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Abstract

This paper aims to achieve faster than O(1/t) convergence in federated learning for general
convex loss functions. Under the independent and identical distribution (IID) condition, we
show that accurate convergence to an optimal solution can be achieved in convex federated
learning even when individual clients select stepsizes locally without any coordination. More
importantly, this local stepsize strategy allows exploitation of the local geometry of individ-
ual clients’ loss functions, and is shown to lead to faster convergence than the case where
a same universal stepsize is used for all clients. Then, when the distribution is non-IID,
we employ the sharing of gradients besides the global model parameter to ensure o(1/t)
convergence to an optimal solution in convex federated learning. For both algorithms, we
theoretically prove that stepsizes that are much larger than existing counterparts are al-
lowed, which leads to much faster convergence in empirical evaluations. It is worth noting
that, beyond providing a general framework for federated learning with drift correction, our
second algorithm’s achievement of o(1/t) convergence to the exact optimal solution under
general convex loss functions has not been previously reported in the federated learning
literature—except in certain restricted convex cases with additional constraints. We be-
lieve that this is significant because even after incorporating momentum, existing first-order
federated learning algorithms can only ensure O(1/t) convergence for general convex loss
functions when no additional assumptions on heterogeneity are imposed.

1 Introduction

Federated learning has received intensive attention since it was proposed by |McMahan et al.| (2017)). Nowa-
days, it has found applications in diverse areas including healthcare (Xu et al., |2021a; Nguyen et al.l |2022;
Antunes et al} 2022), smart cities (Pandya et all 2023 [Jiang et all 2020; Ramu et al., |2022)), natural lan-
guage processing (Liu et al., [2021} [Lin et al., [2021; [Zhu et al.l 2020)), the Internet of things (Nguyen et al.,
2021} |Zhang et al., [2022b; |Ghimire & Rawat| 2022)), among others. In federated learning, the training data
sets are located on individual clients which cooperatively learn a common model via periodically sharing
their intermediate learning results with a central server (McMahan et al., 2017)). Compared to centralized
learning where all data are aggregated to a data center, federated learning has many advantages, such as
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enhanced security (Ma et al., [2020; Mothukuri et al., 2021} [Zhang et all, [2022al), better privacy (Yang et al.,
2019} [Agarwal et al.| [2018} [Li et al., |2020)), and higher communication efficiency (Sattler et al., 2019} |Chen)
et al.| 2021; [Hamer et al) [2020)). To date, many aspects of federated learning have been extensively studied,
including stepsize design (see, e.g., Kim et al.| (2023); [Mukherjee et al|(2023)); Pan et al(2023))), communi-
cation efficiency (see, e.g., Nori et al.| (2021); |Tran et al.| (2019); [Liu et al. (2022)), optimization mechanism
(see, e.g., |[Luo et al. (2021); Wei et al.| (2024); Feng et al. (2021)), among others.

In federated learning, clients perform multiple local training steps before communicating with a central server
to reduce the burden of information transmission (McMahan et al.,|2017). However, these local training steps
move local optimization variables toward the minima of local loss functions and introduce a drift from the
optimal solution of the global loss function. Therefore, when the data distribution is non-IID among the
clients, local training steps result in slow convergence and learning errors, which is called the “client-drift
phenomenon” (Karimireddy et al., [2020; [Li et al.l [2019; [Malinovskiy et al.| [2020; |(Charles & Koneényl, [2020;
[Charles & Konecny, 2021; Pathak & Wainwright|, 2020)). In fact, under non-IID data, popular federated
learning algorithms, such as FedAvg, can only ensure accurate convergence under diminishing stepsizes,
which, however, results in slow convergence |Mitra et al| (2021b). It is worth noting that by imposing
additional assumptions on the loss function (e.g., the interpolation and the strong growth condition used
in Ma et al| (2018); Meng et al.| (2020); |Qin et al| (2022b); Kim et al.| (2023)) or introducing additional
information sharing (e.g., gradient in Mitra et al. (2021ajb)), accurate convergence can be ensured under a
constant stepsize. However, these results only prove O(1/t) convergence for general convex loss functions.

Inspired by the result in|Lee & Wright| (2019) which proves that o(1/t) convergence rate can be obtained in
first-order centralized gradient methods by employing large stepsizes, we prove that o(1/t) convergence can
be achieved in general convex federated learning, in contrast to existing state-of-the-art algorithms—which
either guarantee only O(1/t) convergence (Mitra et al., |2021b} [Mukherjee et al., 2023; |Qin et all [2022Db;
[Khaled et all, [2020]), or rely on additional assumptions beyond convexity to establish o(1/t) rates
(Jiang et al., 2024; Kovalev et al.l [2022)).

The main contributions of this paper are summarized as follows:

e Under the IID condition of data distribution (also called strong growth condition in
(2013)), we prove that the conventional FedAvg algorithm (called Algorithm [I]in this paper
after incorporating local stepsizes) can converge under a stepsize that is much larger than existing
counterparts (our theoretically obtained stepsize is at least two and four times larger than the
ones in [Qin et al.| (2022b) and [Khaled et al.| (2020), respectively). More importantly, we prove
that our stepsize can lead to an o(1/t) convergence to an accurate optimal solution, faster than the
commonly believed O(1/t) convergence. To our knowledge, no o(1/t) convergence results have been
reported in the literature for general convex federated learning, even after incorporating momentum

(see, e.g., Xu et al| (2021Db); [Liu et al. (2020); |Cheng et al.| (2023); |Yang et al.| (2022)).

¢ Under the same condition, we prove that FedAvg can converge accurately when individual clients
select their (constant) stepsizes in an uncoordinated way. This allows individual clients to exploit
their local geometry of loss functions and is proven in our numerical experiments to provide a faster
convergence compared with the case where a same universal stepsize is used by all clients. To our
knowledge, this is the first time that such results are reported for general convex loss functions.

 Under non-IID data, we show that our Algorithm [2] can ensure accurate convergence under constant
stepsizes. Compared with existing counterparts, we allow much larger stepsizes (our theoretically
obtained stepsize is at least 162/5 and 4 times larger than the ones in Karimireddy et al| (2020)
and Mitra et al. (2021b)), respectively). More importantly, we prove that under our stpesizes, the
algorithm can ensure o(1/t) convergence under a general convex loss function, which has not been
reported before for first-order federated learning algorithms, even after incorporating momentum
(Xu et al., 2021b} [Liu et al., 2020; Cheng et al. 2023; [Yang et al., 2022). This stands in stark
contrast to existing results on convex federated learning, where o(1/K) convergence has only been
established under subclasses of convex functions—such as gradient difference being uniformly
bounded (Jiang et al., [2024), or Hessian difference being uniformly bounded (Kovalev et al., [2022)).
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e Algorithm [2] introduces a general framework for federated learning with drift correction, unifying
and extending a broad class of methods that ensure convergence under non-IID data, including
FedLin (Mitra et al.,[2021Db)), FedTrack (Mitra et al.l 2021a), Scaffnew (Mishchenko et al.,[2022)), and
SCAFFOLD (Karimireddy et all [2020). In addition, we develop a novel analytical framework that
establishes a key monotonic descent property, enabling us to prove an improved o(1/t) convergence
rate under general convex objectives—an achievement that, to the best of our knowledge, has
previously only been attained for specific subclasses of convex functions in federated learning (see,
e.g., Jiang et al. (2024); Kovalev et al|(2022))). It is worth noting that extending the monotonic
descent property from centralized optimization in|Lee & Wright| (2019) to federated learning is highly
nontrivial, due to the presence of multiple heterogeneous local loss functions arising from non-IID
data distributions. To the best of our knowledge, this is the first work to rigorously establish such
monotonicity in the context of convex federated learning.

2 Preliminaries

Notations R”" and R™*"™ denote the set of real n-dimensional vectors and the set of n x n-dimensional

matrices, respectively. For z € R" and A € R"*", [z]; and [A];; denote the j** element of the vector x
n

and the (i,7)"" element of the matrix A, respectively. For z,y € R™, we define (z,y) = Y. [z];[y]; and
Azl]. 0, € R" and 1,, € R"
are n-dimensional vectors with all elements being 0 and 1, respectively. We use O(c(t)) and o(c(t)) to

represent sequences d(t) satisfying limsup,_, | |%| < oo and limy—, % = 0, respectively.

=] = \/>2)—1[x]3. For a matrix A € R"™*", we define [|Al2 = sup) =1, ,ern

2.1 Problem Settings

We consider the following federated learning problem with clients set S = {1,2,--- , N} as follows:

min f(z) = — Zfi(x), (1)

TzER™ N ‘

where f; : R™ — R is the local loss function of client i. The local loss function f;(x) is dependent on the
local training data of client . We use the following standard assumptions about the loss functions (see
let al| (2021aljb)); |Qin et al.| (2022b); Mukherjee et al.| (2023); [Acar et al.| (2021))).

Assumption 1. For any ¢ € S, fi(x) is L;-smooth over R™, i.e., there exists a constant L; such that
IVfi(z) = Vfi(y)ll < Li||z — y|| holds for any i € S and x,y € R™. This implies

IVf(z) =Vl < Lz -yl

where L = 4 Zivzl L;, i.e., f(x) is also L-smooth over R™.

Assumption 2. For any i € S, f;(x) is convex over R™. Moreover, the optimal solution set

X*={2" e R"|z" = arg m]iRn f(x)}
zeR?

is not empty, i.e., there exists at least one x* € R™ such that V f(x*) = 0,, holds.

In existing results for federated learning (see, e.g., Mitra et al.| (2021b); |Qin et al.| (2022b)); [Khaled et al.|
(2020); Mukherjee et al. (2023))), the theoretically obtained convergence rates are all on the order of O(1/t)
for general convex loss functions, where ¢ is the number of communications between clients and the central
server. In this paper, we will show that we can prove a faster o(1/t) convergence rate by using a larger
stepsize. To this end, we first introduce the following lemma (see Debnath & Mikusinski| (2005) or Lee &/

Wiighi| (2019)).

Lemma 1. Let {A(t)} be a nonnegative sequence satisfying the following conditions:

(1) {A(t)} is monotonically decreasing;
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(2) {A(t)} is summable, that is, Y po o A(k) < co.
Then, we have A(t) = o(1/t), i.e., limy_ o tA(t) = 0.

3 Convergence under IID Data

In this section, we consider the case where the data on all clients are IID. In the literature, this is usually
formulated as the following assumption (see, e.g., [Schmidt & Roux] (2013); |Qin et al.| (2022b); Kim et al.
(2023)):

Assumption 3. There exists a constant n > 0 such that ||V fi(z)|| < n||Vf(z)|| holds for any clienti € S
and x € R".

This assumption is also sometimes called Strong Growth Condition (Schmidt & Roux, 2013|) and has been
widely used in machine learning (Ma et al.l 2018 [Vaswani et al., [2019aib; |Gower et al., [2021; Meng et al.,
2020). In fact, |Qin et al. (2022b) recently experimentally verified that this condition is satisfied for over-
parameterized models. Next, we will prove that the classic federated learning algorithm FedAvg can converge
at an o(1/t) rate under judiciously designed stepsizes under Assumption In Section 4l we will consider
the more general non-IID case.

3.1 Algorithm Description

For the sake of completeness, we restate FedAvg in McMahan et al.| (2017)) as Algorithm (1| (with an extension
that we allow clients to use heterogeneous local stepsizes). Specifically, in this algorithm, instead of using a
universal stepsize «, each client selects its own stepsize «; without coordination with other clients. As proven
in the next subsection and the numerical experimental evaluation, this enables our algorithm to obtain faster
convergence than existing counterparts.

Algorithm 1 (FedAvg with local stepsizes)

Input: Initial value Z(1), local training period 7, the stepsize «; for client i
fort=1to T do
fori=1to N do
Each client 4 sets x; o(t) = Z(t).
for k=0tor—1do
Each client ¢ does local training

Zip1(t) = €3 k() — iV fi(zi 1(2)). (2)

end for
end for
Each client i transmits z; ,(t) to the central server and receives Z(t + 1) = + Zf;l x; +(t) from the
central server.
end for

3.2 Convergence Analysis

Theorem 1. Under Assumptions[1], [3, and[3 if the stepsize of client i satisfies oy = a > 0 for alli € S
and

a < min {L 87 } (3)
1<i<N UL;7" L(27 + (7 — 1))2 + 4nLr(t — 1) )’

where L = % Zf;l L;, then f(Z(t)) converges to f(x*) with the convergence rate o(1/t), i.e.,

Jim t{f(2(1)) ~ f(a*)} = 0.
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Proof. See Appendix [C] O

In fact, we can allow the stepsize a; of the client i € S in Theorem[I]to be larger to achieve faster convergence
of Algorithm [T} which is detailed in Theorem [2}

Theorem 2. Under Assumptions[1],[4, and[3, if the stepsize o for client i € S in Algorithm [1] satisfies

1
0 P < =, 4
<ai< (4)
we have limy_, o f(Z(t)) = f(2*) and
T *

e O

T — - minlSiSN{Qai - 2L1a12}T
Proof. See Appendix D] O

The proposed stepsize in Theorem [2| is larger than designed stepsizes for FedAvg in existing theoretical
results. For example, |Qin et al] (2022b) and [Khaled et al| (2020]) obtained stepsizes that should satisfy
0<a< —L and 0 < a < 3 L, respectively. A simple comparison with shows that our stepsize can be two
and four times as large besides the additional flexibility of allowing different clients to select their local
stepsizes to exploit local geometry to speed up convergence. In fact, our numerical experiments in Figure
confirm that our stepsize strategy indeed leads to much faster convergence than the ones in
(2022b)); Khaled et al.| (2020); [Mukherjee et al.| (2023)) (see Table [1| for a detailed comparison of stepsizes).

Theorem [2| can also be obtained under a weaker interpolation assumption: ||V f;(z*)|| = 0 for all ¢ € S,
r € R, and z* € X*, which is also widely investigated in machine learning (see Ma et al.| (2018); [Vaswani
let al.| (2019ajb)); |Gower et al.| (2021); Meng et al.| (2020)). Compared with Theorem [I} Theorem Z| does not
require client ¢ to know information about the global loss function to determine its stepsize In addition, it
allows stepsize that is max;<;j<n{ ’T L@rtn(r— 1)L) +dnLr(r—1) } times larger than that in (3). In fact, our
numerical experimental results in Appendlx 612 show that allowing clients to use local stepsmeb achieves
a faster convergence than the case with a global stepsize. This is intuitive in that utilizing local Lipschitz
constants allows the gradient descent steps to exploit the local geometry of loss functions, and hence, enables
faster convergence. It is worth noting that although such a phenomenon has been reported in
for one specific example of quadratic functions, we are the first to theoretically establish that
local stepsizes can be exploited to achieve faster convergence for a general class of loss functions in federated
learning.

Remark 1. It is worth noting that the o(1/t) convergence rate established in Theorem does not contradict
the result in|Glasgow et al.| (2022), which proves that FedAvg cannot achieve a rate faster than O(1/t) for
general convex objectives. The key distinction lies in the fact that Theorem[]] relies on the additional Strong
Growth Condition (see Assumption @ The strong growth condition is a standard assumption of federated
learning in the over-parameterized setting (Vaswani et all, [2019d;|Qin et all [2022bd), i.e., when the model
can interpolate the data completely, such that the loss at every data point is minimized simultaneously (usually
means zero empirical loss). The strong growth condition posits that the squared norm of any client’s local
gradient is bounded by a constant multiple of the squared norm of the global gradient, i.e., ||V fi(z)] <
||V f(z)||. This condition implies that client-level gradients align with the global direction, ensuring that
local gradient descent updates do not diverge excessively. That is the reason why we can prove the improved
convergence rate o(1/t). In the next section, we introduce a new algorithm that achieves o(1/t) convergence
for general convex objectives under non-1ID data, without requiring any additional restrictive conditions.

Remark 2. The stepsize in Theorem|[d is larger than that in Theorem[d], allowing greater flexibility in prac-
tice. However, the convergence rate established in Theorem (1| is o(1/t), which is sharper than the O(1/t)
rate in Theorem [3 This reflects a trade-off: the relaxzed stepsize condition in Theorem [3 leads to a more
conservative theoretical guarantee. Nonetheless, using local stepsizes tailored to individual smoothness con-
stants—as in Theorem [J—vyields significantly better empirical convergence performance, as demonstrated in

Sections and[61.2
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4 Convergence under non-1ID Data

4.1 Algorithm Description

Under non-IID data, it has been known that except the trivial case where the number of local iterations is
one (1 =1), Algorithm will be subject to errors (Mukherjee et al.l |2023; |Orvieto et al., [2022; [Wang et al.)
2020; [Karimireddy et al.| 2020). Inspired by gradient-tracking-based distributed optimization algorithms
(Pu & Nedid, [2021} [Nedié et all [2017)), we propose Algorithm [2 to address this issue and ensure accurate
convergence under non-IID data.

Algorithm 2
Input: Initial values (1), V f(Z(1)), local training period 7, and stepsize «;
fort=1to T do
for i=1to N do
Each client ¢ sets

zio(t) =2(t) and yio(t) = Vf(Z(t)). ()

for k=0tor—1do
Client 7 does local updating

Ti ft1 (t) =24 1 () — ays k (1), (6)
Yik+1(t) =Yi k() + Vfi(2ik1(t) — VSilwir(t)). (7)

end for
end for
The central server calculates and transmits Z(t + 1) = + Zi\; x;,+(t) to each client. Each client ¢ then
transmits V f;(Z(t + 1)) to the central server and receives Vf(z(t + 1)) = + Zfil Vfi(z(t + 1)) from
the central server.
end for

Unlike Algorithm |1 which exchanges only the model parameters z; 4+1(t) between clients and the server,
Algorithm [2] requires exchanging an additional variable for the gradient. More specifically, in Algorithm
each client uses the global gradient information V f(Z(t)) to initialize its local variable y; x(t) after each
communication round (see (5))). This variable y; x4+1(t), which serves as an estimate of the global gradient,
is then used to update the model parameter x; r41(t) (see ) This is key to eliminating the drift caused
by non-IID data.

Our Algorithm [2| provides a general framework for federated learning with drift correction, encompassing a
wide range of existing algorithms as special cases. Specifically, by substituting equation into equation
@ and applying mathematical induction, the auxiliary variable y; 5 (¢) can be expressed as

Yik(t) = Vi(zin(t) — Vi(2(t) + Vf(z(t))

for K =0,1,...,7. Substituting this expression into the update rule @ leads to

Tt (t) = wia(t) = a(Vilaia(t) = VAED) + VIED)).

which recovers the specific update mechanisms used in FedLin (Mitra et al. [2021b) and FedTrack (Mitra
et al., [2021a). In addition, as z; x(t) converges to z*, it follows from equation (7)) that y; x(z*) = V fi(z*), a
key idea leveraged in the “drift-correction” federated learning algorithms Scaffnew (Mishchenko et al., [2022)
and SCAFFOLD (Karimireddy et al.l [2020). This demonstrates that Algorithm [2| not only generalizes but
also unifies prior drift-corrected federated learning methods within a broader and more flexible structure.

Next, we prove that the new framework allows us to obtain o(1/t) convergence in general convex federated
learning, which is only established in the literature for special classes of convex functions with restrictions on
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data heterogeneity (see, e.g., under the bounded gradient difference condition in | Jiang et al.| (2024) and under
the bounded Hessian difference condition in Kovalev et al.[(2022)). For the general convex case without any
restrictions, existing federated learning algorithms—even those incorporating momentum—only achieve an
O(1/t) convergence rate. In addition, the new framework allows using significantly larger step sizes compared
to existing drift-corrected federated learning algorithms, as detailed in Section [£.2]

4.2 Convergence Analysis

Theorem 3. For Algorithm[3, under Assumptions[]] and[3, if the stepsize o of client i € S satisfies

1 2
0<a< mm {L 5LT—L}’ (8)

where L = +; Zil L;, then f(z(t)) converges to f(x*) with the convergence rate o(1/t), i.e.,

lim #{f(2(t)) — f(z*)} = 0.

t—o0

Proof. See Appendix [E] O

In Theorem 3| we establish an o(1/t) convergence rate for federated learning with general convex functions
under non-IID data. A key step in this analysis, as shown in Lemmal[l] is proving that the sequence {f(z(t))}

is monotonically decreasing, i.e.,
fE+1) < f(zt)).

We emphasize that proving this monotonicity under general smooth and convex conditions is highly non-
trivial. Our proof of this property, presented in Lemma [2] constitutes a significant technical contribution of
this work.

Lemma 2. If the stepsize o of Algomthm@ satisfies 0 < a < 5L , there exists a constant v > 0 such that

V2|V F(E())? < f(2() — f(2(E+1)).
Moreover, the sequence f(Z(t)) is monotonically decreasing.

The proof of Lemma [2]is provided in Appendix [F} We provide a brief proof sketch here. Because z(t + 1) =
(t) — § va 1 Z;é Vfi(z;k(t)) (see ), the proof begins by applying the L-smoothness property to
bound f(Z(t+1)). The deviation Vﬁ(at‘Z k(t )) V fi(Z(t)) is then bounded using smoothness, together with

a carefully derived inequality || SV ST 70V fizin(®))]| < (2r — DIV F(@@)]| (see (#7)), yielding the
refined descent inequality

( 5L1%2 — Lt 9
ar — ——a

) IVFE@)|* < £@0) - f@(E+ 1)

(see ll Finally, under the step-size condition 0 < a < this inequality guarantees a strict decrease

in f(x(t)), establishing its monotonic convergence.

5LT L>

Notably, other federated learning algorithms in |Mitra et al.|(2021a3b|), which also follow a gradient-tracking-
based framework, only establish an O(1/t) convergence rate under general convex functions in their analyses.
In contrast, our work develops a more refined analysis technique—specifically, the nontrivial proof of the
monotonically decreasing property, i.e., f(Z(t+1)) < f(Z(t)) (see Lemma [2)—which enables us to establish
an o(1/t) convergence rate in Theoreml 3l Importantly, this analysis framework is not limited to our algorithm
and can also be applied to other gradient-tracking-based methods to improve their theoretical guarantees
from O(1/t) to o(1/t) under general convex settings. This general methodology, therefore, represents a
significant contribution of our work.

Remark 3. It is worth noting that|Lee & Wright (2019) proves that centralized first-order gradient descent
algorithms can achieve the convergence rate o(1/t), which is better than the existing well-known convergence
rate O(1/t). The key to this improvement lies in establishing the monotonic descent property. This paper



Published in Transactions on Machine Learning Research (02/2026)

extends the monotonic descent property from centralized optimization in|Lee & Wright) (2019) to federated
learning, which is highly nontrivial due to the presence of multiple heterogeneous local loss functions arising
from non-IID data distributions. To the best of our knowledge, this work provides the first rigorous proof of
such monotonicity in convex federated learning and, as a result, achieves the improved o(1/t) convergence
rate.

Remark 4. To illustrate why Algorithm [9 is well suited for non-IID cases and why its sharing
of the additional gradient variable can overcome the need for Assumption 3, we define: X(k) =
WT (), 2L (k) (BT, VAX(R) = (VAT (@1 k), VT (@a(k), - VAT n ()T, Wk + 1) =
~AIn1E for k+1 = 7t, and W(k+ 1) = Iy for k+1 # 7t. It can be verified that Algorithm 2 can
be expressed equivalently as:

X(k+1)=W(k+D{X(k) — aY(k)},
Y(k+1) =W(k+D{Y(k)+Vf(X(k+1)) - Vf(X(E))}

To link the notation, the variable X (kt) = [z (k7), 2L (k7),-- 2% (k7)]T in the form above corresponds
precisely to the variable Z(t) in the original description of Algorithm @ satisfying x;(kT) = Z(t) for any
1 <i < N. We next show that Y (t) = [yf (t),yZ (), ,yX ()T is an estimate of the global gradient. Based
on the definition of W(t), taking the network average gives

Y(t+1)=Y(t)+ V(X(t+1)) - VF(X(1)),

where Vf(X(t) = & Zivzl Vfi(zi(t) and Y (1) = % Zil yi(t). Based on the initialization rule (@), i.e.,
Y(0) = Vf(X(0)), we can obtain Y (t) = Vf(X(t)). Therefore, the average of Y (t) coincides with the
true global gradient at every iteration, and the consensus force of W (t) ensures that all local y;(t) converge
to this average, and hence that all local y;(t) converge to the global gradient. Therefore, at each iteration,
the local model parameters (i.e., X (t)) are updated based on the global gradient estimate rather than local
gradients. This mechanism ensures that the local model parameters converge to the optimal solution of the
global loss function, rather than to the optima of the individual local loss functions resulting from non-IID
data, effectively overcoming the need for Assumption[3

Remark 5. We acknowledge that, compared with the classic federated learning algorithm FedAvg, our Al-
gorithm [3 requires additional communication. However, we argue that this overhead is a necessary cost for
effectively addressing non-IID data. To the best of our knowledge, all existing federated learning algorithms
that guarantee accurate convergence under non-1ID data require sharing additional information beyond the
gradients used in FedAvg, in order to correct the drift induced by data heterogeneity. In fact, [Karimireddy
et al.| (2020) provides a counterexample demonstrating that FedAvg (Algorz'thm cannot ensure exact con-
vergence under non-IID data distributions. Compared with FedAvg, Algorithm [4 requires exchanging an
additional variable alongside the gradient. This additional communication is essential for eliminating the
drift caused by non-IID data (heterogeneity in the clients’ loss functions). Therefore, this increased commu-
nication is a necessary price to pay for ensuring exact convergence of federated learning under non-IID client
data distributions.

4.3 Comparison with Existing Results

From Theorem [3] Algorithm [2] allows a much larger stepsize and a better convergence rate compared with
existing works. Specifically, the stepsize in [Karimireddy et al.| (2020) is required to satisfy 0 < a <
minlSiSN{ﬁ}. In contrast, the stepsize upper bound in Theorem |3|is given by minlgz‘gz\r{i, ﬁ}
It can be verified that our permissible stepsize is at least % times larger than that in Karimireddy et al.
(2020). Similarly, Mitra et al.| (2021b) requires the stepsize to satisfy 0 < o < mini<;<n{157 7} In contrast,

5LT—L
et al.| (2021Db)). Table [1| provides a detailed comparison between our proposed stepsize and convergence rate

with existing works.

our Theorem |3| permits a stepsize that is at least maxj<;<n{ 207L; } > 4 times larger than that in [Mitra
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Table 1: Comparison of the proposed stepsizes and obtained convergence rates for Algorithm[IJand Algorithm
[2 with existing results. In this table, we represent the total communication round as ¢, the local training
period as 7, and assume that the local loss function f;(x) satisfies L-smooth property.

CONVERGENCE  GRADIENT

ASSUMPTION  ALGORITHM STEPSIZE 1
RATE SETTING
1/L O(1/t) EG
Db ALGORITHM /L o(1/4) SG
QIN ET AL.| (20228 1/(2L) O(1/t) SG
KHALED ET AL. (2020) 1/(4L) O(1/t) SG
2/(5LT — L o(1/t EG
ALGORITHM /1(/(127-L) : O((l//t)) e
MITRA ET AL.| (2021A 1/(187L) O(1/t) EG
MITRA ET AL.| (2021B 1/(107L) O(1/t) EG
ALLOUAH ET AL. (2024 1/(167L) O(1/t) SG
KARIMIREDDY ET AL.| (2020)) 1/(817L) O(1/t) SG
REISIZADEH ET AL.| (2020)
NON-IID BEIKMOHAMMADI ET AL.| (2025
HADDADPOUR & MAHDAVY (2019
QU ET AL.| (2021); YU ET AL.| (2019)
CHENG ET AL/ (2024); |L1 & L1 (2023) O(1/Vi) O@/V) S5G
YANG ET AL. 2021, ZHU ET AL.| (2021
WANG ET AL. ; [YAN ET AL.| (2025)
XIANG ET AL. 2024 ); HUANG ET AL.| (]2023
KM ET AL.| (2023) ADAPTIVE O(1//t) SG

1L EG denotes the exact gradient setting; SG denotes the stochastic gradient setting.

5 Convergence Analysis under Stochastic Gradients

We extend our analysis to the more practical setting of stochastic gradients (the mini-batch setting). In this
case, the local loss function f;(z) is determined by

where &; denotes a stochastic data sample drawn from the local distribution D; of client i. As a result, client
¢ can only access a stochastic estimate V f;(x,&;) of the true gradient V f;(x) for any x € R™. We use the
following standard assumption regarding the stochastic gradient (Karimireddy et al. (2020); [Mukherjee et al.|
(2023); [Jhunjhunwala et al.| (2023)):

Assumption 4. The stochastz’c gradient V f;(x,&;) is an unbiased estimate of the accurate gradient V f;(x),
with its variance bounded by o2. Specifically, we have

Ee,np [V fi(w, &) = Vfi(z), and BEeop [[Vfi(z,&) =V i()|’] < o,

forany x e R" andi € S.

Theorem [ establishes the convergence of Algorithm [I]in the stochastic and IID case:

Theorem 4 (Stochastic and IID Case). Under Assumptions|[1], [3 [4 and[4 if the stepsize o; in Algorithm
satisﬁes 0<oy < % for any i € S, we have

[7(% S50 )] - s lz@) —a> D VLA
T~ ~ mini<;<n{20; — 2L;a2}T  minj<;<n{20; — 2L;02}N "
Proof. See Appendix [G] O
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Theorem [5| establishes the convergence of Algorithm [2]in this stochastic and non-IID setting:

Theorem 5 (Stochastic and Non-IID Case). Under Assumptions @ and if the stepsize o of Algorithm
satisﬁes 0 < a<mini<j<n{7, 7}, we have

B[f(L 3 50)] - fle) < TP gy

atT

Proof. See Appendix [H] O

6 Experiments

6.1 Evaluation using generated data

6.1.1 Comparison under IID distribution

We use the following regression problem to compare the performance of Algorithm [[]and Algorithm [2] under
the proposed stepsizes with existing counterpartsﬂ

N
1 1
in f(z) = min NZ;Q” z —bil|%, (10)
where A4; € R00<100 . ¢ R0 and 2 € R for each client i € & = {1,2,---,20}. [A4;]; are generated
from [0, 1] randomly for j € {1,2,---,500}, k € {1,2,---,100}, and 7 € S, and we also set [A1];1 = [41],2
for j € {1,2,---,500} to obtain a convex but not strongly convex loss function f;(x). We set b; = A;x¢ for
all i € S with 29 = 10 x 1,, rather than generating b; randomly. In this setting, f;(z) = 1||A;(z — 20)||* and,
AT Ayl

hence, there exists a constant 7 = maxj<;<n{ } such that ||V f;(x)]] < n||Vf(2)]|

holds for all 1 € S.

I(E D ADT(H > Al

We compare Algorithm [1| and Algorithm [2| under the proposed stepsize strategy with existing counterparts
including |Qin et al| (2022b)); Mukherjee et al.| (2023); Mitra et al.| (2021b)); [Khaled et al. (2020). In the

evaluation, we use the error

e(t) = f(z(t)) — f(z7)

to measure the learning accuracy. Moreover, we implement all algorithms using accurate gradients to ensure
a fair comparison of them. The corresponding convergence performances with different local training periods
T=2,3,4,5,6 are presented in Figure

In Figure[d], the legends ‘Algorithm[I] with Universal Stepsizes’ and ‘Algorithm [T with Local Stepsizes’ denote
Algorithm [1| with stepsizes and , respectively. Specifically, in the universal stepsize case, we set the
universal stepsize « for all clients as a = minlSiSN{m, L(27+n(7_1§)§+4nh(7_1)} according to , where

L = % 2511 L; is the global Lipschitz constant. In the local stepsize case, we set the stepsize of client 4
as o; = % based on individual Lipschitz constants L;. From Figure (1} we know that the convergence of
Algorithm with the stepsize prescribed in is much faster than other cases, including the case with the

universal stepsize . Additional experiments with non-IID data are presented in Appendix

6.1.2 Local Stepsize Strategy Outperforms Universal Stepsize Strategy for Algorithm [I] under 7 =1

We show that better convergence performanceﬂ of Algorithm can be achieved with local stepsizes 0 < a; <

% than a universal stepsize 0 < a < %, where L = % ,—1 L;i. For ease of comparison, we continue to

consider the regression problem described in Section specifying
[Ai]jk = Z'p[Bi]jk and bl = Aiﬂio

LCode available at https://anonymous.4open.science/r/ol_t-F814/README.md
2Code available at https://anonymous.4open.science/r/ol_t-F814/README.md
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——= Mukherjee et al. (2023)

fffff Mitra et al. (2021b)

—— Algorithm 2
Algorithm 1 with Universal Stepsizes
Khaled et al. (2020)

fffff Qin et al. (2022)

—— Algorithm 1 with Local Stepsizes

Errors e(t)
Errors e(t)

200 300 400 500 600 700 200 250 300 350 400 450 500 550 600
Communication Rounds t (T =2) Communication Rounds t (T = 3)

;\

Errors e(t)
Errors e(t)
Errors e(t)

200 250 300 350 400 450 500 200 225 250 275 300 325 350 375 400 200 220 240 260 280 300 320 340
Communication Rounds t (T =4) Communication Rounds t (T =5) Communication Rounds t (T =6)

Figure 1: Comparisons of the performance of Algorithm [I]and Algorithm [2] under the proposed stepsize with
Qin et al.| (2022b); [Mukherjee et al.| (2023); [Mitra et al. (2021b)); [Khaled et al.| (2020) under different local
training periods 7.

for j € {1,2,---,500}, k € {1,2,---,100}, and ¢ € S, where [B;];, is generated from [0, 1] randomly, p
measures the heterogeneity in loss functions, and zy = 10 x 1,. It can be seen that a larger parameter p
leads to more heterogeneity in the local loss functions. Moreover, one can verify that the loss function f;(x)
of client i € S satisfies L;-smooth property with L; = i?|| Bl B;||2. Then, under 7 = 1, we present in Figure
the convergence of Algorithm [1| under the local stepsize strategy where «o; = % of client ¢ € S and the
universal stepsize strategy where a = % for all clients, where L; is the individual Lipschitz constant of client

i€Sand L = % Zfil L; is the global Lipschitz constant.

In Figure 2| to compare the convergence between the local and the universal stepsize strategies, we plot
the learning errors f(7;(t)) — f(z*) and f(Z4(t)) — f(z*) under different heterogeneity parameters p €
{1,1.5,2,2.5,3}, where z;(t) and Z,(t) are generated under the local and the universal stepsize strategies,
respectively. From Figure [2] it is clear that the local stepsize designed based on local Lipschitz constants
obtains faster convergence than the case with the universal stepsize designed based on the global Lipschitz
constant. Moreover, to quantify the improvement in convergence speed, in Figure[2] we also plot the learning
error ratio

f@(t) = fz")
f(@g(t)) = f(a*)

under different heterogeneity parameters p € {1,1.5,2,2.5,3}, respectively. A smaller r(¢) (r(¢) < 1) means
more advantage of the convergence speed of the local stepsize strategy over the universal stepsize strategy.
Figure [2| shows that a smaller r(t) is obtained under a larger heterogeneity parameter p. Thus, it can be
concluded that the local stepsize strategy of Algorithm [I] can achieve faster convergence than the global
stepsize strategy, especially for large heterogeneity cases.

r(t) =

6.2 Evaluation using CIFAR-10 and CIFAR-100 under non-IID distribution

We also evaluate our algorithms by training a CNN on 10 clients using the benchmark datasets CIFAR-10
and CIFAR-100, respectivelyﬂ The CNN architecture consists of three convolutional layers with 32, 64,
and 128 filters, respectively, each followed by a max-pooling layer. After the final convolutional and pooling
layers, the network includes a fully connected layer with 256 units and ReLU activation, a dropout layer
with a rate of 0.25 for regularization, and a final dense output layer with 10 units that produces the class

3Code available at https://anonymous.4open.science/r/ol_t-F814/README.md
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Figure 2: Comparisons of Algorithm [I] with the local stepsize strategy and a universal stepsize strategy under
different heterogeneity parameters p.

logits. In our experiments, we compare the proposed algorithm against existing federated learning methods
specifically designed to address client drift, including SCAFFOLD (Karimireddy et al.,|2020)), FedLin
2021b), and Scaffnew (Mishchenko et all [2022). Following Hsu et al.| (2019) and |Kim et al| (2023),
we generate heterogeneous data distributions across the 10 agents using a Dirichlet distribution, with the
heterogeneity parameter 3 set to 0.1, 1, and 10, respectively. A higher value of § yields a nearly uniform
distribution of data across classes for each client, resulting in approximately IID local datasets. In contrast,
a lower 3 leads to highly skewed distributions, where clients tend to specialize in only a few classes.

Figures [3]and [4 Figures[f]and [0 and Figures [7] and [§ present results for 3 set to 1, 0.1 and 10, respectively,
corresponding to moderate, high, and low heterogeneity in the data distributions. For all results shown in
Figures (CIFAR-10) and Figures [4] [6] 8] (CIFAR-100), the stepsizes for Algorithm 2] SCAFFOLD,
FedLin, and Scaffnew are selected according to the guidelines from Theorem [3] [Karimireddy et al.| (2020),
Mitra et al.| (2021b]), and [Mishchenko et al. (2022)), respectively, using an estimated smoothness parameter
of L = 2. For Algorithm 2] SCAFFOLD, and FedLin, the local training period is set to 7 = 10. For
Scaffnew, the communication probability is set to 11—1 to ensure that the total number of communicated
messages remains consistent across methods. A summary of the experimental setup is given in Table 2] As
shown in the figures, our algorithm achieves faster convergence and higher accuracy on both the CIFAR-10
dataset and the CIFAR-100 dataset. Note that the large variance of Scaffnew arises from the additional

randomness introduced by its communication mechanism.

Table 2: Experimental Setup in Figures

\ FIGURE \ FIGURE \ FIGURE \ FIGURE|§| \ FIGURE \ FIGURE

DATASET CIFAR-10 | CIFAR-100 | CIFAR-10 | CIFAR-100 | CIFAR-10 | CIFAR-100
HETEROGENEITY B=1 B=1 6=0.1 8=0.1 B =10 B8 =10
LOCAL TRAINING PERIOD! =10 =10 =10 =10 =10 =10
NUMBER OF AGENTS 10 10 10 10 10 10
OPTIMIZER? SEE LABEL | SEE LABEL | SEE LABEL SEE LABEL | SEE LABEL SEE LABEL

I For Scaffnew, the communication probability is set to ﬁ to ensure that the total number of communicated messages remains
consistent across methods.

2 The stepsizes for Algorithm [2, SCAFFOLD, FedLin, and Scaffnew are selected according to the guidelines from Theorem
|[Karimireddy et al.| (2020)), [Mitra et al.| (2021b)), and |[Mishchenko et al.| (2022)), respectively, using an estimated smoothness
parameter of L = 2.
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Figure 3: Comparison of Algorithm [2] with state-of-the-art federated learning algorithms—SCAFFOLD,

FedLin, and Scaffnew—on the CIFAR-10 dataset. The Dirichlet distribution parameter was set to 5 = 1.
Each curve represents the average of five independent runs. The test accuracy in Figure b) is top-5

accuracy.
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Figure 6: Comparison of Algorithm [2] with state-of-the-art federated learning algorithms—SCAFFOLD,
FedLin, and Scaffnew—on the CIFAR-100 dataset. The Dirichlet distribution parameter was set to g = 0.1.
Each curve represents the average of five independent runs. The test accuracy in Figure @(b) is top-5
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7 Conclusion

Enhancing convergence accuracy and speed is key for federated learning. We prove that much larger stepsizes
can be used in FedAvg, and hence, much faster convergence can be achieved. In fact, we theoretically show
that the proposed stepsize strategy can guarantee o(1/t) convergence to an exact optimal solution for general
convex loss functions, under both IID data distribution and non-IID data distribution among local clients.
This is significant since existing federated learning results can only theoretically establish O(1/t) convergence
under general convex loss functions when no additional restrictions are made, even after incorporating
momentum. Moreover, in the IID data distribution setting, we theoretically establish convergence when
clients set stepsizes individually using local Lipschitz parameters, and show that such a local stepsize strategy
enables exploiting local geometry to expedite convergence. To our knowledge, this is the first time that
local stepsizes designed using local Lipschitz parameters is systemtically shown to outperform a universal
stepsize designed using the global Lipschitz parameter. Moreover, we propose a general gradient-tracking-
based framework that unifies and extends many existing drift-corrected federated learning algorithms. By
establishing a key monotonic descent property, our framework broadens the theoretical understanding of
gradient tracking and enables an improved o(1/t) convergence rate under non-IID data distributions. This
represents a significant advancement, as existing results establish o(1/t) convergence for convex federated
learning only under additional restrictions on heterogeneity.
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A Additional Experiments

A.1 Comparison of Algorithm [2] with Existing Works in Least Squares Regression

We consider [A4;],5 and [b;]; generated from [0, 1] randomly for 1 < j <500, 1 < k <100, and i € S. After
the initial random generation of data, we purposely set [A:1];1 = [A1];,2 for 1 < j < 500 to make A; not full
1

rank. By doing so, we can obtain a local loss function fi(z) = §||A12 — by ||? that is convex but not strongly

convex.

We compared the performance of Algorithm [2[ under the proposed stepsize in Theorem |3| with those in
Mitra et al.|(2021a3b). The convergence performances of Algorithm and algorithms in Mitra et al.| (2021ajb)
under different local training periods 7 = 2,3,4,5,6,7 are shown as Figure [0} It is clear that the proposed
stepsize strategy indeed yields much faster convergence than the compared counterparts.

A.2 Additional Comparison under IID distribution

In Section Figure |1 compares Algorithm |1 and Algorithm With existing methods |Qin et al| (2022b);
Mukherjee et al.| (2023); Mitra et al. (2021b); [Khaled et al.| (2020) using universal stepsizes. For further
comparison, Figure illustrates the behavior of the same existing methods when equipped with local
stepsizes. Both Figures [1| and highlight the superior performance of Algorithm [I| over the existing
approaches.

A.3 Additional Evaluation using CIFAR-10 under non-l11D distribution

In this subsection, we conduct additional numerical experiments on CIFAR-10 to compare our method with
several federated learning baselines: FedAdam (Reddi et al., |2020), FedProx (Yuan & Li, [2022), SCAFFOLD
(Karimireddy et al., [2020), FedLin (Mitra et al. 2021b)), and Scaffnew (Mishchenko et all [2022)). Figures
and [13| present results for S set to 1, 0.1 and 10, respectively, corresponding to moderate, high, and
low heterogeneity in the data distributions. For all results shown in Figures and the stepsizes for
Algorithm 2] FedAdam, FedProx, SCAFFOLD, FedLin, and Scaffnew are selected according to the guidelines
from Theorem [3| [Reddi et al| (2020)), [Yuan & Li| (2022), [Karimireddy et al. (2020), Mitra et al| (2021D)), and
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Mishchenko et al. (2022), respectively, using an estimated smoothness parameter of L = 2. For Algorithm 2]
FedAdam, FedProx, SCAFFOLD, and FedLin, the local training period is set to 7 = 10. For Scaffnew, the
communication probability is set to 1—11 to ensure that the total number of communicated messages remains
consistent across methods. A summary of the experimental setup is given in Table 3] As shown in the
figures, our algorithm achieves faster convergence and higher accuracy than other baseline federated-learning
algorithms. Note that the large variance of Scaffnew arises from the additional randomness introduced by
its communication mechanism.

Table 3: Experimental Setup in Figures [I1] 12 and

\ FIGURE \ FIGURE \ FIGURE

DATASET CIFAR-10 CIFAR-10 CIFAR-10
HETEROGENEITY 8=0.1 s=1 £ =10
LocAL TRAINING PERIOD! =10 =10 =10
NUMBER OF AGENTS 10 10 10
OPTIMIZER? SEE LABEL SEE LABEL SEE LABEL

L

77 to ensure that the total number of communicated

! For Scaffnew, the communication probability is set to
messages remains consistent across methods.

2 The stepsizes for Algorithm [2 FedAdam, FedProx, SCAFFOLD, FedLin, and Scaffnew are selected according
to the guidelines from Theorem [3| [Reddi et al] (2020), [Yuan & Li (2022), Karimireddy et al| (2020), [Mitra et al]

(2021Db)), and Mishchenko et al.| (2022)), respectively, using an estimated smoothness parameter of L = 2.
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Figure 11: Comparison of Algorithm [2] with state-of-the-art federated learning algorithms—FedAdam, Fed-
Prox, SCAFFOLD, FedLin, and Scaffnew—on the CIFAR-10 dataset. The Dirichlet distribution parameter
was set to § = 0.1. Each curve represents the average of five independent runs.
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Figure 12:  Comparison of Algorithm [2| with state-of-the-art federated learning algorithms—FedAdam,
FedProx, SCAFFOLD, FedLin, FedAdam, FedProx, and Scaffnew—on the CIFAR-10 dataset. The Dirichlet
distribution parameter was set to § = 1. Each curve represents the average of five independent runs.
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FedProx, SCAFFOLD, FedLin, FedAdam, FedProx, and Scaffnew—on the CIFAR-10 dataset. The Dirichlet
distribution parameter was set to § = 10. Each curve represents the average of five independent runs.

A.4 Sensitivity of smoothness constants in CIFAR-10 experiments under non-11D settings.

The numerical experiments in Section [6.2] employ an estimated smoothness constant of L = 2. To assess
the sensitivity of the results to this parameter, we perform additional tests on the CIFAR-10 dataset using
estimated values of L = 1 (Figure and L = 1.5 (Figure [15). Figures [14] and [15] demonstrate that our

algorithm maintains faster convergence and higher accuracy even with these varying estimated values.
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Figure 14: Comparison of Algorithm [2] with state-of-the-art federated learning algorithms—SCAFFOLD,

FedLin, and Scaffnew—on the CIFAR-10 dataset. The Dirichlet distribution parameter was set to 8 = 1
and the smooth constant is estimated as L = 1. Each curve represents the average of five independent runs.
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Figure 15: Comparison of Algorithm [2] with state-of-the-art federated learning algorithms—SCAFFOLD,

FedLin, and Scaffnew—on the CIFAR-10 dataset. The Dirichlet distribution parameter was set to 8 = 1 and
the smooth constant is estimated as L = 1.5. Each curve represents the average of five independent runs.
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B Supporting Lemmas for the Proof of Theorem [I]

Lemma 3 (Zhou (2018))). For every L;-smooth and convez function f;(x) over R™, we have

£1(0) 2 fi(@) + (VSi(a).y = ) + 5|V i) = VI

for any x,y € R™ and i € S.

Lemma 4 (Mitra et al| (2021b))). Suppose that f;(x) is L;-smooth and convex. Then, for any 0 < «

we have
ly =z —a(Vfily) = V(@) < ly — =

for any x,y € R™.
Lemma 5 (Zhou| (2018))). For the conver and L-smooth function f(x), we have

L
F) < F@) +(Vf(@)y — o) + Slly — =
for any x,y € R™.
C Proof of Theorem [I]

Proof. The sequence {f(Z(t)) — f(z*)} satisfies

f@@) = f(z") =20

1
L’

for any ¢ > 1. From Lemma I} to prove Theorem [I} we only need to prove that the nonnegative sequence

{f(z(t)) — f(z*)} satisfies the summable and monotonically decreasing properties.

e« Summable Property: Firstly, we establish the summable property.
From in Algorithm |1} we have

i1 () = 2™

=llwik(t) — %] = 2a(V fi(zin(t), zik(t) — ) + ||V fi(zi 1 (1)) |-

From the convexity of f;(z), we have
—2a(V fiwi (1)), wi k() — 27) < 20{fi(z") = fi(wix(t))}-
Using the strong growth condition (see Assumption |3 yields
IV fi(z")ll =0

for any ¢ € § and z* € X'*.
Then, from Lemma [3| and , we have

IV fi(in®)? < 2L filwin(®) - fi(=") }.
Combining , , and , we arrive at

ik (®) = 22 < Jain(t) — 21 + 20 = 2Lia®){ fi(e") = filzin(t) }.

24

(12)

(15)



Published in Transactions on Machine Learning Research (02/2026)

It is worth noting that the following inequality holds
| N
Izt +1) —2"|* < D llwir () — 27|,
i=1

Thus, from Algorithm (1| and , we have

Ja(-+1) =
< Z (20— 2Lia?) 3" { 1) — fulaan(e) } + l2(0) — 2|1 (16)
=1 k=0

Under the stepsize setting (3)), we have
200 — 2L;a% > 0

for any i € S. Moreover, from Assumption 3| we have ||V f;(z*)|| = 0 for any z* € X* and i € S.
Thus, in (I6]), we have

fi@™) = fi(zin(t)) <0

foranyie€ Sand k=0,1,--- ,7—1.
Thus, using , we have

@t +1) = o2 < 2(t) — 2|2 + {20 — 2002 H{ 1(2") — 1 (@) }. (17)
From , we can obtain

F@0) — fa) < 1EO =P~ ||zt +1) - o)

200 — 2La?
Thus, for any 7" > 1, we have
T _
_ ) oz — )
_ P L S |
> {r@w) - fan) < (18)

t=1
which establishes the summable property of the sequence {f(z(t)) — f(z*)}.

e Monotonically Decreasing:
Next, we show that f(Z(¢)) is monotonically decreasing.

From Algorithm [1], we have

i1 (5) = (1)
<llzin(t) = 3(0) — @V filwin(8) = VD)) |+l Vi (E @)

Using Lemma (4] and the stepsize setting in , we arrive at
i k1 (t) = @) < Nz k() — @) + |V £i(z(2)]]. (19)
Using the update rule in Algorithm [T} we obtain

[z, (t) — Z(@)]] < ka||V fi(z(1)) ] (20)
for k=0,1,2,---,7— 1.
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It is worth noting that the following inequality always holds:

N 7-—1

|5 23 vt < iiHVﬁm V4G + IV ED).

i=1 k=0
From Assumption |1 and , we have

N 7—1 T—

H% S Vi) % SN Lillwist) — 2@ + IV £ @)
i=1 k=0

i=1 k=0

Ju

Further using Assumption [3] and the update rule in Algorithm [3| we arrive at
Vfl (ot + =D sz, (21)
N
From , we have
0
z(t+1)=xz(t) - NZ Vfi(wi k(1))

The global loss function f(z) is L-smooth with L = & Zf\;l L;. From Lemma [5{and Assumption

we have
f(@(t+1))
1 N 7-—1 L a N 7—1
<f(@(t)) = (Vf(z(1)), N Z Z aV fi(Z(t))) + EHE Z Z V filzi ()]
N 17— 11_ = 1 N 7—1 B
Vf ii' szavfz xlk Z avfl(i’(t)»
i=1 k=0 N k=0
As for the last term of the above inequality, we have
1 N 7—1 1 N 7—1
(VIG0), D0 aV i) - 5 > S aV i)
=1 k=0 =1 k=0
N -1
<IVFEI{ 5 303 all Vi) - VA }
a Tflkl;o
<|VF@O)I{ 5 2 X Lillaax(t) — 201}, (22)

where the first inequality follows from Cauchy—Schwarz inequality and the second inequality follows
from the L-smooth assumption (see Assumption [1)). Furthermore, using Assumption 7 and

, we have

PG+ 1)
<(E(0) — ar |V ) + a2 {r + TV v s 2
N 7-—1
+all i@ 33 Lillaar(t) - 7)1} (23)
1=1 k=0
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Taking into yields

FlE(+ 1)
<(E(0) - ar| VFEO) + Za2{r + TNV o)

N 17-1
+alViEOI] 5 33 Likal W A0) ). (24)

i=1 k=

(e}

From Assumption [3|and (24)), we arrive at
f@(t+1))
= - 2 L, n(r — 1) 2 - 2
@) - ar| VW) + S0 {r + F—=} IV @E®)]

N
+alviEo){n Zkanw @I 5 L} (25)
i=1
which further implies

f(@(t+1))

<(E(0) - ar|VFEO) + Fa2{r + TV o)

2
Lt(t —1)a?
_’_w

5 IV £@@)I>.

Therefore, the stepsize should satisfy

L —1)y2 L -1
77—0[4»7{7_4»7’(7— )}a2+nT(T )OL2§O
2 2 2
to guarantee the monotonically decreasing property of f(Z(t)) — f(«*). Equivalently, stepsize satis-
fying
< 8T
4= L2t +n(r —1))24+4nL7(r - 1)

guarantees the monotonically decreasing property of f(Z).

O
D Proof of Theorem
Proof. From (2)) in Algorithm [1} we can obtain
25 1 (8) — 2|2
=lzin(t) = a*[1* = 200V fi(wi (1)), i (t) — ) + QF ||V filws i (1)) 1% (26)
From the convexity property of f;(x), we have
=20 (V fi(@in (), win(t) — 2) < 20:{fi(z") = filwin(t))}- (27)

Assumption [3] implies

IVfi(z™)[| =0

27
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for any i € S and z* € X*. Thus, combining with Lemma [3] we have

19 it < 2L fiwin) - fita")}.

Combining , , and , we can obtain
ik (6) = 212 < aip(t) — 2|2 + (20; = 2Liad){ fi(e") = filzin(t) }.

Note that the following inequality always holds:

lz(t +1) - a*)* < *Z i, (8) — 2%,

Hence, Algorithm |1} and imply

N T—1
|2(t+1) —2*]? < 22041—2La
=1 k=0

Under the stepsize setting , we have
20; — 2L >0
for any i € §. Moreover, Assumption [3| ensures
fi(z™) = fizix(t)) <0
foranyie Sand k=0,1,--- , 7 — 1.

Substituting the above inequality into yields

@ +1) - 2" < 3 — 22+ min {20, - 2002 H{ 1) - f@@) }.

1<i<N
From (31)), we can obtain

oy < 2@ =2t |? 2+ 1) — 272
- minlSiSN{Qai — 2L10é12}

Thus, for any 7' > 1, we have

T (1) —z*|?
Z {f(;%(t)) - f(x*)} < minlggz(vl‘EQQi —|2Lioz22}.

t=1

Since f(z(t)) — f(z*) > 0 holds for any ¢, we have

lim f(z() = f(a").

t—o0

In addition, from , for any 7" > 1, we can obtain

’ﬂ

t=1

which completes the proof.

28

SO{AE) - filwar) } + 13) — 271

= (1) — a*|?

(28)

(29)

(31)
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E Proof Theorem [3
Proof. From Algorithm [2| the updated rules @ and can be equivalently expressed as
Tihi1(t) = ik (t) — a(Vf(2(1) = VIi(2(1) + Vfi(zik(1))).
The relation in , we further implies
2o t) — (1) + a(vmxi,k( ) = VEED)| + a1V EO)I-
From Lemma [4| and , if the stepsize satisfies 0 < a < 7-, we have
i ka1 (t) = ()] < ik (t) — f(t)ll +af[ Vi)

i () = 20)] < |

Using induction, we obtain
ik (t) = 2@)] < kal|VF (@)

Using the update rule in Algorithm [2] we can obtain
x; . (t) = Z(t —aZVfl xik(t —T@(Vf(i:( ) — Vfi(f(t))).

Therefore, the average parameter Z(t + 1) satisfies

N N -1
_ 1 _ «
(t+1) =+ D @i t) =x(t) - ¥ SN Vi),
i=1 i=1 k=0
which further implies
@ +1) — |2 - 7(t) — 2”2
o r—1 N 7-—1
=2 S Vi), 50 — 2 ) + | 5 DD Vhiwir(t) H
N N
i=1 k=0 i=1 k=0
For the first term on the right hand side of ., we have
N 7-—1
1 _ *
—(+ Y filwan (), 3(t) — 2" )
i=1 k=0
1 N 7-—1 1 N 7-—1
:NZ (@ = @ik(t), VSi(zin(t) + & Z (@i (t) — (1), Vfi(2(1)))
i=1 k=0 2:1 k=0
1 N 7—1
t5 DO win(t) = #(1), Vfilzik(t) = Vi(2(1))-
i=1 k=0

N 7—1
{5 S Vi), a0) 2
i=1 k=
. N -1 k=0 1 N 7—1
SN;k:O {fl(x*) - fz(m%’c(t))} + N;k:o {fl(%k( ) = Hla ))}
1 N 7—1
4 NZ Li||zi 1 (t) — 2( )H2
i=1 k=0

29
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Combining and , we arrive at

N 7-1
Y V). (1)~ )
1=1 k=
1 N -1 ’ 1 N -1
<3 2 2 ) BEW) } + 5 303 Lk V@) (41)
i=1 k=0 i=1 k=0
Plugging the stepsize condition 0 < aL; < 1 into yields
N 7—1
A S V)20 - o) < o{ 1)~ 1@0) ) + V)P Zk2 (1)
i=1 k=0

Applying the relation Y, _, k* = M to the second term on the right hand side of yields

N 1—1

~{~ DD Vihilwir(t),3(t) — 2 ) < 7 (@) = F@E) f + A V(@) (43)
N

i=1 k=0
where A; = %.

For the second term on the right hand side of , we have

E igwxxi,k(o)u ZZ |V fi@in®) = V1) + 719 GO (44)
Using the smoothness condition in Assumption [T we can further obtain
HN Zw; za®)]| < ;iganww ||+ VI @) (45)
Combining and ([45)), we can obtain
HNZZVL o <ZL ko[ VL @)+ 7|V @) (46)

Applying the stepsize condition 0 < 7al; <1 to yields

N 7—1

HN -3 Vial0)] < Aal VGO (47)

where Ay = 27 — 1.
Then, combining , , and , we can obtain

Ja(t+1) = a2 = a(t) - "2 < 2ra{ fa") = f@@) } + {241 + AZJ?IVIGE@)E (48)
Using the relation established in Lemma [2] we can obtain the following inequality from (48)):
@t +1) = 2|2 = |l2(t) - 2|

<2ra{f(a) 2 @) - fae+1) (49)
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Rearranging terms yields

2
2raf @) ~ fa")} < o) — 2 ~ Izt + 1) — o + ZERL @) - s 1)) (60

Thus, for any T > 0, summarizing from t =1 to t = T leads to

T
S {r@®) - 1)} < s lle) 27| + %{f@(l))—ﬂm*)}. (51)

t=1

Using (51)), Lemma 2, and Lemmall] we can conclude that f(Z(t)) converges to f(z*) with the convergence
rate o(1/t), which completes the proof. O

F Proof of Lemma

Under Assumption [1} we know that f(x) is L-smooth. Thus, from Lemma [5| we have
f(a(t+1))

L X

<F(@(t) - a(VIED), + D

z:l k=0

T—1

Lja &
Vi) + 5|5 X V)] 2)

T—1

Substituting into leads to
F@(t+1)) <f@EQ) = ar|| V(@) + 2LV f(2(1)) ]

N 1—1

+al V@O 5 3 S 19 iwin(t) - Vi) ) (53)

i=1 k=0

Using the smoothness condition in Assumption |1} we can have the following relationship for :
F@(t+1) <f@®) — arl|V (@) +2L7%?|V f(z(1))]?

T—1

N
+al VI I{ 5 Y03 Lillean(t) - 201} (54)
k=0

i=1

Plugging into yields

£+ 1)) < FG(0) - ar VIO + L L[V GO). (53)
Rearranging like terms leads to
{or = LTI 2 Vv pa)I? < £ (0) - £+ 1) (56)
Since the stepsize a satisfies 0 < o < ﬁ, there exist v > 0 such that
aT — 57% - TLa2 > *yaQ

Thus, we have

ye? |V f(@()I7 < f(z(t) — f(a(t +1)),

implying that the sequence f(Z(t)) is monotonically decreasing, which completes the proof.
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G Proof of Theorem [4

Proof. We use g;(x) to represent the unbiased estimate of the gradient V f;(z). From (2) in Algorithm [1} we

can obtain

i ey (8) — 2|2
ik (t) — 2 [1* = 20 (V fi@i k(1)) w3 p (t) — &%) + 2057 |V f3 (2 (1))
— 20 (gi(wi k(1)) = Vfilwin (), wi i (t) — %) + 20| gi (i 1 (8)) = V fulzar ()%

Using the convexity of f;(x), we arrive at
—20(V fi(@i (1)), wi k(1) — %) < 20:{fi(2") — filzin(t))}.
Assumption [3] implies

IVfi(z™)] =0

for any i € S and 2* € X*. Thus, combining the preceding relation with Lemma [3| we can obtain
IV filiw@)I® < 2Li{ fizin(t)) — filz)}-
Combining (57 , , and (59)), we arrive at

27 kg1 () — ¥
ik (t) — 2*)° + (205 — 2L0){ fi(z") — filzix(t))}
—2a(gi(zi k(1) — V filzin(t)), zik(t) — &%) + 207 ||gi (s (1) — V filzi ()],

Using and the property of the stochastic gradient, we have

Efl i ps1(t) — 2" |%] < Elllwi e () — 2" |°] + (204 — 2Lio){ fil@") — Elfi(wir ()]} + 2070,

Note that the following inequality always holds:

N

Eflz(t +1) — 2”|] Z [llas,r (2) — 2*]1?].

Using the update rule in Algorithm [1|and (60)), we arrive at

E[|z(t +1) — ="
N T—1

<2 D (200~ 2Li02) 3 fie") — ElfiCoas ()]} + Ella() — 2°) sz o
=1 k=0

Under the stepsize setting 7 we can obtain 2c; — 2L;a? > 0 for any i € S.
Moreover, Assumption [3| ensures f;(z*) — E[f;(x; x(t))] <0 for any i € Sand k =0,1,--- ,7 — L.
Thus, from , we have

Efllot+ 1) — 2| < min {20: - 2Lia? }{ £(2") — B (2(1))]}

32
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which further implies

E[2(t) — «*|"] — E[IZ(t +1) —2"[*] N2 o2
minlSiSN{Qai - 2Ll0z12} m1n1<l<N{2al - 2L a2}

E[f(z()] = f(z7) <

Thus, for any T' > 1, we have

T - 2
. [Z(1) — 2*|? & T 27l T o2
E[f(z(t))] — f(z* } < i= 64
g{ @O = fT)y < ming <;<n{20; — 2Lio¢12} ming <;< n{20; — 2L; ozz} (64)
From , for any T' > 1, we obtain
T _
1 - |Z(1) — 33*||2 N Z 12 o2,
B[f(7 2 a0)] - 7 < 3
! T ;x( ) VGRS ming <;<n{20; — 2L;02}T + m1n1<Z<N{2az - 2L a2}
which completes the proof.
O

H Proof of Theorem

We use g;(z) to represent the unbiased estimate of the gradient V f;(z). We need the following Lemma [6] to
prove Corollary [5]

Lemma 6. If the stepsize satisfies 0 < a < min{1<j<N}{%}, we have
- = J

Elll2s4(t) — 2(0)IP] < 1272 La’E[f(2(1)) — f(2")] + 2770’0

forO0<h<TandieS.

Proof. From Algorithm [2], we can obtain

T pt1(t) = ik (t { Zgy (@(t)) — gi(x(t)) +9i(1‘i,k(t)))}-

Thus, we have
Z‘i7k+1(t) — .i_f(t)
=i () — 3(t) - a{vm( ) = VI(E() + Vfilwin(®) }

N N
~aof 5D ) Z ) (1)) — 0s(a(0) + i (0) = V filein(t) )

From the property of stochastic gradients, we have

E[los 41 (8) - a(0) ]
=i (t) ~ (6) — (¥ 1(a0) ~ V£i@(0) + V()|

+a2E[H}Vigj<x }Vﬁm +sz<(>>—gi<az<t>>+gj<xi,k<t>>—wi,k(t))\ﬂ (65)

For the first term of the right hand side of , we can obtain
2
E[|z:(t) ~ 2(t) = a(V@(0) = V£@®) + Vi) | ]

<(14 D)E[wiatt) - 70) ~ a(V filain(®) = V@@ ] + (1 + DBV £
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From Lemma {4} we can obtain
E[#s(t) — 20) — a(V1@(0) - V@) + Vhitas )|
< (14 2)Bllairt) - 3OIP) + (1 + BNV GO, (66)

if the stepsize satisfies 0 < aL; <1 for any 1 <i < N.

For the second term of the right hand side of , we have

E[H;Vigj(m L ZWJ )+ V1GE0) - 6@ 0) + ulean®) = Vo)

N
S% > Elllg; (@) = V@) + 3ENVfi(2(1) — gi(@(0) %] + 3Elllgi (i (1) — V filwi(6) ]
j=1

for any i € S.

Using the properties of stochastic gradients, we have

N 2
Bl 3 st Z V() + VAED) — 9.50) + gi@in(®) = Vhilain®)]| ] <952 (67)
for any i € S.
Combining , , and , we arrive at
Elllrs e (t) ~ 2017 < (14 2 )Elllzas(t) 2017+ (1 + 1)’ E[IV F@(0)I7] + 920

Using induction, we obtain the following relation holding for any 0 < k < 7:

T—1

Ellro(t) ~ 20)]17] < {1+ 0BV S @) 7]+ 90%0°} 3 (14 1)
h=0
which further implies
1+H7 -1

E[llean(®) = 201 < {1+ QBT F@)I]+ 900 | o

Using the relation |V f(z(¢))]|? < 2L(f(z(t)) — f(x*)) from Assumption [I]and the convex property of fi(x),
we can obtain

E[llzi4(t) — #(6)|2] < 127 La®BIf (2()) — f(a")] + 2Tr0%0?,

which completes the proof. O

Next we proceed to prove Corollary 5. From the update rule in Algorithm [2] we have

N 7-—1
_ _ «
B(t+1)=2() - Do gimin(0),
j=1h=0
which further implies
3Gt + 1) — 2|2 — [la(t) — 2"
N -1 1 N 7—1 9
:—2a< SN gi(ainlt), zikr) — 2 >+O‘2HNZ gj(xjyh(t))H . (68)
7=1h=0 j=1h=0
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For the term 72a<% Zjvzl Zz;é gi(zjn(t), xi(kr) — z*> in , we have

T—1

EE[@*m,h(t),m(m 0] + Qai E (2 n(t) = (1), V(s (0))]

j=1h=0 J=1h=0

al &
<207E[f(") = £(@(0)] + T 20 Y E[lasn(®) - #0)]?]. (69)

From Lemma [6] we have

IN
—
[N
\]
[\v]
h
Q
[\
=
g
H |
\
=
+
[N
\]
\}
Q
S

Efl|z;n(t) — (70)

forl1<h<rT.

Combining and , yields

N 7-—1

-208[{5 305 ay(asnlo).al) )

<L2a7E[f(z*) — f(z(t))] + 127 L2PE[f (z(1)) — f(a*)] + 2772 La’o?.

When the stepsize satisfies 0 < 67aL < 1, we have

N
~20E[(1 3 g5 (1), 7(0) — )]

h
<207E[f(2") = f(2(t)] + 2r*La’E[f(2(¢)) — f(z")] + 97°a®0?. (71)

<202| 5 33 {aitmn) - g @@} + 2075 th_ow(t»\f. (72)
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Using the smoothness conditon in Assumption (1| and the inequality || Zle ai||* <k Zle lla;||?, we have
1 N -1 2
o+ > {g(@in®) - 9;@@) |
N 17-1 N 7-—-1
3TL 3ra?
ZZ l[@,n(t) z(t)|* + N ZZ”Q} zj,n(t) =V fi(zn(t )P
j=1h=0 j=1h=0
2 N 7—1
N YD VE@E®) - g5 @@ (73)
j=1h=0
From and the property of stochastic gradient, we have
2 S - 2 670‘ L? 2 2.2 2
202K || 3 S {5 i) - 0,00} ] < 53 Bllaa) - 201 + 1207207, (71
j=1h=0 j=1h=0
Plugging the inequality in Lemma |§| into leads to
QQZE[HN ZZ{QJ zjn(t)) — g5 (z(t }H }
§72T4L3a4E[f(x( )) — f(a")] + 16273 L2a%0? + 12a%7%02. (75)
For the term || 4 S>0 ) 53720 g, (a; (k7)) 1% in (72), we have
= 2 40‘ 7 - 2 22 - 2
27| £ N g0 < Z lg;(2(8)) = V £5@@)? + 4027 [V £ ((8) |2
j=1h=0
Using Lemma [6] and the property of stochastic gradients, we have
1 N 7-—1 9
2|+ ; hz%)gj(a_:(t))” | < 402202 + 80P LE[f(3 (1)) - f(a")] (76)

Combining , , and , we have

N 7-—1
[HN Zgj (2t H ] < (1211 L%a* + 8022 L)E[f(Z(1)) — f(z*)] + 16273 L2a’0? + 16027202,

When the stepsize satisfies 0 < 67aL < 1, we have

N 7—1

0B || 303 05w ] < 107 LaELf(@(1) — F(a")] + 2502707, (77)
j=1h=0
Combining , , and , we have
E[||z(t + 1) — 2*||?] — B[|2(t) — 2*||*] < (2a1 — 1272 La®)E[f(z*) — f(2(t))] + 347202, (78)

When the stepsize satisfies 0 < o <
(78) yileds

57 » we have ar — 1272 La? > 0. Plugging the preceding inequality into

%ZE[f(cE(t)) — (=) < fli (1) — a*||? N 347202 2

atT T

36



Published in Transactions on Machine Learning Research (02/2026)

Moreover, using the stepsize condition 0 < a < min1<j<N{L1. ) 7121@} and the convexity of f(x), we can
- = J
obtain

E[f(% Za’c(t))} — flz") < HxiT + 34rac?

T *

(1) —a*|”
aT

t=1

for any ¢ € S, which completes the proof.
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