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Abstract

Robustness of decision rules to shifts in the data-
generating process is crucial to the successful de-
ployment of decision-making systems. Such shifts
can be viewed as interventions on a causal graph,
which capture (possibly hypothetical) changes in
the data-generating process, whether due to nat-
ural reasons or by the action of an adversary.
We consider causal Bayesian networks and for-
mally define the interventional robustness problem,
a novel model-based notion of robustness for de-
cision functions that measures worst-case perfor-
mance with respect to a set of interventions that
denote changes to parameters and/or causal influ-
ences. By relying on a tractable representation
of Bayesian networks as arithmetic circuits, we
provide efficient algorithms for computing guar-
anteed upper and lower bounds on the interven-
tional robustness probabilities. Experimental re-
sults demonstrate that the methods yield useful and
interpretable bounds for a range of practical net-
works, paving the way towards provably causally
robust decision-making systems.

1 Introduction
As algorithmic decision-making systems become widely de-
ployed, there has been an increasing focus on their safety and
robustness, particularly when they are applied to input points
outside of the data distribution they were trained on. Much
of the work in this area has focused on instance-based robust-
ness properties of classifiers, which guarantee that the pre-
diction does not change in some vicinity of a specific input
point [Shih et al., 2018; Narodytska et al., 2018]. However,
there are many types of distribution shift that cannot be char-
acterized by robustness against norm-bounded perturbations
to individual inputs. Such distribution shifts are often instead
characterized by causal interventions on the data-generating
process [Quionero-Candela et al., 2009; Zhang et al., 2015;
Lipton et al., 2018]. These interventions give rise to a range
of different environments (distributions), which can be the
effect of natural shifts (e.g. different country) or actions of
other agents (e.g. a hospital changing prescription policy).

To assess the impact of such interventions, we must
leverage knowledge about the causal structure of the data-
generating distribution. This paper concerns itself with a sim-
ple question: given a decision-making system and a posited
causal model, is the system robust to a set of plausible inter-
ventions to the causal model? Defining and verifying such
model-based notions of robustness requires a formal repre-
sentation of the decision-making system. For discrete input
features and a discrete output class, regardless of how a clas-
sifier is learned, its role in decision-making can be unambigu-
ously represented by its decision function, mapping features
to an output class. This observation has spurred a recent trend
of applying logic for meta-reasoning about classifier prop-
erties, such as monotonicity and instance-based robustness,
by compiling the classifier into a tractable form [Shih et al.,
2018; Narodytska et al., 2018; Audemard et al., 2020], for ex-
ample an ordered decision diagram. We extend this approach
to causal modelling by combining logical representations of
the decision rule and causal model, and compiling this joint
representation into an arithmetic circuit, a tractable represen-
tation of probability distributions.

Our main technical contributions are as follows. First, we
motivate and formalize the robustness of a decision rule with
respect to interventions on a causal model, which we call the
interventional robustness problem, and characterize its com-
plexity. Second, we develop a joint compilation technique
which allows us to reason about a causal model and decision
function simultaneously. Finally, we develop and evaluate al-
gorithms for computing upper and lower bounds on the inter-
ventional robustness problem, enabling the verification of ro-
bustness of decision-making systems to causal interventions.

1.1 Related Work
The problem of constructing classifiers which are robust to
distribution shifts has received much attention from the ma-
chine learning perspective [Quionero-Candela et al., 2009;
Zhang et al., 2015; Lipton et al., 2018]. Particularly rel-
evant to our work are proactive approaches to learning ro-
bust classifiers, which aim to produce classifiers that perform
well across a range of environments (rather than a specific
one) [Rojas-Carulla et al., 2018; Subbaswamy et al., 2019].

A recent line of work analyses the behaviour of machine
learning classifiers using symbolic and logical approaches by
compiling these classifiers into suitable logical representa-
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tions [Narodytska et al., 2018; Shi et al., 2020]. Such rep-
resentations can be used to answer a range of explanation and
verification queries [Audemard et al., 2020] about the classi-
fier tractably, depending on the properties of the underlying
propositional language . Our work uses this premise to tackle
defining and verifying robustness to distribution shift, which
involves not only the classifier but also a probablistic causal
model such as a causal Bayesian network.

In the Bayesian network literature, sensitivity analy-
sis [Chan and Darwiche, 2004] is concerned with examin-
ing the effect of (typically small) local changes in parameter
values on a target probability. We are concerned with pro-
viding worst-case guarantees against a set of possible causal
interventions, which can involve changing parameters in mul-
tiple CPTs, and even altering the graphical structure of the
network. This requires new methods that enable scalability
to these large, potentially structural intervention sets. Our
causal perspective generalizes and extends the work of [Qin,
2015], considering a richer class of interventions than previ-
ous work and using this perspective to prove robustness prop-
erties of a decision function.

2 Background and Notation
In the rest of this paper, we use V = (X, Y,H) to denote the
set of modelled variables, which includes observable features
X , the prediction target Y , and hidden variables H . We use
lower case (e.g. x) to denote instantiations of variables.

2.1 Decision Functions
Consider the task of predicting Y given X . Though many
machine learning (ML) techniques exist for this task, once
learned, the input-output behaviour of any classifier can be
characterized by means of a symbolic decision function F
from X to Y . For many important classes of ML methods,
including Bayesian network classifiers, binarized neural net-
works, and random forests, it is possible to encode the cor-
responding decision function as a Boolean circuit Σ [Aude-
mard et al., 2020; Narodytska et al., 2018; Shih et al., 2019].
Such logical encodings can then be used to reason about the
behaviour of the decision function, for instance providing ex-
planations for decisions and verifying properties.

2.2 Causal Bayesian Networks
In this paper, we are interested in robust performance of de-
cision functions under distribution shift caused by changes in
the data-generating process (DGP). In order to reason about
this, we first need a causal model of the DGP which enables
such changes to be represented. We first define Bayesian net-
works, which are a convenient way to specify a joint distribu-
tion over the set of variables V = {V1, V2, ..., Vn}:
Definition 1 (Bayesian Network). A (discrete) Bayesian net-
work (BN) N over variables V is a pair (G,Θ). G =
(V ,E) is a directed acyclic graph (DAG) whose nodes cor-
respond to the random variables V and whose edges in-
dicate conditional dependence. Θ denotes the set of con-
ditional probability tables (CPTs) θVi|Ui with parameters
θvi|ui = P (Vi = vi|Ui = ui) which specify the distribu-

tion, where Ui = paG(Vi) are the parents of Vi in G. We will
denote by pN the distribution defined by the BN N .

Causal Bayesian networks (CBNs) are defined similarly to
Bayesian networks, with the addition of causal, or interven-
tional, semantics to the joint distribution. Intuitively, an edge
(V, V ′) in a causal Bayesian network indicates that V causes
V ′, and the CPTs correspond to causal mechanisms. An in-
tervention can be defined to be a change to some of these
mechanisms, replacing Θ with Θ′. A CBN can thus be char-
acterized as representing a set of distributions, each of which
is generated by a different intervention.

We now define a representation of a (causal) Bayesian net-
work, called the network polynomial, based on the seminal
work of [Darwiche, 2003]. This is a multi-linear function of
indicator variables, encoding the BN variables V , and pa-
rameter variables, encoding the BN parameters.

Definition 2 (Network Polynomial). The network polynomial
of causal BN N is defined to be:

lN [λ,Θ] =
∑

v1,...,vn

n∏
i=1

λviθvi|ui (1)

where λvi denotes an indicator variable for each value vi in
the support of each random variable Vi, and θvi|ui denotes
each element of a CPT in Θ. Each component of the addition
lv[λ,Θ] :=

∏n
i=1 λviθvi|ui is called a term, and is associ-

ated with an instantiation V = v.

2.3 Arithmetic Circuits
Arithmetic circuits (AC) are computational graphs used to en-
code probability distributions over a set of discrete variables
V , which can tractably answer a broad range of probabilis-
tic queries, depending on certain structural properties (called
decomposability, smoothness and determinism). They were
first introduced by [Darwiche, 2003] as a means of compil-
ing Bayesian networks for the purposes of efficient inference.
Subsequently they have been considered as objects of study
in their own right, with proposals for directly learning ACs
from data [Lowd and Domingos, 2008] and extensions relax-
ing determinism [Poon and Domingos, 2011].

Definition 3 (Arithmetic Circuit). An arithmetic circuit AC
over variables V and with parameters Φ is a rooted directed
acyclic graph (DAG), whose internal nodes are labelled with
with + or× and whose leaf nodes are labelled with indicator
variables λv , where v is the value of some variable V ∈ V ,
or non-negative parameters φ.

Crucially, evaluating an arithmetic circuit can be done in
time linear in the size (number of edges) of the circuit. When
an AC represents a probability distribution, this means that
marginals can be computed efficiently.

Like Bayesian networks, arithmetic circuits can be repre-
sented as polynomials over indicator and parameter variables,
based on subcircuits [Choi and Darwiche, 2017]:

Definition 4 (Complete Subcircuit). A complete subcircuit α
of an AC is obtained by traversing the AC top-down, choosing
one child of every visited +-node and all children of every
visited ×-node. The term term(α) of α is the product of all
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Figure 1: An example causal model describing accident risk for a
car insurance problem, and illustrating how strategic adaptation to
a classifier can be characterized as a change to a causal model de-
scribing how the data was generated.

leaf nodes visited (i.e. all indicator and parameter variables).
The set of all complete subcircuits is denoted αααAC .

Definition 5 (AC Polynomial). The AC polynomial of arith-
metic circuit AC is defined to be:

lAC [λ,Φ] =
∑

α∈αααAC

term(α)

3 The Intervention Robustness Problem
Many distribution shifts faced by decision-making sys-
tems can be characterized by an intervention on the data-
generating process. For example, if an insurance company
offers reduced premiums to drivers who take a driving class,
the way ‘risk aversion’ affects ‘class’ in Figure 1 may change
in response as more risk-seeking drivers take driving classes
to benefit from reduced premiums. The company there-
fore seeks to determine whether this policy will be robust to
changes in this relationship before it deploys the policy.

To model this, we formulate an intervention robustness
problem, which considers the worst-case drop in performance
of a classifier in response to changes to a subset of the causal
mechanisms (CPTs) of the Bayesian network. This is in-
spired by the principle of independent causal mechanisms
(ICM) [Peters et al., 2017], which states that causal mech-
anisms do not inform or influence each other; that is, even as
some mechanisms are changed, other mechanisms tend to re-
main invariant. In the insurance example, this is reflected in
that we would not necessarily expect the way ’risk aversion’
or ’accident’ is generated to change, for instance.

While many related notions of robustness exist in the lit-
erature, none accurately captures this notion of robustness
to causal mechanism changes. Many popular definitions of
robustness measure the size of a perturbation necessary to
change an input’s classification, without taking into account
that such perturbations may change the value which the clas-
sifier tries to predict [Shih et al., 2018]. [Miller et al., 2020]
highlight the connection between causal inference and robust-
ness to distribution shifts caused by ‘gaming’ in the strategic
classification [Hardt et al., 2016] regime. However, [Miller et
al., 2020] does not assume access to a known causal model,
and its focus is on identifying classifiers which are robust
to gaming, whereas our objective is to verify robustness to
a much richer collection of distribution shifts.

3.1 Intervention Classes
To reason about the effects of changes to a causal model, we
need a formal description of these interventions. We con-
sider interventions as actions that modify the mechanisms of
a causal Bayesian network N = (G,Θ), thereby changing
its joint distribution. In particular, we consider two types of
interventions: the first concerns changes to the parameters of
the causal model, while the second concerns changes to the
existence of cause-effect relationships themselves.

Typically, we might expect that only mechanisms for a sub-
set of variables W ⊆ V will change. In what follows, given
a subset of variables W ⊆ V , we will use θ(G)

W ⊆ Θ to
denote the parameters associated with the CPTs for variables
W ∈W , where the parents of W are given by graph G.
Definition 6 (Parametric Interventions). A parametric inter-
vention on variables W substitutes a subset of parameters
θ

(G)
W for new values θ(G)′

W obtaining a new parameter set Θ′,
which yields the BN:

N [θ
(G)′
W ] := (G,Θ′) (2)

Parametric interventions encompass the do-interventions
discussed by [Qin, 2015], but allow us to express more com-
plex changes to causal mechanisms than fixing a variable to
a set value. We can further consider changes not just to the
parameters of the network, but also to its edge structure; such
changes to a set of variablesW can be described by a context
function CW : W → P(V ), which replaces the parents of
W ∈W in G with CW (W ), producing a new graph G′. We
refer to such interventions as structural interventions. In this
work we restrict ourselves to context sets which preserve the
acyclicity of the DAG.
Definition 7 (Structural Interventions). A structural inter-
vention on variables W modifies the edges E of the graph
G = (V ,E) according to a context function CW , obtain-
ing a new graph G′ = (V ,E′), and substitutes parameters
θ

(G)
W for new values θ(G′)′

W , obtaining a new parameter set Θ′,
which yields the BN:

N [θ
(G′)′
W , CW ] := (G′,Θ′) (3)

We will often be interested in considering all of the possi-
ble interventions of a given class on some subset W ⊆ V of
the variables in the causal graph. Letting PG(W ) denote the
set of valid parameter sets for W ⊆ V in graph G, we will
write for parametric interventions:

IN [W ] := {N [θ
(G)′
W ] | θ(G)′

W ∈ PG(W )} (4)

and for structural interventions,

IN [W , CW ] := {N [θ
(G′)′
W , CW ] | θ(G′)′

W ∈ PG′(W )} (5)

3.2 Problem Definition and Complexity
Accurately assessing the robustness of a decision function F
requires an understanding of the causal data-generating pro-
cess. We propose to model this DGP using a causal Bayesian
network N on all variables V , thus enabling causal model-
based analysis of classifiers. In order to reason about the
causal structure N and decision rule F simultaneously, we
add an additional node to the CBN N .
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Definition 8 (Augmented BN). For a CBNN over variables
V and a classifier F : X → Y , we define the augmented BN
NF based onN as follows: VF = V ∪{Ŷ } with pa(Ŷ ) = X
and deterministic CPT θŷ|x = 1[ŷ = F (x)].

This produces a well-defined joint distribution over the
variables V and Ŷ = F (X), which allows us to specify per-
formance metrics as probabilities of events e. For instance, a
classifier’s false positive probability can be expressed as the
probability pNF (e) of event e = (Ŷ = 1) ∧ (Y = 0). More
importantly, we can consider how these metrics change as the
joint distribution changes, due to hypothetical or observed in-
terventions on the causal model. This provides a basis for
model-based notions of robustness of decision rules.

We use intervention sets to represent all interventions
which the modeller considers plausible. The interventional
robustness problem then concerns the worst-case perfor-
mance of the decision rule over interventions in that set.
Definition 9 (IntRob). Given CBN N and decision rule F ,
let INF be an intervention set for the augmented BN NF , e
be an assignment of a subset of the variables in V , and ε > 0.
The interventional robustness problem is that of computing:

IntRob(INF , e) := max
N ′∈INF

pN ′(e) .

We also have the corresponding decision problem:

IntRob(INF , e, ε) := max
N ′∈INF

pN ′(e) > ε .

We will be particularly interested in problem instances
where IN is of the form IN [W ], in which case we can view
the problem instance as IntRob((N ,W ), e). Our next re-
sult shows, via a reduction that we defer to Appendix A, that
the causal semantics of IntRob do not increase the computa-
tional hardness of the problem beyond that of MAP inference.
Theorem 1. Let N = (G,Θ) be a causal Bayesian network,
with n nodes and maximal in-degree d. Then an instance of
MAP can be reduced to an instance of IntRob on a BN N ′
of size linear in |N |, and of treewidthw′ ≤ w+2. An instance
of IntRob can be reduced to an instance of MAP on a BN
N ′ whose CPT Θ′ has size polynomial in the size of Θ, and
with treewidth w′ ≤ 2w.

4 Verification of Intervention Robustness
In this section, we present our approach to verifying inter-
ventional robustness. Due to the difficulty of the problem, we
seek to approximate IntRob(I, e) by providing guaranteed
upper and lower bounds that can be efficiently computed.

4.1 Joint Compilation
Our first goal is to compile NF into an equivalent arithmetic
circuit AC. To do so, we make use of a standard CNF encod-
ing ∆N of the causal BN N , defined over the indicator and
parameter variables λV ,Θ [Chavira and Darwiche, 2005],
and additionally an encoding of the decision function F .

A naı̈ve encoding of F is to explicitly enumerate all in-
stantiations of features x and prediction ŷ, and encode these
directly as CNF clauses. However, this approach is very inef-
ficient for larger feature setsX . We instead assume access to

an encoding of the classifier as a Boolean circuit Σ over input
featuresX and prediction Ŷ . Such a circuit can be converted
to CNF through the Tseitin transformation, introducing addi-
tional intermediate variables T , obtaining a CNF formula ∆F

over λX ,λŶ ,T . We then combine the encodings of F and
N simply by conjoining the CNF formulae, to produce a new
formula ∆joint = ∆N ∧∆F , over λV ,λŶ ,Θ,T .

To construct an AC AC, we now compile this CNF encod-
ing into d-DNNF (deterministic decomposable negation nor-
mal form), using the C2D compiler [Darwiche, 2004], and
then replace ∨-nodes with +, ∧-nodes with ×, and set all
negative literals and literals corresponding to T to 1. This
produces an AC with polynomial lAC [λ,Θ], where λ :=
λV ∪ λŶ . Crucially, this AC is equivalent to the augmented
BN, in the following sense:

Proposition 1. lAC [λ,Θ] is equivalent to lNF [λ,Θ]. Fur-
ther, AC can be used to faithfully evaluate marginal proba-
bilities pN ′(e) under any parametric intervention N ′.

The time and space complexity of this procedure is
O(nw2w), where n is the number of CNF variables andw the
treewidth, a measure of the connectivity of the CNF. When
jointly compiling a BN and a decision function, we can bound
n,w in terms of the individual encodings ∆N ,∆F .

Proposition 2. Suppose ∆N has n variables and treewidth
w, and ∆F has n′ variables and treewidth w′. Then ∆joint

has exactly n + n′ − |λX | variables, and treewidth at most
max(w,w′,min(w,w′) + |λX |).

4.2 Orderings
For the correctness of our upper bounding algorithm, it is nec-
essary to impose some structural constraints on the circuit.

Firstly, any circuit compiled using the procedure described
above has the property that every +-node t has two children,
and is associated with some CNF variable c, such that one
child branch has c true, and the other has c false (information
on the identity of this variable for each +-node is provided
by the C2D compiler). We need to ensure that the arithmetic
circuit only contains +-nodes associated with indicators λ,
and not intermediate variables T . Provided this is the case,
the branches of each +-node t will contain contradicting in-
dicators for some unique variable V . We can thus say that t
‘splits’ variable V , as each of its child branches corresponds
to different values of V , and we write split(t) to denote this
splitting variable.

Secondly, provided the above holds, we require our circuit
to satisfy some constraints of the following form.

Definition 10 (Ordering Constraint). An arithmetic circuit
AC satisfies the ordering constraint (Vj , Vi) if:

∀t, t′, (split(t) = Vi ∧ split(t′) = Vj)

=⇒ t’ is not a descendant of t in AC (6)

Intuitively, our algorithm requires that for BN variables
in the intervention set W , the relative position of splitting
+-nodes in the AC agrees with the causal ordering in the
BN. More formally, we say that AC satisfies the ordering
constraints associated with intervention set INF , if for all
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Figure 2: Example augmented BN (top), corresponding AC (bottom
left), and execution of Algorithm 1 (bottom right). Nodes which
differ from standard AC evaluation are highlighted in red and bold.

Vi ∈W , and all Vj such that Vj ∈ paG(Vi) (parametric inter-
vention set) or Vj ∈ paG′(Vi) (structural intervention set),AC
satisfies the ordering constraint (Vj , Vi). In practice, when
computationally feasible, we compile ACs with topological
and structural topological orderings, which satisfy these con-
straints for all Vi, not just Vi ∈ W ; such orderings have the
advantage of being valid for any intervention setsW .

We enforce these constraints by enforcing corresponding
constraints on the elimination ordering π over the CNF vari-
ables, which is used to construct the dtree that is used in
the compilation process, and affects the time and space taken
by the compilation. Such an elimination ordering is usually
chosen using a heuristic such as min-fill. We instead find a
elimination ordering by using a constrained min-fill heuris-
tic, which ensures that these constraints are satisfied, but may
produce an AC which is much larger than can be achieved
with an unconstrained heuristic in practice.

4.3 Upper Bounds on Intervention Robustness
In order to compute upper bounds on the interventional ro-
bustness quantity, we propose Algorithm 1, which sets pa-
rameters in the AC for the CPTs of variables in W to 1, and
applies maximization instead of addition at +-nodes splitting
on variables in W , when evaluating the (appropriately or-
dered) AC. Algorithm 1 somewhat resembles the well-known
MPE algorithm on ACs, introduced by [Chan and Darwiche,
2006] and used as an upper bound on the MAP problem
in [Huang et al., 2006]. However, our algorithm maximizes
over parameters rather than variables and makes use of spe-
cific AC structure ensured by our ordering constraints; the
reason it produces correct upper bounds is thus also different.

Intuitively, the maximizations represent decision points,
where choosing a child branch corresponds to intervening to
set a particular parameter θw|uW

to 1 (and others to 0). For
example, consider the augmented Bayesian network in Fig-

Algorithm 1: UB(AC, e,W ) (Upper Bounding)
Input: AC, the AC; evidence e; intervenable variables

W ⊆ V ;
Result: Output probability p

1 for node c ∈ AC (children before parents) do
2 switch type(c) do
3 case Indicator λv do
4 p[c] := 0 if v′ not consistent with e else 1
5 case Parameter θv|u do
6 p[c] := 1 if V ∈W else θv|u
7 case × do
8 p[c] :=

∏
d p[d]

where d are the children of c
9 case + do

10 if c splits on some W ∈W then
11 p[c] := maxd p[d]

where d are the children of c
12 else
13 p[c] :=

∑
d p[d]

where d are the children of c
14 Return p[croot], where croot is the root node of AC

ure 2, where all variables are binary, Ŷ = X ∨W , and the
context C(W ) is {X} (represented by the dashed line, which
is not part of the original BN). Figure 2 also shows execution
of Algorithm 1 for false positive probability, i.e. e = (Ŷ =
1) ∧ (Y = 0). At the two +-nodes where maximizations oc-
cur, the value of X is already “decided”, and the adversary
can effectively choose to set θw̄|x = 1 and θw|x̄ = 1. In
this case, the result 0.4 turns out to be exactly equal to the
interventional robustness quantity IntRob(INF , e).

We might ask whether this intuition is correct in general.
Our next result shows that, while the algorithm cannot always
compute IntRob(INF , e) exactly, it does produce guaran-
teed upper bounds (proof in Appendix B):

Theorem 2. Given a parametric/structural intervention set
INF , let AC be an arithmetic circuit with the same poly-
nomial as NF , and satisfying the ordering constraints as-
sociated with the intervention set. Then, applying the UB
algorithm UB(AC, e,W ) returns a quantity BU which is
an upper bound on the interventional robustness quantity
IntRob(INF , e).

This result is quite surprising; it shows that it is possi-
ble, through a very simple and inexpensive procedure re-
quiring just a single linear time pass through the AC, to up-
per bound the worst-case marginal probability over an expo-
nentially sized set of interventions. That this also holds for
structural intervention sets, which alter the structure of the
Bayesian network which the AC was compiled from, is even
more surprising. Further, a compiled AC can be used for any
intervention set given that it satisfies the appropriate ordering
constraints. For instance, an AC compiled using a topologi-
cal ordering allows us to derive upper bounds for parametric
intervention sets involving any subset (of any size) W ⊆ V ,
simply by setting the appropriate parameter nodes in the AC
to 1 (Line 5). This allows us to amortize the cost of evaluating
robustness against multiple intervention sets.

5



Algorithm 2: Lower Bounding
Input: N = (G,Θ), a Bayesian network; evidence e

whose probability will be maximized;
intervenable variablesW ⊆ V .

Result: Output probability
p(e) ≤ maxN ′∈IN [W ] PN ′(e)

1 begin
2 v ← 0;
3 while pN [ΘW ](e) > v do
4 v ← pN [ΘW ](e);
5 for CPT θ(G)

W |u ∈ ΘW do
6 θ

(G)
W |u ← arg maxθ′

W |u
pN [θ′

W |u](e);

4.4 Lower Bounds via Best-Response Dynamics
In addition to an upper bound on IntRob(INF , e), we can
also straightforwardly lower bound this quantity using any
witness, in the case of parametric interventions INF [W ].
That is, we search for an intervention in the set which ap-
proximately maximizes the probability of evidence e.

We obtain such an approach by formalizing the problem
of finding an intervention which maximizes pN ′(e) as a
multiplayer game, where each instantiation uW of parents
paG′(W ) for each W ∈ W specifies a player, and where
all players share a utility function given by pN [Θ](e). Each
player’s strategy set consists of the set of deterministic con-
ditional distributions θW |u (we note w.l.o.g. that, by the
multilinearity of the network polynomial, the optimal value
of PN [Θ′](e) is obtained by at least one deterministic in-
terventional distribution). A Nash equilibrium in this game
then corresponds to an interventional distribution for which
no change in a single parameter can increase pN ′(e). Al-
gorithm 2 follows best-response dynamics in this game. We
provide an analysis of the time complexity and convergence
of this approach in the proof of the following proposition.

Proposition 3. Algorithm 2 converges to a locally optimal
parametric intervention in finite time. Further, if the algo-
rithm is stopped before termination, the current value v will
be a lower bound on maxN ′∈I[W ] PN ′(e).

5 Case Study: Insurance
In this case study, we look at an extended version of the car
insurance example, using the Bayesian network model shown
in Figure 3 [Binder et al., 1997].

Suppose an insurance company wishes to predict
MedCost (the medical cost of an insurance claim), given an
insurant’s Age, DrivHist, and MakeModel (categorical
variables with 3-5 values). MedCost is either BelowThou-
sand (0) or AboveThousand (1). They fit a Naı̈ve Bayes clas-
sifier to historical data, obtaining a decision function F . This
is then used as part of their decision-making policy determin-
ing what premiums to offer to customers.

The company is particularly concerned about false neg-
atives, as the company could lose a lot of money in pay-
outs. Based on the original Bayesian network model (Fig-
ure 3) and their new classifier, this should occur 2.5% of the

Age

SocioEcon

GoodStudent RiskAversion OtherCar

SeniorTrain HomeBase AntiTheft

DrivingSkill MakeModel VehicleYear Mileage

DrivHist DrivQ Airbag Antilock RuggedAuto CarValue

Cushioning Accident Theft

MedCost ILiCost OtherCarCost ThisCarDam
ThisCarCost

PropCost

Figure 3: INSURANCE Bayesian network. Classifier features X
are italicized, and (potential) interventions are shown in bold.

time. However, insurants may attempt to game the classi-
fier to predict BelowThousand (so that they get lower premi-
ums), while actually being likely to have a high medical cost.
In our framework, we model this using structural interven-
tions, assuming that insurants can causally intervene on some
of DrivHist (hide some accident history), MakeModel
(choose a different type of car than they would normally
choose), and Cushioning (upgrade/downgrade the degree
of protection). We use structural intervention sets (with ap-
propriately designed context function) because insurants will
have access to some non-parent variables when adapting;
for instance, they will know their Age when choosing the
MakeModel of a new car. The company would like to un-
derstand how robust their classifier is to these adaptations.

We consider a number of structural intervention sets INF ,
given by intervenable variablesW , which may be any subset
of {DrivHist, MakeModel, Cushioning}. We use
structural sets because we assume the insurant has access to
other variables when choosing how to adapt, such as Age
or Mileage, which are not parents of these variables in the
original BN. Under each of these intervention sets, we seek
to obtain guaranteed upper bounds on these two quantities:

• FN: The probability of a false negative p(F =
0,MedCost = 1), i.e. predicted low medical cost, but
high actual medical cost.

• P: The probability of a positive p(MedCost = 1), i.e.
high actual medical cost.

The results are shown in Table 1. The insurance company
can use these bounds to assess risk, and improve their clas-
sifier’s robustness if they deem the false negative rate under
intervention unacceptable.

The bounds can also provide further insight. We notice that
whenever DrivHist is intervenable, the percentage of false
negatives is the same as positives, i.e. the classifier always
predicts wrong when MedCost is 1. This turns out to be be-
cause the Naı̈ve Bayes classifier always predicts 0 whenever
DrivHist is None, regardless of the other input variables.
Thus, an insurant who can change their DrivHist can al-
ways fool the classifier to predict 0. In addition, the percent-
age of positives doesn’t increase from the original BN: this

6



Intervenable VariablesW FN P
Empty Set 2.5% 7.2%
{DrivHist} 7.2% 7.2%
{MakeModel} 5.7% 10.0%
{Cushioning} 6.1% 12.9%
{DrivHist, MakeModel} 10.0% 10.0%
{DrivHist, Cushioning} 12.9% 12.9%
{MakeModel, Cushioning} 13.0% 13.9%
{DrivHist, MakeModel, Cushioning} 13.9% 13.9%

Table 1: Guaranteed upper bounds on FN and P, under different
structural intervention sets

Net CSize Ord TW AC size Time
(s)

insurance 3 (41) N 24 167121 0.5
3 (41) T 31 794267 4
3 (41) S 33 1270075 8

win95pts 16 (799) N 51 1210072 3
16 (799) T 58 52266950 77

hepar2 12 (946) N 53 8096874 49
12 (946) T 51 123108407 73
12 (946) S 51 123164181 75

Table 2: Results for the joint compilations used in the UB and LB al-
gorithms. Shown are the number of input features d and the sizes of
the Boolean circuits representing the classifier, ordering constraints
(none, topological, or structural topological), treewidth of the com-
bined CNF encoding, and AC size and compilation time.

can be seen from the causal graph, where DrivHist has no
causal influence on MedCost.

On the other hand, Cushioning significantly increases
the positive rate. Notice that, in the graph, intervening on
Cushioningwill not have any influence on the inputs to the
classifier; thus, the increase in FN to 6.1% is not due to fool-
ing the classifier, but rather making high medical expenses
generally more likely, by downgrading the quality of cush-
ioning. In this way, the intervention is ”taking advantage” of
the classifier not having full information about cushioning.

6 Evaluations
6.1 Compilation Performance
In Table 2 we show the performance of our joint compila-
tion approach on a number of benchmark Bayesian networks,
where we jointly compile the network and a decision rule. We
observe that the sizes of the compiled ACs are significantly
smaller than the worst-case bounds would suggest (exponen-
tial in treewidth). Further, when we enforce a topological
or structural topological ordering, the size of the compilation
increases, but not by more than ∼ 100. Our results provide
evidence that our methods can scale to fairly large networks
and classifiers, including networks compiled with topological
and structural topological orderings.

Network IntSet LBound UBound ∆

insurance P1 0.1181 0.1276 0.0095
P2 0.3275 0.3433 0.0158
S1 0.1181 0.1297 0.0116

win95pts P1 0.2111 0.2111 0.0000
P2 0.2163 0.2191 0.0028

hepar2 P1 0.09445 0.09445 0.0000
P2 0.09585 0.09585 0.0000
S1 0.1029 0.1029 0.0000

Table 3: Analysis of the tightness of bounds (on probability of false
negatives) produced by Algorithms 1 and 2. For each network, we
have different intervention sets (P/S indicates the intervention set is
parametric/structural respectively). Lower and upper bounds, along
with the difference, are shown for each intervention set.

6.2 Lower and Upper Bound Tightness
In Table 3 we analyse the quality of our upper and lower
bounds on interventional robustness. We compute bounds
on false negative probability under different intervention sets.
Overall, we find small or nonexistent gaps between the lower
and upper bounds across all networks and intervention sets
evaluated, suggesting that in many settings of interest it is
possible to obtain tight guarantees using our algorithms.

Further, both bounding algorithms are very fast to execute,
taking no more than a few seconds for each run. This is
remarkable given the sizes of the intervention sets. For in-
stance, for the insurance network, the parametric interven-
tion set P2 covers 6 variables (|W | = 6), 248 parameters,
and∼ 1036 different interventions, making brute-force search
clearly infeasible. For worst-case (interventional robustness)
analysis, the sensitivity analysis method of [Chan and Dar-
wiche, 2004] requires ∼ 107 passes through the AC in this
case. On the other hand, our upper bounding algorithm re-
quires an ordered AC (which is ∼ 5 times larger in this
case), but requires just a single pass through the AC, mak-
ing it ∼ 106 faster. Further, our algorithm is uniquely able to
provide guarantees for structural intervention sets.

7 Conclusions
In this work, we have motivated and formalized the inter-
ventional robustness problem, developed a compilation tech-
nique to produce efficient joint representations for classifiers
and DGPs, and provided tractable upper and lower bounding
algorithms which we have shown empirically to be tight on
a range of networks and intervention sets. The techniques
presented here provide ample opportunity for further work,
such as extending the upper and lower bounding technique
to networks where the modeller has uncertainty over the pa-
rameters, and developing learning algorithms for arithmetic
circuits which permit reasoning about causal structure.
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A Proof of Theorem 1
We now prove Theorem 1. To do so, we will formalize the
intervention maximization problem, whose decision form is
IntRob, as follows.
IntRob is the Intervention Robustness problem. Note

that while the definition given in Section 3.2 is agnostic to
the form of the interventions, in order to concretely bound
the size of the input to the problem, we restrict ourselves
to Bayesian networks defined on discrete random variables
and intervention sets of the form IN (W ). Thus, the prob-
lem takes as input a Bayesian network N , a set of interven-
able nodes W , and some evidence e. The goal is to find a
parametric intervention on the variables in W Θ′ such that
PN [Θ′](e) is maximized. The decision version of this prob-
lem is intervention robustness.

MAP: is Maximum a Posteriori inference, a well-studied
problem which takes as input network N , variables W , and
evidence e, and whose objective is to find an instantiation
W = w such that PN (w, e) is maximal.
Theorem 1. Let N = (G,Θ) be a causal Bayesian network,
with n nodes and maximal in-degree d. Then an instance of
MAP can be reduced to an instance of IntRob on a BN N ′
of size linear in |N |, and of treewidthw′ ≤ w+2. An instance
of IntRob can be reduced to an instance of MAP on a BN
N ′ whose CPT Θ′ has size polynomial in the size of Θ, and
with treewidth w′ ≤ 2w.

Without loss of generality, in the proof of this statement
we will assume all variables are binary-valued; it is straight-
forward to then extend the results here to arbitrary discrete
random variables supported on a finite set.
Lemma 1. MAP is reducible to IntRob.

Proof. LetN ,W , e be an instantiation of the MAP problem.
We can convert this into the IntRob problem by adding the
following sets of nodes to N in order to produce a new net-
work N ′.

1. For each V ∈W , add a node Vθ with the same support
as V , and which has no incoming arrows.

2. Additionally, for each V ∈W add a node AV with par-
ents V and Vθ with support True/False, which is True
with probability 1 if V = Vθ and False otherwise. Let
AW denote the set of all such nodes.

We now show that in this new network N ′, IntRob(N ′,
Wθ, {AV = True, e}) is equal to MAP(N ,W , e).

We first observe that for a single V ∈W , we have

PN (V = v) = PN [θVθ=1{Vθ=v}](V = Vθ))

= PN [θVθ=1{Vθ=v}(AV = True)) .

Because Vθ and AV are independent of the rest of the graph
given V , we then straightforwardly obtain that for additional

VVθ

AV

Parents

Children

Figure 4: Visualization of the construction of N ′ for the proof of
Lemma 1.

V

VU=u1

VU=u2

U(V )

Figure 5: Visualization of the intuition behind the construction of
N ′ for the proof of Lemma 2.

evidence e, the same equality holds for the joint evidence
(V = v, e):

PN [θVθ=1{Vθ=v}(AV = True, e) = PN (V = v, e) .

Finally, this equality can be iterated to incorporate all nodes
V ∈ I, and so for any instantiation w = (w1, . . .wn) of
W = {V 1, . . . , V n} with corresponding parameters Θ′w =
{1[V iθ = wi]|V i ∈W } we obtain

PN [Θ′
w](AW = True, e) = PN (W = w, e) .

So the parametric interventions which maximize P (AW =
T, e) are equivalent to the variable valuesw which maximize
P (W = w, e).

It is straightforward to show that the size of the resulting
BN N ′ satisfies the theorem statement. We have increased
the number of nodes by 2|W | ≤ 2|V |, and added CPTs of
size |supp(V )|2, which for binary variables will be fixed at
4, so |Θ′| ≤ |Θ| + 4|V |. Finally, we have not increased the
treewidth of the network by more than a constant increment of
2 because we have added a fully connected component with 2
additional nodes to each variable V ∈ I with no other edges
into the graph.

Lemma 2. IntRob is reducible to MAP.

Proof. For the opposite direction, we show that we can use
MAP to solve IntRob(with parametric interventions). Let
N ,W , e be inputs into IntRob. We initially construct N ′
as a copy of N . We will proceed by converting the parame-
ters θV |u into variables Vu in N ′, where observing the value
Vu = v in N ′ is equivalent, up to a constant factor, to setting
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θV |u := 1[V = v] in the original network N , while avoid-
ing an exponential blowup in the size of this new Bayesian
network.

Intuition: For each CPT component θV |u in N such that
V ∈ W , introduce a new “parameter-node” Vu to N ′ with
support equal to that of V and uniformly distributed (i.p.
Vu has no parents), and add an edge into V . Set P (V =
v′|u, Vu) = 1[Vu = v′]. In other words, if the value of
U = u, then V gets the value of the node Vu deterministi-
cally. This construction is visualized in Figure 5.

Naively, this will blow up the CPT for V by a factor ex-
ponential in the size of the parent set, and may increase the
treewidth of the network by this factor as well. We therefore
proceed in the following construction to minimize the impact
on the size of the representation ofN ′. This construction will
still add in the worst case |Θ| variables to the network, but it
will only increase the size of |Θ| by a linear factor and will
only increase the treewidth by at most a factor of 2.

Selector circuits: in a more efficient (and more involved)
construction, we add a number of auxiliary variables that act
as a filter based on the values of the parents U to pass down
the correct value to V . We visualize an example of this con-
struction in Figure 6. We enumerate the parents of V as
U1, . . . , Un, and add auxiliary variables {Vu|u ∈ supp(U)}
to the graph as described in the intuition above. We then
add auxiliary variables Sij , with i ranging from 1 to n and
j ranging from 1 to 2|U |−i for each level i. To each variable
Vu we assign it the binary string un . . . u1. For each prefix
u ∈ {0, 1}n−1 we then draw arrows from U1, Vu0 and Vu1 to
S1,uand define the conditional P (S1,u|Vu0, Vu1, U1 = u1) =
1[S1,u = Vu,u1 ]. We inductively define at layer i for a prefix
u ∈ {0, 1}i−1 the random variable Si,u, with parent vari-
ables Si−1,u0, Si−1,u1, and Ui, and conditional distribution
P (Si,u|Si−1,u0, Si−1,u1, Ui = ui) = 1[Si,u = Vu,ui ]. The
value of Sn,∅ will therefore be deterministically the value of
Vu for U = u, and so we can simply set the CPT of V to
depend uniquely and deterministically on Sn,∅.

This procedure will not add more nodes than there are pa-
rameters in the CPT to the graph (i.e. the increase in the
number of nodes n is bounded by exp(w)) and will not in-
crease the treewidth by more than a linear factor, as the se-
lector circuit has treewidth at most 2|U | + 1 (this is easily
observed by forming a tree decomposition via a depth-first-
search procedure). The maximal number of nodes this con-
struction can add to the table is therefore 2|Θ|, assuming that
all n nodes are set to be intervened on, and we can increase
the treewidth by a factor of at most 2, independent of the num-
ber of nodes we modify. We therefore obtain that for N ′:
|V | ≤ |V |+ 2|Θ|, |Θ| ≤ 16|Θ|, and w′ ≤ 2w.

The end result of this construction is that we have changed
the distribution of the variable V so that it now depends on
2|U | additional random variables Vu1

, . . . , Vuk , and deter-
ministically takes the value of Vui whenever its parents satisfy
U = ui.

We now claim that in the new network N ′, the conditional
distribution on V induced by observing Vu = vu is equal up
to a constant to doing a parametric intervention on θv|u in N

U1 U2

Vu1u2
Vu1u2

Vu1u2
Vu1u2

S1,1 S1,2

S2,1

Figure 6: Example ‘selector’ circuit. At each level i, pair up so-
lutions from paths that differ only on variables u1, . . . ui (will be
uniquely 2 for binary valued variables), then use the value of ui to
‘select’ the correct value. I.e. P (S1,1 = Vu1,u2|U1) = 1 if U1 = u1

else P (A1 = Vū1u2) = 1 if U1 = ū1. After |U | levels, the value of
An will be the value of Vu, and so will be used to substitute for V .

which deterministically sets v to vu conditioned on U = u.
To see this, let vU be an instantiation of the variables VU.

PN ′(V = v|u,vU) = PN ′ [V = v|Vu = vu,U = u]

= 1[v = vu]

= PN [θv|u=1][V = v|U = u]

We also observe that for any ancestor U of V , PN (U) =
PN ′(U), since we only changed the conditional distribution
of a descendent of U . Further, for any descendent D of V ,
we obtain PB(D|U = u, V = v) = PN ′(D|V = v,U =
u). This is again because we did not change any conditional
distribution for a descendent of V .

Because VU is uniformly distributed in N ′, we can
therefore straightforwardly derive that for a single variable,
IntRob can be reduced to MAP on N ′. We decompose the
evidence variables e into eC and eA (for descendents, ances-
tors of V respectively).

max
θV |u

PN [θV |u](e) = max
θV |u

PN (eA)PN [θV |u](eC) (7)

=PN (eA) max
vu

∑
u

P (u|eA)P (eC |V = vu,u) (8)

=PN ′(eA) max
VU

2|U |PN ′(VU = vU) (9)∑
u

PN ′(U = u|eA)P (eC |eA, u, V = vu) (10)

=2|U |max
vU

PN ′(e,VU = vU) (11)

We note that because 2|U | is a constant, it does not affect
the maximization problem and so the two maximization prob-
lems will be maximized by equivalent parameter settings.
Once the result is established for single variables, this obser-
vation is easily extended to the entire set W by performing
an analogous summation over all instantiations of variables
which are parents of an element ofW . The only trick is that,
when summing over values u of the parents of W , one must
be careful in dealing with elements v ∈ W which are also
parents of intervenable variables. In such cases, we define

10



PN ′(w|u) to be zero if the elements at the intersection ofW
and U disagree on their assigned values.

max
θW

PN [θW ](e) = max
θW

PN (eA)PN [θW ](eC) (12)

=PN (eA) max
wU

∑
u

P (u|eA)P (eC |W = wu,u) (13)

=PN ′(eA) max
wU

2|U(W )|PN ′(WU = wU) (14)∑
u

PN ′(U = u|eA)P (eC |eA,u, V = vu) (15)

=2|U |max
vU

PN ′(e,VU = vU) (16)

As noted previously, it is sufficient to consider parametric in-
terventions that are deterministic to solve the IntRob prob-
lem (by the multilinearity of the network polynomial, the op-
timal value of PN [Θ′](e) is obtained by at least one determin-
istic interventional distribution). Therefore, searching over
the set of distributions induced by deterministic parametric
interventions is equivalent to searching over conditional dis-
tributions induced by observing VU, and so this set of condi-
tional distributions is sufficient for solving IntRob.

B Proof of Theorem 2
Theorem 2. Given a parametric/structural intervention set
INF , let AC be an arithmetic circuit with the same poly-
nomial as NF , and satisfying the ordering constraints as-
sociated with the intervention set. Then, applying the UB
algorithm UB(AC, e,W ) returns a quantity BU which is
an upper bound on the interventional robustness quantity
IntRob(INF , e).

Due to lack of space, we provide a sketch of the proof;
formal definitions of concepts introduced and the full proof
can be found in the Appendices of [Wang et al., 2021].

B.1 Subcircuits and Consistency
In our proof, we rely on the idea of subcircuits of an arith-
metic circuit:

Definition 4 (Complete Subcircuit). A complete subcircuit α
of an AC is obtained by traversing the AC top-down, choosing
one child of every visited +-node and all children of every
visited ×-node. The term term(α) of α is the product of all
leaf nodes visited (i.e. all indicator and parameter variables).
The set of all complete subcircuits is denoted αααAC .

The output of an AC is thus the sum over the terms of every
complete subcircuit α ∈ αAC . Viewed in this way, we can
also see that arithmetic circuits have a compositional struc-
ture: we can define partial (suffix) subcircuits starting from
any +-node in the AC, by treating it as the root of a ”sub”-
AC.

Our goal is to show that the output of the UB algorithm
is an upper bound on the output of evaluating the AC after
applying any allowed intervention. Recall that due to the
multilinearity of the network polynomial, any extrema over

the intervention set are always attained by deterministic inter-
ventions f , i.e. those which set parameters to 0 or 1. Notice
that both the UB algorithm and deterministic interventions
thus effectively eliminate many complete subcircuits, which
then do not contribute to the output: the UB algorithm by
applying maximization operations (Lines 10-12), and deter-
ministic interventions by setting some parameters to 0. We
say a subcircuit is UB-inconsistent or f -inconsistent respec-
tively in this case. Thus, we can reformulate the problem as
showing that the sum of weights (i.e. multiplying parameters
in term) over all UB-consistent subcircuits is greater than the
sum of weights over all f -consistent subcircuits. We use UB-
value/f -value to refer to this sum.

B.2 Inductive Lemma
To prove this result, we take an inductive approach over +-
nodes in the AC. Intuitively, since the subtree from each
+-node t forms a ”sub”-AC, we might expect that the sum
of weights over all UB-consistent partial subcircuits (start-
ing from t) is greater than the sum of weights over all f -
consistent partial subcircuits. We formalise this in the fol-
lowing Lemma:
Lemma 3. Let t be a set of +-nodes, such that no t ∈ t is a
descendant of another. Further, let α0 ∈ SP (t). Then:

valpref,t(S(t, α0)) ≥ max
f

valf (S(t, α0)) (17)

On a high level, this extends the idea to multiple +-nodes
t, by looking at Cartesian products of the sets of partial sub-
circuits from each t ∈ t, and valpref,t, valf are functions
which effectively compute the sum of weights over UB/f -
consistent subcircuits. It is thus a stronger version of the re-
sult for a single +-node; it turns out this extension is neces-
sary for the induction to work. Given this Lemma, Theorem
2 easily follows, by taking t to be the singleton set containing
the root of the AC.

The inductive step for the proof of this Lemma is quite in-
volved; on a high level, for every intervention f , it finds an-
other intervention fadj , such that 1) the fadj-consistent sub-
circuits are more ”streamlined” according to the structure of
the AC and 2) fadj has greater value. The ”streamlining”
property then allows us to upper bound the fadj value by the
UB-value (which uses MAX operations at +-nodes), which
then is also an upper bound on f -value by property 2).

This is also where the crucial ordering constraints (Section
4.2) come into play. Suppose we have a +-node twhich splits
on intervenable variable W ∈ W . These constraints ensure
that, in the subtree from t, no +-nodes split on any parent of
W . As a result, any intervention f will effectively ”choose”
a single branch at t which does not depend on the rest of the
subtree, which contributes to the ”streamlining” property.
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