
PBR-SR: Mesh PBR Texture Super Resolution
from 2D Image Priors

Yujin Chen1 Yinyu Nie1 Benjamin Ummenhofer2 Reiner Birkl2
Michael Paulitsch2 Matthias Nießner1

1 Technical University of Munich 2 Intel Labs

PBR-SR

Rendering with 
LR texture

PBR-SR

PBR-SR

OursOurs
Relighting with 

LR texture

Figure 1: Given a mesh with low-resolution (LR) PBR texture maps, PBR-SR generates high-
resolution (HR), high-quality PBR textures by leveraging 2D natural image super-resolution priors.
Operating directly on PBR maps, including albedo, roughness, metallic, and normal maps, PBR-SR
enables realistic relighting of mesh with SR textures under various lighting conditions.

Abstract

We present PBR-SR, a novel method for physically based rendering (PBR) texture
super resolution (SR). It outputs high-resolution, high-quality PBR textures from
low-resolution (LR) PBR input in a zero-shot manner. PBR-SR leverages an off-the-
shelf super-resolution model trained on natural images, and iteratively minimizes
the deviations between super-resolution priors and differentiable renderings. These
enhancements are then back-projected into the PBR map space in a differentiable
manner to produce refined, high-resolution textures. To mitigate the effects of view
inconsistency and lighting sensitivity inherent to view-based super-resolution, our
approach incorporates 2D prior constraints across multi-view renderings, enabling
iterative refinement of shared upscaled textures. In parallel, we incorporate identity
constraints directly in the PBR texture domain to ensure the upscaled textures
remain faithful to the LR input. PBR-SR operates without any additional training

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



or data requirements, relying entirely on pretrained image priors. We demonstrate
that our approach produces high-fidelity PBR textures for both artist-designed and
AI-generated LR PBR inputs, outperforming both direct SR models application
and prior texture optimization methods. Our results show high-quality outputs
in both PBR and rendering evaluations, supporting advanced applications such
as relighting.

1 Introduction

High-resolution (HR) textures are essential for achieving realistic visuals in physically based rendering
(PBR), particularly in applications where close-up details matter, such as in high-fidelity gaming,
cinematic effects, and VR experiences. Unfortunately, many existing assets, such as those in older
games or legacy 3D models, contain low-resolution textures that result in lower quality render results.
Super resolution for PBR textures can significantly enhance the quality of these assets, improving
visual clarity and allowing for dynamic relighting and material-aware effects that bring outdated or
low-resolution models up to current standards. By directly enhancing low-resolution PBR textures,
SR techniques enable better visual fidelity without the need to recreate or replace assets, preserving
both artistic intent and compatibility with modern rendering workflows.

Super resolution for PBR textures is particularly difficult due to low- and high-resolution (LR-HR)
datasets availability specifically for PBR materials. Unlike natural images, where large-scale, paired
datasets exist for supervised SR tasks [5, 6, 23], PBR textures lack such resources, hindering the ability
to train models that can accurately upscale these specialized textures. PBR textures require precise
alignment across channels (e.g., albedo, roughness, normal) to preserve detail and realism under
dynamic lighting and close-up views. However, limited high-quality data hinders the development of
effective SR models for such textures.

Existing image SR models can enhance PBR textures by processing every three channels separately.
However, current state-of-the-art image SR models are primarily designed for natural images and
fail to account for the specific properties of PBR textures [10, 15, 22, 24, 33, 34, 35, 39]. Applying
these models directly to PBR textures often yields suboptimal results, as they overlook the spatial
coherence and distinct material properties crucial in 3D rendering. An alternative approach is to
apply SR models directly to rendered images. However, this introduces view- and lighting-dependent
inconsistencies, since these models do not disentangle material properties from appearance. To
tackle these challenges, we directly optimize PBR textures with differentiable rendering to a higher
resolution. Once refined, these textures can be seamlessly integrated across different environments,
maintaining consistency and computational efficiency similar to their low-resolution counterparts.

We propose a zero-shot PBR texture SR method that relies solely on the input LR PBR maps
and a pre-trained image SR model. First, we generate an initial SR texture map by combining
interpolation-based upsampling with the pre-trained SR model, establishing a strong foundation for
further refinement. Second, we apply differentiable PBR rendering on the 3D mesh, synthesizing
multi-view renderings from strategically placed camera viewpoints. To enhance high-frequency
details, we render images from the same viewpoints and process them with the pre-trained SR model,
treating the outputs as pseudo-ground truth (GT) images. We optimize the SR PBR textures by
minimizing the discrepancy between differentiable renderings and pseudo-GTs. Leveraging the view-
independence of pseudo-GTs, we adopt a robust optimization strategy that jointly updates the target
PBR maps and a weighting map for each pseudo-GT, allowing the model to adaptively downweight
unreliable supervision. Additionally, to maintain consistency between the SR and LR PBR textures,
we introduce PBR consistency constraints that guide view-aware optimization. Extensive experiments
validate that our method achieves state-of-the-art performance in both texture fidelity and rendering
quality, facilitating applications such as relighting, which are beyond the capabilities of traditional
image SR methods.

In summary, our contributions are as follows:

• We present the first zero-shot PBR texture super-resolution framework, effectively leveraging
pretrained image SR priors both in UV texture space (for initialization) and in the 2D rendering
space (for iterative refinement).

2



Albedo NormalMetallic+
Roughness

Low-res PBR Texture

Albedo NormalMetallic+
Roughness

Super-res PBR Texture

Super-res 
Initialization

PBR Loss

Low-res Renderings

Super-res RenderingsDiff. Renderings

Multi-view
Rasterize

Robust
Pixel-wise Loss

Input Trainable Non-Trainable

LossForward Backward

Update

Iteratively update

Mesh Encoder &
add noise

multiple steps

Image Restoration 
Latent Diffusion

Decoder

Weighting Maps

Figure 2: Pipeline Overview. PBR-SR begins with a mesh and its LR PBR texture, which are used
to initialize the target SR texture (Section 3.2). Renderings are then generated from properly set
cameras and passed through an image restoration latent diffusion model to produce SR renderings as
pseudo-GT images (Section 3.4). A differentiable mesh rasterizer generates corresponding renderings
at the same resolution as SR pseudo-GT images. A robust pixel-wise loss is applied between these
renderings and the pseudo-GTs, while a per-view weighting map is jointly optimized to adaptively
balance supervision. Additionally, PBR consistency constraints are enforced on the SR textures using
the input LR PBR cues. This process iteratively optimizes and refines the SR textures for high-quality
results (Section 3.5).

• We introduce an iterative optimization algorithm that refines high-resolution textures by distilling
high-frequency details from image priors, while preserving fidelity to the low-resolution input
through tailored PBR regularizations.

2 Related Work

Realistic materials play a crucial role in generating detailed and realistic images. To this end, many
analytical models have been proposed describing how surfaces reflect light. Early works like [7, 29]
use simple reflectance models that lack physical principles like energy conservation, which changed
with the advent of physically based rendering (PBR) [13, 28]. While PBR has found wide adoption
in artist workflows and rendering engines [8, 12, 18], the creation or remastering of spatially varying
PBR materials with textures remains a difficult and time-consuming task in which SR methods
tailored to materials can help.

Image Restoration and Super Resolution. Recent advances in image restoration and super-
resolution (SR) have significantly enhanced image quality across various applications [20, 22, 40, 42,
26]. Notable transformer-based methods, including CAMixerSR [34], HiT-SR [39], and HAT [10], im-
prove reconstruction through hierarchical feature fusion and adaptive feature mixing. MambaIR [15]
employs state-space models to address complex spatial relationships effectively. Diffusion-based
approaches such as DiffBIR [24] and StableSR [33] excel in generating rich, high-frequency details
but typically lack multi-view consistency. Recent works explore multi-view image SR with NeRF-
based representations[17, 32, 43] or 3D Gaussian representations[14, 38], enabling view-consistent
super-resolution. In this work, we focus on using natural image priors for PBR mesh texture super
resolution.

Mesh Texture Generation. Recent advancements in mesh texture generation have explored GANs
and diffusion models to achieve realistic results [9, 11, 16, 25, 30, 36, 37, 41]. Texurify [31]
uses a GAN-based method to generate textures directly on the mesh surface, ensuring consis-
tency across views, while Convolutional Generation of Textured 3D Meshes [27] learns to generate
both meshes and textures using 2D supervision. Diffusion models have also proven effective, as
seen in Text2Tex [9], which synthesizes textures from text descriptions, and Paint-it [36], which
combines deep convolutional optimization with physically based rendering for realistic textures.
Decorate3D [16] further enhances text-driven texture generation for real-world applications. These
works push the boundaries of quality and realism in texture synthesis for 3D models. Different

3



from these works that generate texture constrained by category or text prompts, we target using
low-resolution texture as important clues and focus on the task of texture map SR.

Mesh Texture Super Resolution. Our review of the literature on mesh texture SR yielded only [21],
where the texture map contains baked material and lighting. This method finetunes an SR model on a
small paired dataset of LR and HR texture maps and applies it directly for texture upscaling. Unlike
this approach, we focus on SR for PBR texture maps, enabling broader applications like relighting and
material-aware editing. Similarly, Decorate3D [16] uses a standard SR model to upscale generated
512 × 512 UV textures to 2048 × 2048 but still includes baked material and lighting. In contrast,
our method directly optimizes LR PBR texture maps while considering mesh geometry, producing
high-quality SR PBR textures that are compatible with artist-created meshes and integrate efficiently
with existing PBR frameworks to improve texture fidelity.

3 Method

3.1 Overview

PBR-SR aims to recover HR PBR texture maps given the LR PBR texture maps with the corresponding
mesh, so that the output SR PBR texture maps can produce high-quality renderings. We denote the
input LR and the output SR PBR texture maps by albedo {Td

lr, Td
sr}, roughness {Tr

lr, Tr
sr}, metallic

{Tm
lr , Tm

sr} and surface normal {Tn
lr, Tn

sr}, respectively. Once we obtain the SR PBR texture maps,
we can produce high-quality renderings under arbitrary lighting and viewpoints.

The overview of PBR-SR is illustrated in Fig. 2. We propose a zero-shot method for PBR texture
super-resolution by leveraging pretrained image SR models and differentiable rendering. First, we
initialize HR texture maps from the given LR inputs. Next, we render multi-view images and upscale
them using a pretrained SR model to generate pseudo-GTs. A differentiable renderer synthesizes
images from the same viewpoints using the current HR textures. By iteratively optimizing the textures
to minimize the designed loss functions, our method effectively enhances PBR texture details.

3.2 PBR Texture Initialization

Given the input of LR PBR texture maps, we use them as the basis to initialize SR PBR maps.
Since the albedo map shares the most visual similarity with natural images, the LR albedo map is
directly fed to the SR model to produce the SR albedo map Td

sr. For the ARM maps (including
ambient occlusion (AO), roughness Tr, and metallic Tm) as well as the normal map Tn, we apply
bicubic interpolation to upsample them to the target resolution. If AO is unavailable, an empty map is
allocated in the red channel as a placeholder. The initial texture maps will be optimized iteratively
through the following modules.

3.3 Differentiable Rasterization for PBR

Given the PBR texture maps from Sec. 3.2, we texture the 3D mesh and perform differentiable
rasterization to obtain renderings. To render a point p on the mesh surface, the albedo aθ ∈ R3,
roughness αθ ∈ R, metallic mθ ∈ R, and normal direction nθ ∈ R3 can be queried from the texture
maps using UV coordinates. These UV coordinates are either predefined for the corresponding mesh
or computed through UV unwrapping. The specular reflectance F0,θ ∈ R3 is calculated as:

F0,θ = 0.04 · (1−mθ) +mθ · aθ.

The rendered color Lθ(p,ω) at surface point p, viewed from direction ω, is computed using the
rendering equation:

Lθ(p,ω) =

∫
Ω

Li(p,ωi)fθ(p,ωi,ω) (ωi · nθ) dωi, (1)

where ωi is the incident light direction, Ω is the hemisphere around the surface normal nθ, and Li is
the incident light from the environment map. The BRDF fθ(p,ωi,ω) models the material properties,
including albedo aθ, specular F0,θ, and normal nθ.

4



This rendering equation can be decomposed into a diffuse term Dθ(p) and a specular term Sθ(p,ω)
using the Cook-Torrance microfacet model [13]:

Lθ(p,ω) = Dθ(p) + Sθ(p,ω),

Dθ(p) = aθ(1−mθ)

∫
Ω

Li(p,ωi)(ωi · nθ)dωi,

Sθ(p,ω) =

∫
Ω

DθFθGθ

4(ω · nθ)(ωi · nθ)
Li(p,ωi)(ωi · nθ)dωi, (2)

where Dθ, Fθ, and Gθ represent the microfacet distribution, Fresnel term, and geometric attenuation,
respectively. Dθ and Gθ depend on roughness αθ, and Fθ is based on specularity F0,θ.

Once all surface points are processed, the rendered image Iθ is generated from a specific camera.
For brevity, we denote the rendering process as Iθ = RM(Td

sr,T
r
sr,T

m
sr,T

n
θ ), where RM(·) is the

differentiable mesh PBR rendering function.

3.4 Super Resolution on PBR Rendering

We also use the PBR texture maps from Sec. 3.2 and perform the traditional undifferentiable mesh
rendering to render an image from each specified camera viewpoint. Subsequently, we upscale each
rendered image Iθ with a 4× super-resolution scaling using DiffBIR [24], a unified blind image
restoration framework based on diffusion models. DiffBIR consists of two cascaded stages: first,
it removes image degradations to yield intermediate high-fidelity restorations; second, it leverages
a specially designed IRControlNet module built on latent diffusion models to regenerate realistic
high-frequency details. Specifically, we adapt DiffBIR by reducing the denoising steps to five for
computational efficiency and modify the text prompts to emphasize PBR rendering characteristics
(details provided in Supplementary Materials). The resulting high-resolution image ISR

θ serve as
pseudo-GT target of each viewpoint for optimizing high-resolution PBR textures.

3.5 Iterative Optimization

We use the super-resolution images from Sec. 3.4 to supervise our differentiable renderings from
Sec. 3.3 and iteratively optimize the PBR texture maps {Td

sr, Tr
sr, Tm

sr, Tn
sr} initialized in Sec. 3.2.

Optimizing PBR texture maps requires rendering the mesh from diverse viewpoints to capture as
much surface detail as possible. To achieve this, we normalize the mesh and position cameras on a
surrounding sphere to generate a well-distributed set of viewpoints. The camera poses and intrinsics
are set to ensure that each rendering captures meaningful surface content across the mesh.

For the initial PBR texture map, we randomly select a batch of b viewpoints in the first iteration. For
each view, we render an image using PBR rendering in Sec. 3.4. These rendered images are passed
through a pre-trained SR model, which produces the pseudo-GT ISR

θ .

Simultaneously, at the same view, we render an image IHR by differentiable rendering in Sec. 3.3
with the same resolution of the pseudo-GT ISR

θ using the optimizable PBR texture map {Td
sr, Tr

sr,
Tm

sr, Tn
sr}. The loss function to update our PBR texture maps consists of two parts: robust pixel-wise

loss and PBR constraints.

3.5.1 Robust Pixel-wise Loss

To handle inconsistencies in the pseudo-GT SR images, we propose a robust pixel-wise optimization
scheme that downweights unreliable pixels via a learnable per-image pixel weighting map Wi(u, v) ∈
[0, 1], where (u, v) denotes a pixel location and i indexes the image. We denote the predicted PBR
rendering as ISR

i ∈ RC×H×W and the target as IHR
i . The robust pixel-wise loss is defined as:

Lpix =
1

b

b∑
i=1

∑
u,v W

2
i (u, v) ·

∥∥ISR
i (u, v)− IHR

i (u, v)
∥∥2
2∑

u,v W
2
i (u, v)

. (3)

This formulation computes a normalized weighted MSE per image and then averages across the batch.
Importantly, squaring Wi(u, v)

2 allows sharper modulation of unreliable regions. To regularize the

5



learned weight maps, we penalize deviation from 1 using a per-pixel mean squared penalty:

W =

b∑
i=1

1

HW

∑
u,v

(
1−W2

i (u, v)
)2

. (4)

The final robust rendering loss becomes:

Lrobust = λpix · Lpix + λreg ·W, (5)

where λpix is a global scaling factor and λreg is the regularization weight. This design ensures that
gradient flow is preserved across all pixels while adaptively reducing the influence of uncertain
regions (e.g., view inconsistency and shadows), and aims to stabilize PBR learning under noisy
pseudo-ground-truth supervision.

3.5.2 PBR Constraints

PBR Consistency Loss: This term ensures consistency between the optimized HR PBR texture
maps and the LR texture input across all material properties. It encourages the refined HR textures to
preserve the structure and material integrity of the original inputs while allowing for higher-resolution
details:

Lpbr =
∑

T∈Td,Tr,Tm,Tn

wT (∥Pool(Tθ)−Tlr∥1 + λssim · LSSIM(Pool(Tθ),Tlr)) , (6)

where Tθ denotes the current HR PBR texture map being optimized; Tlr indicates the corresponding
LR textures, and wT denotes the weight of the L1 loss applied between textures. Pool(·) is the
average pooling operator with a kernel size equal to the PBR upscaling factor, which downsamples
the HR texture to match the LR input. Lssim is a SSIM loss and λssim is a weighting factor.

PBR Total Variation (TV) Regularization: To encourage spatial smoothness and suppress undesir-
able artifacts in the optimized PBR textures, we introduce a total variation loss:

Ltv =
∑

T∈{Td
sr,T

r
sr,T

m
sr,T

n
sr}

(∥∇xT∥1 + ∥∇yT∥1) , (7)

where ∇x and ∇y represent the horizontal and vertical gradients of the texture maps, respectively.
Minimizing the TV loss promotes smooth, artifact-less textures while preserving important structural
details.

The total loss for the optimization is then formulated as:

Ltotal = Lrobust + λpbrLpbr + λtvLtv,

where λpbr and λtv are weighting factors to balance these three loss terms.

4 Results

In this section, we present the experimental setup, evaluation metrics, and results obtained from our
proposed method for PBR texture super resolution.

4.1 Experimental Setup

Datasets. Since there is no established benchmark on mesh PBR texture super resolution, we
collect a set of PBR meshes with rich texture information [1, 2, 4] (Artist-designed Dataset). This
collection contains 16 different high-quality meshes with high-resolution PBR maps in 4096× 4096
or 8192 × 8192 resolutions, and their low-resolution counterparts with a 4× smaller resolution.
In addition, we evaluate on 32 AI-generated PBR-textured meshes sourced from the Hyper3D
commercial platform [3] (AI-generated Dataset). These meshes contain generated PBR textures with
greater variety and realism, and each PBR channel is provided at 512× 512 resolution. We apply 4×
super-resolution to generate 2048× 2048 outputs. Each model contains a set of texture maps that
include albedo, metallic, roughness, and normal maps. We use low-resolution meshes as the input to
the SR model and the high-resolution counterparts as ground truth for performance evaluation.

6



Table 1: Quantitative comparison of PBR texture maps and renderings PSNR from ×4 PBR SR results
on the Artist-designed Dataset. † indicates a supervised method finetuned on PBR data. ∗ refers an
optimization-based method. The red and orange respectively denote the best and the second-best
results.

Method Albedo Roughness Metallic Normal Renderings

OSEDiff [35] 23.495 24.095 26.922 23.957 23.804
DiffBIR [24] 24.842 27.563 27.493 24.743 25.495
SwinIR [22] 26.990 26.241 28.564 23.410 24.952

HAT [10] 25.260 30.559 30.536 23.561 26.205
StableSR [33] 25.398 27.648 28.953 24.191 25.489

CAMixerSR [34] 26.297 28.273 30.473 24.056 26.791
CAMixerSR-FT † 27.800 30.642 28.961 25.655 27.928
Paint-it SR [36] ∗ 25.682 29.729 28.955 28.237 23.959
PBR-SR (Ours) 29.731 31.602 31.889 29.088 28.001

Pretrained SR Models. For albedo initialization and generating pseudo-GT (Sec . 3.4, Sec . 3.5),
we utilize DiffBIR[24], a two-stage diffusion-based model that efficiently restores details through
degradation removal and detail regeneration. All pre-trained models remain fixed throughout the
optimization process, making our framework universally applicable to future models.

Implementation Details. Our implementation leverages the differentiable renderer from [19] to
produce rendered images from selected viewpoints. These images are then super-resolved using the
same image SR model to create pseudo-GTs for optimization. Unless explicitly specified, the same
environment lighting setup is used for both optimization and evaluation. The optimization uses the
Adam optimizer with a constant learning rate of 1× 10−4. In each iteration, we use a batch size of 4,
which corresponds to 4 viewpoints. We stop the iterative optimization after 2000 iterations.

4.2 Comparison with Baselines

We compare our method with several alternative techniques for PBR texture SR. We evaluate the
performance against:

• Image SR Methods: Including SwinIR [22], HAT [10], CAMixerSR [34], OSEDiff [35], Sta-
bleSR [33] and DiffBIR [24], which are applied directly on the PBR texture maps.

• CAMixerSR-FT: Since CAMixerSR achieves overall balanced performance on all PBR channels,
we use its architecture and pretrained weights from natural images, and then fine-tune it on a
collection of 24,000 LR-HR PBR map pairs (120 × 120 to 480 × 480) comprising diffuse, ARM,
and normal maps extracted from the Poly Haven website [4] (no overlap with the evaluation data).
Unlike the other baselines and our PBR-SR, CAMixerSR-FT is a supervised baseline.

• Paint-it SR: Paint-it [36] is a model designed for text-driven mesh PBR texture generation. We
adopt a variant of Paint-it as an optimization-based baseline for the PBR texture SR task by
replacing its text-to-image diffusion model and SDS loss with an image super-resolution model
and a render loss function.

Evaluation Metrics. We evaluate the performance of our PBR texture SR method in both PBR maps
and renderings. We assess the quality of the PBR texture maps on albedo, roughness, metallic, and
normal maps individually by comparing the PSNR (Peak Signal-to-Noise Ratio) of SR results with
ground truth high-resolution PBR maps. A higher PNSR value is better. In addition, we compare the
rendering quality from novel views (views not used during the optimization process), utilizing PSNR
to quantify the difference between renderings from SR PBR results and the ground truth PBR maps.

Quantitative Evaluation. Table 1 presents a quantitative comparison of various super-resolution
methods on PBR maps and final renderings, measured by PSNR. The evaluated maps include albedo,
roughness, metallic, and normal, alongside the resulting rendered images. The proposed method,
PBR-SR, is compared against both supervised baseline (e.g., CAMixerSR-FT), optimization-based
approaches (Paint-it SR), and state-of-the-art transformer and diffusion-based methods. The proposed
PBR-SR consistently outperforms all baselines, achieving the highest scores across all five metrics.
While CAMixerSR-FT, a supervised method fine-tuned on PBR data, performs well on Roughness
and rendering metrics, it still lags behind PBR-SR. Paint-it SR shows strong results on the normal map

7



HAT Paint-it SR

CAMixerSR-FTCAMixerSR

DiffBIROSEDiff

Ours GTLR

HAT Paint-it SR

CAMixerSR-FTCAMixerSR

DiffBIROSEDiff

Ours GTLR

HAT Paint-it SR

CAMixerSR-FTCAMixerSR

DiffBIROSEDiff

Ours GTLR

Figure 3: Comparison of renderings from PBR texture SR results. Our method produces consistently
higher-quality renderings with improved detail.

but falls short on others, especially in rendering quality. Transformer-based models like SwinIR and
HAT perform competitively in specific channels but struggle with consistent performance across all
maps. Overall, PBR-SR delivers the most balanced and superior results, highlighting its effectiveness
in high-quality material and renderings. In Table 2, we provide quantitative results comparing our
method against the two strongest baselines. The trends observed on the AI-generated meshes are
consistent with those on the original 16 high-quality test cases. Across both evaluation sets, our
method achieves robust improvements in all PBR texture channels and final rendered appearance,
further confirming its generalization ability across diverse mesh sources and content types.

Qualitative Comparison on Renderings. In addition to quantitative metrics, we present qualitative
comparisons of rendered images using our optimized PBR textures versus those produced by baseline
methods. Fig. 3 shows renderings under identical lighting conditions, featuring the Table Clock,
the Cradle Globe, and the Chinese Chandelier at 4× SR. The LR and GT display the renderings
from the LR PBR and GT PBR textures. HAT and CAMixerSR cannot reveal accuracy in all PBR
channels, leading to distortion or reflection artifacts. OSEDiff, which employs a diffusion model,
produces high-frequency details, though it often diverges from the LR cues, erasing or altering LR

8



LR OSEDiff DiffBIR Paint-it SR Ours GT

A
lb

e
d

o
A

R
M

 m
ap

N
o

rm
al

 m
ap

Figure 4: Comparison of PBR tiles from 4× PBR SR results of different meshes from our test set.
Our method significantly improves the LR PBR on all channels and outperforms the inference-based
and optimization-based baselines.

Table 2: Quantitative comparison of PBR texture maps and renderings PSNR from ×4 PBR SR results
on the AI-generated Dataset. † indicates a supervised method finetuned on PBR data. The red and
orange respectively denote the best and the second-best results.

Method Albedo Roughness Metallic Normal Renderings

HAT 26.368 32.750 31.794 28.235 28.312
CAMixerSR-FT † 31.439 33.195 27.583 31.054 30.841
PBR-SR (Ours) 33.841 35.059 35.352 34.564 31.208

Table 3: Ablation study on our PBR mesh collection (Artist-designed Dataset). PSNR of PBR map
channels and resulting renderings are reported.

Setting Albedo Roughness Metallic Normal Renderings

w/o PBR Loss 26.116 27.661 29.220 27.130 26.572
w/o PBR TV Regularization 27.929 30.744 31.492 28.507 27.593
w/o Robut Pixel-wise Loss 28.084 30.817 31.734 28.639 27.666

full 29.731 31.602 31.889 29.088 28.001

details, with material property shifts causing incorrect brightness and shading. DiffBIR introduces
too much noise and struggles to get accurate, detailed renderings. CAMixerSR-FT learns to produce
plausible outputs in the texture space through supervision on training data. However, this does not
guarantee high-quality results in the rendering space. In practice, it often leads to distortions or a
lack of sharpness in the rendered appearance, as the model is not explicitly optimized for rendering
fidelity. Paint-it SR, an optimization-based model, iteratively improves PBR renderings but appears
more blurred than ours. Our method achieves results that are closest to the GT renderings.

Qualitative Comparison on PBR Texture Maps. Fig. 4 visualizes PBR texture tiles, with three rows
from top to bottom showing the albedo map, the ARM map (with channels for ambient occlusion,
roughness, and metallic), and the surface normal map. From left to right, the columns correspond to
LR PBR texture, PBR texture generated by OSEDiff, DiffBIR, Paint-it SR, and Our method PBR-SR,
GT HR PBR texture. As shown in the figure, our method significantly outperforms all inference-
and optimization-based baselines. Especially in comparison with the LR PBR texture, our method
demonstrates a substantial improvement in texture quality, highlighting the effectiveness of applying
image SR priors to the task of PBR texture SR.

9



Table 4: Ablation on the image SR model used in our PBR-SR pipeline. We list the quantitative
comparison of PBR texture maps and renderings PSNR from ×4 PBR SR results.

Method Albedo Roughness Metallic Normal Renderings

CAMixerSR 27.793 29.927 31.784 27.294 27.466
StableSR 27.678 31.025 32.258 27.995 26.415
DiffBIR 29.731 31.602 31.889 29.088 28.001

Ablation Study. Table 3 presents an ablation study assessing the contribution of key components in
our method. Removing the PBR loss leads to the most significant drop in PSNR across all metrics,
particularly in albedo and renderings, underscoring its importance. Excluding TV regularization
or the robust pixel-wise loss also results in consistent performance drops, especially in roughness
and normal maps. The full model achieves the highest PSNR in all categories, confirming that
each component contributes to the overall quality, with the most notable gains in PBR quality and
rendering fidelity.

Ablation on Image SR Models in PBR-SR. In Table 4, we compare three models used in our
pipeline for both initialization and rendering super resolution, and report the final optimized SR
results of PBR maps and corresponding renderings on the Artist-designed Dataset. DiffBIR achieves
the best performance across most PBR channels, including Albedo, Roughness, and Normal, as well
as in the final rendering PSNR. Specifically, it outperforms CAMixerSR and StableSR by a notable
margin in both texture fidelity and rendered appearance, indicating its superior ability to preserve
structural details and material realism in the super-resolved outputs. While StableSR performs well
on the Metallic channel, it underperforms on others and results in lower rendering quality overall.
Moreover, DiffBIR is computationally more efficient than StableSR, offering faster inference while
maintaining high-quality outputs. This makes it a favorable choice for integration into our iterative
optimization pipeline, where both accuracy and runtime efficiency are critical.

Limitations. While PBR-SR performs well on PBR texture SR tasks, it struggles with severely
degraded LR textures due to the limitations of natural image priors. Multimodal cues like text
or sketches could help in such cases. The current zero-shot optimization removes the need for
training data but is relatively slow, limiting real-time applicability. Future work will explore faster
optimization and stronger PBR-specific priors with multimodal integration.

For additional details and results, please refer to the Supplementary Materials.

5 Conclusion

We have introduced PBR-SR, the first zero-shot super-resolution method specifically designed
for enhancing PBR textures on 3D meshes. By integrating pre-trained image SR models with
differentiable mesh rendering, our approach effectively restores detailed textures from low-quality
inputs while ensuring accurate preservation of material consistency. PBR-SR significantly improves
texture fidelity and rendering quality, outperforming existing state-of-the-art image SR models and
optimization-based baselines, without requiring explicit training data. By effectively preserving
and enhancing material properties, our method supports downstream applications such as realistic
relighting, facilitating more detailed and visually compelling 3D scenes. We believe this work
provides valuable insights into leveraging natural image priors for PBR texture restoration, paving
the way toward specialized PBR priors in future 3D content generation.

Acknowledgements. This work is funded by the ERC Consolidator Grant Gen3D (101171131), the
German Research Foundation (DFG) Research Unit “Learning and Simulation in Visual Computing”.
Additionally, we would like to thank Angela Dai for the video voice-over.

References
[1] Cgtrader models. https://www.cgtrader.com.

[2] The gltf v2.0 sample models. https://github.com/KhronosGroup/glTF-Sample-Assets.

[3] Hyper3d models. https://hyper3d.ai/.

10

https://www.cgtrader.com
https://github.com/KhronosGroup/glTF-Sample-Assets
https://hyper3d.ai/


[4] Poly haven models. https://polyhaven.com/models.

[5] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset
and study. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops,
pages 126–135, 2017.

[6] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and hierarchical
image segmentation. IEEE transactions on pattern analysis and machine intelligence, 33(5):898–916,
2010.

[7] James F. Blinn. Models of light reflection for computer synthesized pictures. In SIGGRAPH, pages
192–198. ACM, 1977.

[8] Brent Burley and Walt Disney Animation Studios. Physically-based shading at disney. In SIGGRAPH,
pages 1–7. ACM, 2012.

[9] Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey Tulyakov, and Matthias Nießner. Text2tex:
Text-driven texture synthesis via diffusion models. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 18558–18568, 2023.

[10] Xiangyu Chen, Xintao Wang, Wenlong Zhang, Xiangtao Kong, Yu Qiao, Jiantao Zhou, and Chao Dong.
Hat: Hybrid attention transformer for image restoration. arXiv preprint arXiv:2309.05239, 2023.

[11] Yujin Chen, Yinyu Nie, Benjamin Ummenhofer, Reiner Birkl, Michael Paulitsch, Matthias Müller, and
Matthias Nießner. Mesh2nerf: Direct mesh supervision for neural radiance field representation and
generation. In European Conference on Computer Vision, pages 173–191. Springer, 2024.

[12] Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam, 2018.

[13] Robert L Cook and Kenneth E. Torrance. A reflectance model for computer graphics. ACM Transactions
on Graphics (ToG), 1(1):7–24, 1982.

[14] Xiang Feng, Yongbo He, Yubo Wang, Yan Yang, Wen Li, Yifei Chen, Zhenzhong Kuang, Jianping Fan,
Yu Jun, et al. Srgs: Super-resolution 3d gaussian splatting. arXiv preprint arXiv:2404.10318, 2024.

[15] Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple
baseline for image restoration with state-space model. arXiv preprint arXiv:2402.15648, 2024.

[16] Yanhui Guo, Xinxin Zuo, Peng Dai, Juwei Lu, Xiaolin Wu, Li Cheng, Youliang Yan, Songcen Xu, and
Xiaofei Wu. Decorate3d: Text-driven high-quality texture generation for mesh decoration in the wild. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[17] Xudong Huang, Wei Li, Jie Hu, Hanting Chen, and Yunhe Wang. Refsr-nerf: Towards high fidelity and
super resolution view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8244–8253, 2023.

[18] Brian Karis. Real shading in Unreal Engine 4. In SIGGRAPH Physically Based Shading in Theory and
Practice course, 2013.

[19] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. Modular
primitives for high-performance differentiable rendering. ACM Transactions on Graphics, 39(6), 2020.

[20] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image super-
resolution using a generative adversarial network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4681–4690, 2017.

[21] Yawei Li, Vagia Tsiminaki, Radu Timofte, Marc Pollefeys, and Luc Van Gool. 3d appearance super-
resolution with deep learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 9671–9680, 2019.

[22] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Image
restoration using swin transformer. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 1833–1844, 2021.

[23] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, pages 136–144, 2017.

11

https://polyhaven.com/models


[24] Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Yu Qiao, Wanli Ouyang,
and Chao Dong. Diffbir: Toward blind image restoration with generative diffusion prior. In European
Conference on Computer Vision, pages 430–448. Springer, 2024.

[25] Minghua Liu, Chong Zeng, Xinyue Wei, Ruoxi Shi, Linghao Chen, Chao Xu, Mengqi Zhang, Zhaoning
Wang, Xiaoshuai Zhang, Isabella Liu, et al. Meshformer: High-quality mesh generation with 3d-guided
reconstruction model. arXiv preprint arXiv:2408.10198, 2024.

[26] Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Controlling vision-
language models for universal image restoration. arXiv preprint arXiv:2310.01018, 3(8), 2023.

[27] Dario Pavllo, Jonas Kohler, Thomas Hofmann, and Aurelien Lucchi. Learning generative models of
textured 3d meshes from real-world images. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 13879–13889, 2021.

[28] Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory to Implementation (The
Interactive 3d Technology Series). Morgan Kaufmann, August 2004.

[29] Bui Tuong Phong. Illumination for computer generated pictures. Commun. ACM, 18(6):311–317, 1975.

[30] Yawar Siddiqui, Tom Monnier, Filippos Kokkinos, Mahendra Kariya, Yanir Kleiman, Emilien Garreau,
Oran Gafni, Natalia Neverova, Andrea Vedaldi, Roman Shapovalov, et al. Meta 3d assetgen: Text-to-mesh
generation with high-quality geometry, texture, and pbr materials. arXiv preprint arXiv:2407.02445, 2024.

[31] Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Texturify:
Generating textures on 3d shape surfaces. In European Conference on Computer Vision, pages 72–88.
Springer, 2022.

[32] Chen Wang, Xian Wu, Yuan-Chen Guo, Song-Hai Zhang, Yu-Wing Tai, and Shi-Min Hu. Nerf-sr:
High quality neural radiance fields using supersampling. In Proceedings of the 30th ACM International
Conference on Multimedia, pages 6445–6454, 2022.

[33] Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin C.K. Chan, and Chen Change Loy. Exploiting
diffusion prior for real-world image super-resolution. 2024.

[34] Yan Wang, Yi Liu, Shijie Zhao, Junlin Li, and Li Zhang. Camixersr: Only details need more ”attention”.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 25837–25846,
June 2024.

[35] Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network for
real-world image super-resolution. arXiv preprint arXiv:2406.08177, 2024.

[36] Kim Youwang, Tae-Hyun Oh, and Gerard Pons-Moll. Paint-it: Text-to-texture synthesis via deep con-
volutional texture map optimization and physically-based rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4347–4356, 2024.

[37] Xin Yu, Peng Dai, Wenbo Li, Lan Ma, Zhengzhe Liu, and Xiaojuan Qi. Texture generation on 3d meshes
with point-uv diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 4206–4216, 2023.

[38] Xiqian Yu, Hanxin Zhu, Tianyu He, and Zhibo Chen. Gaussiansr: 3d gaussian super-resolution with 2d
diffusion priors. arXiv preprint arXiv:2406.10111, 2024.

[39] Xiang Zhang, Yulun Zhang, and Fisher Yu. Hit-sr: Hierarchical transformer for efficient image super-
resolution. arXiv preprint arXiv:2407.05878, 2024.

[40] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution using
very deep residual channel attention networks. In Proceedings of the European conference on computer
vision, pages 286–301, 2018.

[41] Yuqing Zhang, Yuan Liu, Zhiyu Xie, Lei Yang, Zhongyuan Liu, Mengzhou Yang, Runze Zhang, Qilong
Kou, Cheng Lin, Wenping Wang, et al. Dreammat: High-quality pbr material generation with geometry-and
light-aware diffusion models. ACM Transactions on Graphics (TOG), 43(4):1–18, 2024.

[42] Dian Zheng, Xiao-Ming Wu, Shuzhou Yang, Jian Zhang, Jian-Fang Hu, and Wei-Shi Zheng. Selective
hourglass mapping for universal image restoration based on diffusion model. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 25445–25455, 2024.

[43] Kun Zhou, Wenbo Li, Yi Wang, Tao Hu, Nianjuan Jiang, Xiaoguang Han, and Jiangbo Lu. Nerflix:
High-quality neural view synthesis by learning a degradation-driven inter-viewpoint mixer. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12363–12374, 2023.

12



In this supplementary material, we provide additional details and results that are not included in the
main paper due to space constraints. The attached video offers a brief overview of our method, along
with qualitative results demonstrating the performance of PBR-SR.

A Implementation Details

A.1 Datasets

Artist-designed Dataset. In the main paper, we evaluate quantitative results on a collection of PBR
meshes sourced from [1, 2, 4]. To better evaluate PBR texture super-resolution performance, we select
meshes that contain rich and diverse textures in different PBR channels. Table 5 lists the meshes and
their corresponding website links. For evaluation, we treat the downloaded high-resolution textures
as ground truth. If paired low-resolution textures are provided, we use them directly as input to our
method. Otherwise, we generate low-resolution inputs by applying a Gaussian blur followed by
bicubic downsampling on the high-resolution textures. Our usage fully complies with the Royalty
Free License terms, as the models are only used internally for testing and are not redistributed in any
digital or physical form. The dataset was obtained under its original license and is not redistributed
here. We used the dataset solely for method evaluation. No training, fine-tuning, or derivative model
development was performed using this data.

Table 5: List of 16 Artist-designed meshes used in our evaluation. Each URL links to the correspond-
ing mesh page.

No. Model Name URL

1 Chinese Chandelier https://polyhaven.com/a/chinese_chandelier
2 Corset https://github.com/KhronosGroup/glTF-Sample-Assets/tree/main/Models/Corset
3 Damaged Helmet https://github.com/KhronosGroup/glTF-Sample-Models/tree/main/2.0/DamagedHelmet
4 Shoulder Strap https://www.cgtrader.com/free-3d-models/sports/equipment/shoulder-strap
5 Globe https://www.cgtrader.com/free-3d-models/interior/interior-office/globe-59b6052d-2afb-4ee5-81c5-02d3d50223cc
6 Under Armour Volleyball Shoe https://www.cgtrader.com/free-3d-models/character/clothing/under-armour-womens-hovr-highlight-ace-volleyball-shoe
7 Table Clock https://www.cgtrader.com/free-3d-models/furniture/tableware/table-clock-eb2f344f-abb4-4439-803d-d080edb7742f
8 Medieval Chest https://www.cgtrader.com/free-3d-models/furniture/other/medieval-chest-with-ornaments
9 Cradle Globe https://www.cgtrader.com/free-3d-models/interior/interior-office/cradle-globe

10 Armored Man https://www.cgtrader.com/3d-models/character/sci-fi-character/armored-man-low-poly-game-ready-model
11 Lounge Chair 1 https://www.cgtrader.com/free-3d-models/interior/living-room/lounge-chair-3d-model-low-poly-pbr-textures
12 Lounge Chair 2 https://www.cgtrader.com/free-3d-models/interior/living-room/lounge-chair-3d-model-low-poly-pbr-textures
13 Old Table https://www.cgtrader.com/free-3d-models/household/other/old-chair-old-stool-and-old-table
14 Old Stool https://www.cgtrader.com/free-3d-models/household/other/old-chair-old-stool-and-old-table
15 Old Chair https://www.cgtrader.com/free-3d-models/household/other/old-chair-old-stool-and-old-table
16 Vintage Cozy Rocking Chair https://www.cgtrader.com/free-3d-models/furniture/chair/vintage-cozy-rocking-chair

AI-generated Dataset. To strengthen the evaluation, we add 32 additional meshes from the commer-
cial Hyper3D website [3], which features AI-generated PBR textures with diverse content. Table 6
lists the meshes and their corresponding website links. Each sample includes PBR maps at 512× 512
resolution as input and 2048×2048 resolution as ground truth (GT). We perform 4× super-resolution
as described in the main paper, keeping all experimental settings consistent with those used for the
Artist-Designed meshes. The dataset was obtained under its original license and is not redistributed
here.

A.2 Optimization

The mesh is normalized to a unit size during the optimization process. The camera is positioned at a
distance of 3.25 units with a field of view (FoV) of 10 degrees. We use 750 views in total, sampled
from 15 different elevations, with 50 views evenly distributed at each elevation. For rendering
evaluation, we use 240 views from 6 elevations, with 40 views sampled from each elevation, ensuring
an even distribution across the scene. During optimization, the λpix is set to 100 and λreg is 0.5 in
the robust pixel-wise loss term. The weighting map is optimized in resolution of 64 × 64 and is
interpolated to Wi with the same resolution as the rendering’s image when calculating Lpix. We
assign different weights to the channels of the PBR texture maps in the PBR consistency loss function:
we set the weight to 1.0 for the diffuse wKd , roughness wKr , and normal map wKn , and 0.1 for the
metallic map wKm . The SSIM part is weighted by λssim = 10 for all. The overall PBR consistency
loss is given a weight λpbr = 10 and the PBR TV loss is weighted by λtv = 0.5. The optimization
process runs for 2000 iterations. On a single NVIDIA A6000 RTX GPU, optimizing a mesh with PBR
textures takes around 30 minutes with 2K-to-8K resolution and less than 8 minutes with 1K-to-2K

13

https://polyhaven.com/a/chinese_chandelier
https://github.com/KhronosGroup/glTF-Sample-Assets/tree/main/Models/Corset
https://github.com/KhronosGroup/glTF-Sample-Models/tree/main/2.0/DamagedHelmet
https://www.cgtrader.com/free-3d-models/sports/equipment/shoulder-strap
https://www.cgtrader.com/free-3d-models/interior/interior-office/globe-59b6052d-2afb-4ee5-81c5-02d3d50223cc
https://www.cgtrader.com/free-3d-models/character/clothing/under-armour-womens-hovr-highlight-ace-volleyball-shoe
https://www.cgtrader.com/free-3d-models/furniture/tableware/table-clock-eb2f344f-abb4-4439-803d-d080edb7742f
https://www.cgtrader.com/free-3d-models/furniture/other/medieval-chest-with-ornaments
https://www.cgtrader.com/free-3d-models/interior/interior-office/cradle-globe
https://www.cgtrader.com/3d-models/character/sci-fi-character/armored-man-low-poly-game-ready-model
https://www.cgtrader.com/free-3d-models/interior/living-room/lounge-chair-3d-model-low-poly-pbr-textures
https://www.cgtrader.com/free-3d-models/interior/living-room/lounge-chair-3d-model-low-poly-pbr-textures
https://www.cgtrader.com/free-3d-models/household/other/old-chair-old-stool-and-old-table
https://www.cgtrader.com/free-3d-models/household/other/old-chair-old-stool-and-old-table
https://www.cgtrader.com/free-3d-models/household/other/old-chair-old-stool-and-old-table
https://www.cgtrader.com/free-3d-models/furniture/chair/vintage-cozy-rocking-chair


Table 6: List of 32 AI-generated meshes from the Hyper3D website used in our evaluation. Each
URL links to the corresponding mesh page.

No. Model Name URL

1 51a273a2-e71a-4050-b6eb-87b7dce6907b https://hyper3d.ai/rodin/51a273a2-e71a-4050-b6eb-87b7dce6907b
2 8bdfe26e-dcac-4bb5-85e1-76a3120248f8 https://hyper3d.ai/rodin/8bdfe26e-dcac-4bb5-85e1-76a3120248f8
3 7ba15124-8c21-4421-a43c-8098a62e4b6a https://hyper3d.ai/rodin/7ba15124-8c21-4421-a43c-8098a62e4b6a
4 3c9e3ff4-7793-4ec6-825e-8f3a5793eb3d https://hyper3d.ai/rodin/3c9e3ff4-7793-4ec6-825e-8f3a5793eb3d
5 2a6d3eeb-309f-4a6d-89e4-4dcaeb0ac781 https://hyper3d.ai/rodin/2a6d3eeb-309f-4a6d-89e4-4dcaeb0ac781
6 62bbcaba-d5bc-4a29-9191-a500c74306f2 https://hyper3d.ai/rodin/62bbcaba-d5bc-4a29-9191-a500c74306f2
7 453fe7bc-a49c-42d7-aab0-d0a4360ed8df https://hyper3d.ai/rodin/453fe7bc-a49c-42d7-aab0-d0a4360ed8df
8 00792bae-57fe-49c4-88ea-8e885038ea62 https://hyper3d.ai/rodin/00792bae-57fe-49c4-88ea-8e885038ea62
9 282954ca-f348-4ba9-b5ad-a1d142b230f3 https://hyper3d.ai/rodin/282954ca-f348-4ba9-b5ad-a1d142b230f3

10 b70a199e-a309-4197-971f-d093262bce7d https://hyper3d.ai/rodin/b70a199e-a309-4197-971f-d093262bce7d
11 c8c1776c-4f12-4e9b-aa2c-9a72b7dcb699 https://hyper3d.ai/rodin/c8c1776c-4f12-4e9b-aa2c-9a72b7dcb699
12 c26cd539-7d46-4b6f-ad55-bf0f28ffb33a https://hyper3d.ai/rodin/c26cd539-7d46-4b6f-ad55-bf0f28ffb33a
13 d78eb744-7b74-47b6-8121-8c3b75829ab3 https://hyper3d.ai/rodin/d78eb744-7b74-47b6-8121-8c3b75829ab3
14 fc2a26ae-a469-47a1-a3f9-f80c4693ecff https://hyper3d.ai/rodin/fc2a26ae-a469-47a1-a3f9-f80c4693ecff
15 fe2318d4-96b7-4886-8838-5106f1391d0f https://hyper3d.ai/rodin/fe2318d4-96b7-4886-8838-5106f1391d0f
16 5c419b6b-f6b9-4be3-be03-6034bdbdcbe6 https://hyper3d.ai/rodin/5c419b6b-f6b9-4be3-be03-6034bdbdcbe6
17 17a4fd66-cba7-43af-ae63-1b85bb08db14 https://hyper3d.ai/rodin/17a4fd66-cba7-43af-ae63-1b85bb08db14
18 70892277-56ea-4b93-b62c-cfa7c8ebb1ae https://hyper3d.ai/rodin/70892277-56ea-4b93-b62c-cfa7c8ebb1ae
19 b9e2bf1a-d48f-4bd1-aac1-2e10db4b6abe https://hyper3d.ai/rodin/b9e2bf1a-d48f-4bd1-aac1-2e10db4b6abe
20 b4254276-6acd-405f-b68c-98262d394564 https://hyper3d.ai/rodin/b4254276-6acd-405f-b68c-98262d394564
21 f440f7f4-ef0d-4ad1-ad6c-aaeba5e13088 https://hyper3d.ai/rodin/f440f7f4-ef0d-4ad1-ad6c-aaeba5e13088
22 fc19a47e-15f8-4faf-86ec-953ddae28ebc https://hyper3d.ai/rodin/fc19a47e-15f8-4faf-86ec-953ddae28ebc
23 1e997330-88d4-4c28-81d8-f58b22c0c137 https://hyper3d.ai/rodin/1e997330-88d4-4c28-81d8-f58b22c0c137
24 4ee35b93-3134-492d-944b-892608bcb55f https://hyper3d.ai/rodin/4ee35b93-3134-492d-944b-892608bcb55f
25 19419b03-c0d6-4297-b783-bad4df29ce77 https://hyper3d.ai/rodin/19419b03-c0d6-4297-b783-bad4df29ce77
26 56395d6a-88e9-40d4-a72d-d31dbee8377d https://hyper3d.ai/rodin/56395d6a-88e9-40d4-a72d-d31dbee8377d
27 65617646-4fe3-457e-948b-6066ad04765d https://hyper3d.ai/rodin/65617646-4fe3-457e-948b-6066ad04765d
28 aef2393f-1889-4404-a563-6890cca9743c https://hyper3d.ai/rodin/aef2393f-1889-4404-a563-6890cca9743c
29 b613c088-addb-493f-ad42-9383fa148081 https://hyper3d.ai/rodin/b613c088-addb-493f-ad42-9383fa148081
30 ceae5972-860d-41f6-92c5-27ff35d1a2d9 https://hyper3d.ai/rodin/ceae5972-860d-41f6-92c5-27ff35d1a2d9
31 e49e49f5-c3f0-4a85-9f1a-1d264be6edf4 https://hyper3d.ai/rodin/e49e49f5-c3f0-4a85-9f1a-1d264be6edf4
32 f61cfdb3-d6a4-480a-b504-3aa81074a187 https://hyper3d.ai/rodin/f61cfdb3-d6a4-480a-b504-3aa81074a187

resolution offline on average. The optimizable parameters are limited to the high-resolution PBR
textures, as we directly update them using computed gradients.

A.3 Baselines

We leverage the official implementations of SwinIR [22], HAT [10], CAMixerSR [34], StableSR [33],
OSEDiff [35] and DiffBIR [24] as baselines. For N times PBR texture super resolution, we initialize
SR PBR texture maps using the corresponding models trained for specific N times super resolution,
if the model is available with their pretrained weights.

For Paint-it SR, we adopt the core deep convolutional architecture and optimization framework of
Paint-it, but substantially modify it to suit the super-resolution (SR) task. Specifically, we replace
the original text-to-image diffusion model and Score Distillation Sampling (SDS) loss with an
image super-resolution model and a pixel-wise render loss. The deep convolutional block is re-
initialized to produce zero output initially, enabling it to learn only residual components over the
interpolated low-resolution (LR) PBR maps. This residual learning setup allows the model to refine
high-frequency details while preserving the low-frequency information already captured in the LR
inputs. Although Paint-it SR shares a similar optimization framework with the original method, it
is explicitly re-purposed for SR rather than text-to-texture synthesis. These modifications make it a
strong baseline, yet our proposed approach surpasses it through a more effective integration of SR
priors and view-consistent optimization.

For CAMixerSR-FT, we make it a supervised baseline using PBR textures to fine-tune the off-the-shelf
CAMixerSR weights pre-trained on natural images. We use 19 high-quality PBR meshes from the
Poly Haven website [4] (no overlap with the evaluation data), each containing diffuse, ARM (ambient
occlusion, roughness, metallic), and normal maps at a resolution of 4096× 4096. For training data
generation, all texture maps are downsampled to 1024×1024 using bicubic interpolation. From these,
we randomly extract 480× 480 patches as high-resolution targets and their corresponding 120× 120

14

https://hyper3d.ai
https://hyper3d.ai/rodin/51a273a2-e71a-4050-b6eb-87b7dce6907b
https://hyper3d.ai/rodin/8bdfe26e-dcac-4bb5-85e1-76a3120248f8
https://hyper3d.ai/rodin/7ba15124-8c21-4421-a43c-8098a62e4b6a
https://hyper3d.ai/rodin/3c9e3ff4-7793-4ec6-825e-8f3a5793eb3d
https://hyper3d.ai/rodin/2a6d3eeb-309f-4a6d-89e4-4dcaeb0ac781
https://hyper3d.ai/rodin/62bbcaba-d5bc-4a29-9191-a500c74306f2
https://hyper3d.ai/rodin/453fe7bc-a49c-42d7-aab0-d0a4360ed8df
https://hyper3d.ai/rodin/00792bae-57fe-49c4-88ea-8e885038ea62
https://hyper3d.ai/rodin/282954ca-f348-4ba9-b5ad-a1d142b230f3
https://hyper3d.ai/rodin/b70a199e-a309-4197-971f-d093262bce7d
https://hyper3d.ai/rodin/c8c1776c-4f12-4e9b-aa2c-9a72b7dcb699
https://hyper3d.ai/rodin/c26cd539-7d46-4b6f-ad55-bf0f28ffb33a
https://hyper3d.ai/rodin/d78eb744-7b74-47b6-8121-8c3b75829ab3
https://hyper3d.ai/rodin/fc2a26ae-a469-47a1-a3f9-f80c4693ecff
https://hyper3d.ai/rodin/fe2318d4-96b7-4886-8838-5106f1391d0f
https://hyper3d.ai/rodin/5c419b6b-f6b9-4be3-be03-6034bdbdcbe6
https://hyper3d.ai/rodin/17a4fd66-cba7-43af-ae63-1b85bb08db14
https://hyper3d.ai/rodin/70892277-56ea-4b93-b62c-cfa7c8ebb1ae
https://hyper3d.ai/rodin/b9e2bf1a-d48f-4bd1-aac1-2e10db4b6abe
https://hyper3d.ai/rodin/b4254276-6acd-405f-b68c-98262d394564
https://hyper3d.ai/rodin/f440f7f4-ef0d-4ad1-ad6c-aaeba5e13088
https://hyper3d.ai/rodin/fc19a47e-15f8-4faf-86ec-953ddae28ebc
https://hyper3d.ai/rodin/1e997330-88d4-4c28-81d8-f58b22c0c137
https://hyper3d.ai/rodin/4ee35b93-3134-492d-944b-892608bcb55f
https://hyper3d.ai/rodin/19419b03-c0d6-4297-b783-bad4df29ce77
https://hyper3d.ai/rodin/56395d6a-88e9-40d4-a72d-d31dbee8377d
https://hyper3d.ai/rodin/65617646-4fe3-457e-948b-6066ad04765d
https://hyper3d.ai/rodin/aef2393f-1889-4404-a563-6890cca9743c
https://hyper3d.ai/rodin/b613c088-addb-493f-ad42-9383fa148081
https://hyper3d.ai/rodin/ceae5972-860d-41f6-92c5-27ff35d1a2d9
https://hyper3d.ai/rodin/e49e49f5-c3f0-4a85-9f1a-1d264be6edf4
https://hyper3d.ai/rodin/f61cfdb3-d6a4-480a-b504-3aa81074a187


Table 7: Ablation on robust pixel loss in our PBR-SR pipeline. We list the quantitative comparison of
PBR texture maps and renderings PSNR from ×4 PBR SR results.

Method Albedo Roughness Metallic Normal Renderings

w/o robust 27.748 30.199 31.826 27.702 27.477
Ours 29.731 31.602 31.889 29.088 28.001

Table 8: Ablation on the rendering resolution of pseudo-GT used in our PBR-SR pipeline. We list
the quantitative comparison of PBR texture maps and renderings PSNR from ×4 PBR SR results.
Results of 4× SR on the Table Clock mesh are reported.

Resolution Albedo Roughness Metallic Normal Renderings

128 31.913 30.814 33.375 34.284 22.485
256 32.549 30.737 34.013 34.181 23.841
512 33.476 30.646 34.085 34.900 24.659
768 34.318 30.857 35.803 35.229 24.555

1024 36.077 30.644 36.296 35.620 24.856

downsampled versions as low-resolution inputs. This process yields a total of 24,000 LR-HR texture
pairs, which are used to fine-tune the ×4 PBR super-resolution model. We fine-tune the pretrained
CAMixerSR [34] model on each set (diffuse, ARM, or normal). The model is initialized from
the official checkpoint and trained for 50K iterations using the AdamW optimizer with a learning
rate of 1 × 10−4, weight decay of 1 × 10−5, and (β1, β2) = (0.9, 0.99). A multi-step learning
rate scheduler is used with decay milestones at 20K and 40K iterations and a decay factor of 0.5.
We adopt an L1 loss in the texture (UV) space with equal weighting and no learning rate warmup.
The training is conducted with exponential moving average (EMA) enabled, using a decay rate of
0.999. All experiments are performed with strict weight loading from the pretrained model, and
the best checkpoint is selected based on validation performance. The entire training process takes
approximately 9.5 hours.

B Additional Results

Impact of Robust Pixel-wise Loss. In the main paper, we adopt a robust pixel-wise loss to mitigate
the impact of artifacts in pseudo-GT renderings, such as view inconsistency, lighting variation,
and shadow misalignment. To validate the necessity of this design, we conduct an ablation by
replacing our robust loss with a standard pixel-wise rendering loss: Lpix = 1

b

∑b
i=1

∥∥ISR
θ − IHR

θ

∥∥2
2
,

where b denotes the number of rendered views and θ represents the optimizable parameters (i.e.,
the super-resolved PBR maps). This baseline assumes uniform confidence across all pixels and
ignores image-specific supervision noise. As shown in Fig. 5, using this naive loss often leads
to overfitting in unreliable regions such as specular highlights or shadows, resulting in artifacts
and inconsistent textures. In contrast, our robust formulation introduces a per-image pixel-wise
weight map Wi(u, v) ∈ [0, 1] that adaptively downweights uncertain pixels. We regularize these
weights toward one to ensure stable optimization: Lrobust = λpix · Lpix + λreg · R(W). This design
improves both the stability and quality of optimization, particularly in regions prone to multi-view
inconsistencies. As shown in Table 7, our full model with robust pixel-wise loss achieves consistently
higher PSNR across PBR channels and final renderings compared to the baseline using the standard
pixel-wise rendering loss on the Artist-designed Dataset. These gains highlight the benefit of
adaptively downweighting unreliable pixels during optimization. Fig. 5 presents a comparison of
renderings under different lighting conditions from our PBR-SR method and its variant without the
robust pixel-wise loss. Without the robust loss, optimization relies on a uniform pixel-wise average
over multi-view supervision, which often introduces blocky artifacts. This issue is exacerbated by
the PBR consistency loss, which operates in texture space using average pooling and implicitly
assumes equal reliability across all pixels. In contrast, our robust loss adaptively downweights
unreliable regions (e.g., shadows or view-specific lighting inconsistencies), resulting in cleaner and
more physically plausible texture reconstructions.

15



LR
w

/o
 r

o
b

u
st

O
u

rs

Figure 5: Comparison of renderings under different lighting from our PBR-SR and its variant without
using robust pixel-wise loss. Both methods significantly improve the rendering quality from the LR
PBR texture, while ours achieves high-fidelity by getting sharper and more natural details.

Untextured Mesh Generated PBR Texture

PBR-SR Texture

LR Ours LR Ours

Figure 6: Texture SR for generated PBR texture. Left: we adopt Paint-it [36] to generate LR texture
and use PBR-SR for ×4 SR. Right: we compare renderings from LR and Ours from two viewpoints.
The two rows are under different lighting conditions.

Ablation on Rendering Resolution in Optimization. We assess the impact of rendering resolution
on optimization performance using the Table Clock model at 128 × 128, 256 × 256, 512 × 512,
768× 768, and 1024× 1024. As shown in Table 8, increasing the resolution of the pseudo-ground
truth renderings consistently improves performance across most channels. Notably, the Albedo and
Metallic maps benefit the most as the resolution increases. Rendering quality also improves steadily,
with PSNR rising from 22.49 to 24.86, indicating that higher-resolution renderings provide more
accurate supervision signals during optimization. The Normal map shows consistent gains, reflecting
enhanced geometric fidelity, while the Roughness channel exhibits only minor variation, suggesting
lower sensitivity to resolution changes. Given the diminishing returns beyond 1024× 1024 and the
significantly increased computational and memory costs at higher resolutions, we adopt 1024× 1024
as the default resolution for DiffBIR outputs in our main experiments.

Clarification on Robust Pixel-wise Loss (Weighting Map Resolution).. As shown in Table 3 of the
main manuscript, we have verified the overall effectiveness of our robust pixel-wise loss. To further
analyze the impact of weighting map resolution, we conducted experiments on the ShoulderStrap
mesh using different weighting map sizes ranging from 8 to 256. The results are summarized in
Table 9. We observe that performance improves steadily from 8 to 64, with diminishing returns
beyond 128. This indicates that moderate-resolution maps (e.g., 64 or 128) are sufficient to capture
spatial inconsistencies introduced by the SR model, while higher resolutions offer negligible gains
but incur significant memory overhead, as a separate weighting map must be optimized for each
rendering view. Therefore, we adopt a resolution of 64 as a practical trade-off between reconstruction
quality and computational efficiency.

16



Table 9: Impact of weighting map resolution on reconstruction performance (PSNR) for the Shoulder-
Strap mesh. Moderate resolutions (64–128) achieve a good balance between quality and efficiency.

Weight Map Res. Albedo Roughness Metallic Normal Renderings

8 34.543 32.501 36.272 26.455 27.838
16 34.641 32.551 35.477 26.685 27.923
32 34.743 32.588 35.198 26.575 28.063
64 34.758 32.615 35.264 25.983 28.163
128 34.770 32.649 35.193 25.766 28.448
256 34.765 32.663 35.214 26.594 28.338

Table 10: Comparison of interpolation methods for initializing PBR texture maps on the Globe mesh.

Metallic/Roughness Init Normal Init Albedo Roughness Metallic Normal Renderings

bicubic bicubic 35.638 32.002 35.343 34.299 36.240
bicubic bicubic + normalize 35.638 32.033 35.341 32.855 36.243
nearest bicubic 35.647 31.269 32.756 34.301 35.883

Interpolation Method for PBR Maps. To evaluate the impact of different interpolation strategies
for initializing metallic, roughness, and normal maps, we conducted an ablation study on the Globe
mesh. The results are summarized in Table 10. Bicubic interpolation for metallic and roughness
slightly outperforms nearest-neighbor interpolation, providing smoother transitions that facilitate
optimization—even for maps with binary-valued regions. For normal maps, bicubic interpolation
without normalization yields better performance (PSNR 34.30 vs. 32.86). We attribute this to
compression and quantization artifacts commonly present in publicly available normal maps, which
result in vector norms slightly below one; post-interpolation normalization amplifies these artifacts
and degrades quality. Overall, bicubic interpolation serves as a robust and effective initialization
strategy, while any minor inconsistencies are further corrected through our optimization process.

Robustness Analysis on Degraded LR Textures. To evaluate the robustness of our optimization-
based method under degraded inputs, we conducted additional experiments on the TableClock mesh
using two common types of degradation applied to the LR albedo map: (i) Gaussian noise with
standard deviations σ = {5, 10, 15, 20} (in the 0–255 range), and (ii) JPEG compression with quality
factors {80, 60, 40, 20, 10}, where lower values indicate stronger compression. For each setting, we
report both the final PSNR after optimization and the PSNR improvement (∆) relative to initialization,
for the albedo map and the rendered appearance (averaged over views). Results are summarized
in Table 11. Our method consistently improves both albedo and rendering quality, even under
moderate or severe degradation. Performance gradually decreases as degradation increases, which is
expected; however, the optimization process continues to yield meaningful improvements over the
initialization. Notably, our approach remains relatively robust to JPEG compression, maintaining
stable performance even at high compression levels. These findings confirm that while input quality
influences the final outcome, our method can tolerate a reasonable range of degradation and still
benefit from the optimization process.

Texture SR for Generated PBR Texture. We adopt Paint-it [36] to generate 1024× 1024 PBR tex-
tures from an untextured mesh (Damaged Helmet), and apply PBR-SR to perform 4× super-resolution
on the generated PBR maps. As shown in Fig. 6 (right), our method successfully introduces high-
frequency details that are absent in the low-resolution renderings. However, the performance of
PBR-SR on generated textures is inherently limited by the quality of the input. Since the gener-
ated textures often lack fine-grained structural cues, it becomes challenging for the SR model to
hallucinate or infer additional detail. Moreover, current PBR texture generation methods struggle to
produce material properties that are physically consistent and visually comparable to those crafted by
professional artists. We believe that future advances in generative PBR modeling could complement
PBR-SR effectively. A more realistic and physically plausible generation of initial textures would
allow PBR-SR to further enhance detail quality, potentially approaching the fidelity of artist-created
PBR assets.

17



Table 11: Robustness evaluation on degraded LR albedo inputs for the TableClock mesh. The results
report PSNR after optimization and the corresponding improvement (∆) from initialization.

Degradation Albedo PSNR Renderings PSNR Albedo ∆PSNR Renderings ∆PSNR

None 33.904 24.429 +8.041 +1.031
Gaussian 5 32.608 24.223 +7.080 +0.989
Gaussian 10 30.199 24.085 +4.332 +0.748
Gaussian 15 27.913 23.826 +2.062 +0.517
Gaussian 20 26.174 23.560 +0.325 +0.322
JPEG 80 33.554 24.282 +6.873 +0.719
JPEG 60 33.292 24.352 +6.325 +0.677
JPEG 40 32.979 24.323 +6.092 +0.648
JPEG 20 32.138 23.853 +6.278 +0.828
JPEG 10 30.974 22.978 +6.006 +0.887

Qualitative Results on Composed Scenes. To evaluate PBR-SR on scenes with multiple objects,
we composed eight meshes from the CGTrader dataset. Figure 7 compares scene renderings using
the input low-resolution (LR) textures and our PBR-SR textures. Our method significantly enhances
the details of each object in the scene. Additionally, we compare scene renderings under different
environment lighting conditions in Figure 8. We tested three environment maps from Poly Haven [4]:
Billiard Hall, De Balie, and Beach Parking. The results demonstrate that PBR-SR consistently
improves rendering quality across all lighting scenarios.

Discussion on Learning-based and Optimization-based Methods for PBR Texture SR. While the
learning-based baseline (CAMixerSR finetuned on our PBR dataset) achieves moderate improvements,
its performance is limited by the scarcity of large-scale, diverse PBR texture–mesh datasets and by
image-space loss functions that fail to capture physically based effects such as relighting consistency
and material fidelity. In contrast, our optimization-based approach is data-efficient and directly
minimizes rendering-space error through differentiable rendering, leading to superior visual realism
and robustness under novel lighting, albeit with slower optimization. We view these two paradigms
as complementary: learning-based models provide efficient initialization and inference, whereas
optimization-based refinement ensures physically grounded fidelity. Future research could explore
hybrid frameworks that integrate differentiable rendering losses and PBR-specific regularization into
the training of feed-forward networks, combining the strengths of both approaches for high-quality,
physically consistent PBR texture super resolution.

Failure Cases. Our model can generally generate HR PBR textures based on the provided LR PBR
inputs. The main failure cases we observed occur when the input LR PBR maps are of extremely
poor quality, lacking sufficient structural or textural clues. In such scenarios, the model struggles to
infer plausible high-frequency details, which leads to suboptimal outputs.

Video. We include a supplementary video 1 showcasing various aspects of our method. The video
provides an overview of the approach, a visualization comparing the LR PBR texture maps with
the PBR-SR outputs, and results under different relighting conditions. Additionally, it features
comparisons with baseline methods and renderings of a composed scene, highlighting the differences
between LR textures and PBR-SR textures.

1https://youtu.be/eaM5S3Mt1RM

18

https://polyhaven.com/a/billiard_hall
https://polyhaven.com/a/de_balie
https://polyhaven.com/a/beach_parking
https://youtu.be/eaM5S3Mt1RM


Rendering with LR PBR Texture Rendering with Our texture

Figure 7: Comparison of scene renderings from LR textures and PBR-SR textures.

19



Lighting: Billiard Hall Lighting: De Balie Lighting: Beach Parking

L
R

PB
R

R
en

de
ri

ng
PB

R
-S

R
R

en
de

ri
ng

L
R

PB
R

R
en

de
ri

ng
PB

R
-S

R
R

en
de

ri
ng

Figure 8: Comparison of scene renderings from LR textures and PBR-SR textures under novel
environment lighting.

20



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose the first zero-shot framework for PBR texture super-resolution.
We list the technical contributions in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

21



Justification: We include the limitation discussion in a paragraph. It mainly contains the
limitation of existing 2D image priors and optimization speed.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: There is no theoretical result in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe the pipeline of PBR-SR in "Method Overview" and discuss
the design of the major modules in "Method". We conduct ablation studies on detailed
modules of the pipeline with public data in "Ablation Study" of "Results", and we provide

22



the details of the optimization process in "Implementation Details". These can facilitate the
reproducibility of experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The experiments are using publicly accessible data. We provide the data link
in the appendix with an example code of our implementation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This is an optimization-based method, only inference on each single sample.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report quantitative results on all inference data.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computer resources information in the appendix.

24



Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: An improvement of texture SR could be used on SR contents for disinforma-
tion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

25

https://neurips.cc/public/EthicsGuidelines


Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited all assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release the assets under a reasonable license.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

26

paperswithcode.com/datasets


Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Method
	Overview
	PBR Texture Initialization
	Differentiable Rasterization for PBR
	Super Resolution on PBR Rendering
	Iterative Optimization
	Robust Pixel-wise Loss
	PBR Constraints


	Results
	Experimental Setup
	Comparison with Baselines

	Conclusion
	Implementation Details
	Datasets
	Optimization
	Baselines

	Additional Results

