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ABSTRACT

Covid-19 related misinformation and fake news, coined an ‘infodemic’, has dramat-
ically increased over the past few years. This misinformation exhibits concept drift,
where the distribution of fake news changes over time, reducing effectiveness of
previously trained models for fake news detection. Given a set of fake news models
trained on multiple domains, we propose an adaptive decision module to select the
best-fit model for a new sample. We propose MIDAS, a multi-domain adaptative
approach for fake news detection that ranks relevancy of existing models to new
samples. MIDAS contains 2 components: a doman-invariant encoder, and an adap-
tive model selector. MIDAS integrates multiple pre-trained and fine-tuned models
with their training data to create a domain-invariant representation. Then, MIDAS
uses local Lipschitz smoothness of the invariant embedding space to estimate each
model’s relevance to a new sample. Higher ranked models provide predictions, and
lower ranked models abstain. We evaluate MIDAS on generalization to drifted data
with 9 fake news datasets, each obtained from different domains and modalities.
MIDAS achieves new state-of-the-art performance on multi-domain adaptation for
out-of-distribution fake news classification.

1 INTRODUCTION

The misinformation and fake news associated with the COVID-19 pandemic, called an ‘infodemic’
by WHO (Enders et al., 2020), have grown dramatically, and evolved with the pandemic. Fake
news has eroded institutional trust (Ognyanova et al., 2020) and have increasingly negative impacts
outside social communities (Quinn et al., 2021). The challenge is to filter active fake news campaigns
while they are raging, just like today’s online email spam filters, instead of offline, retrospective
detection long after the campaigns have ended. We divide this challenge to detect fake news online
into two parts: (1) the variety of data (both real and fake), and (2) the timeliness of data collection
and processing (both real and fake). In this paper, we focus on the first (variety) part of challenge,
with the timeliness (which depends on solutions to handle variety) in future work (Pu et al., 2020).

The infodemic, and fake news more generally, evolves with a growing variety of ephemeral topics
and content, a phenomenon called real concept drift (Gama et al., 2014). However, the excellent
results on single-domain classification (Chen et al., 2021), have generalization difficulties when
applied to cross-domain experiments (Wahle et al., 2022; Suprem & Pu, 2022). A benchmark study
over 15 language models shows reduced cross-domain fake news detection accuracy (Wahle et al.,
2022). A generalization study in (Suprem & Pu, 2022) finds significant performance deterioration
when models are used on unseen, non-overlapping datasets. Intuitively, it is entirely reasonable that
state-of-the-art models trained on one dataset or time period will have reduced accuracy on future
time periods. Real concept drift is introduced into fake news as content changes (Gama et al., 2014),
camouflage (Shrestha & Spezzano, 2021), linguistic drift (Eisenstein et al., 2014), and adversarial
adaptation by fake news producers when faced with debunking efforts such as CDC on the pandemic
(Weinzierl et al., 2021).

To catch up with concept drift, the classification models need to be expanded to cover a wide variety
of data sets (Li et al., 2021; Suprem & Pu, 2022; Kaliyar et al., 2021), or augmented with new
knowledge on true novelty such as the appearance of the Omicron variant (Pu et al., 2020). In this
paper, we assume the availability of domain-specific authorative sources such as CDC and WHO that
provide trusted up-to-date information on the pandemic.
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A key challenge of such multi-domain classifiers is a decision module to select the best-fit model
amongst a set of existing models to classify new samples. This degree of knowledge is defined by the
overlap between an unlabeled sample and existing models’ training datasets (Suprem & Pu, 2022).
Intuitively, a best-fit model better captures a sample point’s neighborhood in its own training data
Urner & Ben-David (2013); Chen et al. (2022).

MiDAS. We propose MIDAS, a multi-domain adaptative approach for early fake news detection,
with potential for online filtering. MIDAS integrates multiple pre-trained and fine-tuned models along
with their training data to create a domain-invariant representation. On this representation, MIDAS
uses a notion of local Lipschitz smoothness to estimate the overlap, and therefore relevancy, between
a new sample and model training datasets. This overlap estimate is used to rank models on relevancy
to the new sample. Then, MIDAS selects the highest ranked model to perform classification. We
evaluate MIDAS on 9 fake news datasets obtained from different domains and modalities. We show
new state-of-the-art performance on multi-domain adaptation for early fake news classification.

Contributions. Our contributions are as follows:

1. MIDAS: a framework for adaptive model selection by using sample-to-data overlap to measure
model relevancy

2. Experimental results of MIDAS on 9 fake news datasets with state-of-the-art results using
unsupervised domain adaptation.

2 RELATED WORK

2.1 MULTI-DOMAIN ADAPTATION

Domain adaptation maps a target domain into a source domain. This allows a classifier learned from
the source domain to predict the target domain samples (Farahani et al., 2021). Some approaches
focus on a domain invariant representation between source and target (Huang et al., 2021). Then,
a new classifier can be trained on this invariant representation for both source and target samples.
Domain invariance is scalable to multiple source domains by fusing their latent representations with
an adversarial encoder-discriminator framework (Li et al., 2021). For multi-source domain adaptation
(MDA), classifiers for each source have different weights: static weights using distance (Li et al.,
2021) or per-sample weights on l2 norm (Suprem et al., 2020).

2.2 LABEL CONFIDENCE

Alongside domain adaptation, weak supervision (WS) is also common for propagating labels from
source domains to a target domain (Ratner et al., 2017). Both approaches estimate labels closest to
the true label of the target domain sample. This works with the assumption that the source domains
or labeling functions, respectively, are correlated to the true labels due to expertise and domain
knowledge. In each case, whether MDA or WS, domains or labeling functions need to be weighted
to ensure reliance on the best-fit source. Snorkel, from (Ratner et al., 2017), uses expert labeling
functions and weighs them on conditional independence. Similarly, approaches in (Chen et al., 2020;
Fu et al., 2020) use coverage of expert foundation models and weigh on distance to embedded sample.
EEWS from (Rühling Cachay et al., 2021) directly combines source data and labeling function in
estimator parametrization to generate dynamic weights for each sample. MDA approaches weigh
sources with weak supervision (Li et al., 2021), distance (Suprem & Pu, 2022), or as team-of-experts
(Pu et al., 2020).

3 PROBLEM SETUP AND STRATEGY

Let there be k source data domains, with labels {Xi, Yi}ki=1 ∈ {D}ki=1. Each of these source has an
associated source model SM, with a total of k SMs: {fi}ki=1, where we have access to the training
data Xi and weights wi. Each SM yields hidden embeddings through a feature extractor backbone,
or foundation model (Bommasani et al., 2021). Embeddings are projected to class probabilities with
any type of classification layer/module.
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Figure 1: MIDAS architecture: The encoder generates a domain invariant representation. We add perturbation
to this representation. Then, fine-tuned models {M}(i = 1)k process the sample and perturbations. After
computing the local Lipschitz constant for each model, we can rank their L scores and select the best-fit model’s
label from the label matrix.

MIDAS adaptively weights the k SM predictions for some unlabeled, potentially drifted target data
domain X ′. We accomplish this by using local embedding smoothness of the SMs as a proxy for
model relevance to a sample x′ ∈ X ′. SMs are typically smooth in the embedding space (Urner &
Ben-David, 2013); further, smoothness is correlated with local accuracy (Chen et al., 2022).

With MIDAS, we rank each fk on a smoothness measure around the embedding for x′, i.e. fk(x′).
Then, MIDAS can directly use the top-ranked fk, or the smoothest fk under a smoothness threshold,
as the best-fit relevant models for x′, with the remaining models abstaining. Because we are directly
measuring smoothness on the embedding space, MIDAS can use already fine-tuned, state-of-the-art
classifiers for each task, allowing off-the-shelf, plug-and-play usage. These classifiers are foundation
models (Bommasani et al., 2021) that have been fine-tuned with architectural changes, learned
weights, and hyperparameter tuning for their specific dataset.

There are two key challenges in MIDAS:

1. How do we compare smoothness of SMs that have been trained on different domains?
2. How can we measure the smoothness itself for unlabeled samples in the embedding space of

SMs?

We address (1) with an encoder E that generates a domain invariant representation on {Xi}ki=1.
This unifies the data domains, allowing comparisons for different SMs to start from the same source
domain. For (2), we extend the idea of local Lipschitz smoothness from (Chen et al., 2022) and (Urner
& Ben-David, 2013) to randomized Lipschitz smoothness. In randomized Lipschitz smoothness,
we randomly perturb E(x′), the domain invariant representation of x′. Then, we compute the local
lipschitz constant L on these perturbations E(x′) + ε, with respect to E(x′) to measure smoothness.
This allows us to calculate an Lk for each fk and use the local Lipschitz constant, a measure for the
local smoothness, as a measure of relevancy.

4 MIDAS

We now describe MIDAS components and implementation details. The MIDAS architecture is
shown in Figure 1. First, we cover the encoder-decoder framework to generate the domain invariant
representations of source and target datasets. Then we present the randomized Lipschitz smoothness
measure to generate SM relevancy rankings.

4.1 DOMAIN INVARIANT ENCODER

To compare different fk relevancy, we require a common source domain (Li et al., 2021). We achieve
this with a single-encoder multiple-decoders design, where we have a single encoder to generate a
domain invariant representation from all source domains. Then we use k decoders to reconstruct the
invariant representation for each fk. TO train E, we use an adversarial discriminator D′ to enforce
invariance with a min-max game, where the discriminator tries to identify the source domain of the
invariant representation, and the encoder tries to fool it:
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min
E

max
D′
−

k∑
i=1

E(x,y)∼Xk
[l(D′(E(x)), k)] (1)

We use a gradient reversal layer R to convert the min-max to single-step minimization. R is the
identity matrix during the forward pass, and the discriminator gradient during the backward pass,
scaled by λ = −1. Then, the adversarial optimization becomes:

Loss = min
E,R(D′)

−
k∑
i=1

E(x,y)∼Xk
[l(D′(R(E(x))), k)] (2)

To train Dk, we use the masked language modeling loss from BERT and AlBERT pretraining.
Parameters are initialized with AlBERT’s albert-base-uncased weights (Lan et al., 2019).

In summary, we train a single encoder and k decoders. The encoder projects our training data in the
form of SentencePiece tokens (Kudo & Richardson, 2018) into a domain-invariant representation,
trained with a domain discriminator. Each decoder then reconstructs the original input training tokens
from the invariant representation. We use decoders because MIDAS is designed to work with our
existing BERT and AlBERT classifiers, which expect SentencePiece token input. Decoders are trained
with masked language modeling, where we randomly mask up to 15% of words or tokens in the input.
Then, during prediction, an unlabeled, potentially drifted sample x′ from an unseen distribution X ′
is converted to a domain invariant representation E(x′). Each decoder Dk reconstructs from this
invariant representation the input to its corresponding SM fk.

4.2 RANDOMIZED LIPSCHITZ SMOOTHNESS

With a common embedding space, we can now compare relevancy of each model to an unlabeled,
potentially drift sample x′. To present our approach, we need to introduce Lipschitz continuity.

Definition (Lipschitz Continuity). A function f : Rn → Rm is Lipschitz continuous if, for some
metric space (X, θ), there exists a constant L such that

θ(f(x1), f(x2)) ≤ L · θ(x1, x2)

We can extend this to define Lipschitz-smooth with respect to SM predictions using Lipschitzness
from (Chen et al., 2022).

Definition (Lipschitzness). An SM is Lipszhitz smooth if, for some class label C,

|Pr(fk(x1) = C)− Pr(fk(x2) = C)|≤ Lkθ(x1, x2) (3)

That is, with Lk smoothness, the difference in fk’s predicted labels on x1 and x2 is bounded by Lk
for all x ∈ X . However, the local value of Lk can vary across the embedding space. Consequently,
fk is smoother wherever Lk is smaller 1. As such, we want small Lk for samples in the same class,
and large Lk for samples from different classes.

With these definitions, we can present our approach for finding the best-fit relevant fk for x′, defined
as the fk with the smoothest embedding space around x′.

Theorem 1. Let the best-fit fk for a sample x′ be the SM that is smoothest around x′. We can find
the best-fit fk for a particular sample x′, given a distance threshold ε, by solving:

argmin
k

max
θ(x′,xr)≤ε|Nr=1

θ(Pr(fk(x
′)),Pr(fk(xr)))

θ(x′, xr)
(4)

1As Lk → 0, the embedding function approaches mode collapse, where every input point is projected to the
same embedding point
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The max term estimates the Lk value for each fk by sampling N random points in an ε-Ball around
x′. Then, we find the fk that has the smallest Lk.

A key insight is that adversarial attacks exploit non-smoothness of a model’s embedding space to fool
classifiers, by generating a noise ε such that fk(x+ ε) 6= fk(x). This non-smoothness occurs when
fk does not capture enough training data in the region around x properly; in GANs, this causes ‘holes’
in the latent space (Suprem et al., 2020) during image synthesis. Conversely, adversarial defenses
either enforce smoothness around embedding space or on potentially perturbed inputs themselves
(Das et al., 2018). Similarly, GANs can enforce 1-Lipschitzness to improve coverage of sample
generation (Qin et al., 2020) .

So, given several fk with different local Lk around the embedding fk(x+ ε), a lower Lk indicates
smoother embedding space because that SM has captured more training data in the region surrounding
x relative to other SMs, similar to the overlap metric calculated in (Suprem & Pu, 2022) However,
even with a low Lk, the classification labels yk = f ′k(fk(x)), obtained from the classification module
f ′k of the kth SM, can change on perturbations around x. We can use probabilistic Lipschitzness to
bound the probability of yk changing in the neighborhood x+ ε as a function of the perturbation ε.

Definition (Probabilistic Lipschitzness). Let φ : R→ [0, 1]. Given x′, xr ∼ PX , we say that fk
is φ-Lipschitz if, for all ε > 0, there is an increasing function φ(ε) such that:

Pr
x′,xr∼PX

[θ(fk(x
′), fk(xr))−

1

ε
θ(x′, xr) > 0] ≤ φ(ε) (5)

That is, a function that is Lipschitz by Definition 1 (L-Lipschitz) satisfies Definition 3 (φ-Lipschitz)
with φ(ε) = 1 if ε ≥ 1/L and φ(ε) = 0 if ε < 1/L.

From this, it follows that if fk satisfies the φ-Lipschitz condition, then the number of samples within
an ε-Ball of x′ that have a different label from x′ is bounded by φ(ε), per (Urner & Ben-David, 2013).
As we move further from x′, the probability of a label change increases. Let a′ be the accuracy for fk
at x′. If we know the accuracy drop α at the edge of the ε-Ball where labels change values, we can
bound the accuracy of predictions between x′ and some perturbed point xr in an ε-Ball around x′ to:

ar ≥ a′ − α · φ(ε)

If we calculate α for an SM using training examples of different labels within the margins allowed by
probabilistic Lipschitzness, we find that accuracy bound depends only on choice of ε. Consequently
we can approximate fk’s accuracy on x′ if xr is within a small ε-Ball around x′ to be at least:

θ(Pr(fk(x
′)),Pr(fk(xr))) ≥ Pr(fk(x

′) = yk)− α · φ(ε) (6)

4.3 PUTTING IT TOGETHER: MIDAS

Recall that the encoder projects all samples to a common invariant domain E : {X}ki=1 → G.
Each SM-specific decoder Dk then converts from the invariant domain to the k-th source domain
Dk : G → Xk. With this encoder-decoders framework, we can use the invariant domain G as the
common source domain for all SMs.

Per Definition 3, accuracy is best estimated in an ε < 1 ball. Once E is trained, we can use the
class cluster centers (obtained from K-Means clustering on the embeddings) from the training data to
compute a local cluster-specific L for each cluster in each fk. This partitioning allows us to compute
local smoothness characteristics of the embedding space, simialr to the concurrent work in (Chen
et al., 2022). We use the cluster centers because we want the strongest measure of smoothness for
each fk, and this occurs near the cluster center; for example (Suprem & Pu, 2022) and (Chen et al.,
2022) both use the centroid to set up accuracy thresholds. Then, we can estimate a local Lk for
each fk at the cluster centers with the m nearest point to the center using Equation (3). We take the
maximum Lk among all fk to obtain the upper bound on the local smoothness among the SMs. On
this maximum, we can calculate ε = 1/max(Lk

k
i=1). So, the only hyperparameter here is m, the

number of neighbors to compute the local Lk for each label cluster in each fk. We explore impact of
m in Section 5.2.
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Dataset Training Testing Oracle Acc.
(Fine-Tuning)

Generalization Acc.
(Held-Out) Decrease

kaggle_short (Patel, 2021) 31k 9K 0.97 0.57 42%
kaggle_long (Patel, 2021) 31k 9K 0.98 0.53 46%
coaid (Cui & Lee, 2020) 5K 1K 0.97 0.56 42%
cov19_text (Agarwal, 2020) 2.5K 0.5K 0.98 0.58 41%
cov19_title (Agarwal, 2020) 2.5K 0.5K 0.95 0.62 35%
rumor (Cheng et al., 2021) 4.5K 1K 0.83 0.54 35%
cq (Mutlu et al., 2020) 12.5K 2K 0.71 0.51 28%
miscov19 (Memon & Carley, 2020) 4K 0.6K 0.68 0.50 26%
covid_fake (Das et al., 2021) 4K 2K 0.96 0.52 45%

Table 1: We use 9 covid fake news datasets to evaluate MiDAS. Here we also present a motivating experiment
with respect to concept drift and generalizability: for each dataset, we train an ‘oracle’ on the training data. The
oracle’s performance on the test data is compared to an ensemble of the other 8 datasets. The latter tests the
concept drift case, where models need to generalize to data distributions they have not yet encountered. There is
significant accuracy drop due to concept drift, domain shift, and label overlap

Now, for an unlabeled sample x′, we first generate the domain invariant representation x′G =
E(x′). Then we perturb x′G to generate r points {x′Gi}ri=1 in an ε-Ball around x′G. Using x′G and
{x′Gi}ri=1, we can compute the local Lipschitz constant L′k for each fk using Equation (3). We have
2 possibilities:

1. L′k ≥ 1/ε: fk that satisfy this condition abstain from providing predictions, since the accuracy
drop is unbounded.

2. L′k < 1/ε: fk that satisfy this condition can provide labels, because their accuracy is bounded
per Equation (6).

5 EVALUATION

5.1 EXPERIMENTAL SETUP AND DATASETS

We implemented and evaluated MIDAS on PyTorch 1.11 on a server running NVIDIA T100 GPUs.
We have released our implementation code.

MiDAS Datasets. We use 9 fake news datasets, shown in Table 1. Where available, we used
provided train-test splits; otherwise, we performed class-balanced 70:30 splits. We performed a
preliminary motivating evaluation, shown in Table 1. Here, we have compared an oracle case to the
concept drift case. In the oracle case, we train 9 models, one on each dataset, and then evaluate this
model on its corresponding dataset’s test set. This is the case where the prediction data matches the
training distribution. In the concept drift case, we trained a model on 8 datasets, then evaluated on the
held-out dataset. In this case, the prediction dataset, even though on the same topic of Covid-19 fake
news detection, does not match the training distribution. We see significant accuracy drops, between
20% to 50%. This matches the observations in generalizability in (Suprem & Pu, 2022) and (Wahle
et al., 2022).

MiDAS Evaluation. We evaluate MIDAS with held-one-out testing at the dataset level similar to
the generalization studies approach in (Suprem & Pu, 2022). Our results are presented in Section 5.2
To test MIDAS, we first train the encoder to learn a domain invariant representation with all but one
dataset. Then we evaluate MIDAS’ performance on classifying the unseen, i.e. drifted, dataset. We
repeat this for each dataset in Table 1. MIDAS’ performance is compared to Snorkel (Ratner et al.,
2017), EEWS (Rühling Cachay et al., 2021), an ensemble, and an ‘oracle’ fine-tuned AlBERT model
trained on the held-out dataset.

Ablation Study. To further evaluate MIDAS’ efficacy, we also conducted an ablation study in
Section 5.3 by varying the number of training datasets, types of loss functions, masked language
model trainig, and loss weights.
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Figure 2: MiDAS characteristics. Figure 2a shows tSNE projection of all 9 datasets’ pretrained BERT
encoder’s embeddings. Figure 2b shows dataset embeddings when generated with MiDAS’ encoder. The label
overlaps between true news and fake news have been separated; in this case, enforcing domain invariance forces
true and fake labels of all datasets to cluster. In Figure 2c and Figure 2d, we show impact of L-Value and
resulting ε calculation for different values of m. We select m = 50 for remaining experiments.

Adjustment of m. For each experiment in Section 5.2, we sampled points in an ε-ball around x,
where ε calculated using steps Section 4.3. We explore effects of adjusting the radius of this sampling
ball by changing m, the number of nearest neighbors, in Section 5.4. Specifically, we show that as
the sampling/perturbation radius increases beyond ε, MIDAS’ accuracy decreases. Conversely, as
sampling radius is reduced, MIDAS increases accuracy while sacrificing coverage.

5.2 MIDAS EVALUATION

We now present evaluation results for MIDAS. In each experiment, we designate a single dataset as
the target dataset without labels, and the remaining datasets act as source domains. In these cases, the
held-one-out dataset acts as the drifted dataset, similar to the generalization experiments in (Suprem &
Pu, 2022). We follow the steps in Section 4.3 to test MIDAS, and compare classification accuracy to
5 approaches: (i) an ensemble of the training models with equal weights, (ii) a Snorkel labeler (Ratner
et al., 2017) that treats each model as a labeling function, (iii) an EEWS labeler (Rühling Cachay
et al., 2021) that treats each model as a labeling function, (iv) a KMP-model (Suprem & Pu, 2022)
that uses KMeans clustering with proxies to compute overlap, and (v) an ‘oracle’ AlBERT model
fine-tuned on the held-out dataset.

Figure 2 shows several characteristics of the MiDAS encoder. Figure 2b shows domain invariance in
the labels. Each point is a sample from the 9 datasets; before applying MiDAS, there is significant
label overlap because each dataset exists in separate domains. After applying MiDAS, datasets are
projected to a domain invariance embedding. This forces sampes with the same label, irrespective of
source domain, to cluster together and reduce the label overlap observed in (Suprem & Pu, 2022).

After training MIDAS’ encoder, we need to compute the ε radius using m nearest neighbors to the
label cluster centers. We examine the impact of different m values for computing ε in Figure 2c and
Figure 2d. As we increase the number of neighbors used in estimating local L, the estimate for L
increases, indicating reduced smoothness the further we deviate from the cluster center. In turn, this
reduces the acceptable ε-ball radius to bound probability of label change, per (Urner & Ben-David,
2013), since ε = 1/L. A large m would significantly reduce the size of the sampling ε-ball, and
perturbations would be negligible. A small m would yield a poor estimate for local L and a large
sampling ball. We further explore impact of changing m directly on accuracy in Section 5.4. Here,
we fix m = 50 for remaining experiments, since we observed the ε-Ball radius generally stabilized
around this value.

In Table 2, we show results of MIDAS compared to the 5 approaches discussed above. In all but one
of our experiments, MIDAS outperforms other labeling schemes in classifying the unseen, drifted
samples. On average, MIDAS sees a 30% increase in accuracy compared to an ensemble. Further, by
using the training data itself to adaptively guide SM selection, MiDAS improves by 21% on Snorkel,
10% on EEWS and KMP.
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Dataset Oracle Labels No access to Labels

FT-AlBert Ensemble Snorkel EEWS KMP MiDAS

kaggle_short 0.97 0.57 0.61 0.67 0.69 0.86
kaggle_long 0.98 0.53 0.63 0.68 0.70 0.71
coaid 0.97 0.56 0.64 0.74 0.81 0.84
cov19_text 0.98 0.58 0.59 0.68 0.75 0.79
cov19_title 0.95 0.62 0.69 0.75 0.61 0.81
rumor 0.83 0.54 0.59 0.62 0.45 0.67
cq 0.71 0.51 0.54 0.52 0.56 0.57
miscov19 0.68 0.50 0.52 0.56 0.45 0.54
covid_fake 0.96 0.52 0.56 0.61 0.50 0.75

Table 2: MiDAS Evaluation: MiDAS outperforms on generalizing to unseen, drifted data points. For each
held-out dataset, given 8 fine-tuned models trained on the remaining 8 datasets, MiDAS is able to select the
best-fit model for each sample. Using this best-fit model, MiDAS outperforms an equal-weighted ensemble by
over 30%.

Dataset MiDAS-Half +Sources +Center Loss + Masking +Weighted Loss

kaggle_short 0.56 0.68 0.75 0.79 0.86
kaggle_long 0.55 0.62 0.65 0.68 0.71
coaid 0.53 0.71 0.76 0.79 0.84
cov19_text 0.54 0.68 0.72 0.75 0.79
cov19_title 0.58 0.71 0.76 0.78 0.81
rumor 0.57 0.61 0.63 0.65 0.67
cq 0.52 0.54 0.55 0.55 0.57
miscov19 0.51 0.53 0.53 0.54 0.54
covid_fake 0.51 0.59 0.64 0.69 0.75

Table 3: MiDAS Ablation Study. We examined impact of different design
choices here. Of note is that using masked language modeling is significantly
useful in improving end-to-end accuracy. Further, adding a center loss term
ensures the domain-invariance representations have separable clusters, as we
see in Figure 2b. Finally, with weighted loss, we give the discriminator 2x
the importance of the encoder masking loss to focus on domain invariance.
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Figure 3: Convergence of Mi-
DAS with each component in
ablation study.

5.3 ABLATION STUDY

We evaluated the impact of several design and training choices for MIDAS in an ablation study
in Table 3 We use a version of MiDAS trained with half of the sources with the most data points
for each experiment (MiDAS-Half). This yields near-random accuracy, since this is a modified
ensemble on different source datasets. Adding the remaining sources improves MiDAS’ coverage
and improves accuracy by 15%. We add a center loss term (He et al., 2018) to the encoder output
to encourage clustering on the labels between multiple sources; increasing accuracy by 5%. Next,
we added language masking to the input during the encoder-decoder training to further fine-tune the
encoder for the fake-news tasks, yielding a 4% improvement. Finally, we increased the weights
for the discriminator loss compared to encoder loss to emphasize domain invariance, yielding
a 5% improvement for MiDAS’ accuracy on fake news detection for unseen, drifted data. We
compare convergence for different experiments in Figure 3: the encoder converges faster in each case.
Further, adding the center and weighted losses contribute to discriminator fooling and stabilizing the
discriminator loss.

5.4 ADJUSTMENT OF ε

Finally, we investigate ε with respect to m, which was fixed at m=50. For these experiments, we
investigated increasing and decreasing m to, respectively, increase and decrease ε. Increasing the
neighbors increases the computed L, since we are using points further from the smooth cluster center.
In turn, this reduces the sampling ε-ball, so the perturbations we apply will be smaller, and in some
cases, negligible. Furthermore, threshold value of L needed to accept an SM’s prediction is higher
(since it is 1/ε), so MiDAS tolerates lower smoothness for each model, and accepts predictions from
more models, resulting in higher coverage and lower overall accuracy. On the other hand, using fewer
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m-value kaggle_short coaid rumor cq
F1-Score Coverage F1-Score Coverage F1-Score Coverage F1 Coverage

m=1 0.97 0.03 0.97 0.01 0.86 0.05 0.81 0.03
m=10 0.91 0.35 0.92 0.29 0.82 0.48 0.74 0.34
m=20 0.87 0.65 0.85 0.73 0.73 0.63 0.61 0.59
m=50 0.86 0.86 0.84 0.89 0.67 0.82 0.57 0.78
m=75 0.73 0.91 0.78 0.94 0.62 0.89 0.53 0.85
m=100 0.69 0.95 0.73 0.98 0.59 0.97 0.51 0.91
m=150 0.57 0.99 0.56 1.00 0.54 1.00 0.43 0.95

Table 4: Impact of m values: As we increase the number of nearest neighbors, we get a higher estimate for L,
per Figure 2c, which reduces the ε-Ball sampling radius and relaxes threshold for model predictions. This leads
to lower accuracy with higher coverage. Decreasing m, in turn, increases accuracy at the cost of lower coverage.

neighbors means larger sampling ball and smaller threshold for acceptance. It is more likely for
perturbed samples to be further away, yielding a higher value of L unless a corresponding model is
especially smooth around that point. This would, as a result, reduce coverage, but increase accuracy.

We show this in Table 4 for several values of m across 4 of our datasets. Using only the nearest
neighbor yields minimal coverage. As we increase the m, coverage increases significantly, and
accuracy approaches ensemble accuracy. Conversely, as we reduce m, we also reduce L and
consequently, the smoothness threshold to accept a prediction. This increases accuracy, since MIDAS
rejects predictions that do not satisfy the threshold. However, coverage decreases as well: we show in
Table 4 fewer unseen samples from the target domain can be labeled as we decrease m. We also see
that m can have outsized impact on accuracy as well: ‘coaid’ f1 scores drop from 0.73 to 0.56, even
though coverage increases only slightly, from 0.98 to 1.0 when we increase m from 100 to 150. This
occurs because at m = 150, MiDAS’ relaxed thresholds allow poorer models to provide predictions
as well, reducing accuracy in the final averaged result.

5.5 LIMITATIONS AND FUTURE DIRECTIONS

We tested MiDAS in the scenario where fine-tuned models already exist. This constrains the MiDAS
encoder, which must also train a decoder so match the inputs of the fine-tuned models that expect
tokenized input. A more flexible approach would deploy models and MiDAS together, with each
fine-tuned model directly trained with the MiDAS encoder. This would improve both training
time, convergence, as well as accuracy, since each model would directly use the MiDAS generated
encodings, instead of domain-specific reconstructions.

Furthermore, we selectedm using empirical observations. However, there can be technically grounded
approaches as well, such as using the high-density bands from (Suprem et al., 2020; Jiang et al.,
2018). In these cases, the α-high density region of each cluster can be used to estimate a good m. We
leave further exploration of m as well as integration of fine-tuned models into the encoder training
framework to future work.

6 CONCLUSION

We have presented MIDAS, a system for adaptively selecting best-fit model for a set of samples from
drifting distributions. MIDAS uses a domain-invariance embedding to estimate local smoothness for
fine-tuned models around drifting samples. By using local smoothness as a proxy for accuracy and
training data relevancy, MIDAS improves on generalization accuracy across 9 fake news datasets.
With MIDAS, we can detect COVID-19 related fake news with over 10% accuracy improvement
over weak labeling approaches. We hope MIDAS will lead further exploration into the tradeoff
between generalizability and fine-tuning, as well as research into mitigating generalization difficulties
of pre-trained models.
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