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Abstract

Instruction data is crucial for improving the
capability of Large Language Models (LLMs)
to align with human-level performance. Re-
cent research LIMA demonstrates that align-
ment is essentially a process where the model
adapts instructions’ interaction style or format
to solve various tasks, leveraging pre-trained
knowledge and skills. Therefore, for instruc-
tional data, the most important aspect is the
task it represents, rather than the specific se-
mantics and knowledge information. The la-
tent representations of instructions play roles
for some instruction-related tasks like data dis-
tillation for instruction tuning and prompt re-
trieval for in-context learning. However, they
are always derived from text embeddings, en-
compass overall semantic information that in-
fluences the representation of task categories.
In this work, we introduce a new concept, in-
struction embedding, and construct Instruction
Embedding Benchmark (IEB) for its evaluation.
Then, we propose baseline method, prompt-
based instruction embedding (PIE), to make
the instruction embeddings more attention on
task rather than whole semantic information.
The evaluation of PIE, alongside other embed-
ding methods on IEB, demonstrates its superior
performance in accurately identifying task cat-
egories. Moreover, the application of PIE in
downstream tasks showcases its effectiveness
and suitability for instruction-related tasks.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable proficiency in generating re-
sponses capable of addressing specific tasks accord-
ing to provided instructions. Initially pre-trained
for wide-ranging capabilities, they are subsequently
fine-tuned using instruction-following datasets to
enhance their ability to align with human prefer-
ences. LIMA has proved that alignment can be
viewed as a straightforward process in which the

Samplel - different tasks

+ Tell me the main idea of this article.
+ Tell me the gender of the author of this blog
post.

Similarity with text embedding: 0.9943
-0.0254

+ Create a poem with at least 5 lines, rhyming
pattern aabb.
» Write a limerick based on the following noun.

Similarity with text embedding: 0.3239
0.8287

Figure 1: The cosine similarity between instructions.
Text embeddings are from the last token of Llama and
instruction embeddings are from proposed PIE.

model just learns the style or format for interact-
ing with users to solve particular problems, where
the knowledge and capabilities have already been
acquired during pre-training (Zhou et al., 2023).
Building on this assumption, even a small quan-
tity of carefully selected instruction data can sub-
stantially enhance model alignment performance
through instruction tuning.

Based on this, recent works dedicate to data dis-
tillation, seeking to extract compact subsets from
extensive instruction datasets (Wu et al., 2023a;
Cao et al., 2023; Chen et al., 2023a). During that
process, one crucial factor is instruction diversity,
to gain broad alignment abilities through training
on diverse tasks (Wei et al., 2023; Chen et al.,
2023a; Wu et al., 2023a). The process inherently re-
lies on computing similarities among instructions,
and as such, the effectiveness of preserving diver-
sity heavily depends on the quality of the latent
representation of instructions.

Text embeddings, which play a crucial role in
a variety of NLP tasks such as semantic textual
similarity (Agirre et al., 2012; Cer et al., 2017;



Marelli et al., 2014) and information retrieval (Mi-
tra et al., 2017; Karpukhin et al., 2020), can serve
as an option for representing instructions. Previous
studies (Wang et al., 2024) obtain text embeddings
by directly taking the last token vector from large
generative models. However, when it comes to the
embeddings of instructions, the key focus should
lie in identifying task categories rather than captur-
ing overall semantic information. This is because,
as mentioned earlier, instruction fine-tuning help
models learn how to interact with users across dif-
ferent tasks, rather than the specific capabilities and
knowledge imparted by the instructions. Therefore,
task diversity is far more important than seman-
tic diversity for instructions. Figure 1 shows the
case where traditional text embedding methods ex-
hibit high overall semantic and syntactic similarity
between two samples which actually represent com-
pletely different tasks, but low similarity when they
represent similar task.

In this work, we propose a new concept called
instruction embedding, a specialized subset of text
embedding that prioritizes task identification for
instructions over the extraction of sentence-level se-
mantic information. We propose a new benchmark
for instruction embedding evaluation, namely IEB.
Different from previous text embedding benchmark
that only considered the semantic textual similar-
ity, IEB (Instruction Embedding Benchmark) is
labeled by task categories of instructions. Inspired
by that key instruction words especially verbs are
highlighted through instruction tuning (Wu et al.,
2023b), we first extract verb-noun pairs to clarify
category, then manually select and label instruc-
tions with other syntactic structures. IEB totally
contains 7.6k samples dispersed across 1k cate-
gories, which can be also for fine-tuning embed-
ding models.

To stimulate the LLLM to generate better instruc-
tion embedding, we propose a prompt-based in-
struction embedding method, PIE. It is a learning-
free method that leverages the template to obtain
instruction embeddings by directing the model’s
attention towards the task type represented by the
instructions. Additionally, our method is fully com-
patible with fine-tuned settings. Contrastive learn-
ing is widely used for training embedding models,
where the positive pairs are hard to extract. In
our study, the explicit category information avail-
able in IEB enables the straightforward extraction
of positive samples by directly selecting two in-
stances from the same category. Furthermore, we

construct hard negative samples by selecting in-
stances from categories that share identical verbs
or nouns, enhancing the challenge of differentia-
tion. Figure 1 shows that proposed PIE effectively
distinguishes whether two instructions refer to the
same task without being affected by other semantic
information.

We evaluate PIE and other embedding baselines
on IEB with two metrics, which shows that PIE can
largely outperform baselines and precisely iden-
tify the task categories. We also conduct some
downstream tasks like data distillation for instruc-
tion tuning (Wu et al., 2023a) and prompt retrieval
for in-context learning (Su et al., 2023), where the
superior results demonstrate that the proposed in-
struction embedding method is more suitable for
instruction-related tasks. Besides, we verify that
models after instruction fine-tuning can deliver bet-
ter embeddings.

To summarize, this work includes the following
contributions: (1) We propose instruction embed-
ding, a novel concept that focuses on task identifi-
cation rather than sentence-level semantic informa-
tion. Correspondingly, we present publicly avail-
able benchmark IEB for its evaluation and further
training. (2) We provide a prompt-based method
for instruction embedding, which can be conducted
in both learning-free and learning manner. (3) We
evaluate PIE and baselines on IEB and reveal the
effectiveness of proposed method. We also show
PIE can be a better substitution for downstream
tasks.

2 Related Work

2.1 Text Embeddings

Text embeddings, encapsulating vital semantic and
syntactic details, are pivotal in Natural Language
Processing (NLP). The quality of learned embed-
dings directly influences downstream tasks, high-
lighting the significance of text embedding learn-
ing. Current research on text embeddings primarily
focuses on semantic modeling using transformer-
based pretrained language models (PLMs) (Gao
et al., 2021; Jiang et al., 2022; Li and Li, 2023).
We argue that for compressing instruction datasets
while maintaining task diversity, instruction em-
beddings should prioritize task-specific informa-
tion within the instructions rather than emphasizing
overall semantic information.



2.2 Instruction Tuning

Instruction tuning is a crucial method to overcome
the challenge of instruction following for large lan-
guage models (LLMs). LIMA (Zhou et al., 2023)
argues that the diversity and quality of instruction
data matters more than quantity and demonstrate
that even a small quantity of carefully selected
instruction data can substantially enhance model
alignment performance through instruction tuning.
Building upon the insights from LIMA, endeavors
are dedicated to compressing instruction datasets:
ALPAGASUS (Chen et al., 2023b) utilizes Chat-
GPT to filter out low-quality data, Li et al. se-
lects high quality examples through an iterative
self-curation process, DIVERSEEVOL (Wu et al.,
2023a) iteratively samples training data using the
current embedding space to preserve diversity in
the sampled subset. However, previous efforts fall
short in explicitly maintaining task diversity in the
training subset while reduce data quantity.

2.3 Embedding Benchmark

The Semantic Textual Similarity (STS) tasks
(Agirre et al., 2012; Cer et al., 2017; Marelli et al.,
2014) are commonly employed to evaluate the qual-
ity of text embeddings, complemented with trans-
fer tasks and short text clustering tasks (Conneau
and Kiela, 2018; Xu et al., 2023; Muennighoff
et al., 2023) to further illustrate the superiority of
learned sentence representations. However, previ-
ous benchmarks are not tailored to instruction-style
corpora and primarily assess the semantic model-
ing abilities of text embeddings, rendering them
less suitable for evaluating instruction embeddings.

3 The IEB Benchmark

We present instruction embedding benchmark, IEB,
for assessing the quality of the latent representation
of instructions. In contrast to current text embed-
ding benchmarks that assess similarity, the primary
focus for the space of instruction embeddings is
task differentiation based on the given instructions.
Therefore, we propose a new benchmark that anno-
tates instructions with their respective tasks.

3.1 Data Extraction

For convenience and authenticity, we derive sam-
ples from established datasets. Specifically, we
adopt three extensively recognized instruction-
tuning datasets: DatabricksDolly (Conover et al.,
2023), Alpaca data (Taori et al., 2023), and Self-

Figure 2: The verb-noun distributions in IEB.

instruct data (Wang et al., 2023). Labeling instruc-
tions entirely through manual effort or large lan-
guage models will incur significant costs. There-
fore, it is first necessary to conduct coarse-grained
grouping and filtering based on rule-based policies.
Wau et al. (2023b) proves that instruction fine-tuning
enables models to recognize key instruction words,
which leads to the generation of high-quality re-
sponses. Furthermore, it also encourages models
to learn word-word relations with instruction verbs.
Inspired by these two findings, we argue that verbs
or other key words are crucial in identifying the
task denoted by an instruction, where the types of
key words can be effectively determined through
syntactic analysis. Thus, following Wang et al.
(2023), we employ the Berkeley Neural Parser!
(Kitaev and Klein, 2018; Kitaev et al., 2019) for
parsing the instructions.

After manual observation and considering the
task category requirements, instructions can gen-
erally be divided into the following four groups
through corresponding parsing tag recognizer:

VP (VB+NN) denotes verb phrase structure
where the verb is closest to the root of the parse
tree and directly links to noun. Instructions with
this structure account for more than 80% of the
total number before filtering. We categorize each
instruction based on its verb-noun combination,
identifying it as a specific task type, such as write
story or generate sentence. After restoring the verb
tense and singular form of nouns, we classify in-
structions with the same verb-noun combination
into the same category. We find that low-frequency

"https://parser.kitaev.io/


https://parser.kitaev.io/

Parsing Tag Task Annotation Examples
Write an essay about my favourite season.
VB verb + noun v v .
In 100 words or less, tell a story about the consequences of the choices people make.
What is the difference between machine learning and deep learning?
Why are numbers written in the base 10 system instead of a smaller base system?
How is a liquid chromatography differs from gas chromatography?
wh- + knowledge q & p‘y & graphy ) )
SIB[\I{(Q Who was the coach for the Chicago Bulls when they won the NBA championship?

When was the "No, They Can’t"” book released?
Where was 52nd International Film Festival of India held?
What is the result when 8 is added to 3?

what + math ] .
What is the value of (x - y)(x +y) if x =10 and y = 15?
Was Furze Hill an established community in the 19th century?

yes/no + knowledge | T 7 1 s :
5(2 Did Sir Winston Churchill win the Nobel Peace Prize?

Is the following statement a valid definition of the term noise pollution?

yes/no + task ) ; ; i A i A
Does the information provided in the article support a vegetarian diet?
Summarize the Challenger Sales Methodology for me.

verb + knowledge ) € ocozoey
Describe the Three Gorges Dam of China.
verb Translate "Bonjour” into English.
You need to translate “I have been to Europe twice” into Spanish.
Others Multiply 12 d 11
ulti an .

verb + math ) ? Y
Simplify 2w+4w+bw+8w+10w+12.
Short Summary about 2011 Cricket World Cup.

noun + knowledge -

iPhone 14 pro vs Samsung s22 ultra.

Table 1: Task categories with examples of IEB.

samples have a higher probability of being noisy,
so we discard categories with fewer than 10 sam-
ples. We plot the top most common root verbs and
their direct noun objects in Figure 2.

SBARQ is direct question introduced by a wh-
word or a wh-phrase. It can be divided into two
main categories: knowledge-based questions led by
six interrogative pronouns (e.g., what, when, where,
...) and math problems introduced by what. Unlike
instructions in the VP (verb phrase) form, we de-
fine categories in the form of interrogative pronoun
combing knowledge/math. This is because, consid-
ering they all involve asking about knowledge or
math problems, further subdividing into noun cate-
gories is not very meaningful. For each category,
we manually select around 50 samples.

SQ s inverted yes/no question. It can also be di-
vided into two main categories: knowledge-based
questions and task-oriented questions. Similarly,
the task label is annotated as yes-no combing
knowledge/task and we select around 50 samples
for each category.

Others There are some other structures: verb
phrase that lacks a direct connection to a noun
and some rare cases which do not contain verbs,
consisting only of noun phrases. We define these
four categories:(1) Verb-led knowledge questions.
For example, knowledge clauses guided by summa-

rize and describe. (2) Single verb for tasks, e.g.,
translate.(3) Verb-led mathematical problems. For
example, math problem clauses guided by multiply
and simplify.(4) None phrase for knowledge ques-
tions. For each type, we randomly select around
10-50 samples.

Finally, the annotated task categories cover the
vast majority of the instruction data and are shown
with examples in Table 1.

3.2 Data Synthesis

In instruction data, we discover some complex com-
pound sentences, e.g., You are playing a game
which requires you to roll two dice. Generate a
sentence to describe the emotion of anticipation
felt while waiting for the dice to stop rolling. Al-
though they are not predominant, they can serve
as challenging examples in the benchmark. How-
ever, due to their relative difficulty in identification,
we employ GPT-4-turbo to generate samples based
on existing task category names, including verbs
and their corresponding nouns. Subsequently, the
generated compound instructions will be integrated
into the categories.

3.3 Quality Control and Evaluate

Automatic Filtering Even though low-frequency
samples have been discarded, the automatically
constructed categories still contain some noisy data.
Thus, we use GPT-4-turbo to check whether sam-



Task Categories ~ Samples

Train 447 35634

EFT pegt 63 5899
Train 502 33904

T pegt 747 1064
Total 1012 76501

Table 2: Data statistics of IEB. EFT refers to embedding
fine-tuning and IFT refers to instruction fine-tuning.

ples belong to its annotated category. About 23%
samples are filtered out during this process.

Category Merging Considering that many verbs
or nouns representing instructions are synonyms,
e.g., provide and give, it would be inappropriate
to classify them into different categories. Thus,
we utilize WordNet  to extract the synonyms. We
merge all categories where both nouns and verbs
are synonyms to make the benchmark more robust.

Human Evaluation We randomly sample 200
examples and ask an expert annotator to evaluate
whether samples belong to its annotated category.
The results indicate that 92% of the sample cate-
gories are accurate.

3.4 Statistics

After constructing and filtering, we collect totally
1012 task categories with 76501 samples. Given
the large volume of data, the benchmark data can
also be used for training and testing instruction
embeddings and instruction fine-tuning. Therefore,
we have split it in a certain ratio, but it can be
divided in any form as needed. Table 2 describes
the statistics of the divided data.

4 Instruction Embedding

4.1 Why Instruction Embedding

Text embeddings are pivotal in numerous natural
language processing NLP tasks. Traditional text
embeddings are chiefly concerned with capturing
the semantic content of texts, striving to encapsu-
late both the intrinsic meaning and the syntactic
arrangement of sentences (Xu et al., 2023). Zhou
et al. (2023); Wu et al. (2023b) prove that, for in-
structional data, the primary significance lies in the
task it signifies by key instruction verbs, not the
detailed semantics and knowledge. Therefore, our
instruction embedding proposed in this paper is
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designed to prioritize modeling the task categories
expressed by instructions rather than delving into
the semantic intricacies of the text. When employ-
ing traditional text embeddings for data distillation,
semantic information might introduce interference
during the distillation process. For instance, if
two instructions propose different tasks for sim-
ilar objects, as illustrated in Figure 1, the semantic
nuances could complicate the distillation process.
Instruction embedding, this focused approach al-
lows for a clearer delineation of the intended tasks,
contributing to more effective data distillation pro-
cesses.

4.2 Prompt-based Instruction Embedding

As mentioned above, guiding the model to generate
embeddings that focus on task categories is criti-
cally important. Large pretrained language models
have shown an impressive capacity to accomplish
novel tasks solely by utilizing in-context examples
or instructions (Brown et al., 2020). Inspired by
(Jiang et al., 2022), we present a prompt-based in-
struction embedding method (PIE). By reformulat-
ing the sentence embedding task as the generation
task, we can effectively use original LLaMA lay-
ers by leveraging the pre-trained knowledge. We
manually design some templates, as shown in Ap-
pendix A.2. The hidden states of last token will be
represented for the embedding of instruction.

4.3 Embedding Finetuning

To further improve PIE performance, we fine-tune
PIE-LLaMA on our embedding train set by con-
trastive learning (Hadsell et al., 2006) through the
learning framework in SimCSE (Gao et al., 2021).

Let D = {tz}g'1 denotes the embedding train
set, where each t; = {t;1,...,t|, } represents a
specific task category in D, and each ;; is an in-
struction instance of t;. During the training process,
we take a cross-entropy objective with in-batch neg-
atives (Chen et al., 2017; Henderson et al., 2017).
For a given instruction ¢;;, t;;, where j # k is ran-
domly sampled from t; to make up a task-related
instruction pair. In order to mitigate the risk of false
negatives resulting from repetitive task categories
among different pairs of instructions in batch, we
randomly select several distinct tasks from all task
categories each time. Subsequently, we sample in-
struction pairs from the corresponding instruction
pools. Let h;; and h;;, denote the representation of
t;; and t;;, the learning objective for (Z;;, t;;) with
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Method CP ARI
Non-Finetuned on embedding train set

LLaMA (non-finetuned) 0.6238 0.0596
PIE-LLaMA (non-finetuned) 0.7842 0.1115
Vicuna 0.5687 0.0464
PIE-Vicuna 0.8011 0.1182
Random 0.3670 0.0000
SimCSE 0.7328 0.0911
PromptBERT 0.3678 0.0005

Finetuned on embedding train set without hard negative sampling
LLaMA - hard negative 0.8486 0.4468
PIE-LLaMA - hard negative 0.7797 0.4680

Finetuned on embedding train set

LLaMA 0.8696 0.4548
PIE-LLaMA 0.8915 0.6300

Table 3: Results of embedidng fine-tuning experiment. We conduct instruction clustering task on various embedding
methods, including each baseline method, non-fine-tuned llama-based embeddings, non-fine-tuned vicuna-based
embeddings and fine-tuned llama-based embeddings. Besides, the ablation study result on hard negative sampling is

also shown here.

a mini-batch of N pairs can be formulated as Eq 1
esim(hi]',hik)/,r

Z%:l esim(hij,hmk/)/’r

l; = —log (D)

where 7 is a temperature hyperparameter and
sim(hq, ha) is the cosine similarity Hhiﬁ#ﬂl

Hard negative sampling has been widely adopted
in contrastive learning (Yuan et al., 2023), which
has been demonstrated to enhance the effectiveness
of contrastive learning. In this paper, we propose
a hard negative sampling strategy based on verb-
noun style instruction task categories: for instruc-
tion pair (t;;, t;1), if the task category of t; is a
verb-noun pair (v;, n;), then, instruction pair (¢,
tirkr) of t}, whose task category is (v;, n}) is viewed
as a hard negative pair of (Z;;, t;;) and inserted to
the training batch.

5 Experiment

5.1 Experimental Setup

Evaluation Details For the evaluation of instruc-
tion embeddings, we employ an instruction clus-
tering task on the embedding test set of our pro-
posed IEB benchmark, aiming to accurately group
instructions from different tasks. Specifically,
embeddings-based instruction clustering is con-
ducted using k-means clustering based on the em-
beddings of given instructions, where k is prede-
fined and its value equals to the number of task
categories in the embedding test set. It is worth
noting that the data sampling process for PIE fine-
tuning in this paper is not traversing the training
data; instead, it involves repeated random sampling
of the training data. Here, we set the sampling step

to Sk. Throughout the entire training process, ap-
proximately 80k instruction pairs are involved in
the training. We utilize metrics such as Adjusted
Rand Index (ARI) (Hubert and Arabie, 1985) and
Clustering Purity (CP) (Schiitze et al., 2008) to as-
sess the effectiveness of the task clustering process.
These metrics offer insights into the quality of the
clusters formed based on the instruction embed-
dings, providing valuable feedback on the perfor-
mance and accuracy of our proposed embedding
methodology. We implement our PIE method with
LLaMA-7B (Touvron et al., 2023) which is called
PIE-LLaMA. For the embedding pooling layers,
unless stated otherwise, we utilize the average of
hidden states from the last token across the last 2
layers.

Baselines We compare our PIE with two sen-
tence embedding baselines, and random instruction
clustering is also considered as a baseline.

SimCSE alleviates the anisotropy problem by
separating negative pairs and optimizes
alignment by pulling positive pairs closer
together. For the comparison, we use
unsupervised SINCSE-BERT g

PromptBERT finds original BERT(Devlin
et al., 2019) can achieve reasonable
performance with the help of the template in
sentence embeddings (Jiang et al., 2022). For
the comparison, we use unsupervised
prompt-based BERT},s. (manual).

LLaMA simply takes the original instruction
as input, which is now widely used for
instruction embedding. It is used to compare



Layer Model CP ARI
Last one LLaMA 0.6002  0.0610
PIE-LLaMA 0.7040 0.0819
Last two LLaMA 0.6238  0.0596
PIE-LLaMA  0.7842 0.1115
Mid LLaMA 0.5973  0.0540
PIE-LLaMA  0.6829 0.0664
First-Last LLaMA 0.5860  0.0759
PIE-LLaMA  0.7177 0.0763

Table 4: Results of pooling layer selection experiment.
For all pooling layers, we take the average pooling of
last token hidden states in each chosen hidden layer as
the instruction embedding.

with PIE-LLaMA to reveal the effect of
prompt in obtaining instruction embeddings.

Random instruction clustering randomly
classifies instructions into different clusters.

Embedding Fine-tuning Details We fine-tune
PIE-LLaMA on embedding train set and the config-
uration can be found in Appendix A.1. We evaluate
the performance of fine-tuned embedding models
and baselines through the instruction clustering task
mentioned before. Besides, we replaced LLaMA-
7B with Vicuna-7B-v1.5 (Chiang et al., 2023) to
explore the impact of instruction fine-tuning on
the model’s ability to follow prompts in obtaining
instruction embeddings.

5.2 Results and Observations

The Effectiveness of PIE Table 3 shows the ex-
perimental results, which demonstrate the remark-
able power of LLaMA model, even the non-fine-
tuned prompt-free LLaMA is almost comparable
with SimCSE, let alone the PIE models and fine-
tuned models. PIE achieves the best performance,
both in learning-free and embedding fine-tuned
modes.

Embeddings from Instruction Fine-tuning Mod-
els The quality of instruction embedding can be
further improved when we use instruction fine-
tuned model to conduct prompt-based instruc-
tion embedding: though Vicuna performs worse
than non-fine-tuned LLaMA, Vicuna demonstrates
stronger prompt-following ability and delivers bet-
ter instruction embeddings when prompt is intro-
duced. Furthermore, fine-tuning on the embedding
training set leads to a significant improvement in
model performance.

Visualization Results To better illustrate the su-
periority of PIE and the impact of fine-tuning, we

visualize of the embeddings before and after fine-
tuning in Figure 3. It is evident that embedding
fine-tuning successfully enhances the performance
of both LLaMA and PIE-LLaMA in terms of in-
struction clustering. This suggests that embedding
fine-tuning does aid in extracting task information
more effectively from instructions. Additionally,
the fine-tuned PIE-LLaMA exhibits a more dis-
persed inter-class distribution and a more compact
intra-class distribution than the fine-tuned LLaMA,
demonstrating the positive guiding effect of the
prompt method on extracting task information from
instructions.

Ablation Study We also conducted an ablation
study on our hard negative sampling strategy where
we set sampling step to 10k to ensure consistent
training data volume with hard negative sampling
fine-tuning, the result is shown in Table 3. After re-
moving hard negative sampling, we observed a no-
table decrease in the performance of both LLaMA
and PIE-LLaMA. This underscores the pivotal role
that our hard negative sampling strategy plays in
embedding fine-tuning.

5.3 Pooling Layer Selection

In LLM, the effectiveness and performance of ex-
tracting sentence representations across different
hidden layers may vary. To systematically assess
the semantic information and representation ca-
pabilities of various layers in LLM, we employs
pooling techniques on the last token hidden states
at different layers and conduct corresponding evalu-
ations. Specifically, we select the last hidden layer,
last two hidden layers, middle hidden layer, and
first and last hidden layers as pooling layers. The
experimental results in Table 4 indicate that, for
both LLaMA and PIE-LLaMA, the average pooling
of the last two hidden layers consistently outper-
forms other pooling methods. Notably, regardless
of the pooling method employed, the embedding
with prompt consistently outperforms the embed-
ding without prompt. This suggests that prompts
indeed guide the model to identify the task informa-
tion contained within the instructions, validating
the effectiveness of our PIE method.

5.4 Prompt Search

Prompt is a key part of our PIE . In this paper, we
employed a manual approach to search for appro-
priate prompt: we first manually crafted several
prompts, then, for each manually crafted prompt,
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Figure 3: Embedding visualization: (a) non-fine-tuned LLaMA (b) non-fine-tuned PIE-LLaMA (c) fine-tuned

LLaMA (d) fine-tuned PIE-LLaMA

Index CP ARI

#0 0.7842 0.1115
#1 0.7819 0.1233
#2 0.7284 0.0794
#3 0.6707 0.0662
#4 0.6323 0.0612

Table 5: Result of prompt search. Index refers to the
template index in Table 6.

we evaluated its effectiveness by the instruction
clustering task. The human crafted prompts are
shown in Table 6, and the results are presented in
Table 5. According to the result, we select template
#0 for further experiments.

5.5 Evaluation on Downstream Tasks

415 3.76 LLaMA
4.30 3.85 Random
PIE vs (@
3.60 3.47 LLaMA
3.72 343 Random
(b

Figure 4: Downstream tasks results on (a) data dis-
tillation for instruction tuning and (b) demonstrations
selection for in-context learning.

We conduct two downstream tasks to further
evaluate the effectiveness of PIE:

Data Distillation Follow the line of data distilla-
tion work, we design a data distillation experiment
based on instruction embedding. First, we utilize
k-means clustering to partition the instruction train
set of IEB where k is determined by the number
of task categories of undistilled instructions (502).
Then, we extract 6 instructions closest to the cen-

ters from each cluster to achieve data distillation.
Finally, we conduct instruction fine-tuning on it,
and compare PIE with LLaMA embeddings for
clustering and random selection. As for the in-
struction fine-tuning, training configuration can be
found in Appendix A.1.

Demonstrations Selection LIL.Ms have demon-
strated remarkable in-context learning (ICL) ca-
pability (Patel et al., 2023). Demonstrations re-
lated to the instruction task are more conducive to
model ICL compared to task-agnostic demonstra-
tions. Thus, for each instruction x; in the instruc-
tion test set, we extract the 3 most similar data from
the instruction train set by embedding cosine sim-
ilarity as demonstrations. Then, we combine and
input them to GPT-3.5-turbo. Similarly, baselines
are LLaMA embeddings and random selection.

For both tasks, we use GPT-4-turbo to compare
and score the samples generated by PIE and the
baselines in the range of 1 to 10 (1 to 5 for ICL
task). The results in Figure 4 demonstrate that the
PIE can be a better substitution of text embeddings
for instruction-related tasks.

6 Conclusion

We introduce the concept of instruction embedding,
which prioritizes task identification over traditional
sentence-level semantic analysis. Alongside, we
release the publicly available IEB benchmark for
evaluating and further training instruction embed-
dings. To ensure instruction embeddings focus
more on task specifics rather than broad semantic
content, we propose a prompt-based approach for
generating instruction embeddings, applicable in
both unsupervised (learning-free) and supervised
(learning-based) contexts. The introduction of in-
struction embedding, along with the IEB bench-
mark and the PIE method, plays a crucial auxiliary
role in instruction-related tasks for large language
models.



7 Limitations

Although our PIE outperforms the LLaMA and
random method in the data distillation task, our
data distillation approach requires prior knowl-
edge of the number of instruction task categories
in the instruction dataset, which is generally not
feasible. This limitation constrains the applica-
tion of our instruction embedding. In future work,
we will investigate how to achieve data distilla-
tion without prior knowledge of the number of
instruction task categories. Additionally, Prompt-
BERT(Jiang et al., 2022) successfully utilizes Op-
tiPrompt(Zhong et al., 2021) to achieve better em-
bedding effects than manual prompts. Although
we did not leverage the OptiPrompt technique in
this paper, we will apply this technology to PIE in
future work.
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A Appendix
A.1 Additional Configuration

Experiment Configuration We fine-tune PIE-
LLaMA for 3 epochs with the batch size set to
8 (there will be 16 instruction pairs after hard
negative sampling) and the learning rate set to
1 x 1075 on 4 NVIDIA RTX 3090 GPUs. Due
to computational resource limitations, we adopt
LORA (Hu et al., 2022) technique to fine-tune the
LLM with lora-rank set to 32, lora-alpha set to 64,
lora-dropout set to 0.05 and target modules set to
['q_proj’,'v_proj’I’.

Data Distillation Configuation We complete in-
struction fine-tuning on a single NVIDIA RTX
3090 GPU and adopt LoRA (Hu et al., 2022) tech-
nique to fine-tune the LLM with lora-rank set to
1024, lora-alpha set to 2048, lora-dropout set to
0.05 and target modules set to ['q_proj’,’v_proj’],
epochs set to 10 and batch size set to 128.

3h'ctps ://huggingface.co/docs/peft/developer_
guides/lora
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A.2 Prompt templates

Index Template

Below is an instruction that describes a
task \n

{instruction} \n

The task of the given instruction is:

#0

The following instruction \n
{instruction} \n
wants you to:

#1

Given the following instruction \n
{instruction} \n
please identify its task type:

#2

What type of task does the following
instruction represent? \n
{instruction }

#3

Indentify the task category associated
with the following instruction: \n
{instruction }

#4

Table 6: Templates used in prompt search, \n represents
anewline.
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