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Abstract
The MuZero reinforcement learning method has
achieved superhuman performance at games, and
advances that enable MuZero to contend with
complex actions now enable use of MuZero-class
methods in real-world decision-making applica-
tions. However, some real-world applications are
susceptible to state perturbations caused by ma-
licious attacks and noisy sensors. To enhance
the robustness of MuZero-class methods to state
perturbations, we propose RobustZero, the first
MuZero-class method that is robust to worst-case
and random-case state perturbations, with zero
prior knowledge of the environment’s dynamics.
We present a training framework for RobustZero
that features a self-supervised representation net-
work, targeting the generation of a consistent ini-
tial hidden state, which is key to obtain consistent
policies before and after state perturbations, and
it features a unique loss function that facilitates
robustness. We present an adaptive adjustment
mechanism to enable model update, enhancing
robustness to both worst-case and random-case
state perturbations. Experiments on two classical
control environments, three energy system envi-
ronments, three transportation environments, and
four Mujoco environments demonstrate that Ro-
bustZero can outperform state-of-the-art methods
at defending against state perturbations.

1. Introduction
Deep reinforcement learning (DRL) has achieved notable
successes in numerous domains, e.g., energy (Wang et al.,
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2022), transportation (Sun et al., 2023), and healthcare (Hao
et al., 2022). In DRL, an agent interacts repeatedly with an
environment: The agent receives a state update, or an ob-
servation, along with a reward; in response, the agent takes
an action that in turn yields a new state update and reward.
The objective of DRL is to achieve an agent that is able to
optimize the cumulative reward. Model-free DRL has the
strength of straightforwardly estimating the optimal policy
or value that is used to evaluate the policy, without knowing
the environment’s dynamics. However, model-free DRL
suffers from low sample efficiency and lacks sophisticated
look-ahead capabilities. Model-based DRL is capable of
addressing these weaknesses. However, most model-based
DRL methods, e.g., AlphaGo (Silver et al., 2016) and Al-
phaZero (Silver et al., 2017), require prior knowledge of
the environment’s dynamics, which restricts their applicabil-
ity. To relax this requirement, MuZero (Schrittwieser et al.,
2020) learns an abstract environment model in combina-
tion with Monte Carlo tree search (MCTS). In this sense,
MuZero has the strengths of model-free and model-based
DRL and therefore has attracted broad attention (Hubert
et al., 2021; Ye et al., 2021; Danihelka et al., 2022; Niu
et al., 2024; Xuan et al., 2024).

The superhuman performance achieved by MuZero-class
methods assumes real and unperturbed states. However, in
real-world applications, the observed states may undergo
imperceptible perturbations. Even a small “reality gap”
can compound errors in the predicted abstract states within
MuZero-class methods, causing reduced rewards and po-
tentially harmful decision-making1. To date, no studies
have been reported that address this problem. To improve
robustness, we address two challenges.

Challenge I: How to achieve robust training for MuZero-
class methods under state perturbations? The current ro-
bust training proposals for DRL focus mainly on designing
strategies to: 1) minimize balanced nominal and adversarial
losses (Pinto et al., 2017; Zhang et al., 2020a; Oikarinen
et al., 2021; Liang et al., 2022); 2) minimize the cross-
entropy/KL-divergence policy or value loss between ac-

1Appendix A provides an example to illustrate the importance
of considering state perturbations.
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tions taken under non-perturbed states and perturbed states
(Zhang et al., 2020a; Sun et al., 2022; Zhang et al., 2021;
Liang et al., 2022; Zhou et al., 2024; Liu et al., 2024; Dong
et al., 2025). These strategies are suitable for DRL methods
that use neural networks (NNs) to approximate a policy or
value function, such as deep Q-learning (Mnih et al., 2015),
deep deterministic policy gradient (DDPG) (Timothy et al.,
2015), and proximal policy optimization (PPO) (Engstrom
et al., 2020). However, MuZero-class DRL methods differ
in that they employ MCTS with a learned model to derive a
policy instead of using NNs directly. This calls for a new
robust training method to counteract state perturbations.

Challenge II: How to achieve high robustness for MuZero-
class methods to worst-case and random-case state per-
turbations? Worst-case state perturbations yield states
that minimize cumulative rewards, while random-case state
perturbations imply that perturbations occur randomly in
states. Most existing robust DRL methods (Pinto et al.,
2017; Zhang et al., 2020a; Oikarinen et al., 2021; Russo
& Proutiere, 2021; Liang et al., 2022; Zhang et al., 2021;
Sun et al., 2022; Zhou et al., 2024; Zhihe & Xu, 2023;
Sun & Zheng, 2024; Dong et al., 2025) investigate defense
strategies for worst-case state perturbations, but these meth-
ods often suffer from reduced performance when dealing
with random-case state perturbations that are prevalent in
real-world environments, where sensors produce noisy sam-
ples (Zamora et al., 2017). Further, learning a worst-case
perturbation policy is complex and challenging (Liu et al.,
2024), whereas implementing a random-case perturbation
policy is relatively straightforward. To address this issue, a
recent study (Liu et al., 2024) proposes an adaptive defense
mechanism that achieves high robustness to both worst-case
and random-case state perturbations. However, this mecha-
nism cannot be applied to MuZero-class methods because
its policy search (Liu et al., 2024) is gradient-based, while
MuZero-class methods use gradient-free MCTS for policy
search. A new adaptive mechanism is needed for MuZero-
class methods.

To tackle these challenges, we propose RobustZero, a novel
robust training framework for MuZero-class methods that
achieves high robustness to both worst-case and random-
case state perturbations. First, by integrating contrastive
learning, a self-supervised representation network is devel-
oped to generate similar initial hidden states that are mapped
from unperturbed states and perturbed states. This enables
planning results made in the abstract hidden space with and
without perturbations to be consistent. Second, following
the self-supervised representation network, we propose an
overall loss function that promotes robust training. Third,
we design an adaptive adjustment mechanism that initially
prioritizes learning from worst-case perturbations and then
gradually extends to learn from random-case perturbations
on the fly. The adaptive adjustment mechanism enables

learned models to converge to flat minima and escape from
steep minima, which further enhances the robustness to un-
seen worst-case and random-case state perturbations. In
summary, our main contributions are as follows.

• We propose RobustZero, a novel robust reinforcement
learning framework. We believe this is the first MuZero-
class method to defend against state perturbations.

• We propose a self-supervised representation network to
facilitate the generation of consistent policies; and based
on this, we construct a loss function for robust training.

• We propose a new adaptive adjustment mechanism that
enables RobustZero to generate policies that are highly
robust to both worst-case and random-case perturbations.

• Extensive experiments on two classical control environ-
ments, three energy system environments, three trans-
portation environments, and four Mujoco environments
show that RobustZero is able to outperform the state-of-
the-art methods in terms of robustness to worst-case and
random-case state perturbations.

2. Related Work
2.1. DRL with MCTS

Many DRL methods have been proposed, primarily us-
ing temporal difference learning (Mnih et al., 2015) and
gradient-based policy search (Han et al., 2023). In contrast,
AlphaGo (Silver et al., 2016), a different DRL method, in-
tegrates MCTS as the policy improvement operator with
NNs to approximate value and policy networks. Due to
the strong look-ahead search capability of MCTS, AlphaGo
achieves superhuman performance in numerous games. Sub-
sequently, several DRL methods incorporating MCTS have
emerged, including MuZero (Schrittwieser et al., 2020)
that can learn abstract environment models without knowl-
edge of underlying dynamics. Diverse MuZero-class meth-
ods have been proposed, addressing aspects such as lim-
ited action access (Danihelka et al., 2022), complex action
spaces (Hubert et al., 2021), limited data (Ye et al., 2021),
and time consumption (Xuan et al., 2024). Of these, sam-
pled MuZero (S-MuZero) (Hubert et al., 2021) supports
complex action spaces, which is important in real-world
decision-making. We extend S-MuZero to achieve robust-
ness to state perturbations, an aspect overlooked by existing
MuZero-class methods.

2.2. Robust Reinforcement Learning

DRL robustness may relate to multiple aspects, e.g., action
perturbations (Tessler et al., 2019; Bukharin et al., 2024),
state perturbations (Pinto et al., 2017; Zhang et al., 2020a;
Oikarinen et al., 2021; Russo & Proutiere, 2021; Zhang
et al., 2021; Sun et al., 2022; Liang et al., 2022; Zhou et al.,
2024; Liu et al., 2024; Zhihe & Xu, 2023; Sun & Zheng,

2



RobustZero: Enhancing MuZero Reinforcement Learning Robustness to State Perturbations

2024; Dong et al., 2025), reward corruptions (Zhang et al.,
2020b; Eysenbach & Levine, 2021), and environment dis-
crepancies (Sinha et al., 2020; Huang et al., 2022). We
target DRL robustness to state perturbations. A robust ad-
versarial reinforcement learning method is proposed (Pinto
et al., 2017) to jointly train an agent and an adversary, where
the agent aims to accomplish the primary task objectives
while learning to remain robust against disturbances intro-
duced by the adversary. Zhang et al. (Zhang et al., 2020a)
offer a foundational theory that equates learning an optimal
adversary to finding an optimal policy within a new Markov
Decision Process (MDP). They propose a principled policy
regularization method to defend against state perturbations.
Following this work, the alternating training with learned
adversaries (ATLA)-PPO (Zhang et al., 2021) and the Policy
Adversarial (PA)-ATLA-PPO (Sun et al., 2022) are designed
for launching worst-case perturbation policies under black-
box and white-box attack scenarios, respectively. With a
similar idea of formulating the design of an optimal adver-
sary as the solution to another MDP, a black-box attack
strategy based on DDPG (BA-DDPG) is proposed (Russo &
Proutiere, 2021) to derive the worst-case perturbation policy.
We consider black-box attacks, where the adversary has no
knowledge of the policy and model of the agent. A recent
study (Dong et al., 2025) proposes the use of variational opti-
mization over worst-case adversary distributions, rather than
a single adversary, and trains an agent to maximize the lower
quantile of returns to mitigate over-optimism. As a different
branch, several studies (Zhihe & Xu, 2023; Sun & Zheng,
2024) introduce the diffusion models to enhance robustness
to state perturbations. Specially, a diffusion model-based
predictor is proposed (Zhihe & Xu, 2023) for offline RL to
recover the actual states against state perturbations. A belief-
enriched pessimistic Q-learning method is proposed (Sun &
Zheng, 2024) by using diffusion model to purify observed
states. We note that the studies covered here (Pinto et al.,
2017; Zhang et al., 2020a; Oikarinen et al., 2021; Russo &
Proutiere, 2021; Liang et al., 2022; Zhang et al., 2021; Sun
et al., 2022; Zhou et al., 2024; Zhihe & Xu, 2023; Sun &
Zheng, 2024; Dong et al., 2025) target worst-case state per-
turbations. Recently, the most related work (Liu et al., 2024)
proposes an new method, called PROTECTED, that outper-
forms the state-of-the-art methods under both worst-case
and random-case state perturbations. However, as discussed
above, this method employs gradient-based policy search
and is inapplicable in our setting.

2.3. Contrastive Representation Learning

The contrastive representation learning has been used to
improve the sample efficiency (Schwarzer et al., 2021;
Ye et al., 2021) and enhance the representation ability of
states (Nasiriany et al., 2019), rewards (Kang et al., 2023),
and value functions (Eysenbach et al., 2022). Among them,

one notable work is EfficientZero (Ye et al., 2021), which
significantly improves the sample efficiency of the MuZero
method while maintaining superior performance. It achieves
this by using contrastive representation learning to build
a consistent environment model and by using the learned
model to correct off-policy value targets. Different from
these studies, we aim to leverage contrastive representation
learning to improve the robustness of MuZero-class methods
to state perturbations.

3. Preliminaries
3.1. Markov Decision Process (MDP)

Definition 3.1. An MDP is a 4-tuple M =
(S,A,P,R, ρ0), where S is a state space, A is an
action space, P is a deterministic transition function,R is a
reward function, and ρ0 is the initial state distribution.

An MDP is used widely to describe and model an environ-
ment in DRL. An agent observes a current state st ∈ S.
Driven by a policy, the agent takes an action at+1 ∈ A
and then receives an updated state st+1 and a reward
rt+1 = R(st, at+1). For a sequential decision-making task
(e.g., voltage control), the goal is to maximize the expected
return

∑T
t=0 γtrt, where γt is the discount factor at time t.

3.2. MuZero

MuZero learns an abstract MDP to represent an abstract
environment model and employs MCTS for planning. Note
that planning occurs in the abstract MDP based on abstract
states instead of real states. To avoid the misuse of symbols,
we use t to represent the time step in the real world. Planning
is made at each time step t. We use k = 0, ...,K to represent
the index of unrolled steps in the abstract MDP. Next, we
summarize the components of the abstract MDP: 1) a repre-
sentation networkHθ that maps a real state ot to an abstract
and initial state s0t , denoted as s0t := Hθ(ot); 2) a dynamics
network Gθ that maps a previous abstract state sk−1

t and a
candidate action akt to an immediate reward rkt and a new
abstract state skt , denoted as rkt , s

k
t := Gθ(sk−1

t , akt ); and 3)
a prediction network Fθ that maps skt to a policy pkt and a
value function vkt , denoted as pkt , v

k
t := Fθ(s

k
t ), where θ

denotes the NN parameters of the representation, dynamics,
and prediction networks. By using the abstract MDP, MCTS
obtains a search policy πt at each time step t to determine
the real action at+1. Then, the real environment receives
at+1 and further provides a new state ot+1 and a real re-
ward µt+1. By employing value equivalence, the training
objective of MuZero is to enable achieving pkt ≈ πt+k,
vkt ≈ zt+k, and rkt ≈ µt+k, where zt+k is the sampled
return. The sequence of real actions from the sampled tra-
jectory is used to compute rkt . In this way, the planning
results made in the abstract MDP are equivalent to those in
the real environment.
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3.3. S-MuZero

The traditional MuZero method is only suitable for low-
dimensional and discrete action spaces. By combing the
sample strategy and MCTS, S-MuZero (Hubert et al., 2021)
enables planning in complex action spaces, including con-
tinuous and high-dimensional discrete spaces. For ease
of distinction, we name the policy evaluation and im-
provement in S-MuZero as sampled MCTS, denoted as
s-MCTS(s0t , θ,K), where K is the number of sampled ac-
tions. We employ sampled MCTS to obtain the search
policy πt ← s-MCTS(s0t , θ,K), where πt is also called the
sample-based improved policy (Hubert et al., 2021).

4. Problem Statement
4.1. State Perturbations

An adversary or attacker aims to launch state perturbations
to reduce the accumulated reward gained by an agent. We
consider the black-box attack and assume that the adver-
sary cannot change the MDP. The adversary can then only
observe and perturb states before they reach the agent. To
obtain general robust-defense performance, we consider
both worst-case and random-case state perturbations. Next,
each perturbed state is subject to a budget constraint (Oikari-
nen et al., 2021; Liang et al., 2022; Zhou et al., 2024; Zhang
et al., 2020a; 2021; Liu et al., 2024; Sun et al., 2022), which
limits the power of the adversary.

Definition 4.1. The budget constraint Bϵ(ot) denotes an
lp norm ball centered at ot with radius ϵ.

For clarity, we use superscripts “˜” and “ ˆ ” to represent
the relevant symbols and variables under worst-case and
random-case state perturbations, respectively. For instance,
t̃ and t̂ denote data at time t from a trajectory generated
under worst-case and random perturbations, respectively,
and õt̃ and ôt̂ denote the perturbed states after worst-case
and random-case state perturbations, respectively. Next,
we formalize the worst-case and random-case perturbation
policies.

Definition 4.2. A worst-case perturbation policy is
defined by a function Aworst that maps ot̃ to õt̃ :=
Aworst(ot̃) ∈ Bϵ(ot̃), with the objective of finding an opti-
mal policy A∗

worst that minimizes
∑T

t̃=0 γt̃µ̃t̃.

Definition 4.3. A random perturbation policy is defined
by a function Arandom that maps ot̂ to a random state ôt̂ :=
Arandom(ot̂) ∈ Bϵ(ot̂).

4.2. Objective of RobustZero

Similar to MuZero, RobustZero aims to learn an abstract
MDP that, by employing MCTS, produces a planned policy,
reward, and value. These planning results are capable of
aligning with those of the policy, reward, and value in the

real environment, without relying on the actual dynamics of
the environment. Unlike MuZero, the additional and unique
objective of RobustZero is to generate consistent planning
results both without and with state perturbations restricted
by a budget constraint. This aims to enable satisfactory
planning results even when the agent receives perturbed
states, resulting in enhanced robustness of the method.

5. RobustZero
The RobustZero framework is shown in Fig. 1. It encom-
passes three parts: parallel data collection under state per-
turbations, self-supervised representation network and loss
function, and adaptive adjustment during training.

5.1. Parallel Data Collection under State Perturbations

To increase the efficiency of data collection, RobustZero
operates in two parallel environments, Environment 1 and
Environment 2, under worst-case and random-case state
perturbations, respectively. Thus, two replay buffers, worst-
case buffer DWC and random-case buffer DRC, are used to
store different data. The details of the parallel data collection
are provided in Appendix B.1.

5.2. Self-supervised Representation Network and Loss
Function

To obtain similar planning results with and without state
perturbations, we propose a self-supervised representation
network that replaces MuZero’s original representation net-
work. Then, we define a new loss function—encompassing
a worst-case loss term, a random-case loss term, and a decay
term—to guide the training of the learned model.

a) Model of self-supervised representation network: Re-
calling the structure of MuZero-like methods, the represen-
tation network serves as the interface between the real-world
states and the abstract hidden states. Taking states before
and after perturbations, i.e., ot̃ and õt̃, as input to the rep-
resentation network, we can get the corresponding roots
of the search trees, i.e., s0

t̃
← Hθ(ot̃) and s̃0

t̃
← Hθ(õt̃).

If the encoded root nodes are the same, the final policies
generated by the sampled MCTS will also remain the same.
In this sense, the agent is capable of defending against state
perturbations well.

With this inspiration, we include a self-supervised repre-
sentation network that leverages contrastive learning in the
framework. The network contains two branches. The first
branch contains a representation network and a projector
network without gradients. The second branch contains the
same representation network, the same projector network,
and an additional predictor network. We use ϕ to represent
the NN parameters of the projector and the predictor. Next,
we define the notions of projector and predictor.
Definition 5.1. A projector P1ϕ transforms an initial hidden

4



RobustZero: Enhancing MuZero Reinforcement Learning Robustness to State Perturbations

Figure 1. Overview of the RobustZero framework.

state to a d-dimensional vector.
Definition 5.2. A predictor P2ϕ transforms the output of
the projector to another d-dimensional vector.

The key functionality of the projector is to map high-
dimensional features from the encoder to a lower-
dimensional space, making the learned features more suit-
able for the subsequent contrastive loss computation. Next,
the key functionality of the predictor is to transform pro-
jected features to stabilize optimization and reduce col-
lapsing solutions. Specifically, if we omit the predictor
and directly enforce similarity between the outputs of two
branches (e.g., using mean squared error or cosine similar-
ity), the model may exploit a shortcut by collapsing to a
constant output vector. In such a scenario, since all inputs
produce the same output, the loss is minimized regardless of
input variation, resulting in model collapse. When collapse
occurs, all states—regardless of whether they are perturbed
or not—are mapped to the same or very similar initial hidden
state, effectively losing the ability to distinguish between
different inputs. To avoid model collapse, one effective
strategy is to introduce an asymmetric network architecture,
where a predictor is added to one branch, while the other
branch remains without it and has its gradient flow stopped.
This asymmetry prevents both branches from trivially con-
verging to the same constant output. The branch with the
predictor learns to align its output with the target branch,
which acts as a stable reference point. Because the target
branch does not receive gradients, it cannot adjust itself
to match the predictor’s potentially trivial solution, thus
breaking the symmetry that often leads to collapse. With
this model, we can supervise the encoded root node after

perturbation by using the encoded root node before pertur-
bation to improve the representation network. The goal is
to achieve maximum similarity between the two branches.
This enables the improved representation network to pull s̃0

t̃

(ŝ0
t̂
) and s0

t̃
(s0

t̂
) close to each other, resulting in enhanced

robustness to state perturbations.

b) Contrastive loss: To achieve the objective of the self-
supervised representation network, we define worst-case
and random-case contrastive loss functions:

L̃ctr = EB∼DWC

[
−

P2ϕ(P1ϕ(s̃
0
t̃
))

∥P2ϕ(P1ϕ(s̃0t̃ ))∥2
·

sg(P1ϕ(s
0
t̃
))

∥sg(P1ϕ(s0t̃ ))∥2

]
(1)

L̂ctr = EB∼DRC

[
−

P2ϕ(P1ϕ(ŝ
0
t̂
))

∥P2ϕ(P1ϕ(ŝ0t̂ ))∥2
·

sg(P1ϕ(s
0
t̂
))

∥sg(P1ϕ(s0t̂ ))∥2

]
,

(2)

where ∥ · ∥2 is the l2-norm; sg(·) is the stop-gradient opera-
tion; and B is the batch.

c) Overall loss function: The loss function of RobustZero
has three weighted terms: i) a worst-case loss term, ii) a
random-case loss term, and iii) a decay term. The first
of these is composed of the original loss function and the
contrastive loss function:

L̃ = EDWC∼B

[ K∑
k=1

l̃r(µ̃t̃+k, r̃
k
t̃
) + c1

K∑
k=0

KLp(π̃t̃+k, p̃
k
t̃
)

+ c2

K∑
k=0

l̃v(z̃t̃+k, ṽ
k
t̃
)

]
+ c3L̃ctr, (3)
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where c1, c2, and c3 are loss coefficients; l̃r and l̃v are
the Cross-Entropy loss functions for reward and value, re-
spectively; and KLp is the KL-divergence loss function for
policy.

The settings of l̃r, KLp, and l̃v are the same as their coun-
terparts in S-MuZero, with the objectives of minimizing the
errors between the predicted policy p̃k

t̃
and the real search

policy π̃t̃+k, between the predicted value ṽk
t̃

and the target
value z̃t̃+k, and between the predicted reward r̃k

t̃
and the

real reward µ̃t̃+k.

Similarly, the random-case loss term is defined as:

L̂ = EDRC∼B

[ K∑
k=1

l̂r(µ̂t̂+k, r̂
k
t̂
) + c1

K∑
k=0

KLp(π̂t̂+k, p̂
k
t̂
)

+ c2

K∑
k=0

l̂v(ẑt̂+k, v̂
k
t̂
)

]
+ c3L̂ctr (4)

As a regularizer, the decay term is added to the main loss
function to avoid over-fitting:

Ldecay = ∥θ∥22 (5)

With these components, we define RobustZero’s loss func-
tion as:

L = L̃+ w1t′L̂+
w2t′

2
Ldecay, (6)

where w1t′ and w2t′ are weights of the loss function, and
t′ is the time index in the training phase. The performance
of RobustZero is affected by the settings of the two weights.
We thus consider shortly how to adjust w1t′ and w2t′ dy-
namically to enhance RobustZero’s robustness to both worst-
case and random-case state perturbations.

5.3. Adaptive Adjustment during Training

We proceed to explain how to train RobustZero. We recall
that the worst-case and random-case perturbation policies re-
flect the worst and average scenarios, respectively. Although
both types of perturbations are important, we hope to first
increase the weight of the worst-case loss term to improve
the robustness of RobustZero to worst-case perturbations,
and then gradually accommodate the average-case during
the training phase. The main reasons are: 1) the worst-
case perturbation policy is purposeful and smart, while the
random-case perturbation policy is random. Thus, first im-
proving the ability of the model to cope with the worst-case
perturbation is beneficial for the stability of the overall train-
ing process; and 2) worst-case state perturbations are more
dangerous than random-case state perturbations. This makes
it preferable to weight the worst-case highly. To achieve
this, we design w1t′ as:

w1t′ = 2 · sg
(

1

1 + eλ1(L̃ctr+1)

)
, (7)

where λ1 is a hyperparameter that affects the rate of change
of w1t′ .

Since L̃ctr ∈ [−1, 1], we have L̃ctr + 1 ∈ [0, 2]. The
smaller L̃ctr is, the more similar s̃0

t̃
and s0

t̃
are, indicating

that RobustZero is more robust to worst-case state perturba-
tions. According to Eq. 7, w1t′ increases as L̃ctr decreases.
This feature allows us to first assign a high weight to the
worst-case loss term, enabling updates to θ to strengthen the
model’s robustness to worst-case perturbations. Then, as the
similarity between s̃0

t̃
and s0

t̃
increases, we gradually adjust

w1t′ to allow RobustZero to accommodate random-case
state perturbations. When L̃ctr = −1, we have w1t′ = 1. In
this case, the worst-case and random-case loss terms have
equal weight, which occurs only if the trained RobustZero
model can handle worst-case state perturbations fully.

Next, we design w2t′ . Note that while training guided by the
combination of the worst-case and random-case loss terms
can enhance the robustness of RobustZero, the trained model
may experience compromised performance in the presence
of unseen worst-case or random-case state perturbations. To
address this issue, we dynamically adjust the decay term to
guide the learned model towards flat minima and away from
steep minima, thereby improving generalization. To this end,
we employ the gradient information (Ghiasi et al., 2023) to
determine the dynamic setting of w2t′ . More specifically,
the gradient update for parameter θ from time step t′ − 1 to
t′ is:

θt′ =θt′−1

− ς
(
∇L̃θt′−1

+ w1t′∇L̂θt′−1
+ w2t′θt′−1

)
, (8)

where ς is the stepsize and ∇L̃θt′−1
and L̂θt′−1

are gradi-
ents related to θ at t′ − 1 from Eqs. 3 and 4, respectively.
Similarly, we let ∇L̃ϕt′−1

and L̂ϕt′−1
denote the gradients

related to ϕ at t′ − 1 from Eqs. 3 and 4, respectively.

In Eq. 8, items∇L̃θt′−1
+w1t′∇L̂θt′−1

and w2t′θt′−1 quan-
tify the actual strength of an update of θ. Further, λ2 is used
to capture the ratio between the magnitudes of w2t′θt′−1

and ∇L̃θt′−1
+ w1t′∇L̂θt′−1

:

λ2 =
∥w2t′θt′−1∥2

∥∇L̃θt′−1 + w1t′∇L̂θt′−1
∥2

(9)

In order to maintain the actual effect of the main loss (i.e.,
L̃ + w1t′L̂) and the decay unchanged, we keep λ2 as a
constant. This enables us to calculate w2t′ as:

w2t′ = sg

(
λ2∥∇L̃θt′−1

+ w1t′∇L̂θt′−1
∥2

∥θt′−1∥2

)
(10)

Eq. 10 shows that w2t′ is updated adaptively according to
the changes to ∇L̃θt′−1

, ∇L̂θt′−1
, w1t′ , and θt′−1. Then,
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the weighted decay term in Eq. 6 can be re-written as:

w2t′

2
Ldecay =

sg(λ2∥∇L̃θt′−1
+ w1t′∇L̂θt′−1

∥2)∥θt′−1∥2
2

(11)

Eq. 11 indicates that the weighted decay term increases
with the gradient of the main loss function, and vice versa.
The incorporation of gradient information brings two major
benefits. First, when the gradient of the main loss function
approaches zero, the weight decay term also approaches
zero. This prevents over-optimization of the weighted decay
term in flat minima, allowing stronger emphasis on the main
loss function, which is beneficial for obtaining a model
that is more robust to state perturbations. Second, a large
weighted decay term is applied when the gradient of the
main loss function is large. This prevents the model from
settling into steep local minima, thereby reducing the risk
of early overfitting during training. In this sense, adaptive
adjustment of w2t′ enables the learned model to converge
to flat minima and escape from steep minima.

Next, to achieve more stable training, we use smooth update
rules for both w1t′ and w2t′ , i.e.:

w1t′ ←0.1w1t′−1 + 0.9w1t′ (12)
w2t′ ←0.1w2t′−1 + 0.9w2t′ (13)

The pseudocode of the training process to update the model
of RobustZero is provided in Appendix B.2.

6. Experiments
6.1. Experimental Setup and Baselines

We study RobustZero on: 1) two classical control environ-
ments, including CartPole2 and Pendulum3; 2) three energy
environments in power distribution systems with hybrid
action spaces (Fan et al., 2022), including IEEE 34-bus,
IEEE 123-bus, and IEEE 8500-node systems; 3) three trans-
portation environments 4, including Highway with discrete
action space, Intersection with discrete action space, and
Racetrack with continuous action space; and 4) four Mu-
joco environments with continuous action spaces, including
Hopper, Walker2d, HalfCheetah, and Ant, following a setup
similar to that of Liu et al. (2024). Therein, the three energy
environments support the testing of voltage control tasks
with the objective of minimizing the total cost of voltage
violations, control errors, and power losses, while meeting
both networked and device constraints. The action spaces
of IEEE 34-bus, IEEE 123-bus, and IEEE 8500-node are 10-
dimensional (8 continuous actions and 2 discrete actions),

2gymnasium.farama.org/environments/classic control/cart pole/
3gymnasium.farama.org/environments/classic control/pendulum/
4github.com/Farama-Foundation/HighwayEnv

15-dimensional (11 continuous actions and 4 discrete ac-
tions), and 32-dimensional (22 continuous actions and 10
discrete actions), respectively. The three transportation en-
vironments support the testing of autonomous driving tasks.
Therein, an autonomous driving car interacts with other ve-
hicles to navigate different scenarios: i) Highway−Drive
fast, avoid collisions, and stay in the right-most lane; ii)
Intersection−Cross safely, follow traffic rules, and keep a
steady speed; and iii) Racetrack−Finish quickly while stay-
ing on track and driving smoothly. The action space of an
autonomous driving car is two-dimensional. Furthermore,
we compare with five baselines:

• ATLA-PPO (Zhang et al., 2021) can obtain worst-case
perturbation policies under black-box attacks and can
defend against such attacks. ATLA-PPO is trained under
worst-case state perturbations.

• PROTECTED (Liu et al., 2024) is the state-of-the-art
and most related model-free DRL method for handling
worst-case and random-case state perturbations. PRO-
TECTED is trained under worst-case and random-case
state perturbations.

• S-MuZero (Hubert et al., 2021) is the most related
MuZero-class method supporting complex action spaces.
S-MuZero is unable to defend against state perturbations
and is trained under no state perturbation.

• S-MuZero-worst and S-MuZero-random are baselines,
representing S-MuZero trained under worst-case and
random-case state perturbations, respectively.

Following Zhang et al. (2021) and Liu et al. (2024), we
adopt ATLA-PPO to obtain Aworst that reflects the strongest
impact on reducing the accumulated reward. The Uniform
noise is used to execute Arandom that reflects the average
impacts of all possible perturbations. Details of the experi-
mental settings are provided in Appendix C.1.

6.2. Comparison Study

We conduct the main experiments to assess robustness of
RobustZero. We evaluate the performance of the methods
under three scenarios: i) no perturbations, ii) worst-case
state perturbations, and iii) random-case state perturbations.
The average episodic rewards ± the standard deviation over
50 episodes for the three scenarios (natural, worst-case, and
random-case) are reported in Table 1. In each column, the
highest reward is highlighted in bold. Due to the space
limitation, Table 1 only reports the results on Pendulum,
IEEEE 34-bus, IEEE 8500-node, and Racetrack. The results
and analyses for the remaining environments are provided
in Appendix C.2. Overall, RobustZero outperforms all five
baselines at defending against state perturbations across the
four environments. The details are as follows.
• RobustZero and S-MuZero achieve similar natural re-

wards that are higher than those of the other baselines.
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Table 1. Main experimental results on Pendulum, IEEE 34-bus, IEEE 8500-node, and Racetrack.

Method Pendulum IEEE 34-bus
Natural
Reward

Worst-case
Reward

Random-case
Reward

Natural
Reward

Worst-case
Reward

Random-case
Reward

ATLA-PPO -90.26 ± 64.32 -94.24 ± 66.42 -92.46 ± 69.42 -11.36 ± 0.12 -14.07 ± 0.33 -13.56 ± 0.17
PROTECTED -89.46 ± 59.83 -91.96 ± 51.24 -91.32 ± 55.44 -10.43 ± 0.09 -12.89 ± 0.32 -12.26 ± 0.07

S-MuZero -82.58 ± 57.05 -250.02 ± 102.56 -166.89 ± 62.53 -8.56 ± 0.19 -25.70 ± 6.41 -19.50 ± 2.95
S-MuZero-worst -251.49 ± 2.89 -89.98 ± 48.36 -170.57 ± 68.96 -15.31 ± 0.47 -15.07 ± 0.39 -15.79 ± 2.59

S-MuZero-random -88.91 ± 56.90 -168.70 ± 60.55 -130.29 ± 99.12 -10.96 ± 0.49 -15.76 ± 2.19 -14.68 ± 0.39
RobustZero -83.48 ± 58.96 -87.92 ± 53.24 -84.68 ± 55.74 -9.57 ± 0.43 -12.16 ± 1.19 -11.43 ± 0.37

Method IEEE 8500-node Racetrack
Natural
Reward

Worst-case
Reward

Random-case
Reward

Natural
Reward

Worst-case
Reward

Random-case
Reward

ATLA-PPO -1279 ± 9 -1412 ± 12 -1351 ± 7 409.13± 0.31 386.69 ± 0.16 392.87 ± 0.01
PROTECTED -1264 ± 4 -1376 ± 19 -1296 ± 19 478.40 ± 3.00 429.36 ± 5.14 459.10 ± 6.03

S-MuZero -1135 ± 18 -1863 ± 25 -1686 ± 15 567.80 ± 3.16 352.20 ± 6.93 370.40 ± 3.94
S-MuZero-worst -1402 ± 26 -1457 ± 21 -1521 ± 10 375.9 ± 6.32 410.00 ± 6.94 398.70 ± 6.32

S-MuZero-random -1294 ± 20 -1503 ± 18 -1368 ± 5 415.60 ± 4.64 390.50 ± 7.64 410.82 ± 6.06
RobustZero -1158 ± 30 -1374 ± 35 -1217 ± 27 520.60 ± 1.32 477.00 ± 1.26 494.00 ± 2.42

The major reasons are: i) MuZero-class methods use
an abstract environment model to make plan ahead,
which enables better solutions than model-free DRL, e.g.,
ATLA-PPO and PROTECTED; and ii) S-MuZero-worst
and S-MuZero-random cannot obtain comparable natu-
ral rewards because they are trained under worst-case
state perturbations only and random-case state perturba-
tions only, respectively. Additionly, S-MuZero obtains
slightly higher natural rewards than RobustZero. This
is because S-MuZero is trained without state perturba-
tions. It thus obtains the best natural rewards. However,
its worst-case and random-case rewards decrease notably.
In comparison, RobustZero can still obtain comparable
natural rewards but much better in both worst-case and
random-case rewards.

• RobustZero achieves a higher worst-case reward than all
baselines across the four environments. RobustZero in-
creases the worst-case reward by 2.34%–184.37% on Pen-
dulum, by 6.00%–111.35% on IEEE 34-bus, by 0.15%–
35.59% on IEEE 8500-node, and by 11.10%–35.43%
on Racetrack. Further, S-MuZero-worst obtains a higher
worst-case reward than S-MuZero and S-MuZero-random.
Notably, its worst-case rewards appear higher than the
corresponding random-case rewards. This is because S-
MuZero-worst does not incorporate any robustness mech-
anism. It is trained solely on perturbed states, without any
information about non-perturbed states. This causes S-
MuZero-worst to be over-trained under the worst-case per-
turbation policy, making it highly specialized and adapted
to that particular perturbation pattern. As a result, its per-
formance under worst-case state perturbations unusually
appears higher than its performance under random-case
state perturbations as observed in Table 1. Although
S-MuZero-worst achieves relatively high worst-case re-
wards, its natural reward and random-case reward are low,
due to the lack of a defense strategy.

• RobustZero achieves a higher random-case reward than
all baselines across all the four environments, increasing
this reward by 7.84%–101.43% on Pendulum, by 7.26%–
70.60% on IEEE 34-bus, by 6.49%–38.54% on IEEE
8500-node, and by 7.60%–33.37% on Racetrack. Sim-
ilarly, S-MuZero-random achieves a high random-case
reward, but also reduced natural and worst-case rewards
due to the absence of a defense strategy.

We make additional comparisons: 1) Evaluation of all meth-
ods under perturbation policies that were not encountered
during training, to assess the generalization capability of
RobustZero (see Appendix C.5); 2) Time and sampling ef-
ficiency analysis that focuses on the training and sampling
time, and sampling efficiency (see Appendix C.6).

6.3. Ablation Study

We study the effects of the self-supervised representation
network, the adaptive adjustment mechanism, and the paral-
lel use of worst-case and random-case buffers on improving
the robustness of RobustZero. We use RobustZero/cl to de-
note RobustZero without the self-supervised representation
network, use RobustZero/w1 to denote RobustZero trained
with w1 = 15, use RobustZero/w2 to denote RobustZero
trained with w2 set to 5e-6, 5e-8, 5e-8, and 1e-5 for Pen-
dulum, IEEEE 34-bus, IEEE 8500-node, and Racetrack,
respectively6, use RobustZero-DWC to denote RobustZero
employing only the worst-case buffer, and use RobustZero-
DRC to denote RobustZero employing only the random-case
buffer. Similarly, we report results for Pendulum, IEEEE
34-bus, IEEE 8500-node, and Racetrack, as shown in Table
2. The counterparts for the remaining environments are

5w1 = 1 indicates that worst-case and random-case perturba-
tions are treated equally.

6The method for selecting these values of w2 is provided in
Appendix C.3.
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Table 2. Ablation study on Pendulum, IEEE 34-bus, IEEE 8500-node, and Racetrack.

Method Pendulum IEEE 34-bus
Natural
Reward

Worst-case
Reward

Random-case
Reward

Natural
Reward

Worst-case
Reward

Random-case
Reward

RobustZero/cl -85.43 ± 54.00 -91.15 ± 58.15 -87.24 ± 55.00 -12.03 ± 0.30 -15.18 ± 1.15 -14.03 ± 0.32
RobustZero/w1 -83.99 ± 54.64 -89.41 ± 49.42 -85.19 ± 55.19 -10.12 ± 0.42 -13.41 ± 1.30 -12.20 ± 0.26
RobustZero/w2 -84.67 ± 56.36 -90.23 ± 57.00 -86.84 ± 55.24 -11.57 ± 0.36 -14.63 ± 1.10 -13.49 ± 0.24

RobustZero-DWC -89.36 ± 56.10 -90.63 ± 58.02 -90.88 ± 54.69 -14.16 ± 0.50 -14.89 ± 0.71 -14.76 ± 0.40
RobustZero-DRC -87.67 ± 55.81 -92.26 ± 57.66 -89.09 ± 56.02 -13.60 ± 0.61 -14.96 ± 1.06 -14.31 ± 0.52

RobustZero -83.48 ± 58.96 -87.92 ± 53.24 -84.68 ± 55.74 -9.57 ± 0.43 -12.16 ± 1.19 -11.43 ± 0.37

Method IEEE 8500-node Racetrack
Natural
Reward

Worst-case
Reward

Random-case
Reward

Natural
Reward

Worst-case
Reward

Random-case
Reward

RobustZero/cl -1320 ± 30 -1598 ± 36 -1479 ± 25 422.60 ± 1.36 360.33 ± 1.35 378.65 ± 2.30
RobustZero/w1 -1200 ± 28 -1488 ± 32 -1369 ± 28 490.11 ± 1.32 400.00 ± 1.24 440.89 ± 2.31
RobustZero/w2 -1288 ± 29 -1533 ± 34 -1403 ± 26 448.70 ± 1.28 385.23 ± 1.34 414.55 ± 2.28

RobustZero-DWC -1416 ± 27 -1609 ± 35 -1567 ± 25 380.26 ± 1.35 359.77 ± 1.11 368.75 ± 2.34
RobustZero-DRC -1380 ± 28 -1641 ± 37 -1520 ± 24 392.30 ± 1.31 355.74 ± 1.20 370.02 ± 2.52

RobustZero -1158 ± 30 -1374 ± 35 -1217 ± 27 520.60 ± 1.32 477.00 ± 1.26 494.00 ± 2.42

provided in Appendix C.4. Compared to RobustZero, we
derive the following observations from Table 2:

• RobustZero/cl decreases the natural reward by 2.34%–
25.71%, the worst-case reward by 3.67%–32.38%, and
the random-case reward by 3.02%–30.47%. Thus, the
self-supervised representation network clearly enhances
the robustness of RobustZero, while ensuring a high natu-
ral reward.

• RobustZero/w1 decreases the natural reward by 0.61%–
6.22%, the worst-case reward by 1.69%–19.25%, and the
random-case reward by 0.60%–12.49%. This verifies that
using a dynamic w1 to first enhance the defense capability
to worst-case state perturbation and then to gradually
adapt to random-case state perturbation is beneficial.

• RobustZero/w2 decreases the natural reward by 1.43%–
20.90%, the worst-case reward by 2.63%–23.82%, and
the random-case reward by 2.55%–19.17%. This is be-
cause an adaptive w2 enables the learned model to con-
verge to flat minima with enhanced robustness to unseen
states. A fixed w2 does not have this capability.

• RobustZero-DWC decreases the natural reward by 7.04%–
47.96%, the worst-case reward by 3.08%–32.58%, and
the random-case reward by 7.32%–33.97%. Further,
RobustZero-DRC decreases the natural reward by 5.02%–
42.11%, the worst-case reward by 4.94%–34.09%, and
the random-case reward by 5.21%–33.51%. RobustZero-
DWC and RobustZero-DRC both reduce RobustZero’s per-
formance notably. This is because the dynamic adjust-
ment of w1 and w2 requires the interaction of two buffers.
Using separate buffers makes w1 and w2 ineffective.

We further evaluate the performance of all variants of Ro-
bustZero against unforeseen perturbation strategies (see Ap-
pendix C.5). In addition, to assess the impacts of hyper-
parameter settings and attack radiuses on the performance

of RobustZero, we conduct extensive experiments in Ap-
pendixes C.7 and C.8.

7. Conclusion and Future Work
We propose RobustZero, the first MuZero-class method
designed to ensure robustness to state perturbations. It fea-
tures a novel robust training framework and training method
to defend against both worst-case and random-case state
perturbations. The framework includes a self-supervised
representation network that enables the generation of con-
sistent policies before and after state perturbations. Further,
a unique loss function enables robust training. In addition,
an adaptive adjustment mechanism enables updates of Ro-
bustZero to offer a policy with high robustness to worst-case
and random-case state perturbations. Extensive experiments
on eight environments offer evidence that RobustZero ad-
vances the state-of-the-art methods at defending against
worst-case and random-case state perturbations. In future re-
search, it is of interest to develop a multi-agent RobustZero
and apply it in Internet of Things scenarios.
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A. An Example in Energy System Subject to State Perturbations
The following example show why it is important to enhance the robustness of MuZero-class methods to state perturbations.
Example 1. We consider an environment encompassing a 6-bus power system, where the voltage (the state) of
each bus must be in the range [0.50, 1.00] p.u. (per unit). At time t, the real voltages of the six buses are
(0.95 0.55 0.78 0.86 0.87 1.00)p.u. However, due to malicious attacks and noisy sensors, the agent receives perturbed
voltage readings: (0.96, 0.57, 0.80, 0.85, 0.89, 0.97) p.u. These perturbations affect the agent’s actions, leading to different
rewards and subsequent voltages. In particular, without perturbations, the reward is 0.89 p.u. and the resulting voltages
are [0.94, 0.60, 0.75, 0.85, 0.85, 0.96] p.u. With perturbations, the reward drops to 0.22 p.u., and the next set of voltages is
[0.90, 0.68, 0.77, 0.92, 0.80, 1.03] p.u., which violates the range constraint.

B. Details of RobustZero
B.1. Details of Parallel Data Collection

We consider parallel data collection to gain experience when states are suffering from state perturbations. Algorithm 1
provides the pseudocode for each round of data collection. Functions WC(·) and RC(·) define the data collection under
worst-case and random-case state perturbations, respectively. Both Environment 1 and Environment 2 support multiple and
parallel task execution to collect data. As a result, multiple WC(·) and RC(·) calls can be executed in parallel. For simplicity,
we ignore episodes here. Additionally, WC(·) and RC(·) use the same NN parameters θ.

We take function WC(·) as an example to illustrate data collection. Adversary 1 observes the real state ot̃ from Environment
1 and launches worst-case perturbation policy Aworst(ot̃) to obtain the perturbed state õt̃. Next, RobustZero agent receives
õt̃ that is further encoded as the initial hidden state (i.e., the root node) s̃0

t̃
by the using the representation network

Algorithm 1 Parallel Data Collection

Input: NN parameters θ; number of sampled actions K; end time of episode T̃ and T̂
Output: ∪1≤t̃≤T̃ (ot̃, õt̃, π̃t̃, ãt̃+1, µ̃t̃+1, ot̃+1) and ∪1≤t̂≤T̂ (ot̂, ôt̂, π̂t̂, ât̂+1, µ̂t̂+1, ot̂+1)

function WC(ot̃,Aworst,Hθ, s-MCTS)
for t̃ = 1 to T̃ do

Adversary 1 do:
observe ot̃, õt̃ ← Aworst(ot̃)
Agent of RobustZero do:
receive õt̃, s̃

0
t̃
← Hθ(õt̃)

π̃t̃ ← s-MCTS(s̃0
t̃
, θ,K)

ãt̃+1 ← π̃t̃ /* sample an action */
Environment 1 do:
receive ãt̃+1, return ot̃+1 and µ̃t̃+1

end for
RETURN ∪1≤t̃≤T̃ (ot̃, õt̃, π̃t̃, ãt̃+1, µ̃t̃+1, ot̃+1)

end function
function RC(ot̂,Arandom,Hθ, s-MCTS)

for t̂ = 1 to T̂ do
Adversary 2 do:
observe ot̂, ôt̂ ← Arandom(ot̂)
Agent of RobustZero do:
receive ôt̂, ŝ

0
t̂
← Hθ(ôt̂)

π̂t̂ ← s-MCTS(ŝ0
t̂
, θ,K)

ât̂+1 ← π̂t̂

Environment 2 do:
receive ât̂+1, generate ot̂+1 and µ̂t̂+1

end for
RETURN ∪1≤t̂≤T̂ (ot̂, ôt̂, π̂t̂, ât̂+1, µ̂t̂+1, ot̂+1)

end function

12



RobustZero: Enhancing MuZero Reinforcement Learning Robustness to State Perturbations

Algorithm 2 Training process of RobustZero
Input: Number of iterations Niter, number of update per iteration Nu, batch size B, hyperparameters λ1 and λ2, and
step-size ς
Output: θ and ϕ
Initialize NNs of θ and ϕ, replay buffers DWC and DRC, and w1 and w2 as 0
for i = 1 to Niter do
DWC ← WC(·), DRC ← RC(·) /* See WC(·) and RC(·) from Algorithm 1 */
for j = 1 to Nu do
t′ ← (i− 1)Nu + j
Sample a random mini-batch of B samples from DWC and DRC, respectively
Compute w1t′ according to Eq. 1 and Eq. 7
w1t′ ← 0.1w1t′−1 + 0.9w1t′

L′ ← L̃+ w1t′ · L̂
∇L̃θt′−1

, L̂θt′−1
,∇L̃ϕt′−1

, L̂ϕt′−1
← backward(L′) /* Calculate gradients */

Compute w2t′ according to Eq. 10
w2t′ ← 0.1w2t′−1 + 0.9w2t′

θt′ ← θt′−1 − ς
(
∇L̃θt′−1

+ w1t′∇L̂θt′−1
+ w2t′θt′−1

)
ϕt′ ← ϕt′−1 − ς

(
∇L̃ϕt′−1

+ w1t′∇L̂ϕt′−1

)
end for

end for
RETURN θ and ϕ

Hθ(õt̃). The sampled MCTS (Hubert et al., 2021) is used to obtain the search policy π̃t̃. The action ãt̃+1 is determined
by sampling an action from π̃t̃, with the same setting as in the literature (Hubert et al., 2021). Then, Environment
1 receives the action ãt̃+1 and generates the immediate real reward µ̃t̃+1 and the next state ot̃+1. Finally, the data
∪1≤t̃≤T̃ (ot̃, õt̃, π̃t̃, ãt̃+1, µ̃t̃+1, ot̃+1) is stored in the worst-case buffer DWC. A similar procedure is applied to function
RC(·). The key differences are that the perturbed state is determined by using the random perturbation policy Arandom(ot̂),
and the data ∪1≤t̂≤T̂ (ot̂, ôt̂, π̂t̂, ât̂+1, µ̂t̂+1, ot̂+1) are stored in the random-case buffer DRC.

B.2. Pseudocode of the Training Process

The implementation of training the RobustZero is provided in Algorithm 2.

C. Details of Experiments
C.1. Details of Experimental Setup

We conduct experiments on an 8-core Intel Xeon E5-2640 v4 @ 2.40GHz CPU, with each node equipped with a GeForce
RTX 3090 GPU, 2.40GHz processor, and 24GB RAM. Following existing studies (Zhang et al., 2021; Liu et al., 2024), we
train 21 agents for each method with the same hyperparameters. The agent with median performance is reported for the
purpose of reproducibility. Regrading attack radius, we set ϵ = 0.20 for two classical control environments (i.e., CartPole
and Pendulum), ϵ = 0.10 for the three energy environments (i.e., IEEE 34-bus, IEEE 123-bus, and IEEE 8500-node),
ϵ = 0.15 for the three transportation environments (i.e., Highway, Racetrack, and Intersection), and ϵ = 0.075 for Hopper,
ϵ = 0.05 for Walker2d, ϵ = 0.15 for Halfcheetah, and ϵ = 0.15 for Ant, respectively. Moreover, we use l∞ norm for the
budget constraint.

We follow the original configurations for ATLA-PPO (Zhang et al., 2021) and PROTECTED (Liu et al., 2024). The
configurations for S-MuZero, S-MuZero-worst, and S-MuZero-random are available on open science platforms alongside
our project. The random perturbation is implemented by using Uniform noise that follows an uniform distribution U(−ϵ, ϵ).

C.2. Major Comparison Studies on The Remaining Eight Environments

Following the results in Section 6.2, we further provide the corresponding results on the remaining eight environments.
The average nature, worst-case, and random rewards for all methods on CartPole, IEEE 123-bus, Highway, Intersection,
Hopper, Walker2d, HalfCheetah, and Ant are reported in Table 3. We observe that RobustZero consistently outperforms
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Table 3. Main experimental results on CartPole, IEEE 123-bus, Highway, Intersection, Hopper, Walker2d, HalfCheetah, and Ant.

Method CartPole IEEE 123-bus
Natural
Reward

Worst-case
Reward

Random-case
Reward

Natural
Reward

Worst-case
Reward

Random-case
Reward

ATLA-PPO 500.00 ± 0.00 414.38 ± 12.13 420.26 ± 144.08 -13.84 ± 0.06 -15.24 ± 0.24 -14.54 ± 0.04
PROTECTED 500.00 ± 0.00 430.22 ± 155.66 435.47 ± 162.66 -12.29 ± 0.06 -14.15 ± 0.27 -13.42 ± 0.03

S-MuZero 500.00 ± 0.00 200.14 ± 18.01 359.98 ± 86.31 -9.77 ± 1.96 -28.84 ± 5.84 -19.63 ± 2.75
S-MuZero-worst 239.14 ± 6.24 428.64 ± 69.73 412.62 ± 16.42 -16.67 ± 4.92 -15.78 ± 3.99 -18.61 ± 3.77

S-MuZero-random 444.14 ± 75.91 284.52 ± 78.70 448.24 ± 87.75 -11.59 ± 2.88 -23.02 ± 3.19 -17.16 ± 4.12
RobustZero 500.00 ± 0.00 460.56 ± 56.33 490.06 ± 5.15 -10.48 ± 1.19 -13.25 ± 1.43 -12.32 ± 2.00

Method Highway Intersection
Natural
Reward

Worst-case
Reward

Random-case
Reward

Natural
Reward

Worst-case
Reward

Random-case
Reward

ATLA-PPO 18.56 ± 0.50 18.68 ± 0.17 18.73 ± 0.08 2.32 ± 0.03 1.78 ± 0.29 1.87 ± 0.05
PROTECTED 20.26 ± 0.80 19.11 ± 0.14 19.48 ± 0.03 3.18 ± 0.07 2.05 ± 0.30 2.30 ± 0.10

S-MuZero 25.83 ± 3.16 15.91 ± 4.93 17.47 ± 2.94 3.63 ± 0.30 1.56 ± 0.32 1.68 ± 0.03
S-MuZero-worst 13.64 ± 5.36 18.62 ± 3.59 17.89 ± 1.95 1.52 ± 0.18 1.98 ± 0.50 1.84 ± 0.80

S-MuZero-random 14.47 ± 3.64 17.49 ± 4.64 18.19 ± 2.36 2.07 ± 0.68 1.92 ± 0.13 2.13 ± 0.21
RobustZero 23.24 ± 1.32 20.95 ± 1.26 22.09 ± 1.42 3.43 ± 0.26 2.87 ± 1.48 3.15 ± 0.34

Method Hopper Walker2d
Natural
Reward

Worst-case
Reward

Random-case
Reward

Natural
Reward

Worst-case
Reward

Random-case
Reward

ATLA-PPO 3311 ± 310 1736 ± 360 3167 ± 180 3831 ± 200 3659 ± 210 3898 ± 300
PROTECTED 3629 ± 300 2533 ± 251 3538 ± 310 6311 ± 112 6010 ± 321 6142 ± 150

S-MuZero 3672 ± 316 1452 ± 390 2454 ± 284 6430 ± 280 890 ± 180 2615 ± 200
S-MuZero-worst 1675 ± 332 1810 ± 194 1756 ± 132 1315 ± 120 1508 ± 110 1435 ± 130

S-MuZero-random 2678 ± 264 1732 ± 264 2589 ± 306 2627 ± 180 1158 ± 200 2640 ± 120
RobustZero 3660 ± 132 2577 ± 126 3553 ± 242 6384 ± 230 6096 ± 350 6322 ± 320

Method HalfCheetah Ant
Natural
Reward

Worst-case
Reward

Random-case
Reward

Natural
Reward

Worst-case
Reward

Random-case
Reward

ATLA-PPO 6106 ± 210 5114 ± 230 6112 ± 150 5335 ± 150 3780 ± 120 5352 ± 270
PROTECTED 7044 ± 168 5186 ± 175 6258 ± 209 5736 ± 280 4582 ± 190 5586 ± 190

S-MuZero 7185 ± 360 2524 ± 272 3245 ± 184 5830 ± 200 510 ± 250 3730 ± 150
S-MuZero-worst 2714 ± 302 2830 ± 149 2786 ± 129 1206 ± 260 1423 ± 210 1330 ± 100

S-MuZero-random 3486 ± 226 2692 ± 246 3575 ± 286 3894 ± 200 805 ± 180 3811 ± 150
RobustZero 7100 ± 232 5395 ± 162 6394 ± 192 5782 ± 130 4686 ± 250 5692 ± 220

all baselines at defending against state perturbations across all environments. Specially, RobustZero and S-Muzero still
obtain similar nature rewards, where both of them are higher than those obtained by using other baselines. The exception
is on CartPole, where four methods are able to obtain the optimal solution. Moreover, although S-MuZero achieves the
best natural rewards, it obtains low worst-case and random-case rewards. This implies that s-MuZero is very sensitive to
state perturbations due to the lack of a defense strategy. This is the motivation for developing RobustZero. As expected,
RobustZero significantly enhances the robustness to state perturbations with highest worst-case and random-case rewards
compared to all baselines, while maintaining comparable natural rewards compared to S-MuZero. As observed in Table 3,
RobustZero increases: 1) the worst-case reward by 7.05%–130.12% on CartPole, by 6.79%–117.66% on IEEE 123-bus,
by 9.63%–31.68% on Highway, by 40.00%–83.97% on Intersection, by 1.7%–77.5% on Hopper, by 1.4%–584.9% on
Walker2d, by 4.0%–113.7% on HalfCheetah, and by 2.3%–818.8% on Ant; and 2) random-case reward by 12.54%–36.14%
on CartPole, by 8.93%–59.33% on IEEE 123-bus, by 13.40%–26.45% on Highway, by 36.96%–87.50% on Intersection,
and by 0.4%–102.3% on Hopper, by 2.9%–340.6% on Walker2d, by 2.2%–129.5% on HalfCheetah, and by 1.9%–328.0%
on Ant.

C.3. Selection of w2 in Ablation Study

We set deterministic values for w2 in different environments based on the average of the corresponding dynamic w2,
selecting the best from five points near this average. The results of natural, worst-case, and random-case rewards by using
different values of w2 on the eight environments are provided in Fig. 2. As observed, RobustZero/w2 obtains the best
natural, worst-case, and random-case rewards when it is set to 5e-6, 5e-6, 5e-8, 5e-8, 5e-8, 1e-5, 1e-5, 1e-5, 5e-6, 5e-6, 1e-6,
and 1e-6 for CartPole, Pendulum, IEEE 34-bus, IEEE 123-bus, IEEE 8500-node, Highway, Intersection, Racetrack, and
Hopper, Walker2d, HalfCheetah, and Ant, respectively.
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Figure 2. The selection of w2.

C.4. Major Ablation Study on The Remaining Eight Environments

Following the results in Section 6.3, we further provide the corresponding ablation study on the remaining eight environ-
ments. Specially, the average nature, worst-case, and random rewards for RobustZero/cl, RobustZero/w1, RobustZero/w2,
RobustZero-DWC, and RobustZero-DRC on CartPole, IEEE 123-bus, Highway, Intersection, Hopper, Walker2d, HalfCheetah,
and Ant are reported in Table 4. Regrading RobustZero/w1, we maintain w1 = 1. Regarding RobustZero/w2, the settings of
w2 is provided in Appendix C.3. Of note, RobustZero/cl, RobustZero/w1, and RobustZero/w2 can obtain the optimal natural
reward on CartPole. To better analyze the effects of the self-supervised representation network and the adaptive adjustment
mechanism, we do not account for the corresponding natural rewards on CartPole in following statistics. Next, compared
to RobustZero, we have the following statistic results: 1) RobustZero/cl decreases the natural reward by 2.65%–61.79%,
the worst-case reward by 4.0%–61.24%, and the random-case reward by 1.2%–51.44%; 2) RobustZero/w1 decreases the
natural reward by 0.7%–18.28%, the worst-case reward by 1.2%–42.79%, and the random-case reward by 0.8%–13.6%; 3)
RobustZero/w2 decreases the natural reward by 1.9%–36.65%, the worst-case reward by 1.5%–55.14%, and the random-case
reward by 2.6%–33.47%; 4) RobustZero-DWC decreases the natural reward by 7.8%–67.32%, the worst-case reward by
3.0%–68.82%, and the random-case reward by 9.6%–61.54%; and 5) RobustZero-DRC decreases the natural reward by
3.6%–49.13%, the worst-case reward by 4.7%–73.94%, and the random-case reward by 6.3%–57.5%. These results are
consistent to those provided in Section 6.3. This further verifies that the absence of any of the self-supervised representation
network, the adaptive adjustment mechanism, and the parallel use of worst-case and random-case buffers will diminish the
robustness of RobustZero.

C.5. Performance against Unforeseen Perturbation Policies

In order to assess the generalization capability to unforeseen perturbations policies, we evaluate the performance of
RobustZero, all baselines, and all variants of RobustZero to handle two additional perturbation policies (including BA-
DDPG (Russo & Proutiere, 2021) and random perturbation based on Gaussian noise (RP-G)) that are not included during
training. BA-DDPG is a kind of worst-case perturbation policy, while RP-G is a kind of random-case perturbation policy
that follows a Gaussian distribution N (0, ϵ/3). We adhere to the original neural network architectures and parameters to
implement BA-DDPG across the eight environments. The results are listed in Table 5 and Table 6. We have the following
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Table 4. Ablation study on CartPole, IEEE 123-bus, Highway, Intersection, Hopper, Walker2d, HalfCheetah, and Ant.

Method CartPole IEEE 123-bus
Natural
Reward

Worst-case
Reward

Random-case
Reward

Natural
Reward

Worst-case
Reward

Random-case
Reward

RobustZero/cl 500.00 ± 0.00 374.15 ± 12.04 460.24 ± 100.12 -12.12 ± 1.00 -15.96 ± 1.16 -15.00 ± 2.12
RobustZero/w1 500.00 ± 0.00 396.30 ± 50.42 480.12 ± 80.56 -11.04 ± 1.21 -14.11 ± 1.20 -13.38 ± 2.06
RobustZero/w2 500.00 ± 0.00 388.23 ± 30.42 470.94 ± 28.46 -11.77 ± 1.06 -15.63 ± 1.18 -14.69 ± 2.10

RobustZero-DWC 452.00 ± 7.00 369.70 ± 76.00 412.00 ± 20.00 -14.01 ± 1.02 -16.48 ± 2.10 -15.85 ± 2.00
RobustZero-DRC 463.70 ± 60.00 360.56 ± 62.12 435.70 ± 80.12 -13.87 ± 1.01 -16.53 ± 1.30 -15.49 ± 1.92

RobustZero 500.00 ± 0.00 460.56 ± 56.33 490.06 ± 5.15 -10.48 ± 1.19 -13.25 ± 1.43 -12.32 ± 2.00

Method Highway Intersection
Natural
Reward

Worst-case
Reward

Random-case
Reward

Natural
Reward

Worst-case
Reward

Random-case
Reward

RobustZero/cl 20.03 ± 1.40 17.97 ± 1.25 19.23 ± 2.09 2.12 ± 0.36 1.78 ± 1.45 2.08 ± 0.30
RobustZero/w1 22.12 ± 1.42 19.42 ± 1.30 21.05 ± 2.07 2.90 ± 0.32 2.01 ± 1.40 2.81 ± 0.31
RobustZero/w2 21.07 ± 1.36 18.69 ± 1.25 20.38 ± 2.10 2.51 ± 0.28 1.85 ± 1.34 2.36 ± 0.33

RobustZero-DWC 18.92 ± 1.88 18.84 ± 2.39 18.13 ± 1.91 2.05 ± 0.35 1.70 ± 1.11 1.95 ± 0.34
RobustZero-DRC 19.36 ± 1.31 18.31 ± 1.09 18.90 ± 1.52 2.30 ± 0.31 1.65 ± 1.20 2.00 ± 0.52

RobustZero 23.24 ± 1.32 20.95 ± 1.26 22.09 ± 1.42 3.43 ± 0.26 2.87 ± 1.48 3.15 ± 0.34

Method Hopper Walker2d
Natural
Reward

Worst-case
Reward

Random-case
Reward

Natural
Reward

Worst-case
Reward

Random-case
Reward

RobustZero/cl 3561 ± 133 2478 ± 137 3511 ± 227 5377 ± 162 4998 ± 328 5007 ± 295
RobustZero/w1 3634 ± 128 2546 ± 119 3524 ± 227 5986 ± 224 5592 ± 379 5829 ± 232
RobustZero/w2 3592 ± 126 2538 ± 133 3463 ± 241 5157 ± 178 4991 ± 304 5252 ± 214

RobustZero-DWC 3396 ± 122 2501 ± 123 3241 ± 234 4297 ± 244 4738 ± 214 5046 ± 343
RobustZero-DRC 3534 ± 121 2462 ± 140 3343 ± 269 4436 ± 345 4886 ± 317 4891 ± 433

RobustZero 3660 ± 132 2577 ± 126 3553± 242 6384 ± 230 6096 ± 350 6322 ± 320

Method HalfCheetah Ant
Natural
Reward

Worst-case
Reward

Random-case
Reward

Natural
Reward

Worst-case
Reward

Random-case
Reward

RobustZero/cl 6080 ± 219 4746 ± 164 5165 ± 173 4743 ± 144 3852 ± 251 4513 ± 204
RobustZero/w1 6891 ± 209 5006 ± 138 5628 ± 198 5467 ± 131 3945 ± 256 4992 ± 198
RobustZero/w2 6486 ± 224 4620 ± 150 5510 ± 187 4959 ± 116 3789 ± 271 4938 ± 202

RobustZero-DWC 5636 ± 217 4551 ± 158 4815 ± 178 4803 ± 130 3699 ± 215 4392 ± 221
RobustZero-DRC 6201 ± 230 4507 ± 167 5431 ± 177 4351 ± 126 3580 ± 249 4411 ± 214

RobustZero 7100 ± 232 5395 ± 162 6394 ± 192 5782 ± 130 4686 ± 250 5692 ± 220

observations: 1) RobustZero achieves a higher worst-case reward than all baselines and RobustZero variants across all
environments. Specially, RobustZero increases the worst-case reward by 7.8%–119.85% on CartPole, by 2.32%–76.31% on
Pendulum, by 2.78%–101.01% on IEEE 34-bus, by 6.33%–99.31% on IEEE 123-bus, by 2.04%–34.06% on IEEE 8500,
by 3.33%–29.35% on Highway, by 36.65%–86.42% on Intersection, by 11.09%–32.79% on Racetrack, by 2.5%–80.0%
on Hopper, by 1.3%–583.3% on Walker2d, by 3.9%–114.0% on HalfCheetah, and by 2.2%–817.5% on Ant; and 2)
RobustZero achieves a higher random-case reward than all baselines and RobustZero variants across all environments,
increasing the random-case reward by 1.64%–33.78% on CartPole, by 0.88%–100.88% on Pendulum, by 6.31%–67.02%
on IEEE 34-bus, by 7.17%–57.00% on IEEE 123-bus, by 3.9%–32.92% on IEEE 8500, by 4.39%–23.49% on Highway,
by 10.88%–88.44% on Intersection, by 8.93%–35.69% on Racetrack, by 2.5%–80.0% on Hopper, by 1.3%–583.3% on
Walker2d, by 3.9%–114.0% on HalfCheetah, and by 2.2%–817.5% on Ant. Thus, RobustZero still outperforms all baselines
and RobustZero variants to unforeseen perturbations policies.

C.6. Time and Sampling Efficiency Analysis

We measure the average training time per iteration (TT), sampling time per step (ST), testing time per step (TeT), sampling
time per episode (STE), and the number of samples per episode (NSE). The results are provided in Table 7. We report
the relationship between the number of environment samples and the natural, worst-case, and random-case rewards for
RobustZero and the two robust model-free baselines: ATLA-PPO and PROTECTED. The results are presented in Table 8
and Table 9. Of note, the number of samples per episode in RobustZero differs from those used in the two baselines.
Therefore, while the numbers of samples reported in Table 8 and Table 9 are similar across methods, they are not exactly
the same. As observed from Table 7, ATLA-PPO and PROTECTED exhibit similar TT, ST, TeT, and STE across all
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Table 5. Performance comparison of different methods against unforeseen perturbation policies on CartPole, Pendulum, IEEE 34-bus,
IEEE 123-bus, IEEE 8500-node, Highway, Intersection, and Racetrack.

Method CartPole Pendulum
Worst-case Reward

(BA-DDPG)
Random-case Reward

(RP-G)
Worst-case Reward

(BA-DDPG)
Random-case Reward

(RP-G)
ATLA-PPO 430.26 ± 12.78 429.00 ± 100.00 -93.96 ± 61.49 -91.00 ± 70.00

PROTECTED 441.39 ± 72.94 440.10 ± 90.00 -90.38 ± 32.28 -90.10 ± 55.00
S-MuZero 216.43 ± 17.32 370.00 ± 66.00 -150.32 ± 89.46 -161.38 ± 55.00

S-MuZero-worst 431.26 ± 66.89 417.11 ± 20.00 -88.48 ± 42.48 -168.24 ± 62.00
S-MuZero-random 322.64 ± 38.49 460.78 ± 90.00 -134.79 ± 48.51 -110.98 ± 98.00

RobustZero/cl 385.76 ± 9.42 472.12 ± 90.16 -89.61 ± 59.49 -86.12 ± 58.89
RobustZero/w1 411.43 ± 44.87 487.00 ± 88.18 -87.24 ± 58.11 -84.49 ± 53.62
RobustZero/w2 405.39 ± 29.37 475.30 ± 30.00 -88.49 ± 46.32 -85.29 ± 57.68

RobustZero-DWC 383.24 ± 63.98 419.48 ± 19.32 -90.12 ± 51.36 -89.90 ± 56.00
RobustZero-DRC 379.42 ± 45.94 451.30 ± 80.00 -91.59 ± 58.29 -88.06 ± 55.75

RobustZero 475.82 ± 39.28 495.00 ± 6.00 -85.26 ± 36.24 -83.75 ± 55.15

Method IEEE 34-bus IEEE 123-bus
Worst-case Reward

(BA-DDPG)
Random-case Reward

(RP-G)
Worst-case Reward

(BA-DDPG)
Random-case Reward

(RP-G)
ATLA-PPO -13.23 ± 0.14 -13.15 ± 0.04 -14.02 ± 0.10 -14.31 ± 0.01

PROTECTED -12.19 ± 0.25 -12.20 ± 0.12 -13.94 ± 0.13 -13.26 ± 0.04
S-MuZero -23.84 ± 4.53 -18.79 ± 2.00 -26.13 ± 4.93 -19.28 ± 3.42

S-MuZero-worst -14.92 ± 0.33 -15.39 ± 1.90 -15.66 ± 2.60 -18.51 ± 2.61
S-MuZero-random -15.16 ± 0.83 -14.12 ± 0.30 -21.43 ± 2.18 -16.62 ± 3.49

RobustZero/cl -14.84 ± 0.92 -13.81 ± 0.59 -15.86 ± 0.95 -14.89 ± 2.39
RobustZero/w1 -13.14 ± 1.11 -11.96 ± 0.45 -13.96 ± 1.95 -13.16 ± 2.40
RobustZero/w2 -14.02 ± 0.73 -13.23 ± 0.68 -15.33 ± 1.68 -14.23 ± 2.38

RobustZero-DWC -14.43 ± 0.96 -14.56 ± 0.51 -15.87 ± 1.07 -15.68 ± 2.51
RobustZero-DRC -14.75 ± 0.87 -14.03 ± 0.60 -16.24 ± 1.78 -15.20 ± 2.50

RobustZero -11.86 ± 0.81 -11.25 ± 0.30 -13.11 ± 1.74 -12.28 ± 2.96

Method IEEE 8500-node Highway
Worst-case Reward

(BA-DDPG)
Random-case Reward

(RP-G)
Worst-case Reward

(BA-DDPG)
Random-case Reward

(RP-G)
ATLA-PPO -1392 ± 11 -1288 ± 7 18.79 ± 0.21 18.87 ± 0.05

PROTECTED -1351 ± 14 -1253 ± 6 19.48 ± 0.18 19.94 ± 0.06
S-MuZero -1775 ± 23 -1603 ± 15 16.56 ± 3.98 17.92 ± 2.80

S-MuZero-worst -1452 ± 15 -1507 ± 9 18.68 ± 2.73 18.02 ± 1.72
S-MuZero-random -1473 ± 12 -1314 ± 5 17.94 ± 4.45 18.64 ± 2.00

RobustZero/cl -1502 ± 21 -1434 ± 27 18.83 ± 1.02 19.62 ± 1.32
RobustZero/w1 -1445 ± 38 -1334 ± 26 20.73 ± 1.56 21.20 ± 1.36
RobustZero/w2 -1485 ± 29 -1389 ± 25 18.74 ± 0.92 20.59 ± 1.24

RobustZero-DWC -1556 ± 41 -1551 ± 28 18.96 ± 1.85 18.53 ± 1.02
RobustZero-DRC -1612 ± 37 -1492 ± 26 18.54 ± 1.43 19.08 ± 1.60

RobustZero -1324 ± 26 -1206 ± 27 21.42 ± 1.35 22.13 ± 2.10

Method Intersection Racetrack
Worst-case Reward

(BA-DDPG)
Random-case Reward

(RP-G)
Worst-case Reward

(BA-DDPG)
Random-case Reward

(RP-G)
ATLA-PPO 1.81 ± 0.36 1.95 ± 0.06 392.62 ± 0.11 400.11 ± 0.03

PROTECTED 2.11 ± 0.31 2.36 ± 0.14 433.17 ± 4.71 463.95 ± 6.00
S-MuZero 1.62 ± 0.32 1.73 ± 0.12 365.82 ± 6.54 376.12 ± 4.00

S-MuZero-worst 2.04 ± 0.58 1.92 ± 0.44 418.88 ± 5.94 401.49 ± 6.38
S-MuZero-random 2.06 ± 0.14 2.26 ± 0.32 403.42 ± 9.16 426.10 ± 6.00

RobustZero/cl 1.88 ± 1.32 2.13 ± 0.36 368.84 ± 1.02 389.57 ± 2.12
RobustZero/w1 2.21 ± 1.96 2.94 ± 0.49 421.38 ± 1.15 450.75 ± 2.06
RobustZero/w2 2.04 ± 1.32 2.46 ± 0.27 393.46 ± 1.03 429.30 ± 2.14

RobustZero-DWC 1.93 ± 1.36 2.11 ± 0.31 371.96 ± 1.54 372.48 ± 1.65
RobustZero-DRC 1.84 ± 1.26 2.18 ± 0.60 362.39 ± 1.29 381.90 ± 2.00

RobustZero 3.02 ± 0.95 3.26 ± 0.38 481.20 ± 1.00 505.40 ± 2.00

environments, while S-MuZero, S-MuZero-worst, S-MuZero-random, and RobustZero show similar TT, ST, TeT, and
STE within their group. ATLA-PPO and PROTECTED are model-free DRL methods, which generally suffer from low
sampling efficiency, as indicated by their significantly higher NSE, meaning they require a larger number of interactions
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Table 6. Performance comparison of different methods against unforeseen perturbation policies on Hopper, Walker2d, HalfCheetah, and
Ant.

Method Hopper Walker2d
Worst-case Reward

(BA-DDPG)
Random-case Reward

(RP-G)
Worst-case Reward

(BA-DDPG)
Random-case Reward

(RP-G)
ATLA-PPO 1744 ± 44 3187 ± 50 3695 ± 746 3928 ± 276

PROTECTED 2546 ± 51 3567 ± 43 6055 ± 632 6176 ± 328
S-MuZero 1462 ± 93 2473 ± 105 898 ± 831 2635 ± 367

S-MuZero-worst 1826 ± 60 1770 ± 64 1517 ± 549 1444 ± 249
S-MuZero-random 1742 ± 50 2607 ± 31 1169 ± 912 2658 ± 299

RobustZero/cl 2497 ± 77 3541 ± 181 5039 ± 193 5051 ± 188
RobustZero/w1 2568 ± 153 3543 ± 180 5633 ± 318 5880 ± 176
RobustZero/w2 2553 ± 117 3457 ± 169 5034 ± 171 5304 ± 187

RobustZero-DWC 2524 ± 167 3267 ± 209 4768 ± 394 5090 ± 145
RobustZero-DRC 2478 ± 144 3374 ± 204 4926 ± 265 4937 ± 238

RobustZero 2632 ± 104 3593 ± 192 6136 ± 264 6369 ± 299

Method HalfCheetah Ant
Worst-case Reward

(BA-DDPG)
Random-case Reward

(RP-G)
Worst-case Reward

(BA-DDPG)
Random-case Reward

(RP-G)
ATLA-PPO 5145 ± 256 6170 ± 227 3815 ± 125 5384 ± 603

PROTECTED 5229 ± 251 6293 ± 269 4616 ± 109 5630 ± 618
S-MuZero 2538 ± 257 3266 ± 257 514 ± 150 3760 ± 431

S-MuZero-worst 2844 ± 297 2803 ± 226 1436 ± 286 1341 ± 699
S-MuZero-random 2706 ± 222 3599 ± 144 812 ± 217 3846 ± 672

RobustZero/cl 4788 ± 221 5200 ± 186 3884 ± 215 4547 ± 248
RobustZero/w1 5043 ± 329 5679 ± 236 3983 ± 271 5034 ± 239
RobustZero/w2 4651 ± 206 5550 ± 147 3821 ± 240 4973 ± 206

RobustZero-DWC 4583 ± 228 4852 ± 160 3731 ± 380 4433 ± 156
RobustZero-DRC 4537 ± 202 5464 ± 297 3608 ± 288 4448 ± 233

RobustZero 5432 ± 154 6404 ± 189 4716 ± 232 5712 ± 219

with environments. In contrast, RobustZero is model-based DRL methods, characterized by higher sampling efficiency.
From Table 8 and Table 9, by using similar samples, RobustZero achieves higher rewards compared to ATLA-PPO and
PROTECTED, which further demonstrates its superior sample efficiency. The higher sample efficiency of RobustZero
makes it more suitable for real-world applications. Further, MuZero-class methods trade time efficiency for accuracy of
decision-making (high rewards), by leveraging the learned models and MCTS to plan ahead. This explains why TT, ST, TeT,
and STE for ATLA-PPO and PROTECTED are lower than those for S-MuZero, S-MuZero-worst, S-MuZero-random, and
RobustZero. However, it is important to note that TT and STE for all methods remain within a comparable range, indicating
that the time efficiency of S-MuZero, S-MuZero-worst, S-MuZero-random, and RobustZero does not significantly diminish
when compared with ATLA-PPO and PROTECTED. On the contrary, S-MuZero, S-MuZero-worst, S-MuZero-random, and
RobustZero methods offer greatly improved sampling efficiency, requiring fewer samples compared to ATLA-PPO and
PROTECTED. Additionally, TT, ST, TeT, and STE of RobustZero are slightly higher than those of S-MuZero, S-MuZero-
worst, and S-MuZero-random, due to the integration of self-supervised representation learning and an adaptive adjustment
mechanism, which requires additional computational resources. Nevertheless, RobustZero still maintains comparable TT,
ST, TeT, and STE, while demonstrating much stronger robustness to worst-case and random-case perturbations.

C.7. Hyperparameter Analysis

We study how the two hyperparameters λ1 and λ2 affect the adaptive adjustment process.

• Impact of λ1. Fig. 3 presents the average natural, worst-case, and random-case rewards of RobustZero with λ1 ranging
from 0.25 to 1.5. For sake of distinction, we reuse B1-worst-case reward and B2-worst-case reward to represent
the worst-case rewards obtained under the perturbation policies by using ATLA-PPO and BA-DDPG, respectively.
Similarly, we reuse U-random-case reward and G-random-case reward to represent the random-case rewards obtained
under the perturbation policies by using Uniform noise and RP-G, respectively. We observe that the natural reward
shows irregular changes, the worst-case reward increases as λ1 increases, and the random-case reward decreases as λ1

increases. This is because λ1 controls the rate of change of w1t′ (see Eq. 7), which does not impact the natural reward
directly. Moreover, for the same L̃ctr, an increase in λ1 reduces the weight of the random-case loss term, i.e., w1t′ .
This, in turn, decreases the ability to defend against such state perturbations. Thus, the random-case reward decreases,
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Table 7. Performance metrics across all environments.

Method CartPole Pendulum
TT ST TeT STE NSE TT ST TeT STE NSE

ATLA-PPO 0.4051 0.0036 0.0034 7.3728 2048.0 0.3881 0.0027 0.0025 5.5296 2048.0
PROTECTED 0.3693 0.0028 0.0025 7.7344 2048.0 0.3382 0.0023 0.0020 4.7104 2048.0

S-MuZero 0.4748 0.0357 0.0321 7.4599 208.4 0.4322 0.0914 0.0823 12.9971 142.2
S-MuZero-worst 0.4754 0.0396 0.0356 8.3912 211.9 0.4470 0.1032 0.0929 15.7277 152.4

S-MuZero-random 0.4764 0.0423 0.0381 8.9634 211.9 0.4526 0.1043 0.0939 16.2812 156.1
RobustZero 0.4972 0.0464 0.0418 9.9992 215.5 0.4551 0.1102 0.0992 17.6320 160.0

Method IEEE 34-bus IEEE 123-bus
TT ST TeT STE NSE TT ST TeT STE NSE

ATLA-PPO 0.3823 0.0079 0.0071 16.7524 2048.0 0.3911 0.0131 0.0118 26.8363 2048.0
PROTECTED 0.3432 0.0077 0.0067 15.7696 2048.0 0.3683 0.0127 0.0115 26.0096 2048.0

S-MuZero 0.5746 0.2031 0.1828 15.5778 76.7 0.5848 0.7226 0.6503 54.7008 75.7
S-MuZero-worst 0.5773 0.2112 0.1901 16.2835 77.1 0.5869 0.7466 0.6719 57.1896 76.6

S-MuZero-random 0.5792 0.2182 0.1964 16.8232 77.1 0.5893 0.7492 0.6743 57.3887 76.6
RobustZero 0.5854 0.2236 0.2012 17.3514 77.6 0.5951 0.7582 0.6824 58.8363 77.6

Method IEEE 8500-node Highway
TT ST TeT STE NSE TT ST TeT STE NSE

ATLA-PPO 0.5012 0.0210 0.0191 43.0080 2048.0 0.4208 0.0092 0.0085 18.8416 2048.0
PROTECTED 0.4845 0.0201 0.0181 41.1648 2048.0 0.4116 0.0089 0.0080 18.2272 2048.0

S-MuZero 0.5983 1.0021 0.9019 76.6606 76.5 0.5725 0.3057 0.2751 23.6612 77.4
S-MuZero-worst 0.6027 1.0335 0.9302 79.6334 77.1 0.5736 0.3120 0.2808 24.2112 77.6

S-MuZero-random 0.6011 1.0342 0.9308 78.2158 75.6 0.5758 0.3135 0.2822 24.4217 77.9
RobustZero 0.6120 1.0718 0.9646 81.7577 76.3 0.5814 0.3218 0.2896 25.1326 78.1

Method Intersection Racetrack
TT ST TeT STE NSE TT ST TeT STE NSE

ATLA-PPO 0.4604 0.0115 0.0108 23.5520 2048.0 0.4104 0.0080 0.0074 16.3840 2048.0
PROTECTED 0.4415 0.0112 0.0101 22.9376 2048.0 0.4015 0.0079 0.0071 16.1792 2048.0

S-MuZero 0.5814 0.3848 0.3463 30.0145 78.0 0.5623 0.2856 0.2570 21.9916 77.0
S-MuZero-worst 0.5933 0.3910 0.3519 30.5918 78.2 0.5644 0.2903 0.2613 22.6455 78.0

S-MuZero-random 0.5925 0.3922 0.3530 30.4982 77.8 0.5632 0.2915 0.2624 22.5532 77.4
RobustZero 0.6038 0.4015 0.3614 31.1163 77.5 0.5809 0.3038 0.2734 24.0248 79.1

Method Hopper Walker2d
TT ST TeT STE NSE TT ST TeT STE NSE

ATLA-PPO 0.3010 0.0014 0.0011 2.8769 2048.0 0.5098 0.0022 0.0019 4.4901 2048.0
PROTECTED 0.3225 0.0013 0.0009 2.7684 2048.0 0.4795 0.0018 0.0016 3.6420 2048.0

S-MuZero 0.3949 0.0738 0.0685 11.1581 151.3 0.5471 0.1126 0.1034 17.1104 152.0
S-MuZero-worst 0.4066 0.0767 0.0742 11.6543 152.0 0.5560 0.1195 0.1086 18.2534 152.8

S-MuZero-random 0.4022 0.0751 0.0733 11.4850 151.8 0.5584 0.1213 0.1105 18.4677 152.3
RobustZero 0.4168 0.0816 0.0798 12.3549 151.5 0.5678 0.1325 0.1210 20.2796 153.1

Method HalfCheetah Ant
TT ST TeT STE NSE TT ST TeT STE NSE

ATLA-PPO 0.5106 0.0023 0.0021 4.5825 2048.0 0.5489 0.0029 0.0027 5.9043 2048.0
PROTECTED 0.4821 0.0019 0.0017 3.8054 2048.0 0.5374 0.0028 0.0026 5.6511 2048.0

S-MuZero 0.5517 0.1146 0.1082 17.5410 153.1 0.5712 0.1741 0.1609 26.7350 153.6
S-MuZero-worst 0.5608 0.1260 0.1168 19.3452 153.5 0.5810 0.1764 0.1668 27.1345 153.8

S-MuZero-random 0.5647 0.1287 0.1175 19.7628 153.6 0.5847 0.1798 0.1679 27.6278 153.7
RobustZero 0.5782 0.1376 0.1232 21.1976 154.0 0.5917 0.1850 0.1706 28.4967 154.1

while the worst-case reward increases.

• Impact of λ2. Fig. 4 reports rewards obtained by RobustZero when varying λ2. We observe that all rewards first
increase and then decrease as λ2 decreases. To understand why, note that λ2 is used to control the ratio of the
magnitudes between w2t′θt′−1 and∇L̃θt′−1

+ w1t′∇L̂θt′−1
(see Eq. 9). On the one hand, a too large λ2 means that

w2t′θt′−1 maintains a high value during training. This will greatly reduce the impact of the worst-case and random-case
loss terms, resulting in reduced natural, worst-case, and random-case rewards. On the other hand, if λ2 is too small,
w2t′ remains too small. This leads to reduced adjustment functionality of w2t′ , which also results in reduced natural,
worst-case, and random-case rewards. Based on these analyses, the settings of both large and small λ2 are not beneficial
for achieving high rewards.
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Table 8. The relationship between environment samples and rewards on CartPole, Pendulum, IEEE 34-bus, IEEE 123-bus, IEEE 8500-
node, Highway, Intersection, and Racetrack.

Method Pendulum Cartpole

Samples Natural
Reward

Worst-case
Reward

Random-case
Reward Samples Natural

Reward
Worst-case

Reward
Random-case

Reward

RobustZero
73,776 -110.48 -116.61 -110.49 69,632 474.60 438.09 471.84

147,552 -89.98 -111.00 -89.03 40,261 496.09 456.32 487.27
221,328 -83.99 -88.15 -84.98 210,891 500.00 459.33 489.56

ATLA-PPO
73,728 -112.79 -167.42 -100.90 69,632 384.66 325.31 390.76

147,456 -92.02 -95.18 -95.64 40,960 474.60 356.09 371.84
221,184 -92.18 -95.34 -94.62 212,992 477.94 369.32 375.46

PROTECTED
73,728 -119.59 -117.80 -105.36 69,632 457.19 376.10 380.54

147,456 -94.33 -104.32 -100.79 40,960 462.52 428.36 418.76
221,184 -93.86 -99.32 -96.52 212,992 465.86 421.69 422.09

Method IEEE 34-bus IEEE 123-bus

Samples Natural
Reward

Worst-case
Reward

Random-case
Reward Samples Natural

Reward
Worst-case

Reward
Random-case

Reward

RobustZero
177,383 -21.29 -29.44 -21.38 198,042 -25.29 -20.89 -24.74
354,765 -13.31 -18.83 -17.79 396,084 -13.50 -16.39 -14.72
532,148 -9.78 -12.88 -11.76 594,128 -10.99 -13.85 -12.95

ATLA-PPO
178,176 -25.47 -26.08 -23.92 198,656 -36.30 -22.56 -25.44
354,304 -21.29 -24.44 -28.38 395,264 -25.29 -20.89 -22.74
532,480 -17.16 -18.31 -15.56 594,128 -21.32 -18.16 -18.44

PROTECTED
178,176 -21.19 -20.51 -30.83 198,656 -34.85 -26.81 -28.62
354,304 -13.80 -16.29 -24.99 395,264 -29.93 -22.21 -27.11
532,480 -12.62 -15.38 -18.99 594,128 -19.93 -15.21 -17.11

Method IEEE 8500-node Racetrack

Samples Natural
Reward

Worst-case
Reward

Random-case
Reward Samples Natural

Reward
Worst-case

Reward
Random-case

Reward

RobustZero
271,413 -1350 -1567 -1421 138,064 498.65 445.35 470.21
542,827 -1255 -1475 -1315 276,129 507.36 463.20 479.19
814,240 -1175 -1386 -1225 414,193 519.30 473.22 485.30

ATLA-PPO
272,384 -1454 -1769 -1506 137,216 364.74 326.57 348.37
542,720 -1350 -1667 -1421 276,480 385.72 349.71 363.36
815,104 -1358 -1574 -1417 413,696 381.32 361.84 371.84

PROTECTED
272,384 -1763 -1888 -1734 137,216 374.17 338.74 349.86
542,720 -1457 -1671 -1427 276,480 411.04 354.74 359.71
815,104 -1358 -1574 -1417 413,696 417.32 361.28 371.28

Method Highway Intersection

Samples Natural
Reward

Worst-case
Reward

Random-case
Reward Samples Natural

Reward
Worst-case

Reward
Random-case

Reward

RobustZero
71,594 15.42 15.38 13.77 127,725 2.47 2.35 2.41

143,188 21.98 17.15 17.02 255,449 2.86 2.44 2.66
214,782 23.10 20.33 21.95 383,174 3.21 2.75 3.01

ATLA-PPO
71,680 13.31 12.98 6.86 126,976 1.62 0.96 1.02

143,360 15.66 14.54 10.86 256,000 1.97 1.28 1.61
215,040 16.23 15.98 13.33 382,976 2.03 1.33 1.63

PROTECTED
71,680 11.19 14.37 15.07 126,976 1.11 0.86 0.93

143,360 13.02 15.69 16.75 256,000 1.65 1.30 1.36
215,040 13.63 17.38 18.13 382,976 2.18 1.38 1.62

C.8. Impact of The Attack Radius ϵ

We evaluate the performance of RobustZero and all baselines under varying values of attack radius ϵ. RobustZero does
not know the attack budget ϵ during training. Figs. 5–9 illustrate the changes in natural rewards, B1-worst-case rewards,
B2-worst-case rewards, U-random-case rewards, and G-random-case rewards as the increase of ϵ across all environments.
The key observations are as follows: 1) The natural rewards of S-MuZero remain unaffected by changes in ϵ, as it is trained
without state perturbations. Nevertheless, its B1-worst-case rewards, B2-worst-case rewards, U-random-case rewards, and
G-random-case rewards decrease dramatically. For all other methods, natural rewards decrease as ϵ increases. Note that
RobustZero achieves higher natural rewards than ATLA-PPO, PROTECTED, S-MuZero-worst, and S-MuZero-random
across all ϵ settings and environments. The exception is on CartPole, where RobustZero, ATLA-PPO, PROTECTED,
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Table 9. The relationship between environment samples and rewards on Hopper, Walker2d, HalfCheetah, and Ant.

Method Hopper Walker2d

Samples Natural
Reward

Worst-case
Reward

Random-case
Reward Samples Natural

Reward
Worst-case

Reward
Random-case

Reward

RobustZero
333,521 2937 2066 2848 661,089 5150 4957 5112
667,042 3418 2424 3293 1,322,179 5902 5717 5912

1,000,564 3610 2554 3517 1,983,269 6308 6075 6287

ATLA-PPO
331,776 2164 1136 2079 661,504 2556 2393 2507
665,600 2802 1497 2696 1,323,008 3344 3180 3294
999,424 2945 1544 2824 1,982,464 3483 3281 3465

PROTECTED
331,776 2389 1658 2303 661,504 4158 3972 4070
665,600 3175 2198 3050 1,323,008 5562 5210 5315
999,424 3280 2267 3182 1,982,464 5738 5413 5540

Method HalfCheetah Ant

Samples Natural
Reward

Worst-case
Reward

Random-case
Reward Samples Natural

Reward
Worst-case

Reward
Random-case

Reward

RobustZero
710,936 5711 4357 5099 800,568 4670 3789 4591

1,421,872 6591 5024 5883 1,601,137 5345 4390 5325
2,132,808 7060 5345 6320 2,401,706 5721 4636 5615

ATLA-PPO
710,656 4030 3346 3987 800,768 3486 2438 3473

1,421,312 5338 4407 5310 1,601,536 4628 3246 4620
2,131,968 5561 4616 5500 2,402,304 4802 3365 4786

PROTECTED
710,656 4675 3375 4090 800,768 3799 3010 3696

1,421,312 6090 4428 5379 1,601,536 5033 3932 4857
2,131,968 6377 4641 5652 2,402,304 5200 4107 5073
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Figure 3. Performance of RobustZero with different λ1 across all environments.

and S-MuZero consistently attain optimal natural rewards, regardless of ϵ; and 2) B1-worst-case rewards, B2-worst-case
rewards, U-random-case rewards, and G-random-case rewards for all methods decline as ϵ increases. This indicates that
larger attack radius weaken the defense capabilities of all methods to state perturbations. This is because as ϵ increases,
attacks become stronger. This further increases the difficulty to defend against such attacks. Despite this, RobustZero
consistently outperforms all baselines, which achieves the highest worst-case and random-case rewards across all ϵ values
and environments. These results imply that RobustZero is consistently the best option across all ϵ settings.

21



RobustZero: Enhancing MuZero Reinforcement Learning Robustness to State Perturbations

5e-5 1e-5 5e-6 1e-6 5e-7
λ2

460

480

500

R
ew

ar
d

(a) CartPole

5e-5 1e-5 5e-6 1e-6 5e-7
λ2

−90

−88

−86

−84

(b) Pendulum

1e-6 5e-7 1e-7 5e-8 1e-8
λ2

−12

−11

−10

(c) IEEE 34-bus

1e-6 5e-7 1e-7 5e-8 1e-8
λ2

−14

−13

−12

−11

(d) IEEE 123-bus

1e-6 5e-7 1e-7 5e-8 1e-8
λ2

−1400

−1300

−1200

R
ew

ar
d

(e) IEEE 8500-node

1e-4 5e-5 1e-5 5e-6 1e-6
λ2

21

22

23

(f) Highway

1e-4 5e-5 1e-5 5e-6 1e-6
λ2

2.5

3.0

(g) Intersection

1e-4 5e-5 1e-5 5e-6 1e-6
λ2

460

480

500

520

(h) Racetrack

1e-5 5e-6 1e-6 5e-7 1e-7
λ2

2500

3000

3500

R
ew

ar
d

(i) Hopper

1e-5 5e-6 1e-6 5e-7 1e-7
λ2

6000

6200

6400

(j) Walker2d

5e-6 1e-6 5e-7 1e-7 5e-8
λ2

6000

7000

(k) HalfCheetah

5e-6 1e-6 5e-7 1e-7 5e-8
λ2

4500

5000

5500

(l) Ant

Natural reward B1-worst-case reward B2-worst-case reward U-random-case reward G-random-case reward

Figure 4. Performance of RobustZero with different λ2 across all environments.
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Figure 5. Natural rewards of RobustZero and baselines with different values of ϵ across all environments.
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Figure 6. B1-worst-case rewards of RobustZero and baselines with different values of ϵ across all environments.
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Figure 7. B2-worst-case rewards of RobustZero and baselines with different values of ϵ across all environments.
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Figure 8. U-random-case rewards of RobustZero and baselines with different values of ϵ across all environments.
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Figure 9. G-random-case rewards of RobustZero and baselines with different values of ϵ across all environments.
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