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Abstract

Instruction data is crucial for improving the001
capability of Large Language Models (LLMs)002
to align with human-level performance. Re-003
cent research LIMA demonstrates that align-004
ment is essentially a process where the model005
adapts instructions’ interaction style or format006
to solve various tasks, leveraging pre-trained007
knowledge and skills. Therefore, for instruc-008
tional data, the most important aspect is the009
task it represents, rather than the specific se-010
mantics and knowledge information. The la-011
tent representations of instructions play roles012
for some instruction-related tasks like data dis-013
tillation for instruction tuning and prompt re-014
trieval for in-context learning. However, they015
are always derived from text embeddings, en-016
compass overall semantic information that in-017
fluences the representation of task categories.018
In this work, we introduce a new concept, in-019
struction embedding, and construct Instruction020
Embedding Benchmark (IEB) for its evaluation.021
Then, we propose baseline method, prompt-022
based instruction embedding (PIE), to make023
the instruction embeddings more attention on024
task rather than whole semantic information.025
The evaluation of PIE, alongside other embed-026
ding methods on IEB, demonstrates its superior027
performance in accurately identifying task cat-028
egories. Moreover, the application of PIE in029
downstream tasks showcases its effectiveness030
and suitability for instruction-related tasks.031

1 Introduction032

Large Language Models (LLMs) have demon-033

strated remarkable proficiency in generating re-034

sponses capable of addressing specific tasks accord-035

ing to provided instructions. Initially pre-trained036

for wide-ranging capabilities, they are subsequently037

fine-tuned using instruction-following datasets to038

enhance their ability to align with human prefer-039

ences. LIMA has proved that alignment can be040

viewed as a straightforward process in which the041

Sample1 - different tasks

• Tell me the main idea of this article.
• Tell me the gender of the author of this blog 

post.

Similarity with text embedding: 0.9943  
Similarity with instruction embedding: -0.0254

Sample2 – similar tasks

• Create a poem with at least 5 lines, rhyming 
pattern aabb.

• Write a limerick based on the following noun.

Similarity with text embedding: 0.3239  
Similarity with instruction embedding: 0.8287

Figure 1: The cosine similarity between instructions.
Text embeddings are from the last token of Llama and
instruction embeddings are from proposed PIE.

model just learns the style or format for interact- 042

ing with users to solve particular problems, where 043

the knowledge and capabilities have already been 044

acquired during pre-training (Zhou et al., 2023). 045

Building on this assumption, even a small quan- 046

tity of carefully selected instruction data can sub- 047

stantially enhance model alignment performance 048

through instruction tuning. 049

Based on this, recent works dedicate to data dis- 050

tillation, seeking to extract compact subsets from 051

extensive instruction datasets (Wu et al., 2023a; 052

Cao et al., 2023; Chen et al., 2023a). During that 053

process, one crucial factor is instruction diversity, 054

to gain broad alignment abilities through training 055

on diverse tasks (Wei et al., 2023; Chen et al., 056

2023a; Wu et al., 2023a). The process inherently re- 057

lies on computing similarities among instructions, 058

and as such, the effectiveness of preserving diver- 059

sity heavily depends on the quality of the latent 060

representation of instructions. 061

Text embeddings, which play a crucial role in 062

a variety of NLP tasks such as semantic textual 063

similarity (Agirre et al., 2012; Cer et al., 2017; 064
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Marelli et al., 2014) and information retrieval (Mi-065

tra et al., 2017; Karpukhin et al., 2020), can serve066

as an option for representing instructions. Previous067

studies (Wang et al., 2024) obtain text embeddings068

by directly taking the last token vector from large069

generative models. However, when it comes to the070

embeddings of instructions, the key focus should071

lie in identifying task categories rather than captur-072

ing overall semantic information. This is because,073

as mentioned earlier, instruction fine-tuning help074

models learn how to interact with users across dif-075

ferent tasks, rather than the specific capabilities and076

knowledge imparted by the instructions. Therefore,077

task diversity is far more important than seman-078

tic diversity for instructions. Figure 1 shows the079

case where traditional text embedding methods ex-080

hibit high overall semantic and syntactic similarity081

between two samples which actually represent com-082

pletely different tasks, but low similarity when they083

represent similar task.084

In this work, we propose a new concept called085

instruction embedding, a specialized subset of text086

embedding that prioritizes task identification for087

instructions over the extraction of sentence-level se-088

mantic information. We propose a new benchmark089

for instruction embedding evaluation, namely IEB.090

Different from previous text embedding benchmark091

that only considered the semantic textual similar-092

ity, IEB (Instruction Embedding Benchmark) is093

labeled by task categories of instructions. Inspired094

by that key instruction words especially verbs are095

highlighted through instruction tuning (Wu et al.,096

2023b), we first extract verb-noun pairs to clarify097

category, then manually select and label instruc-098

tions with other syntactic structures. IEB totally099

contains 7.6k samples dispersed across 1k cate-100

gories, which can be also for fine-tuning embed-101

ding models.102

To stimulate the LLM to generate better instruc-103

tion embedding, we propose a prompt-based in-104

struction embedding method, PIE. It is a learning-105

free method that leverages the template to obtain106

instruction embeddings by directing the model’s107

attention towards the task type represented by the108

instructions. Additionally, our method is fully com-109

patible with fine-tuned settings. Contrastive learn-110

ing is widely used for training embedding models,111

where the positive pairs are hard to extract. In112

our study, the explicit category information avail-113

able in IEB enables the straightforward extraction114

of positive samples by directly selecting two in-115

stances from the same category. Furthermore, we116

construct hard negative samples by selecting in- 117

stances from categories that share identical verbs 118

or nouns, enhancing the challenge of differentia- 119

tion. Figure 1 shows that proposed PIE effectively 120

distinguishes whether two instructions refer to the 121

same task without being affected by other semantic 122

information. 123

We evaluate PIE and other embedding baselines 124

on IEB with two metrics, which shows that PIE can 125

largely outperform baselines and precisely iden- 126

tify the task categories. We also conduct some 127

downstream tasks like data distillation for instruc- 128

tion tuning (Wu et al., 2023a) and prompt retrieval 129

for in-context learning (Su et al., 2023), where the 130

superior results demonstrate that the proposed in- 131

struction embedding method is more suitable for 132

instruction-related tasks. Besides, we verify that 133

models after instruction fine-tuning can deliver bet- 134

ter embeddings. 135

To summarize, this work includes the following 136

contributions: (1) We propose instruction embed- 137

ding, a novel concept that focuses on task identifi- 138

cation rather than sentence-level semantic informa- 139

tion. Correspondingly, we present publicly avail- 140

able benchmark IEB for its evaluation and further 141

training. (2) We provide a prompt-based method 142

for instruction embedding, which can be conducted 143

in both learning-free and learning manner. (3) We 144

evaluate PIE and baselines on IEB and reveal the 145

effectiveness of proposed method. We also show 146

PIE can be a better substitution for downstream 147

tasks. 148

2 Related Work 149

2.1 Text Embeddings 150

Text embeddings, encapsulating vital semantic and 151

syntactic details, are pivotal in Natural Language 152

Processing (NLP). The quality of learned embed- 153

dings directly influences downstream tasks, high- 154

lighting the significance of text embedding learn- 155

ing. Current research on text embeddings primarily 156

focuses on semantic modeling using transformer- 157

based pretrained language models (PLMs) (Gao 158

et al., 2021; Jiang et al., 2022; Li and Li, 2023). 159

We argue that for compressing instruction datasets 160

while maintaining task diversity, instruction em- 161

beddings should prioritize task-specific informa- 162

tion within the instructions rather than emphasizing 163

overall semantic information. 164
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2.2 Instruction Tuning165

Instruction tuning is a crucial method to overcome166

the challenge of instruction following for large lan-167

guage models (LLMs). LIMA (Zhou et al., 2023)168

argues that the diversity and quality of instruction169

data matters more than quantity and demonstrate170

that even a small quantity of carefully selected171

instruction data can substantially enhance model172

alignment performance through instruction tuning.173

Building upon the insights from LIMA, endeavors174

are dedicated to compressing instruction datasets:175

ALPAGASUS (Chen et al., 2023b) utilizes Chat-176

GPT to filter out low-quality data, Li et al. se-177

lects high quality examples through an iterative178

self-curation process, DIVERSEEVOL (Wu et al.,179

2023a) iteratively samples training data using the180

current embedding space to preserve diversity in181

the sampled subset. However, previous efforts fall182

short in explicitly maintaining task diversity in the183

training subset while reduce data quantity.184

2.3 Embedding Benchmark185

The Semantic Textual Similarity (STS) tasks186

(Agirre et al., 2012; Cer et al., 2017; Marelli et al.,187

2014) are commonly employed to evaluate the qual-188

ity of text embeddings, complemented with trans-189

fer tasks and short text clustering tasks (Conneau190

and Kiela, 2018; Xu et al., 2023; Muennighoff191

et al., 2023) to further illustrate the superiority of192

learned sentence representations. However, previ-193

ous benchmarks are not tailored to instruction-style194

corpora and primarily assess the semantic model-195

ing abilities of text embeddings, rendering them196

less suitable for evaluating instruction embeddings.197

3 The IEB Benchmark198

We present instruction embedding benchmark, IEB,199

for assessing the quality of the latent representation200

of instructions. In contrast to current text embed-201

ding benchmarks that assess similarity, the primary202

focus for the space of instruction embeddings is203

task differentiation based on the given instructions.204

Therefore, we propose a new benchmark that anno-205

tates instructions with their respective tasks.206

3.1 Data Extraction207

For convenience and authenticity, we derive sam-208

ples from established datasets. Specifically, we209

adopt three extensively recognized instruction-210

tuning datasets: DatabricksDolly (Conover et al.,211

2023), Alpaca data (Taori et al., 2023), and Self-212
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Figure 2: The verb-noun distributions in IEB.

instruct data (Wang et al., 2023). Labeling instruc- 213

tions entirely through manual effort or large lan- 214

guage models will incur significant costs. There- 215

fore, it is first necessary to conduct coarse-grained 216

grouping and filtering based on rule-based policies. 217

Wu et al. (2023b) proves that instruction fine-tuning 218

enables models to recognize key instruction words, 219

which leads to the generation of high-quality re- 220

sponses. Furthermore, it also encourages models 221

to learn word-word relations with instruction verbs. 222

Inspired by these two findings, we argue that verbs 223

or other key words are crucial in identifying the 224

task denoted by an instruction, where the types of 225

key words can be effectively determined through 226

syntactic analysis. Thus, following Wang et al. 227

(2023), we employ the Berkeley Neural Parser1 228

(Kitaev and Klein, 2018; Kitaev et al., 2019) for 229

parsing the instructions. 230

After manual observation and considering the 231

task category requirements, instructions can gen- 232

erally be divided into the following four groups 233

through corresponding parsing tag recognizer: 234

VP (VB+NN) denotes verb phrase structure 235

where the verb is closest to the root of the parse 236

tree and directly links to noun. Instructions with 237

this structure account for more than 80% of the 238

total number before filtering. We categorize each 239

instruction based on its verb-noun combination, 240

identifying it as a specific task type, such as write 241

story or generate sentence. After restoring the verb 242

tense and singular form of nouns, we classify in- 243

structions with the same verb-noun combination 244

into the same category. We find that low-frequency 245

1https://parser.kitaev.io/
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Parsing Tag Task Annotation Examples

VB verb + noun Write an essay about my favourite season.

In 100 words or less, tell a story about the consequences of the choices people make.

SBARQ
wh- + knowledge

What is the difference between machine learning and deep learning?

Why are numbers written in the base 10 system instead of a smaller base system?

How is a liquid chromatography differs from gas chromatography?

Who was the coach for the Chicago Bulls when they won the NBA championship?

When was the "No, They Can’t" book released?

Where was 52nd International Film Festival of India held?

what + math What is the result when 8 is added to 3?

What is the value of (x - y)(x + y) if x = 10 and y = 15?

SQ
yes/no + knowledge Was Furze Hill an established community in the 19th century?

Did Sir Winston Churchill win the Nobel Peace Prize?

yes/no + task Is the following statement a valid definition of the term noise pollution?

Does the information provided in the article support a vegetarian diet?

Others

verb + knowledge Summarize the Challenger Sales Methodology for me.

Describe the Three Gorges Dam of China.

verb Translate "Bonjour" into English.

You need to translate “I have been to Europe twice" into Spanish.

verb + math Multiply 12 and 11.

Simplify 2w+4w+6w+8w+10w+12.

noun + knowledge Short Summary about 2011 Cricket World Cup.

iPhone 14 pro vs Samsung s22 ultra.

Table 1: Task categories with examples of IEB.

samples have a higher probability of being noisy,246

so we discard categories with fewer than 10 sam-247

ples. We plot the top most common root verbs and248

their direct noun objects in Figure 2.249

SBARQ is direct question introduced by a wh-250

word or a wh-phrase. It can be divided into two251

main categories: knowledge-based questions led by252

six interrogative pronouns (e.g., what, when, where,253

...) and math problems introduced by what. Unlike254

instructions in the VP (verb phrase) form, we de-255

fine categories in the form of interrogative pronoun256

combing knowledge/math. This is because, consid-257

ering they all involve asking about knowledge or258

math problems, further subdividing into noun cate-259

gories is not very meaningful. For each category,260

we manually select around 50 samples.261

SQ is inverted yes/no question. It can also be di-262

vided into two main categories: knowledge-based263

questions and task-oriented questions. Similarly,264

the task label is annotated as yes-no combing265

knowledge/task and we select around 50 samples266

for each category.267

Others There are some other structures: verb268

phrase that lacks a direct connection to a noun269

and some rare cases which do not contain verbs,270

consisting only of noun phrases. We define these271

four categories:(1) Verb-led knowledge questions.272

For example, knowledge clauses guided by summa-273

rize and describe. (2) Single verb for tasks, e.g., 274

translate.(3) Verb-led mathematical problems. For 275

example, math problem clauses guided by multiply 276

and simplify.(4) None phrase for knowledge ques- 277

tions. For each type, we randomly select around 278

10-50 samples. 279

Finally, the annotated task categories cover the 280

vast majority of the instruction data and are shown 281

with examples in Table 1. 282

3.2 Data Synthesis 283

In instruction data, we discover some complex com- 284

pound sentences, e.g., You are playing a game 285

which requires you to roll two dice. Generate a 286

sentence to describe the emotion of anticipation 287

felt while waiting for the dice to stop rolling. Al- 288

though they are not predominant, they can serve 289

as challenging examples in the benchmark. How- 290

ever, due to their relative difficulty in identification, 291

we employ GPT-4-turbo to generate samples based 292

on existing task category names, including verbs 293

and their corresponding nouns. Subsequently, the 294

generated compound instructions will be integrated 295

into the categories. 296

3.3 Quality Control and Evaluate 297

Automatic Filtering Even though low-frequency 298

samples have been discarded, the automatically 299

constructed categories still contain some noisy data. 300

Thus, we use GPT-4-turbo to check whether sam- 301
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Task Categories Samples

EFT Train 447 35634
Test 63 5899

IFT Train 502 33904
Test 747 1064

Total 1012 76501

Table 2: Data statistics of IEB. EFT refers to embedding
fine-tuning and IFT refers to instruction fine-tuning.

ples belong to its annotated category. About 23%302

samples are filtered out during this process.303

Category Merging Considering that many verbs304

or nouns representing instructions are synonyms,305

e.g., provide and give, it would be inappropriate306

to classify them into different categories. Thus,307

we utilize WordNet 2 to extract the synonyms. We308

merge all categories where both nouns and verbs309

are synonyms to make the benchmark more robust.310

Human Evaluation We randomly sample 200311

examples and ask an expert annotator to evaluate312

whether samples belong to its annotated category.313

The results indicate that 92% of the sample cate-314

gories are accurate.315

3.4 Statistics316

After constructing and filtering, we collect totally317

1012 task categories with 76501 samples. Given318

the large volume of data, the benchmark data can319

also be used for training and testing instruction320

embeddings and instruction fine-tuning. Therefore,321

we have split it in a certain ratio, but it can be322

divided in any form as needed. Table 2 describes323

the statistics of the divided data.324

4 Instruction Embedding325

4.1 Why Instruction Embedding326

Text embeddings are pivotal in numerous natural327

language processing NLP tasks. Traditional text328

embeddings are chiefly concerned with capturing329

the semantic content of texts, striving to encapsu-330

late both the intrinsic meaning and the syntactic331

arrangement of sentences (Xu et al., 2023). Zhou332

et al. (2023); Wu et al. (2023b) prove that, for in-333

structional data, the primary significance lies in the334

task it signifies by key instruction verbs, not the335

detailed semantics and knowledge. Therefore, our336

instruction embedding proposed in this paper is337

2https://wordnet.princeton.edu/

designed to prioritize modeling the task categories 338

expressed by instructions rather than delving into 339

the semantic intricacies of the text. When employ- 340

ing traditional text embeddings for data distillation, 341

semantic information might introduce interference 342

during the distillation process. For instance, if 343

two instructions propose different tasks for sim- 344

ilar objects, as illustrated in Figure 1, the semantic 345

nuances could complicate the distillation process. 346

Instruction embedding, this focused approach al- 347

lows for a clearer delineation of the intended tasks, 348

contributing to more effective data distillation pro- 349

cesses. 350

4.2 Prompt-based Instruction Embedding 351

As mentioned above, guiding the model to generate 352

embeddings that focus on task categories is criti- 353

cally important. Large pretrained language models 354

have shown an impressive capacity to accomplish 355

novel tasks solely by utilizing in-context examples 356

or instructions (Brown et al., 2020). Inspired by 357

(Jiang et al., 2022), we present a prompt-based in- 358

struction embedding method (PIE). By reformulat- 359

ing the sentence embedding task as the generation 360

task, we can effectively use original LLaMA lay- 361

ers by leveraging the pre-trained knowledge. We 362

manually design some templates, as shown in Ap- 363

pendix A.2. The hidden states of last token will be 364

represented for the embedding of instruction. 365

4.3 Embedding Finetuning 366

To further improve PIE performance, we fine-tune 367

PIE-LLaMA on our embedding train set by con- 368

trastive learning (Hadsell et al., 2006) through the 369

learning framework in SimCSE (Gao et al., 2021). 370

Let D = {ti}|D|
i=1 denotes the embedding train 371

set, where each ti = {ti1, ..., t|ti|} represents a 372

specific task category in D, and each tij is an in- 373

struction instance of ti. During the training process, 374

we take a cross-entropy objective with in-batch neg- 375

atives (Chen et al., 2017; Henderson et al., 2017). 376

For a given instruction tij , tik where j ̸= k is ran- 377

domly sampled from ti to make up a task-related 378

instruction pair. In order to mitigate the risk of false 379

negatives resulting from repetitive task categories 380

among different pairs of instructions in batch, we 381

randomly select several distinct tasks from all task 382

categories each time. Subsequently, we sample in- 383

struction pairs from the corresponding instruction 384

pools. Let hij and hik denote the representation of 385

tij and tik, the learning objective for (tij , tik) with 386
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Method CP ARI
Non-Finetuned on embedding train set

LLaMA (non-finetuned) 0.6238 0.0596
PIE-LLaMA (non-finetuned) 0.7842 0.1115
Vicuna 0.5687 0.0464
PIE-Vicuna 0.8011 0.1182
Random 0.3670 0.0000
SimCSE 0.7328 0.0911
PromptBERT 0.3678 0.0005

Finetuned on embedding train set without hard negative sampling
LLaMA - hard negative 0.8486 0.4468
PIE-LLaMA - hard negative 0.7797 0.4680

Finetuned on embedding train set
LLaMA 0.8696 0.4548
PIE-LLaMA 0.8915 0.6300

Table 3: Results of embedidng fine-tuning experiment. We conduct instruction clustering task on various embedding
methods, including each baseline method, non-fine-tuned llama-based embeddings, non-fine-tuned vicuna-based
embeddings and fine-tuned llama-based embeddings. Besides, the ablation study result on hard negative sampling is
also shown here.

a mini-batch of N pairs can be formulated as Eq 1387

ℓi = −log
esim(hij ,hik)/τ∑N

m=1 e
sim(hij ,hmk′ )/τ

(1)388

where τ is a temperature hyperparameter and389

sim(h1, h2) is the cosine similarity hT
1 h2

||h1||·||h2|| .390

Hard negative sampling has been widely adopted391

in contrastive learning (Yuan et al., 2023), which392

has been demonstrated to enhance the effectiveness393

of contrastive learning. In this paper, we propose394

a hard negative sampling strategy based on verb-395

noun style instruction task categories: for instruc-396

tion pair (tij , tik), if the task category of ti is a397

verb-noun pair (vi, ni), then, instruction pair (ti′j′ ,398

ti′k′) of t′i, whose task category is (vi, n′
i) is viewed399

as a hard negative pair of (tij , tik) and inserted to400

the training batch.401

5 Experiment402

5.1 Experimental Setup403

Evaluation Details For the evaluation of instruc-404

tion embeddings, we employ an instruction clus-405

tering task on the embedding test set of our pro-406

posed IEB benchmark, aiming to accurately group407

instructions from different tasks. Specifically,408

embeddings-based instruction clustering is con-409

ducted using k-means clustering based on the em-410

beddings of given instructions, where k is prede-411

fined and its value equals to the number of task412

categories in the embedding test set. It is worth413

noting that the data sampling process for PIE fine-414

tuning in this paper is not traversing the training415

data; instead, it involves repeated random sampling416

of the training data. Here, we set the sampling step417

to 5k. Throughout the entire training process, ap- 418

proximately 80k instruction pairs are involved in 419

the training. We utilize metrics such as Adjusted 420

Rand Index (ARI) (Hubert and Arabie, 1985) and 421

Clustering Purity (CP) (Schütze et al., 2008) to as- 422

sess the effectiveness of the task clustering process. 423

These metrics offer insights into the quality of the 424

clusters formed based on the instruction embed- 425

dings, providing valuable feedback on the perfor- 426

mance and accuracy of our proposed embedding 427

methodology. We implement our PIE method with 428

LLaMA-7B (Touvron et al., 2023) which is called 429

PIE-LLaMA. For the embedding pooling layers, 430

unless stated otherwise, we utilize the average of 431

hidden states from the last token across the last 2 432

layers. 433

Baselines We compare our PIE with two sen- 434

tence embedding baselines, and random instruction 435

clustering is also considered as a baseline. 436

SimCSE alleviates the anisotropy problem by 437

separating negative pairs and optimizes 438

alignment by pulling positive pairs closer 439

together. For the comparison, we use 440

unsupervised SimCSE-BERTbase. 441

PromptBERT finds original BERT(Devlin 442

et al., 2019) can achieve reasonable 443

performance with the help of the template in 444

sentence embeddings (Jiang et al., 2022). For 445

the comparison, we use unsupervised 446

prompt-based BERTbase (manual). 447

LLaMA simply takes the original instruction 448

as input, which is now widely used for 449

instruction embedding. It is used to compare 450
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Layer Model CP ARI

Last one LLaMA 0.6002 0.0610
PIE-LLaMA 0.7040 0.0819

Last two LLaMA 0.6238 0.0596
PIE-LLaMA 0.7842 0.1115

Mid LLaMA 0.5973 0.0540
PIE-LLaMA 0.6829 0.0664

First-Last LLaMA 0.5860 0.0759
PIE-LLaMA 0.7177 0.0763

Table 4: Results of pooling layer selection experiment.
For all pooling layers, we take the average pooling of
last token hidden states in each chosen hidden layer as
the instruction embedding.

with PIE-LLaMA to reveal the effect of451

prompt in obtaining instruction embeddings.452

Random instruction clustering randomly453

classifies instructions into different clusters.454

Embedding Fine-tuning Details We fine-tune455

PIE-LLaMA on embedding train set and the config-456

uration can be found in Appendix A.1. We evaluate457

the performance of fine-tuned embedding models458

and baselines through the instruction clustering task459

mentioned before. Besides, we replaced LLaMA-460

7B with Vicuna-7B-v1.5 (Chiang et al., 2023) to461

explore the impact of instruction fine-tuning on462

the model’s ability to follow prompts in obtaining463

instruction embeddings.464

5.2 Results and Observations465

The Effectiveness of PIE Table 3 shows the ex-466

perimental results, which demonstrate the remark-467

able power of LLaMA model, even the non-fine-468

tuned prompt-free LLaMA is almost comparable469

with SimCSE, let alone the PIE models and fine-470

tuned models. PIE achieves the best performance,471

both in learning-free and embedding fine-tuned472

modes.473

Embeddings from Instruction Fine-tuning Mod-474

els The quality of instruction embedding can be475

further improved when we use instruction fine-476

tuned model to conduct prompt-based instruc-477

tion embedding: though Vicuna performs worse478

than non-fine-tuned LLaMA, Vicuna demonstrates479

stronger prompt-following ability and delivers bet-480

ter instruction embeddings when prompt is intro-481

duced. Furthermore, fine-tuning on the embedding482

training set leads to a significant improvement in483

model performance.484

Visualization Results To better illustrate the su-485

periority of PIE and the impact of fine-tuning, we486

visualize of the embeddings before and after fine- 487

tuning in Figure 3. It is evident that embedding 488

fine-tuning successfully enhances the performance 489

of both LLaMA and PIE-LLaMA in terms of in- 490

struction clustering. This suggests that embedding 491

fine-tuning does aid in extracting task information 492

more effectively from instructions. Additionally, 493

the fine-tuned PIE-LLaMA exhibits a more dis- 494

persed inter-class distribution and a more compact 495

intra-class distribution than the fine-tuned LLaMA, 496

demonstrating the positive guiding effect of the 497

prompt method on extracting task information from 498

instructions. 499

Ablation Study We also conducted an ablation 500

study on our hard negative sampling strategy where 501

we set sampling step to 10k to ensure consistent 502

training data volume with hard negative sampling 503

fine-tuning, the result is shown in Table 3. After re- 504

moving hard negative sampling, we observed a no- 505

table decrease in the performance of both LLaMA 506

and PIE-LLaMA. This underscores the pivotal role 507

that our hard negative sampling strategy plays in 508

embedding fine-tuning. 509

5.3 Pooling Layer Selection 510

In LLM, the effectiveness and performance of ex- 511

tracting sentence representations across different 512

hidden layers may vary. To systematically assess 513

the semantic information and representation ca- 514

pabilities of various layers in LLM, we employs 515

pooling techniques on the last token hidden states 516

at different layers and conduct corresponding evalu- 517

ations. Specifically, we select the last hidden layer, 518

last two hidden layers, middle hidden layer, and 519

first and last hidden layers as pooling layers. The 520

experimental results in Table 4 indicate that, for 521

both LLaMA and PIE-LLaMA, the average pooling 522

of the last two hidden layers consistently outper- 523

forms other pooling methods. Notably, regardless 524

of the pooling method employed, the embedding 525

with prompt consistently outperforms the embed- 526

ding without prompt. This suggests that prompts 527

indeed guide the model to identify the task informa- 528

tion contained within the instructions, validating 529

the effectiveness of our PIE method. 530

5.4 Prompt Search 531

Prompt is a key part of our PIE . In this paper, we 532

employed a manual approach to search for appro- 533

priate prompt: we first manually crafted several 534

prompts, then, for each manually crafted prompt, 535
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(a) (b) (c) (d)

Figure 3: Embedding visualization: (a) non-fine-tuned LLaMA (b) non-fine-tuned PIE-LLaMA (c) fine-tuned
LLaMA (d) fine-tuned PIE-LLaMA

Index CP ARI

#0 0.7842 0.1115
#1 0.7819 0.1233
#2 0.7284 0.0794
#3 0.6707 0.0662
#4 0.6323 0.0612

Table 5: Result of prompt search. Index refers to the
template index in Table 6.

we evaluated its effectiveness by the instruction536

clustering task. The human crafted prompts are537

shown in Table 6, and the results are presented in538

Table 5. According to the result, we select template539

#0 for further experiments.540

5.5 Evaluation on Downstream Tasks541

4.15 3.76

4.30 3.85

3.60 3.47

3.72 3.43

PIE vs

LLaMA

Random

LLaMA

Random

(a)

(b)

Figure 4: Downstream tasks results on (a) data dis-
tillation for instruction tuning and (b) demonstrations
selection for in-context learning.

We conduct two downstream tasks to further542

evaluate the effectiveness of PIE:543

Data Distillation Follow the line of data distilla-544

tion work, we design a data distillation experiment545

based on instruction embedding. First, we utilize546

k-means clustering to partition the instruction train547

set of IEB where k is determined by the number548

of task categories of undistilled instructions (502).549

Then, we extract 6 instructions closest to the cen-550

ters from each cluster to achieve data distillation. 551

Finally, we conduct instruction fine-tuning on it, 552

and compare PIE with LLaMA embeddings for 553

clustering and random selection. As for the in- 554

struction fine-tuning, training configuration can be 555

found in Appendix A.1. 556

Demonstrations Selection LLMs have demon- 557

strated remarkable in-context learning (ICL) ca- 558

pability (Patel et al., 2023). Demonstrations re- 559

lated to the instruction task are more conducive to 560

model ICL compared to task-agnostic demonstra- 561

tions. Thus, for each instruction xi in the instruc- 562

tion test set, we extract the 3 most similar data from 563

the instruction train set by embedding cosine sim- 564

ilarity as demonstrations. Then, we combine and 565

input them to GPT-3.5-turbo. Similarly, baselines 566

are LLaMA embeddings and random selection. 567

For both tasks, we use GPT-4-turbo to compare 568

and score the samples generated by PIE and the 569

baselines in the range of 1 to 10 (1 to 5 for ICL 570

task). The results in Figure 4 demonstrate that the 571

PIE can be a better substitution of text embeddings 572

for instruction-related tasks. 573

6 Conclusion 574

We introduce the concept of instruction embedding, 575

which prioritizes task identification over traditional 576

sentence-level semantic analysis. Alongside, we 577

release the publicly available IEB benchmark for 578

evaluating and further training instruction embed- 579

dings. To ensure instruction embeddings focus 580

more on task specifics rather than broad semantic 581

content, we propose a prompt-based approach for 582

generating instruction embeddings, applicable in 583

both unsupervised (learning-free) and supervised 584

(learning-based) contexts. The introduction of in- 585

struction embedding, along with the IEB bench- 586

mark and the PIE method, plays a crucial auxiliary 587

role in instruction-related tasks for large language 588

models. 589
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7 Limitations590

Although our PIE outperforms the LLaMA and591

random method in the data distillation task, our592

data distillation approach requires prior knowl-593

edge of the number of instruction task categories594

in the instruction dataset, which is generally not595

feasible. This limitation constrains the applica-596

tion of our instruction embedding. In future work,597

we will investigate how to achieve data distilla-598

tion without prior knowledge of the number of599

instruction task categories. Additionally, Prompt-600

BERT(Jiang et al., 2022) successfully utilizes Op-601

tiPrompt(Zhong et al., 2021) to achieve better em-602

bedding effects than manual prompts. Although603

we did not leverage the OptiPrompt technique in604

this paper, we will apply this technology to PIE in605

future work.606
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A Appendix842

A.1 Additional Configuration843

Experiment Configuration We fine-tune PIE-844

LLaMA for 3 epochs with the batch size set to845

8 (there will be 16 instruction pairs after hard846

negative sampling) and the learning rate set to847

1 × 10−5 on 4 NVIDIA RTX 3090 GPUs. Due848

to computational resource limitations, we adopt849

LORA (Hu et al., 2022) technique to fine-tune the850

LLM with lora-rank set to 32, lora-alpha set to 64,851

lora-dropout set to 0.05 and target modules set to852

[’q_proj’,’v_proj’]3.853

Data Distillation Configuation We complete in-854

struction fine-tuning on a single NVIDIA RTX855

3090 GPU and adopt LoRA (Hu et al., 2022) tech-856

nique to fine-tune the LLM with lora-rank set to857

1024, lora-alpha set to 2048, lora-dropout set to858

0.05 and target modules set to [’q_proj’,’v_proj’],859

epochs set to 10 and batch size set to 128.860

3https://huggingface.co/docs/peft/developer_
guides/lora
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Index Template

#0
Below is an instruction that describes a
task \n
{instruction} \n
The task of the given instruction is:

#1
The following instruction \n
{instruction} \n
wants you to:

#2
Given the following instruction \n
{instruction} \n
please identify its task type:

#3
What type of task does the following
instruction represent? \n
{instruction}

#4
Indentify the task category associated
with the following instruction: \n
{instruction}

Table 6: Templates used in prompt search, \n represents
a newline.

11

https://doi.org/10.48550/ARXIV.2310.00492
https://doi.org/10.48550/ARXIV.2310.00492
https://doi.org/10.48550/ARXIV.2310.00492
https://doi.org/10.48550/ARXIV.2310.00492
https://doi.org/10.48550/ARXIV.2310.00492
https://doi.org/10.1145/3593590
https://doi.org/10.1145/3593590
https://doi.org/10.1145/3593590
https://doi.org/10.18653/V1/2021.NAACL-MAIN.398
https://doi.org/10.18653/V1/2021.NAACL-MAIN.398
https://doi.org/10.18653/V1/2021.NAACL-MAIN.398
https://doi.org/10.48550/ARXIV.2305.11206
https://doi.org/10.48550/ARXIV.2305.11206
https://doi.org/10.48550/ARXIV.2305.11206
https://huggingface.co/docs/peft/developer_guides/lora
https://huggingface.co/docs/peft/developer_guides/lora

	Introduction
	Related Work
	Text Embeddings
	Instruction Tuning
	Embedding Benchmark

	The IEB Benchmark
	Data Extraction
	Data Synthesis
	Quality Control and Evaluate
	Statistics

	Instruction Embedding
	Why Instruction Embedding
	Prompt-based Instruction Embedding
	Embedding Finetuning

	Experiment
	Experimental Setup
	Results and Observations
	Pooling Layer Selection
	Prompt Search
	Evaluation on Downstream Tasks

	Conclusion
	Limitations
	Appendix
	Additional Configuration
	Prompt templates


