
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTINUAL LEARNING VIA CONTINUAL WEIGHTED
SPARSITY AND META-PLASTICITY SCHEDULING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Learning (CL) is fundamentally challenged by the stability-plasticity
dilemma: the trade-off between acquiring new information and maintaining past
knowledge. To address the stability, many methods keep a replay buffer containing
a small set of samples from prior tasks and employ parameter isolation strategies
that allocate separate parameter subspaces for each task, reducing interference be-
tween tasks. To get more refined, task-specific groups, we adapt a dynamic sparse
training technique and introduce a continual weight score function to guide the
iterative pruning process over multiple rounds of training. We refer to this method
as the continual weighted sparsity scheduler. Furthermore, with more incremental
tasks introduced, the network inevitably becomes saturated, leading to a loss of
plasticity, where the model’s adaptability decreases due to dormant or saturated
neurons. To mitigate this, we draw inspiration from biological meta-plasticity
mechanisms, and develop a meta-plasticity scheduler to dynamically adjust these
task-specific groups’ learning rates based on the sensitive score function we de-
signed, ensuring a balance between retaining old knowledge and acquiring new
skills. The results of comparison on popular datasets demonstrate that our ap-
proach consistently outperforms existing state-of-the-art methods, confirming its
effectiveness in managing the stability-plasticity trade-off.

1 INTRODUCTION

To navigate the complexities of real-world environments, an intelligent system must continuously
learn, adapt, and apply knowledge over time (Parisi et al., 2019; Kudithipudi et al., 2022). This need
has driven the study of continual learning (CL), where a typical setting is to learn a sequence of tasks
incrementally while retaining performance on previous tasks, despite not having access to all tasks
simultaneously. These tasks may involve acquiring new skills, revisiting previously learned ones,
or adapting to different environments and contexts, each posing its own set of challenges (Hadsell
et al., 2020; Wang et al., 2024a).

Unlike traditional machine learning models, which assume a static data distribution, CL involves
learning from dynamic data distributions across a sequence of tasks. A key challenge in CL is the
stability-plasticity dilemma (Grossberg, 1987), which arises when balancing the need to acquire new
knowledge while preserving past knowledge. Stability is threatened when learning new tasks causes
the model to overwrite or degrade the representations learned from previous tasks, particularly at
task boundaries where shifts in data distribution are most pronounced (Robins, 1995; Buzzega et al.,
2020). This can result in a sharp performance decline on older tasks, or in extreme cases, complete
forgetting of previously acquired knowledge (Parisi et al., 2019). On the other hand, maintaining
plasticity is crucial for adapting to new tasks and incorporating fresh information, but excessive
plasticity can erode previously learned skills. Achieving the right trade-off between stability and
plasticity is essential, yet remains a fundamental challenge for CL algorithms.

Existing CL algorithms typically retain a small buffer of samples from previous tasks during the
training of new tasks, which helps mitigate the distribution shift and preserve stability by maintaining
past knowledge (Verwimp et al., 2021; Bhat et al., 2022). Building on this common strategy, two
primary approaches have been proposed to address the stability challenge: replay-based methods
and parameter isolation methods. Replay-based methods optimize the use or selection of memory
buffers, while parameter isolation methods allocate separate parameter subspaces for each task,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Neuron
selection

Connection
selection

Sparsity
scheduling

Sparsity
scheduling

Group 1 Group 2

Group 3

Learned groups
Task 1

Task 2

Task t (current task)

....
..

Task t+1

....
..

Continual Weighted Sparsity Scheduler Meta-Plasticity Scheduler

Learning rate adjustment

Working model
for task t+1

Continual learning task t

Task-related

Active

Dormant
Pruned

Neuron Connection
Legend

Working model

Group ID

Sensitive score

Task-related CWS calculation
Pruned

Learning rate
matrix

Learning rate
update strategy

Pl
as

tic
ity

St
ab

ili
ty

Figure 1: Our continual learning process is divided into two main steps: (1) using the continual
weighted sparsity scheduler to identify task-specific neuron groups, involving iteratively pruning
neurons and connections, and (2) using the meta-plasticity scheduler to adjust learning rate for each
connection based on the sensitive score for each group. In the continual weighted sparsity scheduler,
the depth of the purple color of neurons represents the activation value, with darker shades indicating
stronger activation. Neurons with lower activation values are pruned. Additionally, the width of
the orange connections represents the continual weighted score (CWS). Connections with lower
scores are pruned. In the meta-plasticity scheduler, each group has a different learning rate update
strategy based on its sensitive score. Ultimately, the entire model updates the learning rates for all
connections, stored in a learning rate matrix. Lighter colors indicate higher learning rates.

reducing interference between tasks (Wang et al., 2024a). In this work, we mainly focus on the
parameter isolation approaches. Previous work typically relies on a fixed pruning strategy for each
task, applying a one-time pruning with a predefined sparsity based on a score function (Mallya &
Lazebnik, 2018; Vijayan et al., 2023). To improve upon this, we propose the continual weighted
sparsity scheduler, inspired by recent dynamic sparse training techniques. Specifically, instead of
applying a single round of pruning, our method iteratively prunes the network with a gradually
increasing sparsity over multiple rounds of training. This ensures that the most active neurons and
their corresponding connections, which are most relevant to the current task, are retained. The
iterative pruning process thus results in a more refined, task-specific neuron and connection group,
preserving knowledge more effectively.

Since the network capacity is limited, as more incremental tasks are introduced, the network will
eventually become saturated. Recent studies have demonstrated that neural networks may gradually
lose their capacity to learn from new experiences, a phenomenon referred to as the loss of plastic-
ity, which is potentially caused by dormant or saturated neurons, further complicating the learning
process (Lyle et al., 2023; Sokar et al., 2023). To address this issue, we adopt a mechanism in-
spired by biological systems known as meta-plasticity (Kudithipudi et al., 2022), which refers to
the phenomenon where the strength of individual synapses can be modulated by neural activity,
with the ease of synaptic strengthening or weakening varying over time. This is also described as
the “plasticity of plasticity”, meaning that a synapse’s capacity for change depends on its internal
biochemical state. These states are influenced by the synapse’s history of modifications and recent
neural activity, enabling fast learning and slow forgetting (Abraham & Bear, 1996; Abraham, 2008).
Building on this concept, we propose the meta-plasticity scheduler. After identifying task-specific

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

neuron and connection groups during training, we calculate a sensitivity score for each group by
measuring the average normalized magnitude difference across all connections between the two
most recent tasks. During subsequent model updates, the learning rate of each connection is dynam-
ically adjusted based on the sensitive scores within these groups. Unlike previous approaches that
reset connections of dormant neurons through weight reinitialization, our method provides a more
fine-grained, connection-level, and task-aware adjustment, allowing for a flexible and dynamic tun-
ing of connections. By considering the influence of previously learned knowledge on the current
task, our approach ensures that the network maintains better plasticity in the CL setting, facilitating
both knowledge retention and adaptation to new tasks.

In summary, to address the stability-plasticity dilemma in CL, we propose a framework that inte-
grates the continual weighted sparsity scheduler and the meta-plasticity scheduler. To validate our
approach, we comprehensively compare it against state-of-the-art CL methods on popular datasets.
We also evaluate the stability and plasticity of our models over a long sequence of tasks, providing
deeper insights into the effectiveness of our method. Comprehensive validation tests and analyses
consistently demonstrate that our framework outperforms existing approaches, effectively address-
ing the stability-plasticity trade-off in CL.

2 RELATED WORK

Approaches to address stability in CL. To address stability in CL, various approaches aim to pre-
vent or minimize this degradation, ensuring that the network retains knowledge from previous tasks
even as it learns new ones. One prevalent strategy involves storing a limited number of past training
samples in a small memory buffer (Ratcliff, 1990; Robins, 1995), similar to the experience replay
mechanism observed in the brain (Rasch & Born, 2007). Based on this consensus, researchers have
developed two primary approaches to further tackle the stability issue: replay-based approaches and
parameter-isolation approaches. Replay-based approaches focus on optimizing both buffer construc-
tion and buffer exploitation to make better use of the limited memory buffer, enhancing the retention
of past knowledge. GCR (Tiwari et al., 2022) introduces a selection mechanism that approximates
the gradients of previously seen data to update the buffer. DER++ (Buzzega et al., 2020) and CLS-
ER (Arani et al., 2022) enhance consistency in predictions by using both soft targets and ground-
truth labels. MRFA (Zheng et al., 2024) refines decision boundaries by augmenting the block-level
features of rehearsal samples across multiple layers. On the other hand, parameter-isolation ap-
proaches have explored task-specific parameter isolation methods to further minimize interference
between tasks. For example, PackNet (Mallya & Lazebnik, 2018) and CLNP (Golkar et al., 2019)
leverage the over-parameterization of deep neural networks (DNNs) to accommodate multiple tasks
within a fixed model capacity. Similar to the brain, these models learn both connection strengths
and a sparse architecture for each task, effectively isolating task-specific parameters. More recently,
TriRE (Vijayan et al., 2023) introduces a method for retaining the most prominent neurons while
promoting the activation of less active ones, and TPL (Lin et al., 2024) proposes a more principled
approach for task-ID prediction to enhance task isolation. Though effective, these methods typi-
cally use a fixed pruning strategy with a predefined sparsity, leading to less accurate task-specific
sub-networks and reduced downstream performance. In contrast, our continual weighted sparsity
scheduler employs iterative pruning, progressively increasing the sparsity across multiple training
rounds. This gradually refines the network, preserving key neurons and connections. Experiments
show our method, as a novel parameter isolation technique, outperforms existing replay-based and
parameter isolation approaches in retaining task-specific knowledge, thus better addressing the sta-
bility challenge in CL.

Approaches to maintain plasticity in CL. To address the challenge of plasticity in CL, several
strategies have been proposed, most of which are based on reinitializing some or all of the net-
work’s weights during training. For instance, Zhou et al. (2021) suggest that selective forgetting
can enhance generalization, while Zhang et al. (2022) demonstrate that resetting different layers has
varying impacts on network performance. Additionally, Zhao et al. (2023) introduced a method
to fine-tune task-specific parameters on buffered data to improve plasticity. Refresh (Wang et al.,
2024b) dynamically eliminates outdated or less relevant information by refreshing some of the old
task-specific weights from the CL model, thereby enhancing the retention of older knowledge while
efficiently acquiring information for new tasks. Unlike these previous approaches, we leverage the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

fundamental mechanism of meta-plasticity found in biological systems (Langille & Brown, 2018).
Instead of directly reinitializing weights of the model, our meta-plasticity scheduler dynamically
adjusts the ease with which neurons adapt, depending on their activity levels on recent tasks. This
mechanism enables a more nuanced and adaptive regulation of neural plasticity, allowing for greater
flexibility and precision in controlling how learning unfolds in the network.

3 METHODS

We begin by outlining the definitions and preliminaries of CL in Section 3.1, followed by an
overview of our system in Section 3.2. We then introduce our proposed continual weighted sparsity
scheduler in Section 3.3, and the meta-plasticity scheduler in Section 3.4.

3.1 PRELIMINARIES

CL is characterized by learning from dynamic data distributions. In practice, training samples of
different distributions arrive sequentially. A working model fθ parameterized by θ needs to learn
corresponding task(s) with limited or no access to previous training samples and perform well on
their test sets. Formally, CL problems typically comprise t ∈ {1, 2, . . . , T} sequential tasks, with
c classes per task, and data that appear incrementally over time. Each task has an associated task-
specific data distribution: (xt, yt) ∈ Dt, where xt is the input data, yt is the data label, and t is
the task identity. The overall objective of CL is to maintain performance on previous datasets Di

where i ∈ {1, 2, . . . , t − 1}, while ensuring sufficiently good performance on the current dataset
Dt. In this work, we consider two well-known CL scenarios, class-incremental learning (Class-IL)
and task-incremental learning (Task-IL), both of which have disjoint label spaces across tasks. In
the former, task identities are provided only during training, whereas in the latter, task identities are
available during both training and testing.

Similar to common approaches, we maintain a memory buffer Dm to retain information from previ-
ous tasks. Considering the constraints of CL, the model does not have infinite storage for previous
experience, and thus |Dm| ≪ |Dt|. Given the current task data Dt and the memory buffer Dm, a
combination of the task-wise loss Lt and the experience replay-based loss Lrep is commonly used
during the training of the working model fθ:{

Lt = E(xi,yi)∼Dt
[Lce(fθ(xi), yi)]

Lrep = E(xj ,yj)∼Dm
[Lce(fθ(xj), yj)]

, (1)

where Lce is the cross-entropy loss. Lt focuses on the current task data Dt, primarily enhancing the
model’s plasticity, while Lrep, derived from the memory buffer Dm, primarily enhances the model’s
stability.

3.2 OVERVIEW OF OUR SYSTEM

As shown in Figure 1, our system contains two main steps that alternate continuously during the
task training process: (1) filter out task-specific neuron groups that are highly active to the current
task, and then integrate them into the existing neuron group pool; (2) update the meta-plasticity of
all groups based on their sensitive scores.

Specifically, for a new task t, we perform multiple rounds of network pruning by gradually increas-
ing target sparsity and iteratively pruning neurons and connections in the working model. This
iterative pruning process refines a more task-specific group, preserving knowledge more effectively.
The refined group is subsequently integrated into the existing pool of neuron groups.

Once the task-specific neuron groups are identified, we calculate the sensitive score for each group
and adjust the learning rates of connections within those groups based on their scores. This adjust-
ment either releases or suppresses the neuron update capacity, achieving an optimal balance between
stability and plasticity. Finally, we employ reservoir sampling to update the replay buffer Dm and
reinitialize the most dormant neurons for future tasks. The entire process is detailed in Algorithm 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Continual Learning via Continual Weighted Sparsity and Meta-Plasticity Scheduling.
Initialize: working model fθ, data stream D, number of tasks T , target sparsity for each task ∆S,
total training steps for each task N .
G ← {}, Dm ← {}.
for all tasks t ∈ {1, 2, . . . , T} do

Retrieve task data Dt from D.
for epochs n ∈ {1, 2, . . . , N} do

Update the target sparsity Sn
t using Equation 4. ▷ Sparsity scheduling

for a batch of data Bt ⊂ Dt and Bm ⊂ Dm do
Update fθ using Equation 1.

end for
Prune neurons in fθ using Equation 5. ▷ Neuron selection
Drop and grow connections using Equation 6. ▷ Connection selection

end for
Extract gt, G ← G ∪ gt.
Update groups’ meta-plasticity using Equation 10. ▷ Meta-plasticity scheduling
Update Dm.
Reinitialize input weights of dormant neurons based on Equation 5.

end for

3.3 CONTINUAL WEIGHTED SPARSITY SCHEDULER

To preserve task-specific information and address the stability challenge, we propose the continual
weighted sparsity scheduler, inspired by recent dynamic sparse training techniques, to enhance the
selection of parameters when performing parameter isolation in CL. Specifically, for the current
task t, we iteratively perform multiple rounds of network pruning. At the beginning of each pruning
round, we calculate the target sparsity which is raised from the previous round (Step 1). Next, we
utilize the activation score of neurons to perform neuron selection based on the target sparsity (Step
2a). Then, for the selected neurons, we apply our proposed continual weighted score (CWS) function
to further refine the selection of connections (Step 2b). The continual weighted sparsity scheduler
allows us to progressively obtain a network with increasing sparsity, ultimately reaching the pre-
defined target sparsity. Throughout the rounds, information from task t is maximally preserved.

Step 1. Sparsity scheduling. For a new task t, we first calculate the available network sparsity
that has not been allocated to previous tasks, denoted as St−1. Then, we assign a fixed sparsity ∆S
to task t, resulting in the target sparsity St,N after training the task for N epochs.

Denote the working model fθ as a graph g = (N , E), where N is the set of neurons in the model
and E ⊆ N × N is the set of connections between the neurons. We aim to decompose g into T
task-specific sub-networks. For task t, the corresponding sub-network is denoted as gt = (Nt, Et),
where Nt ⊆ N and Et ⊆ Nt ×Nt. Then we have:

St = 1−
|
⋃t

i=1Ni|
|N |

, (2)

with S0 = 100%. As mentioned above, each task is allocated a pre-defined sparsity ∆S, meaning
that |Nt|

|N | = ∆S. It is important to note that St may not be equal to 1 − t ×∆S because there may
be overlapping neurons and connections between these sub-networks. Here, we adopt an automated
gradual pruning algorithm (Zhu & Gupta, 2017) to achieve task-wise sparsity scheduling. We first
set the target sparsity of the model after training total N epochs as:

St,N = max(0, St−1 −∆S). (3)
In our experiments, we set ∆S to 15%, as this level of sparsity has shown comparable performance
to that of a fully dense network (Han et al., 2015; Graesser et al., 2022). Then, during the multi-
round training process of the task t, we use the following sparsity scheduling:

St,n = St,N − St,N (1− n

N
)3, n = 1, 2, . . . , N, (4)

where St,n is the sparsity of fθ after training n epochs. Next, we distribute the overall sparsity St,n

to the target sparsity S
(l)
t,n for each layer l based on the number of neurons d(l) in each layer, guiding

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the selection of the most active neurons. We adopt the Erdős-Rényi method (Mocanu et al., 2018)
here, and the sparsity distribution across layers is provided in more detail in Appendix B.1.

Step 2a. Neuron selection. Once we obtain S
(l)
t,n, we need to prune the layer by selecting essential

neurons first. Let a(l)i (x) denote the activation of neuron i in layer l under input x from a batch of
training data Bt ⊂ Dt. Then we define the activation score of a neuron i in layer l via the normalized
average of its activation as follows:

A
(l)
i =

Ex∈Bt
|a(l)i (x)|∑d(l)

k=0 Ex∈Bt
|a(l)k (x)|

. (5)

Neurons with high activation scores within the top S
(l)
t,n will be selected. The neurons with the

lowest activation score, which is referred to as the most dormant neurons, will be reinitialized after
the current task has been trained (Line 16 in Algorithm 1).

Step 2b. Connection selection. After selecting the most active neurons, we select the most im-
portant connections between these neurons based on our continual weighted score (CWS) function,
which extends the continual weight importance proposed by Wang et al. (2022b):

CWS(ω) = ∥ω∥1 + α1(∥
δL̂ce(Dt; θ)

δω
∥1 + ∥

δL̂new(Dt; θ)

δω
∥1) + α2∥

δL̂ce(Dm; θ)

δω
∥1, (6)

where ω ∈ θ is the weight, L̂ce(Dt; θ) denotes the single-head form of the cross-entropy loss on
the current task data Dt, which only takes into account the classes relevant to the current task by
masking out the logits of other classes, L̂ce(Dm; θ) denotes the loss on the memory buffer data
Dm. Compared to Wang et al. (2022b), we introduce the task-aware term L̂new(Dt; θ) to improve
the model’s ability to recognize task boundaries, which is the cross-entropy loss for new/old task
distinction. The CWS ensures that we maintain: (1) weights of greater magnitude for output stability,
(2) weights significant for the current task for learning capacity, (3) weights significant for task
distinction and (4) weights significant for previous tasks to prevent catastrophic forgetting, with two
hyper-parameter α1 and α2 are used to regulate the weight of current and buffered data, respectively.
In this paper, we follow Wang et al. (2022b) and set α1 = 0.5 and α2 = 1. Apart from dropping
the most useless connections, we also grow the connections with the highest gradients on current
task ∥ δLt

δω ∥1 from the dropped connections. Newly grown connections are initialized to zero and,
therefore, do not affect the output of the network.

After iterative pruning of the neurons and connections, we obtain a group of neurons and connections
gt for task t. As T tasks are sequentially introduced, finally, we will get a set of groups of neurons
and connections, denoted as G = {g1, g2, . . . , gT }.

3.4 META-PLASTICITY SCHEDULER

A common approach to achieving task isolation in CL is to freeze task-specific parameters once
the task is completed (Mallya & Lazebnik, 2018; Vijayan et al., 2023). While this strategy helps
preserve acquired knowledge, it limits the network’s ability to adapt to new tasks and challenges. In
contrast, biological systems utilize meta-plasticity, a mechanism where synapses dynamically adjust
their capacity to change based on their modification history. This concept is crucial for enhancing a
network’s long-term learning potential and adaptability (Kudithipudi et al., 2022).

Inspired by that, we propose a neuro-level dynamic learning rate schedule strategy. Each neuron
has an independent learning rate schedule strategy based on its sensitivity to recent activities. This
approach suppresses overly active parts to reduce the forgetting of old knowledge while simultane-
ously identifying and revitalizing gradually rigid sections, thereby maintaining the ability to learn
new information quickly.

Specifically, we first calculate the normalized magnitude difference of the weight for connection e
between layer l and layer l + 1 after training two consecutive tasks, as follows:

Ce =
∥ωe

t − ωe
t−1∥1

∥W (l)
t −W

(l)
t−1∥1

, (7)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where ωe
t ∈ θ denotes the weight of the connection e learned after training on task t, and W (l) ∈ θ

is the weight matrix between layer l and layer l + 1.

Then we measure the sensitivity of all groups based on the average normalized magnitude difference
across all connections within each group. Given a set of groups of neurons and connections G from
Section 3.3, we define a sensitive score SSgt for each group gt:

SSgt =
(1/|Et|)

∑
e∈Et

Ce∑|G|
k=1((1/|Ek|)

∑
e∈Ek

Ce)
× |G|, (8)

where Et is the connections in the group gt. The learning rates of connections within the group gt
are then updated as:

lrgt ← lrgt × λ(1−SSgt), (9)

where λ > 1 is used to control the change magnitude of the learning rate. Based on the group update
strategy, we have the update strategy for each connection to achieve meta-plasticity scheduling:

lre ← lre ×
∏
gt∈G
e∈Et

λ(1−SSgt). (10)

Here, we consider groups with an SS < 1 to be relatively inactive, as their parameter variation is
smaller than the average across all groups. For these groups, we increase their meta-plasticity, while
for those with an SS > 1, we do the opposite. We also note that when λ = 0, it is equal to the
strategy of freezing task-specific parameters.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. To evaluate the performance of our method in Class-IL and Task-IL scenarios, we follow
standard image classification benchmarks in CL (Rebuffi et al., 2017; Wu et al., 2019) and employ
three different datasets: CIFAR-10, CIFAR-100, and Tiny-ImageNet. Specifically, CIFAR-10 is
divided into 5 disjoint tasks with 2 classes per task. CIFAR-100 is divided into 10 tasks with each
containing 10 disjoint classes. Tiny-ImageNet consists of 200 classes, divided into 10 tasks with 20
classes per task. The statistics of the different datasets are provided in Appendix A.1.

Baselines. We extensively compare our method with representative and recent baselines, includ-
ing replay-based approaches: ER (Chaudhry et al., 2019), DER++ (Buzzega et al., 2020), CLS-
ER (Arani et al., 2022), ER-ACE (Caccia et al., 2021), Co2L (Cha et al., 2021), GCR (Tiwari et al.,
2022), DRI (Wang et al., 2022a), Refresh (Wang et al., 2024b), MRFA (Zheng et al., 2024) and
task-isolation approaches: TriRE (Vijayan et al., 2023), TPL (Lin et al., 2024). Additionally, as in
previous CL works, we offer a lower bound baseline SGD, without any support, and an upper bound
baseline Joint, where the CL model is trained using the full dataset.

Metrics. Overall performance is primarily evaluated by average accuracy (AA). Let ak,j ∈ [0, 1]
denote the classification accuracy evaluated on the test set of the j-th task after incremental learn-
ing of the k-th task (j ≤ k). AA is computed as 1

T

∑T
j=1 aT,j after learning a total of T tasks.

Additionally, following Sarfraz et al. (2022), we evaluate the model’s stability, plasticity, and the
trade-off between the two; the details of how these three metrics are calculated can be found in Ap-
pendix C.1. For each experiment, we fix the order of the classes and report the average AA and one
standard deviation across all tasks over 5 runs with different initializations.

4.2 EXPERIMENTAL RESULTS

Overall performance. As shown in Table 1, our method consistently outperforms the baselines
across most datasets in both Class-IL and Task-IL settings. Notably, as the dataset complexity and
the number of tasks increase from CIFAR-10 to Tiny-ImageNet, the performance gap between our
method and the baselines grows considerably.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of the overall performance of prior methods across various CL scenarios.

Methods CIFAR-10 CIFAR-100 Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

SGD 19.62±0.05 61.02±3.33 17.49±0.28 40.46±0.99 7.92±0.26 18.31±0.68

Joint 92.20±0.15 98.31±0.12 70.56±0.28 86.19±0.43 59.99±0.19 82.04±0.10

ER 44.79±1.86 91.19±0.94 21.40±0.22 61.36±0.35 8.57±0.04 38.17±2.00

DER++ 64.88±1.17 91.92±0.60 29.60±1.14 62.49±1.02 10.96±1.17 40.87±1.16

CLS-ER 61.88±2.43 93.59±0.87 43.38±1.06 72.01±0.97 17.68±1.65 52.60±1.56

ER-ACE 62.08±1.44 92.20±0.57 35.17±1.17 63.09±1.23 11.25±0.54 44.17±1.02

Co2L 65.57±1.37 93.43±0.78 31.90±0.38 55.02±0.36 13.88±0.40 42.37±0.74

GCR 64.84±1.63 90.80±1.05 33.69±1.40 64.24±0.83 13.05±0.91 42.11±1.01

DRI 65.16±1.13 92.87±0.71 - - 17.58±1.24 44.28±1.37

TriRE 68.17±0.33 92.45±0.18 43.91±0.18 71.66±0.44 20.14±0.19 55.95±0.78

TPL 70.06±0.47 92.33±0.32 36.90±0.42 76.53±0.27 20.06±0.77 54.20±0.51

Refresh 74.42±0.82 94.64±0.38 38.49±0.76 77.71±0.85 20.81±1.28 54.06±0.79

MRFA 73.38±0.54 93.44±0.16 37.23±0.65 75.83±0.48 21.68±0.55 54.59±0.42

Ours 75.31±0.71 95.79±0.65 40.61±0.58 79.91±0.63 23.25±0.59 58.32±0.73

65

70

80

75

85

1 2 3 4 5 6 7 8 9 10
Task ID

Ta
sk

−I
L

Ac
cu

ra
cy

 (%
)

OursTriRE Refresh MRFATPL
60

65

70

75

80

Stability Plasticity Trade-off

Ac
cu

ra
cy

 (%
)

TriRE

Refresh
MRFA

TPL

Ours

a b

Figure 2: a. Stability-Plasticity trade-off for CL models trained on CIFAR-100 with 10 tasks. b.
Comparison of our method against other representative baselines in terms of Task-IL accuracy on
the CIFAR-100 dataset divided into 10 tasks. We report the average accuracy of individual tasks in
5 runs with different seeds. The shaded area represents the error range determined by the maximum
and minimum values.

Stability-Plasticity trade-off. We further analyze the trade-off between stability and plasticity
achieved by our method, as well as the performance across all tasks after training, as shown in Fig-
ure 2. From Figure 2a, it is evident that our method demonstrates the best stability while maintaining
near-optimal plasticity, which leads to the most favorable stability-plasticity trade-off. This explains
why our approach achieves the best overall performance. Figure 2b provides additional insight,
showing that our method significantly outperforms others on the earlier tasks. We believe this is due
to the task isolation mechanism, which contributes to the superior stability of our method compared
to others. However, when looking at the last four tasks, we observe a slight performance decline,
especially on the final task, where the performance is not the best. This may explain why our plas-
ticity is not the highest. We suspect this is due to the network gradually becoming saturated, leaving
insufficient neurons available for learning new tasks. More results are provided in Appendix C.3.

Task isolation. To validate the effectiveness of task isolation in our method, we analyze the ex-
tracted neuron groups, with the results from the last shortcut layer shown on the left of Figure 3.
Each row represents the neuron group extracted for a specific task. From the first few rows, we can
see that the neurons allocated to each task typically have no overlap, confirming the effectiveness
of our approach in minimizing interference between tasks through parameter isolation. However, as
the number of tasks increases and the network reaches saturation, neurons used by older tasks are
gradually released. This results in some overlap between the neurons used for later tasks and those
for earlier tasks, as seen in the lower rows. Despite this, the overlap between adjacent tasks remains
well-controlled. While we aim for complete task separation, the overlap between neuron groups in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Ta
sk

 ID

1
2
3
4
5
6
7
8
9
10 0 0.5 1.0

0

0.5

1.0

Figure 3: Left: Visualization of the neuron groups extracted for each task for the last shortcut layer
when training on CIFAR-100 with 10 tasks. Each row from top to bottom represents a task, from
task 1 to task 10. Right: Visualization of the feature vectors from the last convolutional layer using
t-SNE, with different colors representing different tasks, and the colors match those in the left one.

rows suggests the similarity between tasks. We also visualize the features of task samples using
t-SNE, as shown on the right side of Figure 3. The visualization reveals good separability between
different tasks, though there is some overlap at the boundaries of certain tasks. For example, tasks 7
and 8, represented by the red and brown clusters, exhibit more overlap, which can also be observed
in the left-side neuron visualization where these tasks share more neurons compared to others. We
believe this overlap is due to inherent similarities between the tasks themselves.

Table 2: Comparison of the overall performance of prior methods with 20 tasks.

Methods CIFAR-100 (20 Tasks) Tiny-ImageNet (20 Tasks)
Class-IL Task-IL Class-IL Task-IL

SGD 18.91±0.34 45.31±0.76 10.47±0.47 23.22±0.52

Joint 74.12±0.42 89.81±0.58 66.37±0.21 86.94±0.23

TriRE 38.29±0.66 76.62±0.37 27.41±0.79 55.87±0.44

TPL 37.38±0.94 77.64±0.55 26.85±0.86 54.99±0.75

Refresh 39.53±0.85 79.81±0.32 27.59±0.64 55.52±0.51

MRFA 38.52±0.63 78.93±0.72 27.72±0.65 56.82±0.52

Ours 41.69±0.57 82.46±0.61 30.53±0.66 59.82±0.81

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Task ID

Ta
sk

−I
L

Ac
cu

ra
cy

 (%
)

OursTriRE Refresh MRFATPL

Figure 4: Comparison of our method against other baselines on the CIFAR-100 dataset with 20
tasks. We report the average accuracy of individual tasks in 5 runs with different seeds. The shaded
area represents the error range determined by the maximum and minimum values.

Performance on long sequences of tasks. As mentioned earlier, when the number of tasks in-
creases, network saturation may occur, potentially affecting performance. To evaluate this, we
conduct experiments on a longer task sequence, with the results shown in Table 2. Our method
consistently outperforms all baselines in both Class-IL and Task-IL scenarios. We report the per-
formance of all 20 tasks after training, as illustrated in Figure 4. Similar to the case with 10 tasks,
our method demonstrates superior performance in preserving the accuracy of the earlier tasks. Fur-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

thermore, it maintains relatively high accuracy and exhibits less fluctuation for newly added tasks
compared to other methods. More results on Tiny-ImageNet can be found in Appendix C.3.

4.3 ABLATION STUDY

Continual weighted sparsity scheduler. To demonstrate the advantages of our approach, we com-
pare our continual weighted sparsity scheduler with two baselines: (1) Static—a network trained
with fixed sparsity from scratch, and (2) RigL (Evci et al., 2020)—the foundation of our method,
which uses a dynamic sparse training approach that prunes connections based solely on the mag-
nitude of weights, meaning that only the first term in Equation 6 is used to compute the continual
weighted score. As shown in Table 3, the dynamic sparsity approach outperforms static sparse
training, and our continual weighted sparsity scheduler yields even more promising results.

Table 3: Comparison of different sparse training methods across various CL scenarios with 10 tasks.
We provide the average accuracy of all tasks after training.

Methods CIFAR-100 Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL

Static 37.45±0.56 76.39±0.25 21.36±0.41 54.28±0.57

RigL 39.49±0.81 77.78±0.42 22.54±0.64 56.75±0.55

Ours 40.61±0.58 79.91±0.63 23.25±0.59 58.32±0.73

Meta-plasticity scheduler. To validate the effectiveness of the meta-plasticity scheduler we in-
troduce, we experiment with several different values for λ in Equation 10 to observe its impact on
overall performance. When λ is set to 0, the corresponding parameters remain frozen, which is
equivalent to a task-specific parameter freezing scheme. On the other hand, setting λ to 1 effectively
disables the meta-plasticity scheduler, meaning it has no effect. As shown in Table 4, freezing task-
specific parameters proves to be effective, and the scheduler we introduce (λ > 1) further improves
performance. The value of λ, as long as above 1, does not affect results much, while larger λ leads
to slightly better performance on more challenging tasks. This may be because as λ increases, the
meta-plasticity exhibits greater variability, making neurons more responsive to external inputs.

Table 4: The average accuracy for different λ in Equation 10 across various CL scenarios.

λ
CIFAR-100 Tiny-ImageNet

Class-IL Task-IL Class-IL Task-IL
0 38.14±0.77 75.26±0.45 21.81±0.59 54.84±0.84

1 34.70±0.35 70.96±0.65 17.20±0.72 49.68±0.30

10 40.61±0.58 79.91±0.63 23.25±0.59 58.32±0.73

20 40.42±0.61 79.52±0.49 23.35±0.57 58.52±0.44

50 40.25±0.42 79.18±0.36 23.44±0.47 58.71±0.32

100 40.19±0.35 79.06±0.42 23.48±0.48 58.77±0.71

5 CONCLUSION

In this paper, we propose a framework that combines the continual weighted sparsity scheduler
and the meta-plasticity scheduler to address the stability-plasticity trade-off in CL. The continual
weighted sparsity scheduler iteratively prunes the network with progressively increasing sparsity
over multiple rounds, leading to a more refined, task-specific group of neurons and connections,
thereby preserving knowledge more effectively. Meanwhile, the meta-plasticity scheduler, inspired
by biological meta-plasticity mechanisms, introduces connection-level and task-aware adjustments.
This enables flexible, dynamic tuning of connections, supporting both knowledge retention and
adaptation to new tasks. Experimental results demonstrate that our approach effectively balances
stability and plasticity and outperforms other baselines. In the future, we aim to integrate dynamic
network expansion into our framework to address challenges in real-world applications, which often
involve a larger number of tasks, and potentially lack clear task boundaries.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Wickliffe C Abraham. Metaplasticity: tuning synapses and networks for plasticity. Nature Reviews
Neuroscience, 9(5):387–387, 2008.

Wickliffe C Abraham and Mark F Bear. Metaplasticity: the plasticity of synaptic plasticity. Trends
in neurosciences, 19(4):126–130, 1996.

Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual
learning method based on complementary learning system. arXiv preprint arXiv:2201.12604,
2022.

Prashant Shivaram Bhat, Bahram Zonooz, and Elahe Arani. Consistency is the key to further miti-
gating catastrophic forgetting in continual learning. In Conference on Lifelong Learning Agents,
pp. 1195–1212. PMLR, 2022.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
perience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
New insights on reducing abrupt representation change in online continual learning. arXiv
preprint arXiv:2104.05025, 2021.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings of
the IEEE/CVF International conference on computer vision, pp. 9516–9525, 2021.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, P Dokania,
P Torr, and M Ranzato. Continual learning with tiny episodic memories. In Workshop on Multi-
Task and Lifelong Reinforcement Learning, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International conference on machine learning, pp. 2943–2952.
PMLR, 2020.

Siavash Golkar, Michael Kagan, and Kyunghyun Cho. Continual learning via neural pruning. arXiv
preprint arXiv:1903.04476, 2019.

Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in
deep reinforcement learning. In International Conference on Machine Learning, pp. 7766–7792.
PMLR, 2022.

Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance. Cog-
nitive science, 11(1):23–63, 1987.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual
learning in deep neural networks. Trends in cognitive sciences, 24(12):1028–1040, 2020.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan Babb, Maxim Bazhenov, Douglas Black-
iston, Josh Bongard, Andrew P Brna, Suraj Chakravarthi Raja, Nick Cheney, Jeff Clune, et al.
Biological underpinnings for lifelong learning machines. Nature Machine Intelligence, 4(3):196–
210, 2022.

Jesse J Langille and Richard E Brown. The synaptic theory of memory: a historical survey and
reconciliation of recent opposition. Frontiers in systems neuroscience, 12:52, 2018.

Yan-Shuo Liang and Wu-Jun Li. Loss decoupling for task-agnostic continual learning. Advances in
Neural Information Processing Systems, 36, 2024.

Haowei Lin, Yijia Shao, Weinan Qian, Ningxin Pan, Yiduo Guo, and Bing Liu. Class incremental
learning via likelihood ratio based task prediction. In International Conference on Learning
Representations, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In International Conference on Machine Learning,
pp. 23190–23211. PMLR, 2023.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):2383, 2018.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54–71, 2019.

Björn Rasch and Jan Born. Maintaining memories by reactivation. Current opinion in neurobiology,
17(6):698–703, 2007.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):
123–146, 1995.

Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Synergy between synaptic consolidation and
experience replay for general continual learning. In Conference on Lifelong Learning Agents, pp.
920–936. PMLR, 2022.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In International Conference on Machine Learning, pp.
32145–32168. PMLR, 2023.

Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and Pradeep Shenoy. Gcr: Gradient coreset
based replay buffer selection for continual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 99–108, 2022.

Eli Verwimp, Matthias De Lange, and Tinne Tuytelaars. Rehearsal revealed: The limits and mer-
its of revisiting samples in continual learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9385–9394, 2021.

Preetha Vijayan, Prashant Bhat, Bahram Zonooz, and Elahe Arani. Trire: a multi-mechanism learn-
ing paradigm for continual knowledge retention and promotion. Advances in Neural Information
Processing Systems, 36:73775–73792, 2023.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024a.

Zhen Wang, Liu Liu, Yiqun Duan, and Dacheng Tao. Continual learning through retrieval and
imagination. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
8594–8602, 2022a.

Zhenyi Wang, Yan Li, Li Shen, and Heng Huang. A unified and general framework for continual
learning. In The Twelfth International Conference on Learning Representations, 2024b.

Zifeng Wang, Zheng Zhan, Yifan Gong, Geng Yuan, Wei Niu, Tong Jian, Bin Ren, Stratis Ioannidis,
Yanzhi Wang, and Jennifer Dy. Sparcl: Sparse continual learning on the edge. Advances in Neural
Information Processing Systems, 35:20366–20380, 2022b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 374–382, 2019.

Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal? Journal of Machine
Learning Research, 23(67):1–28, 2022.

Haiyan Zhao, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. Does continual learning
equally forget all parameters? In International Conference on Machine Learning, pp. 42280–
42303. PMLR, 2023.

Bowen Zheng, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Multi-layer rehearsal feature aug-
mentation for class-incremental learning. In Proceedings of the 41st International Conference on
Machine Learning, pp. 61649–61663, 2024.

Hattie Zhou, Ankit Vani, Hugo Larochelle, and Aaron Courville. Fortuitous forgetting in connec-
tionist networks. In International Conference on Learning Representations, 2021.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

A DATASETS AND SETTINGS

We evaluate the effectiveness of our approach in two different types of CL scenarios: Class Incre-
mental Learning (Class-IL) and Task Incremental Learning (Task-IL). In both settings, each task
introduces a set number of new classes for the model to learn. A CL model learns these tasks se-
quentially while maintaining the ability to distinguish between all previously encountered classes.
The key difference is that, in Task-IL, task labels are available during inference, making it a simpler
scenario compared to Class-IL, where no such labels are provided.

A.1 DATASET DETAILS

To evaluate the performance of our method in Task-IL and Class-IL scenarios, we employ three
different datasets: CIFAR-10, CIFAR-100, and Tiny-ImageNet. The CIFAR-10 dataset consists of
60,000 32× 32 colored images in 10 classes, with 6000 images per class. There are 50,000 training
images and 10,000 test images. CIFAR-100 is just like the CIFAR-10, except it has 100 classes
containing 600 images each. There are 500 training images and 100 testing images per class. Tiny-
ImageNet contains 100,000 images of 200 classes (500 for each class) downsized to 64×64 colored
images. Each class has 500 training images, 50 validation images, and 50 test images.

B ADDITIONAL DETAILS ABOUT OUR METHOD

B.1 LAYER-WISE SPARSITY DISTRIBUTION

Given a target sparsity St,n for the model, a uniform sparsity distribution is commonly used by
setting the sparsity S

(l)
t,n of each individual layer l equal to the total sparsity St,n. However, applying

the same level of sparsity to narrower layers may result in insufficient feature retention. To address
this, we adopt the Erdős-Rényi (ER) method (Mocanu et al., 2018), which distributes the sparsity
Sn,l
t of each layer proportional to the term d(l−1)+d(l)

d(l−1)×d(l) , where d(l) and d(l−1) are the numbers of
neurons in layers l and l − 1, respectively. This method makes larger layers relatively more sparse
than smaller ones. In the ER method, the input and output layers are relatively denser because they
usually have fewer incoming or outgoing connections. This allows the network to better utilize the
observations and learned representations at the highest layers in the network.

B.2 LOSS FUNCTION

The loss function we used to update the working model fθ here is introduced by Liang & Li (2024),
they decouple the Lt in Equation 1 to two components:

Lt = E(xi,yi)∼Dt
[Lce(fθ(xi), yi; t) + Ln(fθ(xi)))], (11)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

where Lce(t) represents the loss on classes of the current task, and Ln represents the loss of classifi-
cation of new/old class. Then two hyper-parameters are introduced to control the weight of the two
different learning objectives:

L′
t = E(xi,yi)∼Dt

[β1Lce(fθ(xi), yi; t) + β2Ln(fθ(xi))]. (12)

Here, we adopt the optimal parameter combination used in the experiments from Liang & Li (2024),
with β1 = 1 and β2 = 0.1.

C ADDITIONAL EXPERIMENTS

C.1 STABILITY-PLASTICITY TRADE-OFF

A CL model is said to be stable if it can retain previously learned information, and plastic if it can
effectively acquire new information. Following Sarfraz et al. (2022), let ak,j ∈ [0, 1] denote the
classification accuracy evaluated on the test set of the j-th task after incremental learning of the k-th
task (j ≤ k). The stability is evaluated by calculating the average performance across all preceding
T − 1 tasks as:

stability =
1

T − 1

T−1∑
j=1

aT,j . (13)

The models’ plasticity can be accessed by computing the average performance of each task after its
initial learning as:

plasticity =
1

T

T∑
j=1

aj,j . (14)

Finally, the trade-off measure determines the optimal balance between the stability and the plasticity
of the model. This measure is calculated as the harmonic mean of stability and plasticity:

Trade-off =
2× stability × plasticity

stability + plasticity
. (15)

C.2 IMPLEMENTATION DETAILS

We run all the experiments on an NVIDIA GeForce RTX-3090Ti GPU. Our implementations are
based on Ubuntu Linux 20.04 with Python 3.8. Additionally, we use ResNet-50 as the feature
extractor for all of our investigations. We use the Adam optimizer with a learning rate of 0.001 at
the beginning to train the model, and we use a batch size of 32 and train the model for 50 epochs for
each task.

C.3 ADDITIONAL EXPERIMENTAL RESULTS

Stability-Plasticity trade-off. We provide the trade-off between stability and plasticity achieved
by our method, as well as the performance across all tasks after training on the Tiny-ImageNet
with 10 tasks, with the results shown in Figure 5. Our method demonstrates the best stability while
maintaining plasticity, which leads to the most favorable stability-plasticity trade-off. This explains
why our approach achieves the best overall performance. Figure 5b provides additional insight,
similar to the results in CIFAR-100 with 10 tasks. Our method significantly outperforms others on
the earlier tasks.

Performance on long sequences of tasks. We provide the performance of all 20 tasks after train-
ing on the Tiny-ImageNet, as illustrated in Figure 6 and the stability-plasticity trade-off evaluation
in Figure 7. Our method demonstrates superior stability by preserving the accuracy of the earlier
tasks. Furthermore, it maintains relatively high accuracy and exhibits less fluctuation for newly
added tasks compared to other methods, highlighting its plasticity.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

a b

50

55

60

65

70

Stability Plasticity Trade−off

Ac
cu

ra
cy

 (%
)

TriRE

Refresh
MRFA

TPL

Ours

OursTriRE Refresh MRFATPL45

50

55

60

65

1 2 3 4 5 6 7 8 9 10
Task ID

Ta
sk

−I
L

Ac
cu

ra
cy

 (%
)

Figure 5: a. Stability-Plasticity trade-off for CL models trained on Tiny-ImageNet with 10 tasks. b.
Comparison of our method against other representative baselines in terms of Task-IL accuracy on
the Tiny-ImageNet divided into 10 tasks. The graph reports the average accuracy of individual tasks
at the end of CL training in 5 runs with different seeds. The shaded area represents the error range
determined by the maximum and minimum values.

45

50

55

60

65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Task ID

Ta
sk

−I
L

Ac
cu

ra
cy

 (%
)

OursTriRE Refresh MRFATPL

Figure 6: Comparison of our method against other representative baselines in terms of Task-IL
accuracy on the Tiny-ImageNet dataset divided into 20 tasks. The graph reports the average accuracy
of individual tasks at the end of CL training in 5 runs with different seeds. The shaded area represents
the error range determined by the maximum and minimum values.

Comparison on different task-wise sparsity. In the previous experiments, we allocated 15% of
the neurons exclusively to each task, as this ratio was shown to be optimal according to the results
from Graesser et al. (2022). To explore how this parameter affects performance, we conducted
additional experiments comparing different task-specific sparsity ratios, as shown in Table 5. From
the results, we observe that the performance for the 20% ratio is not as good as those for 15%.
We believe that increasing the sparsity allocation may lead to more interference between tasks. On
the other hand, when the ratio is set too small, there is a sharp decline in performance, which we
attribute to the insufficient information retained by the selected neurons and connections.

Table 5: The average accuracy for different ∆S used in Equation 3

∆S
CIFAR-100 Tiny-ImageNet

Class-IL Task-IL Class-IL Task-IL
20% 40.18±0.43 78.62±0.44 22.59±0.54 57.89±0.57

15% 40.61±0.81 79.91±0.42 23.25±0.64 58.32±0.55
10% 38.49±0.53 76.22±0.45 21.68±0.77 55.59±0.73

5% 37.22±0.89 72.94±1.01 21.66±0.75 52.91±0.91

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

50

55

60

65

70

Stability Plasticity Trade−off
Ac

cu
ra

cy
 (%

)

TriRE

Refresh
MRFA

TPL

Ours

Figure 7: Stability-Plasticity trade-off for CL models trained on Tiny-ImageNet with 20 tasks.

Comparison of different connection pruning methods. There are two commonly used strategies
to select the most important connections: (1) magnitude-based and (2) fisher information-based. The
idea behind magnitude pruning is that small valued weights impact the network’s output less and
can be safely pruned without significantly affecting performance. Fisher information-based prun-
ing evaluates the importance of connections based on their contributions to the Fisher information
matrix. Connections with low contributions, indicating less relevance or importance, are pruned or
set to zero. Wang et al. (2022b) proposed continual weighted importance (CWI), which considers
not only the importance of weights within the current task but also the possibility of it being crucial
for other tasks. Here, we extend the CWI by introducing an additional item ∥ δL̂new(Dt;θ)

δω ∥1, which
consider the capacity of distinguishing the task boundary for the L̂new represents the cross entropy
loss for new/old class distinction. To validate the effectiveness of the CWS we proposed, we com-
pare it against the other three methods, with the result reported in Table 6. It can be observed that
our proposed CWS can help improve the overall performance. Additionally, the improvement in
Task-IL is relatively smaller compared to Class-IL, as the extension of CWI primarily enhances the
model’s ability to recognize task boundaries, a feature that is more crucial in the Class-IL setting.

Table 6: Comparison of the effect of various connection pruning methods used in Section 3.3 on
different datasets.

Method CIFAR-100 Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL

Magnitude 38.89±0.71 77.29±0.73 22.48±0.79 56.69±0.50

Fisher-information 37.26±0.45 74.05±0.51 21.54±0.81 54.31±0.78

CWI 39.88±0.82 79.45±0.83 22.86±0.68 58.13±0.56

Ours 40.61±0.58 79.91±0.63 23.25±0.59 58.32±0.73

Task-wise and step-wise sparsity scheduling. We provide the visualization of the target and real
sparsity of the working model fθ during training on CIFAR-100 with 10 tasks in Figure 8. As tasks
are sequentially introduced, the total sparsity of the network gradually decreases while the sparsity
gradually increases during the training process for each task. Furthermore, the real sparsity of the
network at the end of each task does not match the target sparsity, due to some overlap between
task-specific neuron groups.

Sparsity scheduling frequency. During the training process for each task, we now do the spar-
sity scheduling for each training epoch, which may be time-consuming and computing-consuming.
A typical solution is to update the sparsity periodically. We extend the sparsity scheduling to a
periodical version with the period denoted as ∆T , then we have:

St,n = St,N − St,N (1− n

N
)3, n = ∆T, 2∆T, . . . , N. (16)

We compare the impact of different ∆T values on the average accuracy of the CIFAR-100 with 10
tasks in Figure 9. When ∆T is set to the total number of training epochs, the method effectively

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Sp
ar

si
ty

 (%
)

Training epoch

Real sparsity
Target sparsity

Figure 8: Visualization of sparsity scheduling results for CIFAR-100 with 10 tasks. Each task trains
50 epochs here. The target sparsity is calculated by Equation 4, while the real sparsity is calculated
after training of each task by Equation 3.

reduces to static sparse training. As illustrated in Figure 9, changing the update interval from 1 to 5
has minimal impact on performance. However, when updates become too infrequent-such as only
occurring once per task-there is a noticeable drop in performance. Therefore, to balance time and
computational costs, it is recommended to use a shorter update interval such as 5 epochs.

Ac
cu

ra
cy

 (%
)

Period (epoch)

Figure 9: The average accuracy for different ∆T used in Equation 16. We set ∆T = 1, 5, 10, 25, 50
here, with each task training for a total of 50 epochs.

17

	Introduction
	Related Work
	Methods
	Preliminaries
	Overview of Our System
	Continual Weighted Sparsity Scheduler
	Meta-plasticity Scheduler

	Experiments
	Experimental Settings
	Experimental Results
	Ablation Study

	Conclusion
	Datasets and Settings
	Dataset Details

	Additional Details about Our Method
	Layer-wise Sparsity Distribution
	Loss Function

	Additional Experiments
	Stability-Plasticity Trade-off
	Implementation Details
	Additional Experimental Results

