detailed theoretical analysis, QubitE owns the 547

advantages of full expressiveness, subsumption, 548

pattern inference ability and linear space&time 549

complexity. Empirical experimental evaluations 550

on four well-established datasets show that QubitE 551

achieves an overall comparable performance, out- 552

performing multiple recent strong baselines. 553
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A Appendix693

A.1 Theoretical Proofs694

A.1.1 Subsumption695

Here we will prove Proposition 2. We will show696

that QubitE subsumes DistMult, pRotatE, RotatE,697

TransE and ComplEx and inherits their favorable698

characteristics in learning various graph patterns.699

Before our proof for Proposition 2, we gives the700

proposition below:701

Proposition 7. ∀ unit quaternion q, there exists a702

surjection φ : H → C such that φ(q) is complex703

number. Moreover, φ(q) can be written in quater-704

nion format φ(q) = a+0i+bj+0k, a, b ∈ R, and705

the Hamilton product in quaternion space will also706

degrade to complex number multiplication.707

Proof. For any given unit quaternion q = a+ bi +708

cj + dk, we can write:709

a = cos(θ)

b = sin(θ) cos(φ)

c = sin(θ) sin(φ) cos(ϕ)

d = sin(θ) sin(φ) sin(ϕ)

(17)710

where θ, φ, ϕ ∈ [−π, π]. Our goal is to generate 711

φ(q) = a′ + 0i + b′j + 0k where a′, b′ ∈ R. 712

First, we can generate a′ from a with 713

a′ =
a

1− a2
. (18) 714

which implies a′ ∈ R. 715

Second, we note that 716

c

b
= tan(φ) cos(ϕ),

d

b
= tan(φ) sin(ϕ)

c2

b2
+
d2

b2
= tan2(φ)

c2

b
+
d2

b
= b(

c2

b2
+
d2

b2
)

= sin(θ) cos(φ) tan2(φ) ∈ R

(19) 717

Therefore, we can generate b′ with b, c, d with 718

b′ =
c2

b
+
d2

b
(20) 719

which implies b′ ∈ R. The surjection is 720

φ : H→ C
a+ bi + cj + dk→ a′ + 0i + b′j + 0k

a′ =
a

1− a2

b′ =
c2

b
+
d2

b

(21) 721

and the Hamilton product in quaternion space will 722

also degrade to complex number multiplication. 723

724

Then we can begin our proof for Proposition 2. 725

Proof. For any given entity h and relation r, we 726

have proved that they can be mapped to unit quater- 727

nions naturally (See Proposition 1). For any unit 728

quaternions, we also prove that there exists a sur- 729

jection that maps to complex numbers (See Propo- 730

sition 7). Let ze = a′e + 0i+ b′ej+ 0k where e rep- 731

resents qubit states, ze is the projected quaternion 732

format of e. Therefore, we obtain the following 733

equation: 734

f(h, r, t) = Re(〈hr, t̄〉)
= Re(〈zhr , zt〉)

=

d∑
i=1

Re(〈zhri , zti〉)

=
d∑
i=1

Re(〈zhi , zri , zti〉)

= fComplEx(h, r, t)

(22) 735
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which shows that QubitE subsumes Com-736

plEx. By removing the imaginary parts of737

ze, the scoring function becomes f(h, r, t) =738 ∑d
i=1〈Re(zhi), Re(zri), Re(zti)〉, degrading to739

DistMult in this case. On the other hand, we also740

have the following equation:741

f(h, r, t) = −‖hr − t‖
= −‖zhr − zt‖
= −‖zh ◦ zr − zt‖
= fRotatE(h, r, t)

(23)742

which shows that QubitE subsumes RotatE. From743

(Sun et al., 2019) we know RotatE subsumes pRo-744

tatE and TransE. So QubitE also subsumes pRotatE745

and TransE.746

A.1.2 Full Expressiveness747

Here we prove Proposition 3, that QubitE is fully748

expressive.749

Proof. The proof contains two steps. First, we750

show that QubitE is expressive. Second, we show751

that the expressiveness is full.752

In formulation, first, we show that QubitE can ex-753

press any ranking tensorA ∈ Rne×ne×nr where ne754

is the number of entities and nr is number of rela-755

tions in KG. The ikj-th element ofA, denoted αikj ,756

corresponds to the triple (hi, rk, tj). The rank-757

ing tensor gives lower rank to the triple (hi, rk, tj)758

than to (h′i, r
′
k, t
′
j) if the model scores the triple759

(hi, rk, tj) higher than (h′i, r
′
k, t
′
j). Second, for any760

boolean tensor B ∈ {0, 1}ne×ne×nr , QubitE ob-761

tains a ranking tensor which is consistent with B.762

That is, for βikj = 1 where the triple (hi, rk, tj) is763

positive and βi′k′j′ = 0 where the triple (h′i, r
′
k, t
′
j)764

is negative, we have αikj > αi′k′j′ to correctly765

separate the triples.766

For the first step, Wang et al. (2018) proved767

that the ComplEx model can obtain score tensor768

Mne×ne×nr that fulfills the ranking rules. The769

model gives score µikj = f(hi, rk, tj) for triple770

(hi, rk, tj), such that µikj < µi′k′j′ holds for the771

definition of ranking tensor A. In the subsump-772

tion 2 we proved that QubitE subsumes ComplEx.773

Therefore, there is a vector assignment to embed-774

dings of entities and relations such that QubitE775

obtains a ranking tensor.776

For the second step, Wang et al. (2018) show that777

for a given boolean matrix B, there exists a ranking778

matrix consistent with B. Therefore, it is also true779

for QubitE to obtain a ranking matrix consistent780

with B.781

With the first and the second step, we conclude 782

that there exists an assignment to entity and rela- 783

tion embeddings such that for any ground truth, 784

QubitE can separate the triples correctly. This 785

means QubitE is fully expressive. 786

A.1.3 Inference of Patterns 787

Symmetry/Antisymmetry 788

Definition 3. A relation r is symmetric (antisym- 789

metric) if 790

∀x, y ∈ E , (x, r, y) ∈ T ⇒ (y, r, x) ∈ T 791

((x, r, y) ∈ T ⇒ (y, r, x) /∈ T ) 792

793

Proposition 8. Let r ∈ R be symmetric (antisym- 794

metric). QubitE infers the symmetry (antisymme- 795

try) pattern if Ur,i = U−1r,i holds (does not hold) 796

for i = 1, 2, · · · , d where d is relation embedding 797

dimension. 798

Proof. Firstly, we consider the situation that rela- 799

tion r is symmetric. 800

According to Definition 3, a model infers the 801

symmetry pattern when for all given entities x, y, 802

if (x, r, y) is represented as positive, then (y, r, x) 803

is also represented as positive. That is 804

gr,i(xi) = yi (24) 805

then gr,i(yi) = xi. From Equation 24, we have 806

yi = gr,i(xi) = Ur,ixi. Since gr,i is the quantum 807

gate whose matrix representation Ur,i is unitary and 808

invertible, we can make the assumption Ur,i = U−1r,i 809

following Proposition 8. Then we have 810

yi = g−1r,i (xi) (25) 811

which equals to xi = gr,i(yi). This means that 812

the triple (y, r, x) must be positive, i.e. inferred as 813

positive. 814

Secondly, if relation r is antisymmetric, we just 815

make the assumption Ur,i 6= U−1r,i to get xi 6= 816

gr,i(yi), which means that the triple (y, r, x) is 817

inferred as negative. 818

Inversion 819

Definition 4. Relation r2 (e.g. StudentOf) is the 820

inversion of relation r1 (e.g. SupervisorOf) if 821

∀x, y ∈ E , (x, r1, y) ∈ T ⇒ (y, r2, x) ∈ T 822

823
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Proposition 9. Let r2 ∈ R be the inversion of r1 ∈824

R. QubitE infers this pattern with Ur2,i = U−1r1,i825

for i = 1, 2, · · · , d where d is relation embedding826

dimension.827

Proof. According to Definition 4, a model infers828

the inversion pattern when for all given entities829

x, y, if (x, r1, y) is represented as positive, then830

(y, r2, x) is also represented as positive. That is831

gr1,i(xi) = yi (26)832

then gr2,i(yi) = xi. From Equation 26, we have833

yi = gr1,i(xi) = Ur1,ixi. Since r1 is the quantum834

gate whose matrix representation Ur1,i is unitary835

and invertible, we can make the assumption Ur2,i =836

U−1r1,i following Proposition 9. Then we have837

yi = g−1r2,i(xi) (27)838

which equals to xi = gr2,i(yi). This means that839

the triple (y, r2, x) must be positive, i.e. inferred as840

positive.841

Commutative/Non-commutative Composition842

Definition 5. Relation r1 and relation r2 are com-843

mutative (non-commutative) if844

∀x, y ∈ E , (x, r1 ◦ r2, y) ∈ T845

⇒ (x, r2 ◦ r1, y) ∈ T846

(∃x, y ∈ E , (x, r1 ◦ r2, y) ∈ T847

⇒ (x, r2 ◦ r1, y) /∈ T )848

where ◦ is the composition operator.849

Definition 6. Relation r3 (e.g. UncleOf) is the com-850

position of relation r1 (e.g. FatherOf) and relation851

r2 (e.g. BrotherOf) if852

∀x, y, z ∈ E , (x, r1, y) ∈ T ∧ (y, r2, z) ∈ T853

⇒ (x, r3, z) ∈ T854

Proposition 10. Let r1, r2, r3 ∈ R be relations855

and r3 be a composition of r1 and r2. QubitE infers856

composition with Ur2,iUr1,i = Ur3,i. If r1 and r2857

are commutative, then Ur2,iUr1,i = Ur1,iUr2,i. If858

r1 and r2 are non-commutative, then Ur2,iUr1,i 6=859

Ur1,iUr2,i for i = 1, 2, · · · , d where d is relation860

embedding dimension.861

Proof. According to Definition ??, a model infers862

a composition pattern when for all given entities863

x, y, z, if the score of the model represents triples864

(x, r1, y) and (y, r2, z) as positive, it also repre- 865

sents (x, r3, z) as positive. In other words, when 866

given 867

gr1,i(xi) = yi

gr2,i(yi) = zi
(28) 868

then it holds gr3,i(xi) = zi for i = 1, 2, · · · , d 869

where 870

grj ,i(hi) = Urj ,ihi,

j = 1, 2, 3; i = 1, 2, · · · , d
(29) 871

From Equation 28, we insert yi = gr1,i(xi) into 872

gr2,i(yi) = zi, which gives gr2,i(gr1,i(xi)) = zi. 873

Therefore, we have 874

gr2,i ◦ gr1,i(xi) = Ur2,iUr1,ixi = zi. (30) 875

Considering the Proposition 6 and assuming 876

Ur2,iUr1,i = Ur3,i, we have gr2,i ◦ gr1,i(xi) = 877

gr3,i(xi) = zi. This means that the triple (x, r3, z) 878

must be positive, i.e. inferred to be positive. If 879

r1 and r2 are commutative, then Ur2,iUr1,i = 880

Ur1,iUr2,i. If r1 and r2 are non-commutative, then 881

Ur2,iUr1,i 6= Ur1,iUr2,i. 882

A.2 Datasets 883

FB15k is a standard benchmark created from the 884

original FreeBase KG (Bollacker et al., 2008). 885

WN18 (Bordes et al., 2013) is a lexical database 886

with hierarchical collection for the English lan- 887

guage that was derived from the original WordNet 888

dataset (Miller, 1992). According to (Dettmers 889

et al., 2018), FB15k and WN18 suffer from 890

the test leakage problem. The training set con- 891

tains many inverse test triples. To solve the 892

problem, FB15k-237 and WN18RR are proposed 893

as sub-version of FB15k and WN18, respec- 894

tively, with inverse relations removed. The 895

FB15k-237 and WN18RR datasets both include 896

several relational patterns such as composition 897

(e.g. awardnominee/ . . . /nominatedfor), sym- 898

metry (e.g. derivationally_related_form in 899

WN18RR), and anti-symmetry (e.g. has_part in 900

WN18RR). 901

A.3 Implementation Details 902

We implement our model with PyTorch (Paszke 903

et al., 2017). The model is trained and tested on 904

one GTX1080 graphic card. We use Adam as 905

a gradient optimizer. In addition, we adopt the 906

same type constraint from QuatE (Zhang et al., 907

12



Dataset lr drop de dr bs

FB15k 0.00005 0.1 600 600 512
FB15k-237 0.0005 0.2 200 200 512
WN18 0.0001 0.1 400 400 512
WN18RR 0.00005 0.2 400 400 512

Table 6: Hyper-parameter values for QubitE across all
datasets.

2019). More clearly, type constraint is to con-908

straint the type (head or tail) of indicate entities909

in evaluation. Besides, we perform grid search910

to obtain the best hyperparameters according to911

MRR on the validation set. The hyperparame-912

ters are selected as follows: embedding dimension913

n ∈ {100, 200, 300, 400, 500, 600, 800, 1000},914

dropout rate drop ∈ {0.1, 0.2, 0.3}, batch size915

B ∈ {256, 512, 1024}. To clarify, we take 1-N916

scoring (Dettmers et al., 2018) to speed up train-917

ing.918

Table 6 shows the hyperparameter values re-919

ported for QubitE across all datasets, where lr de-920

notes (learning rate), drop (dropout rate), de (entity921

embedding dimension), dr (relation embedding di-922

mension), bs (batch size).923

A.4 Baselines924

In this section, we introduce the baseline models in925

our experiments.926

Euclidean KG Embedding.927

TransE (Bordes et al., 2013) models the rela-928

tionship as a distance transformation from the head929

entity to the tail entity; TransR (Lin et al., 2015)930

proposes to design a projection matrix for each931

relationship, in order that entities have different932

embedding vectors under different relationships;933

RotatE (Sun et al., 2019) defines the relationship934

as rotation transformation from head entities to935

tail entities in the two-dimensional complex space;936

QuatE (Zhang et al., 2019) uses the quaternion937

method to extend the rotation to three-dimensional938

complex space; 5*E (Nayyeri et al., 2021) pro-939

poses a model based on projective geometry that940

provides a unified method for simultaneously rep-941

resenting translation, rotation, homomorphism, in-942

version, and reflection.943

Non-Euclidean KG Embedding.944

MuRP (Balazevic et al., 2019b) models both in945

hyperbolic space and Euclidean space, and com-946

bines relationship vectors, which can handle the947

multiple types of relationships that exist in the948

Dataset MRR Hits@10 Hits@3 Hits@1

FB15k-237 .366 .554 .400 .273
±3 ∗ 10−7 ±2 ∗ 10−6 ±2 ∗ 10−6 ±3 ∗ 10−7

WN18RR .467 .525 .478 .437
±9 ∗ 10−7 ±2 ∗ 10−2 ±3 ∗ 10−2 ±1 ∗ 10−2

FB15k .807 .894 .838 .758
±2 ∗ 10−6 ±1 ∗ 10−3 ±3 ∗ 10−2 ±2 ∗ 10−2

WN18 .950 .957 .952 .945
±5 ∗ 10−7 ±3 ∗ 10−6 ±5 ∗ 10−6 ±8 ∗ 10−7

Table 7: The mean values and variances of QubitE’s
results across all datasets.

graph; ATTH (Chami et al., 2020) uses the expres- 949

siveness of hyperbolic space and attention-based 950

geometric transformation to learn improved KG 951

representation in low-dimensional space. 952

Tensor Decomposition KG Embedding. 953

DistMult (Yang et al., 2015) relaxes the con- 954

straint on the relationship matrix and uses a diag- 955

onal matrix to represent the relationship matrix; 956

ComplEx (Trouillon et al., 2016) extends to the 957

complex space, which can solve both symmetric 958

and asymmetric relationships at the same time; 959

SimplE (Kazemi and Poole, 2018) proposed a sim- 960

ple Canonical Polyadic (CP) enhancement to allow 961

the two embeddings of each entity to be learned de- 962

pendently; HypER (Balazevic et al., 2019a) uses a 963

hypergraph network to generate a one-dimensional 964

convolution filter for each relationship, in order to 965

extract the specific characteristics of the relation- 966

ship; TuckER (Balazevic et al., 2019c) proposes a 967

model that uses Tucker decomposition to perform 968

link prediction on the binary tensor representation 969

of KG. 970

Neural Network KG Embedding. 971

ConvE (Dettmers et al., 2018) uses a convolu- 972

tional neural network (CNN) to predict tails and 973

define the scoring function; CoPER (Stoica et al., 974

2020) generates contextual parameters into neural 975

network to predict links. 976

A.5 Error Bars of Main Results 977

To evaluate the link prediction performance of 978

QubitE, we run the model five times with random 979

seeds 1, 10, 100, 1000, 10000. In this section, we 980

report the error bars of these results. Table 7 shows 981

the error bar of QubitE’s results on the four datasets. 982

Overall, the variances are small, which demonstrate 983

that the performence of QubitE is stable. 984
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Source Entity Source Entity Type Negation Entity Negation Entity Type Score

Hermann Hesse /music/artist Dannii Minogue /tv/tv_actor 0.8221
Norman Stiles /award/award_winner The Verdict /award/award_winning_work 0.9402
Edward G. Robinson /award/award_winner Snow White and the Huntsman /award/award_winning_work 0.8526
Martin Scorsese /tv/tv_producer Liza Minnelli /film/actor 0.8513
Ellie Kemper /tv/tv_actor Amy Winehouse /music/artist 0.6913

Table 8: The negation entities for source entities, generated by quantum gate NOT.

A.6 Semantic Logic Computing985

Benifit from quantum logic computing which re-986

lies on quantum advantages, we can apply classical987

quantum gates (not relation ones) to entity embed-988

dings to create new entities. Take NOT gate into989

consideration. Mathematically, NOT gate can be990

written as following:991

NOT =

(
0 1
1 0

)
(31)992

Here we can create new entity NOT(h), the se-993

mantic negation of entity h, via the following equa-994

tion:995

NOT(h) =

(
0 1
1 0

)(
ha
hb

)
=

(
hb
ha

)
(32)996

Then we score NOT(h) to all entities. The clos-997

est entity is regarded as the best interpretation of998

NOT(h). We randomly select 5 entities in FB15k999

and list their negations in Table 8. From the result1000

we observe that the negation create a connection1001

between "artist" and "tv_actor", "award_winner"1002

and "award_winning_work", "tv_producer" and1003

"film_actor". Overall, from the type of entities,1004

it makes sense that the target entity is the negation1005

of the source entity.1006

A.7 Limitation1007

In our model, one entity is only represented by1008

one qubit. However, there exists multi qubits sys-1009

tem, that represents entities as multi qubits and1010

brings more favorable features, though the theoreti-1011

cal analysis becomes difficult.1012

A.8 Potential Societal Impacts1013

Since our method learn quantum embeddings of en-1014

tities and preserve quantum advantages, the model1015

can capture deep semantic information of entities1016

without the involvement of relations. If we use1017

public data on the Internet to construct a knowl-1018

edge graph, personal information may be exposed1019

unexceptedly.1020

A.9 Supplementary Material 1021

We also provide our experiment logs online2. 1022

2https://timecat.notion.site/QubitE-Exp-Logs-
63c9ff16f03d49468131b5475849fc1e
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