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ABSTRACT

Many real-world problems can be formulated as graphs and solved by graph learn-
ing techniques. Whilst the rise of Graph Neural Networks (GNNs) has greatly
advanced graph learning, there is still a lack of understanding of the intrinsic
properties of graph data and their impact on graph learning. In this paper, we
narrow the gap by studying the intrinsic dimension of graphs with Local Intrin-
sic Dimensionality (LID). The LID of a graph measures the expansion rate of the
graph as the local neighborhood size of the nodes grows. With LID, we estimate
and analyze the intrinsic dimensions of node features, graph structure and repre-
sentations learned by GNNs. We first show that feature LID (FLID) and structure
LID (SLID) are well correlated with the complexity of synthetic graphs. Follow-
ing this, we conduct a comprehensive analysis of 12 popular graph datasets of
diverse categories and show that 1) graphs of lower FLIDs are generally easier to
learn; 2) GNNs learn by mapping graphs (feature and structure together) to low-
dimensional manifolds that are of much lower representation LIDs (RLIDs), i.e.,
RLID ≪ FLID/SLID; and 3) when the layers go deep in message-passing based
GNNs, the underlying graph will converge to a complete graph of SLID = 0.5,
losing structural information and causing the over-smoothing problem. Finally,
we take RLID as an example and showcase that a dimensionality regularizer can
help improve existing GNN models.

1 INTRODUCTION

Graphs are widely used to model real-life problems owing to their flexible structure and ability to
carry different types of information. Graph learning has thus become essential for a wide range
of applications in biomedicine (Zitnik et al., 2018), physics (Battaglia et al., 2016) and traffic net-
work (Yu et al., 2018). Whilst the rise of Graph Neural Networks (GNNs) has enabled important
breakthroughs in graph learning (Senior et al., 2020; Ying et al., 2018), there is still a lack of un-
derstandings of the intrinsic properties of graphs and their impact on learning. In this paper, we
narrow this gap by characterizing and analyzing the intrinsic dimensionality (ID) of graphs and
graph representations based on an expansion-based intrinsic dimensionality measure: Local Intrin-
sic Dimensionality (LID). Such an analysis is beneficial for the community to better understand the
intrinsic difficulty of a graph learning task and motivate advanced GNNs and learning methods.

The intrinsic dimensionality of a dataset measures the dimension of its underlying manifold or the
minimum number of parameters needed to represent the intrinsic structure of the data (Bennett,
1969; Nakada & Imaizumi, 2020). According to the manifold hypothesis (Fefferman et al., 2016) in
machine learning, the intrinsic dimensionality is often much lower than the representation dimen-
sionality (the number of features) for real-world high-dimensional data (Tenenbaum et al., 2000;
Fodor, 2002; Cayton, 2005; Lin et al., 2006). LID is an expansion-based ID measure associated
with the local neighborhood of data points. In other words, the LID of a point measures the intrinsic
dimensionality of the local submanifold surrounding the point and the average LID over all points in
a set depicts the dimensionality of the entire manifold. The LID metric has been applied to study the
intrinsic complexity of many forms of data, such as images, texts and tabular data (Pope et al., 2020;
Aghajanyan et al., 2020; Ansuini et al., 2019), as well as the learning and generalization behaviors of
deep neural networks. For instance, it has been shown that the LID characteristic of image datasets
is closely related to the learning difficulty and generalization performance (Pope et al., 2020).

For graph learning, we are interested in the intrinsic dimensionality of node features, graph structure,
representations learned by GNNs and its indication of the final performance. To this end, we apply
LID on a diverse set of graph datasets and estimate the Feature LID (FLID), Structure LID (SLID)
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and Representation LID (RLID) for each node. The three graph LID measures are then averaged over
all nodes in the graph to reflect the overall intrinsic dimensionality. FLID has the same interpretation
as the LID for non-graph data. The SLID of a graph can be interpreted as the expansion rate of the
graph as the local neighborhood size of its nodes grows. Both FLID and SLID characterize the
properties of the raw graph. RLID, on the other hand, characterizes the properties of the integrated
representation of both the node feature and the graph structure. With the three LID measures, we
provide the following key insights:

• FLID and SLID are good indicators of graph complexity relative to node features and graph
structures, respectively. This is verified on synthetic graphs generated using singular value
decomposition (SVD) and random geometric graph (RGG).

• With FLID, we study 5 categories of 12 popular graph datasets including co-author graphs,
co-purchase graphs, webpage graphs, citation graphs and Wikipedia graphs, and show that
graphs of low FLIDs are generally easier to learn and different GNNs are likely to achieve
higher accuracies in downstream node classification tasks.

• With RLID and 4 representative GNN models, we show that graph learning is a process
that maps the node features and graph structure together onto a simpler manifold that is
of a much lower RLID. We also showcase that RLID can be leveraged as a regularizer to
improve existing GNN models.

• With SLID, we reveal that the underlying graph converges to a complete graph of SLID =
0.5 as the layers of message-passing based GNNs go deep, causing the over-smoothing
problem.

2 RELATED WORK

Intrinsic dimensionality analysis plays an important role in dimensionality reduction (DeMers &
Cottrell, 1993), manifold learning (Law & Jain, 2006), classification (Gong et al., 2019), outlier
detection (Houle et al., 2018), generative modeling (Li et al., 2019), adversarial example detection
(Ma et al., 2018b), and deep learning understanding (Ma et al., 2018b; Ansuini et al., 2019; Pope
et al., 2020). The intrinsic dimensionality of a data representation can be estimated either globally
on the entire dataset via Principal Component Analysis (PCA) (Wold et al., 1987), graph based
methods (Costa & Hero, 2003), and fractal models (Camastra & Staiano, 2016) or locally around
the individual data points via Local Intrinsic Dimensionality (LID) and its variants (Amsaleg et al.,
2015; Houle, 2017; Amsaleg et al., 2019). Different from the global ID measures, LID provides a
local view of the intrinsic geometry of the data (see formal definitions in Section 3).

LID has been related to the robustness properties of DNNs to adversarial attacks (Amsaleg et al.,
2017; Ma et al., 2018a) and noisy labels (Ma et al., 2018b). It has been shown that the subspaces
around adversarial examples are of much higher LID than of the normal examples in the deep rep-
resentation space of DNNs (Ma et al., 2018a). And when there are noisy labels in the training data,
DNN learning exhibits two distinctive phases from dimensionality compression to dimensionality
expansion and the expansion phase is when the model starts to overfit the noisy labels (Ma et al.,
2018b). The LID of the representations learned by DNNs has also been found to be a good indicator
of the generalization performance (Ansuini et al., 2019). Both LID and global ID have been applied
to characterize the intrinsic dimensionality of image datasets and representations (Gong et al., 2019;
Pope et al., 2020). The intrinsic dimensionality of the objective space (defined by the loss function
and model parameters) has also been studied in both natural language processing (Aghajanyan et al.,
2020) and computer vision (Li et al., 2018a) to help understand the parameterization redundancy in
DNNs. These understandings have motivated either model compression techniques (Li et al., 2018a)
or new theories (with the intrinsic parameters) for DNNs (Aghajanyan et al., 2020).

The current understandings of graphs are mostly focused on the expressive power of GNNs. For
example, GNNs have been shown to have equivalent discriminative power to the Weisfeiler-Lehman
graph isomorphism test (Weisfeiler & Leman, 1968). Xu et al. (2019) showed that GNNs are at most
as powerful as the 1-WL test in distinguishing graph structures. Geerts et al. (2021) further proved
that degree-aware Message Passing Neural Networks (MPNNs) may be one step ahead of the WL
algorithm because of the degree information. Balcilar et al. (2021a) proposed a MPNN model which
is experimentally as powerful as a 3-WL test. The learning of GNNs has also been investigated from
a spectral perspective. Hoang & Maehara (2019) argued that GNNs only work as a low-pass filter,
which was then verified in Balcilar et al. (2021b) by reformulating most of existing GNNs into one
common framework. Oono & Suzuki (2019) investigated the asymptotic behaviors of GNNs as the
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layer size tended to infinity and related the expressive power of GNNs to the topological information
in the spectral domain. In this work, we apply LID to explore the intrinsic complexity of graphs and
graph representations, and provide a set of new and complementary insights into graph learning.

3 LOCAL INTRINSIC DIMENSIONALITY FOR GRAPHS

3.1 LOCAL INTRINSIC DIMENSIONALITY

Given a data set X ⊂ Rn, X is said to have an intrinsic dimension of m if its elements lie entirely,
without information loss, within a m-dimensional manifold of Rn, where m < n (Fukunaga, 1982).
Before introducing LID, we first explain the intuition behind LID based on the expansion-based
modeling of dimensionality. Among the family of dimensionality models, the expansion dimension
(ED) (Karger & Ruhl, 2002) quantify the ID in the vicinity of a point of interest in the data domain.
More precisely, it assesses the rate of growth in the number of data points encountered as the distance
from the reference point increases.

As an example, in the Euclidean space Rm, one can measure the volume Vi of a m-ball of radius ri
with i ∈ {1, 2}, taking the logarithm of the ratio would reveal the dimension m: V2

V1
=

(
r2
r1

)m

⇒

m = ln(V2/V1)
ln(r2/r1)

. Transferring the concept of expansion dimension to the statistical setting with
neighborhood distance distributions gives us the formal definition of LID (Houle, 2017).

Definition 1 (Local Intrinsic Dimensionality) Given a data sample x ∈ X , let R > 0 be a ran-
dom variable denoting the distance from x to other data samples. If the cumulative distribution
function F (r) of R is positive and continuously differentiable at distance r > 0, the LID of x at
distance r is given by:

LIDF (r) ≜ lim
ϵ→0

F ((1 + ϵ)r)− F (r))

ϵ · F (r)
=

r · F ′
(r)

F (r)
, (1)

The local intrinsic dimension at x is then defined as the limit, as the radius r tends to zero, i.e.
LIDF ≜ lim

r→0
LIDF (r).

Here, the CDF F (r) is analogous to the volume in the Euclidean example. Since F (r) is unknown,
estimators are needed for LID. There already exist a number of LID estimators in the literature
(Levina & Bickel, 2005; Amsaleg et al., 2015; Liao et al., 2014). In the following, we will introduce
one commonly used LID estimator and how it can be applied on graphs.

3.2 FEATURE AND REPRESENTATION LID

For graphs, we are interested in the LIDs of the nodes features and structure of the graph itself
and node representations learned by GNNs. Node features and graph structure are two fundamental
information of the graph, while the learned representation for a node is an integration of its feature
and the structural information. The existing LID estimators developed for non-graph data can be
directly applied to node features and node representation. Here, we first introduce the LID estimation
for Feature LID (FLID) and Representation LID (RLID).

Amongst the existing LID estimators, the Maximum Likelihood Estimator (MLE) (Levina & Bickel,
2005; Amsaleg et al., 2015) is one of the most cited estimators. It treats the neighbors of each point
x ∈ X as events in a Poisson process and the distance r(j)(x) between x and its j-th nearest
neighbor as the event’s arrival time. Since this process depends on the dimensionality d, MLE
estimates the intrinsic dimension by maximizing the log-likelihood of the observed process.

The node features or representations are represented as vectors in the Euclidean space. Thus, FLID
and RLID can be directly estimated by MLE. Let x denote the feature/representation vector of a
particular node, the FLID/RLID of x can be estimated as following:

FLID/RLID(x, k) =

(
1

k

k∑
j=1

log
r(k+1)(x)

r(j)(x)

)−1

, (2)

where k is the neighborhood size (i.e., k-nearest) and r(i)(x) is the Euclidean distance between
x and its i-th nearest neighbor. Averaging FLID(x, k) across all nodes x in {xi}Ni=1 leads to
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the FLID of the entire graph, i.e., FLIDG(k) = 1
N

∑N
i=1 FLID(xi, k). Similarly, we can obtain

RLIDG(k) =
1
N

∑N
i=1 RLID(xi, k). The k-nearest neighbors are identified based on the pairwise

distance between all nodes in the graph.

3.3 STRUCTURAL LID

For graph structure, the distance between a pair of nodes is an integer y ∈ [1, 2, . . . ], namely hops.
In Definition 1, LID is defined as the normalized rate of increase of the neighborhood size. However,
the neighborhood size in a graph often grows exponentially as the hop increases, i.e., G(y) = ay at
hop y Ritter et al. (2018). Intuitively, the base that best characterizes the growth rate of the entire
graph is its average degree. Locally, different nodes should have different bases a ∈ R+ that best
characterize their own neighborhoods. With exponentially growing neighborhood, the LID of a node
becomes zero:

LIDG = lim
y→0

LIDG(y) = lim
y→0

y · d
dy

ay

ay
= lim

y→0
y · ln a = 0. (3)

To solve this issue, Ritter et al. (2018) assume that G(y) is created by applying a logarithmic trans-
formation to a new distance variable r of F (r) (y ≜ ln r), leading to the definition of the intrinsic
degree logLIBG(y) ≜ LIDF (r). This relates variable y to a new variable r whose LID can be esti-
mated by the MLE (Amsaleg et al., 2015). Relating back to variable y with the estimated LIDF (r)
gives us the SLID of the graph:

SLID(x, r) =

(
r − 1

k

k∑
i=1

yi

)−1

, SLIDG(r) =
1

N

N∑
i=1

SLID(xi, r), (4)

where x is a node, yi is the i-nearest neighbor distance and r = max{yi, · · · , yk} is the neighbor-
hood radius. Note that the neighbors are automatically determined by r.

4 VALIDATING FLID AND SLID ON SYNTHETIC GRAPHS

In the dimensionality estimation literature, synthetic data with fixed intrinsic dimensionalities are
often used to test the accuracy of the estimation methods. However, graphs are complex data whose
intrinsic dimensionality is hard to simulate. To overcome this issue, here we use Singular Value
Decomposition (SVD) applied on the feature matrix of an existing graph to generate synthetic graphs
of varying feature complexities. For structural analysis, we use a traditional graph generation model
Random Geometric Graph (RGG) to generate synthetic graphs of varying structural complexities.

4.1 VALIDATING FLID

SVD is a classic dimensionality reduction method. A matrix X ∈ Rm×n can be factorized into the
product of three matrices X = UΣV T , where U ∈ Rm×m and V ∈ Rn×n are both a unitary
matrix and Σ ∈ Rm×n is a diagonal matrix. Let u and v be the column vectors of U and V
respectively, the vector form of the decomposition is written as X =

∑r
i=1 σiuiv

T
i , where σ is

the singular value. For s ∈ {1, . . . r}, extracting the top s singular values and their corresponding
vectors results in a truncated summation Xk =

∑s
i=1 σiuiv

T
i , which is proved to be the best rank

k approximation to X in both Frobenius norm and L2-norm (Horn & Johnson, 1985).

To test FLID, we choose three popular citation datasets Cora, CiteSeer and PubMed (Sen et al., 2008;
Namata et al., 2012) to construct synthetic graphs using the above method. The feature vectors
of each dataset are decomposed into the form X =

∑s
i=1 σiuiv

T
i . Varying the value of s, we

generate a set of synthetic vectors with different ranks. The synthesized data shows growing feature
complexity as the rank increases. Figure 1 visualizes the t-SNE (Van der Maaten & Hinton, 2008)
2-D embedding of the generated features from Cora. The graph structure remains the same.

Following Equation (2), We estimate FLID for each set of synthetic vectors and plot the trend with
increasing s in Figure 2. It shows that the FLID of the synthetic data increases with s. This verifies
that the intrinsic dimensionality increases as we keep more information of the original features,
which matches our expectation. Although the estimation is sensitive to the choice of neighborhood
size k to some extent, the trend is consistent across different k values. The different growing speed
of FLID on different graphs indicates their differences in the feature distribution at different ranks.
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top5 top10 top50 top200

Figure 1. The t-SNE visualization of the synthesized feature vectors using SVD from Cora dataset.
Each class label is assigned to a unique color. We extract the top s = 5, 10, 50, 200 singular terms
of the original features and construct a s-rank approximation.
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Figure 2. FLID values of synthetic data generated from Cora, CiteSeer and PubMed. For each set of
synthetic data, FLID increases with the growing number of top singular values. FLID is estimated
with two different neighborhood sizes: k = 4 (left) and k = 8 (right).

4.2 VALIDATING SLID

In graph theory, a random geometric graph (RGG) (Gilbert, 1961) is a generative latent point model
where each node is assumed to be associated with a latent point in a metric space Rd. Let G = (V,E)
denote an undirected graph with a vertex-set V and a edge-set E. Considering a metric space [0, 1)d
with Euclidean distance, it first randomly samples n = |V | independent and identically distributed
latent points {xi}ni=1 from the underlying space. Two vertices p, q ∈ V are connected if and only
if the distance ∥xp − xq∥ is less than a specified threshold τ . Thus, the parameters n and τ fully
characterize an RGG.

When changing the dimension d of the latent space, the profile of the generated topology structure
also changes, as shown in Figure 3. Intuitively, the (intrinsic) dimensionality of the generated graph
should be higher if the dimension of the latent space increases. To generate more diverse RGGs,
here we also varies the connection probability p and the vertex set size n. As suggested in (Dall

& Christensen, 2002), the threshold τ can be calculated by τ = 1√
π

[
pΓ(d+2

2 )
] 1

d

, where Γ is the
gamma function. As shown in Figure 4, in general, SLID is positively correlated with the latent
space dimensionality of the synthetic graphs. In general, SLID is positively correlated with the
latent space dimensionality of the synthetic graphs. One exception (the two points in the red circle)
occurs when estimating SLID using radius r = 4. We conjecture this slight variation is caused by
the estimation instability at a large radius (i.e., r = 4 vs. r = 3). A similar sensitivity has also been
observed on image datasets in (Pope et al., 2020). As such, we will use r = 3 for SLID estimation
in the rest of our experiments. It is also worth mentioning that SLID increases slowly but almost
linearly with latent space dimensionality for d ≤ 10; it then grows drastically for d > 10. This
indicates that synthesized graphs of d > 10 have structural properties that are significantly different
(intrinsically more complex) from those of d ≤ 10, as can be visually verified in Figure 3.

5 CHARACTERIZING REAL-WORLD GRAPHS WITH FLID AND SLID

In this section, we estimate the FLID and SLID of 12 popular graph datasets and show that real-
world graphs are of much lower feature and structure intrinsic dimensionalities relative to their high
extrinsic dimensions (nodes and edges). To ensure the generality of our findings, here we consider
5 different categories of graph datasets: Citation, Wikipedia, WebKB, Co-author and Co-purchase.
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dimension=1 dimension=3 dimension=7 dimension=12 dimension=17

Figure 3. The visualization of synthetic RGG graphs with varying latent space dimensions d =
1, 3, 7, 12, 17. The set of graphs show various profiles as the latent space dimensionality changes.
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Figure 4. The trend of SLID with increasing latent space dimensionality d. We vary the connection
probability p in the range [0.3, 0.5, 0.8] and the vertex set size n in the range [500, 1000]. To see the
sensitivity of the SLID estimation to neighborhood radius r, here we test two radii r = 3, 4.

Citation Network Cora, CiteSeer and PubMed are three popular citation graph datasets (Sen et al.,
2008; Namata et al., 2012). In these graphs, nodes represent papers and edges correspond to the
citation relationship between two papers. We transform the node features of PubMed to the bag-
of-words representation of papers, keeping in line with Cora and CiteSeer. Nodes are classified
according to academic topics.

Wikipedia Network Chameleon and Squirrel (Rozemberczki et al., 2021) are Wikipedia page net-
works on specific topics, where nodes represent web pages and edges are the mutual links between
them. Node features are the bag-of-words representation of informative nouns. The nodes are clas-
sified into four categories according to the number of the average monthly traffic of the page.

WebKB Cornell, Wisconsin and Texas (Craven et al., 1998) are three subsets of WebKB, a webpage
dataset collected from computer science departments of three universities. Nodes are web pages
and edges are hyperlinks between them. Node features are the bag-of-words representation of web
pages. Each node is labeled to be a ‘student’, ‘project’, ‘course’, ‘staff’ or ‘faculty’.

Co-author Network Cs and Physics are co-author networks constructed from Microsoft Academic
Graph (McAuley et al., 2015; Shchur et al., 2018). Nodes denote authors and edges indicate whether
two authors are co-authors in a paper. Node features are paper keywords extracted from papers
authored by a particular author. An author’s most active field of study is used as the node label.

Amazon Co-purchase Network Photo and Computers (Shchur et al., 2018) were collected by
crawling Amazon websites. Goods are represented as nodes and the co-purchase relationships are
denoted as edges. Node features are the bag-of-words representation of product reviews. Each node
is labeled with the category of goods.

The FLID and SLID values of the 12 datasets are shown in Table 1. We find that, from the FLID per-
spective, the intrinsic dimensionality ranking is: Co-purchase graphs ¿ Wikipedia graphs ¿ Citation
graphs ¿ WebKB graphs ¿ Co-author graphs. This indicates that the node features of one category
of graphs share intrinsic properties that may be very different from that of other categories. This is
not a surprise since the most discriminative node attributes of different types of graphs are indeed
different. Interestingly, graphs from different categories can also have similar intrinsic dimensional
properties, e.g., Cora has more similar FLID to Cornell/Texas than to CiteSeer or PubMed. From
the SLID perspective, there is no consistent relationship between two graph categories. It is worth
mentioning that the SLID property is rather dataset-dependent, as we have shown in Figure 4 that the
same type of graphs can have very different SLIDs. From a node-level view, the number of features
and 3-hop degree (the same neighbourhood as we use to calculate SLID) can be regarded as extrin-
sic feature and structural dimensionalities of a given node, respectively. Comparing the extrinsic
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Table 1. The FLID and SLID of 12 real-world graph datasets. For estimation, k = 4 is used for
FLID while r = 3 is used for SLID. Other graph attributes are also reported, including the number
of nodes, edges, node features, average degree and 3-hop degree (number of 3-hop neighbors).

Category Dataset FLID SLID #Nodes #Edges #Features Degree 3-Hop Degree

Citation
Cora 9.10 10.20 2708 5278 1433 4.90 128.08
CiteSeer 18.18 3.78 3327 4552 3703 3.77 43.51
PubMed 17.81 37.09 19717 44324 500 5.50 394.62

Wikipedia Chameleon 26.46 8.46 2277 36101 500 5.0 1067.34
Squirrel 51.57 14.19 5201 217073 2089 154.0 3639.55

WebKB
Cornell 8.66 6.56 183 295 1703 1.0 116.04
Wisconsin 5.76 7.41 251 309 1703 6.0 158.31
Texas 8.66 6.19 183 499 1703 2.0 127.83

Co-author Cs 4.80 42.37 18333 81894 500 8.93 873.62
Physics 2.92 57.09 34493 247962 500 14.38 2428.83

Co-purchase Photo 74.26 10.90 7650 119081 745 18.78 649.16
Computers 80.29 20.46 13752 245861 767 20.88 1365.58

dimensionalities with the intrinsic dimensionalities FLID and SLID, we find that real-world graphs
actually have much lower intrinsic dimensionalities, indicating that there exist a low-dimensional
re-parameterization for complex graph data.

6 UNDERSTANDING THE LEARNING PROCESS OF GNNS

In this section, we apply FLID, RLID and SLID to understand the learning process of GNNs. Note
that most graph learning methods do not change the graph’s topology, i.e., SLID stays the same
before, during or after learning. FLID measures the property of the raw graph before learning while
RLID measures the property of the learned representation during or after learning. We consider four
GNN models of different design principles: GCN (Kipf & Welling, 2016), GAT (Veličković et al.,
2018), GCNII (Chen et al., 2020) and SplineCNN (Fey et al., 2018). All models are implemented
with Pytorch Geometric (PyG) (Fey & Lenssen, 2019). The optimal parameter settings suggested by
the original papers are used. For datasets that were never reported with a particular GNN, we perform
a hyper-parameter search on the validation set for dropout rate, learning rate, and the number of
hidden units. Each dataset is divided into proportions 60%, 20% and 20% for training, validation
and testing, respectively. The models are tested on the node classification task.

6.1 GRAPHS WITH LOWER FLIDS ARE EASIER TO LEARN

The performance of different GNN models are shown in Table 2. An interesting observation is that
the relative ranking of the test accuracy between the 4 models are almost the same across the same
category of datasets. This indicates that the models’ performance may be determined by certain
inherent properties of the graphs. We then investigate this conjecture with FLID and other graph
properties, including the number of nodes, the number of edges, and average degree. Among these
properties, only FLID demonstrates a strong relationship with the test accuracy. As shown in Figure
5, within each category, GNNs generally have better performance on datasets of lower FLIDs. This
implies that graphs of low FLIDs are generally easier to learn, regardless of the GNN model used for
learning. It also indicates that node features may play a key role in determining the overall learning
complexity of the graph. By contrast, the performance has no consistent correlation with other graph
properties including the number of nodes, number of edges, average degree and SLID, as shown in
Appendix B. The SLID is not a good indicator of the final performance is because the structure of
the graph does not change before, during, or after learning, and arguably, the static structure itself
is not sufficient to indicate learning difficulty.

6.2 GNNS LEARN LOW-DIMENSIONAL REPRESENTATION SPACE

Here, we delve into the learning process of GNNs and show that GNNs learn by mapping the original
data onto a simpler manifold in the presentation space that is of much lower intrinsic dimensionality.
Here, we are interested in the FLID of raw node features and the RLID of learned representations.
At each training epoch, we extract the outputs of the last hidden layer of the GNN model as the
representations and estimate its RLID following Equation (2). Figure 6 illustrates the across-epoch
changes of RLID and FLID on datasets Cora, CiteSeer and Pubmed. The results of other datasets
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Table 2. Performance (test accuracy in node classification) of 4 GNN models on 12 graph datasets.
For all models, the accuracy ranking across the datasets are almost the same: CiteSeer < PubMed
< Cora; Squirrel < Chameleon; Cornell < Wisconsin < Texas; Cs < Physics; Computers < Photo.

Category Dataset FLID Test Accuracy(%)

GCN GAT GCNII SplineCNN

Citation
Cora 9.10 85.06 88.75 91.33 91.05
CiteSeer 18.18 75.08 77.78 78.98 79.40
PubMed 17.81 87.60 85.37 87.83 89.65

Wikipedia Chameleon 26.46 39.69 44.74 42.54 46.41
Squirrel 51.57 29.68 30.45 31.22 40.87

WebKB
Cornell 8.66 56.78 62.16 64.86 77.78
Wisconsin 5.76 58.82 62.75 64.71 86.11
Texas 8.66 67.57 70.27 72.97 81.48

Co-author Cs 4.80 92.88 89.5 91.57 93.72
Physics 2.92 95.70 91.2 96.01 97.41

Co-purchase Photo 74.26 91.31 90.26 90.72 95.75
Computers 80.29 80.81 72.34 75.03 88.95
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Figure 5. Correlation Between Test Accuracy and FLID

are shown in Appendix C. One key observation is that the FLID is significantly reduced once the
learning starts. This indicates that RLID is much lower than FLID, that is, the representation space
is much simpler (or of much lower intrinsic dimensionality) than the raw feature space. It also sug-
gests that the GNN learning actually drives down the intrinsic dimensionality of datasets, potentially
changing a messy node distribution to a simpler profile. Moreover, the RLIDs of the 4 models con-
verge to a similar value at the last few epochs. It reveals some consistency across different GNN
models of diverse frameworks and theoretical bases.

One might expect that RLID should have a simple relationship with FLID and SLID, as graph
representation learning is a fusion of both feature and structural information. However, here the
three LID measures cannot seem to reveal this relationship. This because graph learning is a complex
process that involves the transformation of the underlying k-nearest neighbor graph (k-NNG) of the
original graph to a new k-NNG in the representation space, i.e., neighbor nodes in the original graph
should have similar representation vectors. And during this process, the original graph structure is
static, i.e., SLID stays the same before, during, or after learning. So, it is hard to study the structural
transformation using SLID of the original graph. Interestingly, a recent work also shows that the
structure of the learned representation is very different from the original structure using constructed
k-NNGs from the original graph and learned representations (Jin et al., 2021). We will study the
SLID of the evolving underlying k-NNG in our future work.

6.3 DROPEDGE BRINGS DOWN SLID

For most GNN models, the graph topology remains unchanged during training. Therefore, it is hard
to interpret the learning process from the structure perspective. Here, we turn to investigate the
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Figure 6. The change of FLID (epoch 0) and RLID (epoch 1-200) across different epochs. FLID is
estimated on the raw node features, while RLID is estimated on the outputs of the 4 models on Cora,
CiteSeer and Pubmed. The neighborhood size k = 4 is used for estimating both FLID and RLID.

impact of DropEdge (Rong et al., 2020) to the structural property. DropEdge randomly removes a
certain number of edges from the input graph at each training iteration, which has led to improved
performance on a variety of GNNs. It has been explained that DropEdge works either by retarding
the convergence speed of over-smoothing or relieving the information loss (Rong et al., 2020).

Here, we empirically show that DropEdge indeed reduces the SLID of the graph. We estimate
the SLIDs of the new graphs generated by DropEdge at various dropping rates and the model’s
performance on the new graphs. The results on Core, CiteSeer and PubMed are shown in Figure 7.
It is clear that SLID is reduced linearly as the dropping rate increases. It also shows that the test
accuracy tends to rise until more than 50% of the edges are dropped. This is not so surprising as
losing too much of the intrinsic structure will destroy the topology of the graph. From the perspective
of intrinsic dimensionality, dropping edge is a dimensionality reduction technique that reduces the
manifold complexity and in turn the learning difficulty, if not causing too much information loss.
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Figure 7. The SLID and test accuracy at different dropping edges (p ∈ [0, 0.8]) on Cora, CiteSeer
and PubMed. p = 0 marks the raw graphs.

6.4 UNDERSTANDING OVER-SMOOTHING WITH SLID

The over-smoothing problem of GNNs refers to the representation collapse when stacking more
layers in GNNs, causing a significant performance drop (Li et al., 2018b). Here, we provide
a new explanation for the over-smoothing problem using SLID. According to (Balcilar et al.,
2021b), most of the well-known GNN models can be re-formulated into a general form: H l+1 =
σ
(∑

s C
(s)H(l)W (l,s)

)
, where C(s) is the s-th convolution support that defines how the node

features are propagated to the neighbors, and H(l) and W (l,s) are the hidden representation and
weights for s-th convolution support, respectively. Here, we focus on a particular class of GNNs
whose convolution support can be represented by the adjacency matrix A. Representative models
from this class include GCN with C = D− 1

2AD− 1
2 (D is the degree matrix) and GIN (Balcilar

et al., 2021b) with C = A + (1 + ϵ)I . For these models, A is multiplied cumulatively with more
layers, resulting in a dynamic graph with new edges. For example, given a graph with adjacency
matrix A, connecting the nodes that share a common neighbor yields a new graph with A2.

By analyzing the SLID of the accumulated adjacency matrix, we are able to reveal the structural
collapse of the underlying graph when stacking more layers. The SLIDs of accumulated matrices
A,A2, . . . ,A6 are reported in Table 3, where it shows that the SLID of all 12 graph datasets con-
verges to SLID = 0.5 after the 4th iteration. This indicates that the underlying graph converges to
a complete graph when more layers are added to the model, losing the original topology. In a com-
plete graph, each pair of distinct vertices has a one-hop neighborship. In Equation 4, letting r = 3, a
complete graph means k = n and y1 = · · · = yn = 1, leading to SLID = (3− (1/n) · n)−1

= 0.5.
This provides a new perspective of explanation for the over-smoothing problem of GNNs.
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Table 3. The SLID of a set of adjacency matrices generated via cumulative multiplication. The
radius r = 3 is used for the SLID estimator.

Dataset A A2 A3 A4 A5 A6

Cora 10.204 9.514 1.106 0.528 0.495 0.495
CiteSeer 3.783 5.762 2.643 0.630 0.477 0.473
PubMed 37.091 37.370 1.043 0.517 0.500 0.500

Chameleon 8.460 1.508 0.561 0.500 0.500 0.500
Squirrel 14.192 1.027 0.526 0.500 0.500 0.500
Cornell 6.559 0.975 0.533 0.499 0.499 0.499

Wisconsin 7.410 1.078 0.539 0.499 0.499 0.499
Texas 6.193 0.889 0.523 0.499 0.499 0.499

Cs 42.374 13.848 0.934 0.506 0.500 0.500
Physics 57.085 13.268 0.802 0.501 0.500 0.500
Photo 3.915 2.674 1.037 0.560 0.491 0.491

Computers 20.459 3.733 0.801 0.518 0.497 0.497

Table 4. Test accuracy (%) of the GCN (Kipf & Welling, 2016) model trained with or without RLID
regularization.

Loss↓, Dataset→ Cora Citeseer Pubmed

CE (Kipf & Welling, 2016) 84.7 75.4 88.6
ℓRLID (λ = 1) 85.3 75.8 89.0

7 IMPROVING PERFORMANCE OF GNNS USING RLID

The three LID metrics can be utilized as regularizers or supervision signals to guide graph learning
towards more locally discriminable (low LIDs) representations. Here, we take RLID as an example
to regularize the model (fθ) to learn low-dimensional representations. The regularized objective can
be written as:

ℓRLID(x) = ℓ(fθ(x), y) + λ ·RLID(fθ(x)), (5)

where ℓ denotes the commonly used cross-entropy (CE) loss and λ is the coefficient of the RLID
regularization term.

We empirically evaluate this regularized objective on Cora, Citeseer, and Pubmed, and show that it
can improve existing models. As shown in Table 4, it improves the performance of GCN by 0.6%
on Cora, 0.4% on Citeseer, and 0.4% on Pubmed. Note that this is just a simple attempt and the
improvement is not so significant. We believe that a more advanced strategy is to exploit the FLID
or SLID of each node as targets of the dimensionality regularizer to prevent the collapse of the
intrinsic structure in the presentation space and thus the over-smoothing problem. We will leave
these explorations to our future work.

8 CONCLUSION

In this work, we investigated the intrinsic dimensionality of node features, graph structure and rep-
resentations learned by GNNs with Local Intrinsic Dimensionality (LID). Estimators for Feature
LID (FLID), Structure LID (SLID) and Representation LID (RLID) were introduced and verified on
synthetic graphs. With FLID and SLID, we showed that real-world graphs have much lower intrinsic
dimensionalities than their extrinsic dimensionalities. With FLID and RLID, we revealed that GNNs
learn to map the raw features and structure to a representation space that is of much lower intrinsic
dimensionality. With SLID, we found that DropEdge not only removes edges but also reduces the
complexity of the intrinsic structure and the learning difficulty, and that over-smoothing is caused
by the collapse of the graph structure to a complete graph of SLID = 0.5. These understandings
could help motivate more advanced graph learning techniques.

10



Under review as a conference paper at ICLR 2022

REFERENCES

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Laurent Amsaleg, Oussama Chelly, Teddy Furon, Stéphane Girard, Michael E Houle, Ken-ichi
Kawarabayashi, and Michael Nett. Estimating local intrinsic dimensionality. In KDD, pp. 29–38,
2015.

Laurent Amsaleg, James Bailey, Dominique Barbe, Sarah Erfani, Michael E Houle, Vinh Nguyen,
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A SLID AND FLID OF GRAPH DATASETS

Table 5 and Table 6 detail the FLID of SLID of all 12 datasets with various parameter settings. For
FLID, the nearest neighborhood size k in Equation 2 is tuned from 2 to 8, following the setting in
Ma et al. (2018a). For SLID, the radius r in Equation 4 changes in the range 2 to 5, as indicated in
Ritter et al. (2018).
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Table 5. FLID of Real-world Graph Datasets

Category Dataset k=2 k=3 k=4 k=5 k=6 k=7 k=8

Citation
Cora 19.40 11.89 9.10 7.51 6.44 5.65 5.04

CiteSeer 22.69 18.86 18.18 17.81 17.70 17.67 17.49
PubMed 49.28 26.01 17.81 13.56 10.97 9.19 7.90

Wikipedia Chameleon 65.41 33.90 26.46 15.41 14.00 12.24 10.82
Squirrel 165.53 73.01 51.57 41.18 34.22 30.43 27.14

WebKB
Cornell 26.58 13.18 8.66 6.40 5.20 4.48 3.92

Wisconsin 14.38 7.28 5.76 4.82 4.10 3.57 3.19
Texas 26.58 13.18 8.66 6.40 5.20 4.48 3.92

Co-author Cs 11.24 6.40 4.80 3.94 3.35 2.96 2.64
Physics 7.38 4.02 2.92 2.36 2.02 1.78 1.60

Co-purchase photo 232.42 112.72 74.36 55.98 44.95 35.45 30.23
Computers 243.26 121.37 80.29 60.58 48.67 40.62 34.81

Table 6. SLID of Real-world Graph Datasets

Category Dataset k=2 k=3 k=4 k=5

Citation
Cora 5.96 10.20 9.14 1.07

CiteSeer 2.51 3.78 5.37 2.45
PubMed 8.70 37.09 29.80 1.04

Wikipedia Chameleon 44.90 8.46 1.47 0.50
Squirrel 60.71 14.19 1.02 0.46

WebKB
Cornell 13.89 6.56 0.95 0.47

Wisconsin 14.81 7.41 1.05 0.48
Texas 15.86 6.19 0.87 0.45

Co-author Cs 8.70 42.37 13.47 0.92
Physics 12.17 57.09 12.96 0.80

Co-purchase Photo 8.06 10.90 4.70 1.06
Computers 11.62 20.46 3.67 0.78

B CORRELATIONS BETWEEN MODEL PERFORMANCE AND COMMON GRAPH
PROPERTIES

Figure 8, 9, 10 and 11 show the correlation between test accuracy and graph properties including the
number of nodes, the number of edges, the average degree and SLID. As can be observed, the first
three properties demonstrate inconsistent correlations across different datasets.
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Figure 8. Correlation Between Test Accuracy and Number of Nodes
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Figure 9. Correlation Between Test Accuracy and Number of Edges
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Figure 10. Correlation Between Test Accuracy and Average Degree

C CHANGES OF RLID ACROSS EPOCH AND FLID OF DATASETS

Figure 12 shows the FLID and across-epoch RLID on the rest of the 9 graph datasets. It can be
observed that RLID is significantly lower than FLID on all the datasets, and RLIDs of the four GNN
models converge to a similar value at the last few epochs. Note that FLID is computed on the raw
node features before training and RLID is computed at each training epoch. Therefore, FLID only
appears at the first point (epoch 0) in each plot.
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Figure 11. Correlation between Test Accuracy and SLID
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Figure 12. This figure shows the change of FLID (epoch 0) and RLID (epoch 1-200) across different
epochs on the rest of the 9 graph datasets.
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